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Global Inverse Optimal Stabilization of Stochastic
Nonholonomic Systems

K.D. Do

Abstract

Optimality has not been addressed in existing works on control of (stochastic) nonholonomic systems. This paper
presents a design of optimal controllers with respect to a meaningful cost function to globally asymptotically stabilize
(in probability) nonholonomic systems affine in stochastic disturbances. The design is based on the Lyapunov direct
method, the backstepping technique, and the inverse optimal control design. A class of Lyapunov functions, which
are not required to be as nonlinearly strong as quadratic or quartic, is proposed for the control design. Thus, these
Lyapunov functions can be applied to design of controllers for underactuated (stochastic) mechanical systems, which
are usually required Lyapunov functions of a nonlinearly weak form. The proposed control design is illustrated on
a kinematic cart, of which wheel velocities are perturbed by stochastic noise.

Index Terms

Stochastic nonholonomic systems, global stabilization, inverse optimal.

I. INTRODUCTION

This paper presents a design of optimal controllers with respect to a meaningful cost function for global
asymptotic stabilization in probability of the following stochastic nonholonomic system

dx0 = u0dt+φT
0 (x0)dw,

dxi = xi+1u0dt+φT
i (x0, u0, x̄i)dw, 1 ≤ i ≤ n− 1

dxn = u1dt+φT
n (x0, u0,x)dw,

(1)

where u0 and u1 are controls, x0 and x = col(x1, ..., xn) are system states, x̄i = col(x1, ..., xi), w is
an independent r-dimensional standard Wiener process, and φ0(•) and φi(•) are r-vector valued smooth
functions satisfying the following assumption:

Assumption 1.1: The vector valued smooth functions φ0(x0), φi(x0, u0, x̄i), and φn(x0, u0,x) vanish
at the origin.

The above assumption implies that the origin is the equilibrium point of the system (1) and is imposed
to guarantee controllability of the x-subsystem, i.e., the last two equations of (1), in the limit when x0 → 0
as t → ∞. For clarity, the system (1) does not include nonlinear deterministic functions and unknown
noise covariance. Including these terms does not add contributions but increases complexity of presentation
because if there are deterministic functions (either containing unknown parameters or not) and/or unknown
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Fig. 1: Cart parameters and coordi-
nates

noise covariance, it is rather straightforward to combine the control
design proposed in this paper together with techniques in [1]
and [2] to deal with these functions containing both linear and
nonlinear appearance of unknown parameters and noise covariance.

Let us consider the following kinematic cart that motivates the
study of the stochastic nonholonomic system (1).

Example 1.1: The kinematic cart, see Fig. 1, is described by
[3]:  ẋ

ẏ

ϕ̇

 =
s

4

 cos(ϕ) cos(ϕ)
sin(ϕ) sin(ϕ)

2

b
−2

b

[
ν1
ν2

]
, (2)
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where (x, y) and ϕ denote the position and orientation of the cart, s is the diameter of the actuated wheel,
b is the width, P0 is the middle point between the two actuated wheels, and ν1 and ν2 are the angular
velocities of the actuated wheels. We now suppose that the angular velocities ν1 and ν2 are subject to some
stochastic disturbances, and are assumed to be expressed as [4]:

νi = ν̄i(x, y, ϕ) + ζ0(x, y, ϕ)ẇ, i = 1, 2, (3)

where ν̄i(x, y, ϕ), i = 1, 2 are viewed as controls, ζ0(x, y, ϕ) is a function of (x, y, ϕ) and vanishes at the
origin, and w is a standard Wiener process. The following coordinate changes x0

x1

x2

 =

 0 0 1
sin(ϕ) − cos(ϕ) 0
cos(ϕ) sin(ϕ) 0

 x
y
ϕ

 ,

u0 =
s

2b
(ν̄1 − ν̄2), u1 =

s

4
(ν̄1 + ν̄2) + x1u0

(4)

transform the kinematic cart (2) together with (3) to

dx0 = u0dt,

dx1 = u0x2dt,

dx2 = u1dt+
s

2
ζ0(x0, x1, x2)dw,

(5)

which is a special form of the stochastic nonholonomic system (1). We will continue this example in
Subsections III-C, IV-B, and V-C.

When dw/dt is an either known or unknown constant vector, the system (1) becomes deterministic.
By Brockett’s condition [5], deterministic nonholonomic systems cannot be stabilized at the origin by
any static continuous state feedback though they are open loop controllable. To overcome this obstacle,
researchers have developed novel approaches to design asymptotic/exponential stabilizers, see for example
[6], [7], [8], [9], [10], [1], [11] on the discontinuous time-invariant approach, and [12], [13], [14], [15] on
the time-varying approach.

Systems frequently contaminated by stochastic noise in practice plus development in control and stability
analysis of stochastic nonlinear systems [16], [17], [18] motivate us to consider the problem of controlling
stochastic nonholonomic systems. In comparison with deterministic systems, stochastic nonholonomic
systems have received much less attention. This is mainly due to appearance of Hessian terms in the
infinitesimal generator of a Lyapunov function if the powerful Lyapunov direct method is used for control
design. The Hessian terms cause difficulties in design of control inputs to ensure that the infinitesimal
generator negative definite. Moreover, nonholonomic constraints, especially the x0-subsystem, i.e., the first
equation of (1), create an obstacle in control design. By assuming that the x0-subsystem is deterministic,
there are several works on design of asymptotic stabilizers in probability for stochastic nonholonomic
systems, see [19] where unknown noise covariance is considered, and [20] where nonlinear appearance of
unknown parameters is treated. These works are based on the input-to-state scaling proposed in [1], and
the control design techniques for high order nonholonomic systems in power chained form in [21] and
nonlinear systems with nonlinear appearance of unknown parameters in [2]. When the x0-subsystem is
also stochastic, there are some results available in [22] where the results are incorrect, and in [23] where
the x0-subsystem is linear.

The controllers in all of the above works on both deterministic and stochastic nonholonomic systems
are not optimal in the sense that no meaningful cost function is resulted from their control designs. The
aforementioned issues motivate contributions of this paper on design of optimal control inputs u0 and u1

with respect to a meaningful cost function to globally asymptotically stabilize the system (1) at the origin
in probability. In particular, this paper addresses the following control objective:

Control Objective 1.1: Design the control inputs u0 = ϖ0(x0) and u1 = ϖ1(x0,x) such that they
guarantee global asymptotic stability in probability of the equilibrium x0 = 0 and x = 0 and minimize a
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meaningful cost functional of the form

J(ū) = E
{∫ ∞

t0

(
l(x̄(t)) + σ(∥R1/2(x̄(t))ū(t)∥)

)
dt

}
, (6)

where ū = col(u0, u1), x̄ = col(x0,x), l(•) is a positive definite radially unbounded function, σ(•) is a
class K∞ function such that its derivative with respect to • is also a class K∞ function, and R(•) is a
matrix-valued function satisfying R(•) = RT (•) > 0.

II. PRELIMINARIES

A. Legendre-Fenchel transform
Lemma 2.1: (Krstic and Li [24]) Let ℓσ(χ) denote the Legendre-Fenchel transform defined by

ℓσ(χ) = χ(σ⋆)−1(χ)− σ((σ⋆)−1(χ)), (7)

where σ : R → R is a class K∞ function whose derivative σ⋆(χ) = dσ(χ)
dχ

is also a class K∞ function, and
(σ⋆)−1(χ) denotes the inverse function of σ⋆(χ). The Legendre-Fenchel transform ℓσ(χ) has the following
properties

1) ℓσ(χ) =
∫ χ

0
(σ⋆)−1(s)ds;

2) ℓℓσ(χ) = σ(χ);
3) ℓσ(χ) is a class K∞ function;
4) ℓσ(σ⋆(χ)) = χσ⋆(χ)− σ(χ).

B. Young’s inequality
For (x, y) ∈ R2, the following Young inequality holds [25]:

xy ≤ ϵp

p
|x|p + 1

qϵq
|y|q, (8)

where ϵ is a positive constant, and the constants p > 1 and q > 1 satisfy (p− 1)(q − 1) = 1.

C. Solution of a linear time-varying stochastic system
Lemma 2.2: Consider the scalar linear time-varying stochastic system

dx = (a(t)x+ b(t))dt+ x

r∑
i=1

ci(t)dwi, (9)

where a(t), b(t) and ci(t) are real-valued Borel measurable bounded functions for t ≥ t0 and wi(t) is a
standard Wiener process. Assume that the system (9) has a unique solution. Then this solution is given by

x(t) = ϕ(t)

(
x(t0) +

∫ t

t0

1

ϕ(s)
b(s)ds

)
. (10)

where

ϕ(t) = exp

[ ∫ t

t0

((
a(s)− 1

2

r∑
i=1

c2i (s)

)
ds+

r∑
i=1

ci(s)dwi(s)

)]
. (11)

Proof. See Appendix A.

D. Nonlinear stochastic systems
Consider the nonlinear stochastic system

dx = f(x)dt+G(x)dw, (12)

where x ∈ Rn is the state; and f : Rn → Rn and G : Rn → Rn×r are measurable on the given probability
space (Ω,F ,P) with respect to the fixed r-dimensional independent standard Wiener process w and the
independent initial condition x0 at t0 ≥ 0 over this probability space. Moreover, f(x) and G(x) are locally
Lipschitz and satisfy f(0) = 0 and G(0) = 0.
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1) Stochastic differentiation and infinite generator: Consider the nonlinear stochastic system (12) and
let y : Rn → R. Then the stochastic differentiation of y(x(t)) is given by [26]:

dy(x) =
∂y

∂x
dx+

1

2
Tr
(
GT (x)

∂2y

∂x2
G(x)

)
dt, (13)

where Tr (•) denotes the trace operator of •.
For the nonlinear stochastic system (12), the infinite generator LV (x) of a C2 function V (x) is defined as

LV (x) =
∂V

∂x
f(x) +

1

2
Tr
(
GT (x)

∂2V

∂x2
G(x)

)
. (14)

2) Stability in probability:
Definition 2.1: (Karatzas and Shreve [26]) The vector-valued function x(t) is called a strong solution

of the nonlinear stochastic system (12) if it satisfies
1) x is adapted to the filtration (Gt), where Gt0

t := max(G(w(s)),G(x(t0)) for all t0 ≤ s ≤ t and Gt

is the completion of
∩

s>t Gt0
s with P-null set [26];

2) x is a continuous process;
3) P(x(t0) = x0) = 1;
4) P

( ∫ t

t0
(∥f(x(s))∥+ ∥G(x(s))∥2)ds < ∞

)
= 1 holds for all t ≥ t0 ≥ 0;

5) with probability one, we have

x(t) = x(t0) +

∫ t

t0

f(x(s))ds+

∫ t

t0

G(x(s))dw(s), (15)

for all t ≥ t0 ≥ 0.
Definition 2.2: (Khasminskii [18], Krstic and Deng [17]) The equilibrium x = 0 of the system (12) is
• globally stable in probability if for all ϵ > 0 there exists a class K function σ(·) such that

P{∥x(t)∥ ≤ σ(∥x(t0)∥)} ≥ 1− ϵ, ∀t ≥ t0 ≥ 0, ∀x(t0) ∈ Rn\{0}, (16)

• globally asymptotically stable in probability if for all ϵ > 0 there exists a class KL function β(·, ·)
such that

P{∥x(t)∥ ≤ β(∥x(t0)∥, t− t0)} ≥ 1− ϵ, ∀t ≥ t0 ≥ 0, ∀x(t0) ∈ Rn\{0}. (17)

Theorem 2.1: (Krstic and Deng [17]) Suppose that there exist a C2 function V (x), class K∞ functions
σ1 and σ2, and a class K function σ3 such that

σ1(∥x∥) ≤ V (x) ≤ σ2(∥x∥),

LV (x) =
∂V (x)

∂x
f(x) +

1

2
Tr
{
GT (x)

∂2V (x)

∂x2
G(x)

}
≤ −σ3(∥x∥) + ε0,

(18)

where ε0 is a positive constant. Then there exists a unique strong solution of the system (12) for each
x(t0) ∈ Rn. Moreover, if ε0 = 0 then the equilibrium x = 0 is globally asymptotically stable in probability,
and the solution x(t) satisfies P{limt→∞ σ3(∥x(t)∥) = 0} = 1, ∀ x(t0) ∈ Rn.

3) Inverse optimal stabilizer in probability: Consider the nonlinear stochastic system

dx = f(x)dt+G1(x)dw +G2(x)udt, (19)

where x ∈ Rn is the state, u ∈ Rm is the control input, w is an r-dimensional independent standard
Wiener process, f : Rn → Rn and G1 : Rn → Rn×r are locally Lipschitz and satisfy f(0) = 0 and
G1(0) = 0, and G2 : Rn → Rn×m.

Theorem 2.2: (Krstic and Deng [17]) Consider the control law

u⋄(x(t)) = −R−1
2 (LG2V )T

ℓσ
(∥∥LG2VR

−1/2
2

∥∥)∥∥LG2VR
−1/2
2

∥∥2 , (20)
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where V (x) is a Lyapunov function candidate, σ is a class K∞ function whose derivative σ⋆ is also a class
K∞ function, LG2V = ∂V

∂x
G2 is a vector-valued function of x(t), and R2(x) is a matrix-valued function of

x(t) such that R2(x) = RT
2 (x) > 0. If the control law (20) globally asymptotically stabilizes the system

(19) in probability at the origin with respect to V (x), then the control law

u∗(x(t)) = −β

2
R−1

2 (LG2V )T
(σ⋆)−1

(∥∥LG2VR
−1/2
2

∥∥)∥∥LG2VR
−1/2
2

∥∥ , β ≥ 2 (21)

also globally asymptotically stabilizes the system (19) in probability at the origin, and minimizes the cost
functional

J(u) = E
{∫ ∞

0

[
l(x) + β2σ

(
2

β
∥R1/2

2 u∥
)]

dt

}
, (22)

where

l(x(t)) = 2β

[
ℓσ

(∥∥LG2VR
−1/2
2

∥∥)− LfV − 1

2
Tr
{
GT

1

∂2V

∂x2
G1

}]
+ β(β − 2)ℓσ

(∥∥LG2VR
−1/2
2

∥∥), (23)

with LfV = ∂V
∂x

f .
Remark 2.1: Since ℓσ(•) is also a class K∞ function of • and R2(x) = RT

2 (x) > 0, the matrix

M2(x) = R−1
2

ℓσ
(∥∥LG2VR

−1/2
2

∥∥)∥∥LG2VR
−1/2
2

∥∥2 (24)

satisfies M2(x) = MT
2 (x) > 0. Therefore, Theorem 2.2 suggests a search for a control u⋄, which globally

asymptotically stabilizes the system (19) in probability, and has the form

u⋄(x(t)) = −M (x)(LG2V )T , (25)

where M(x) = MT (x) > 0. This control is referred to as an inverse pre-optimal control law.

III. CONTROL DESIGN: x0-SUBSYSTEM

To design the control u0 that globally asymptotically stabilizes the x0-subsystem in probability at the
origin, we consider the following Lyapunov function candidate

V0(x0) = γ0

(
x2k
0

2k

)
, (26)

where k ≥ 2 is an integer, and γ0
(x2k

0

2k

)
is a class K∞ function of x2k

0

2k
. The class K∞ function γ0

(x2k
0

2k

)
possesses the following properties for all x0 ∈ R

0 < γ′
0 ≤ a0,

∆0(x0) = γ′′
0x

2k
0 + γ′

0(2k − 1) > 0,
(27)

where γ′
0 = ∂γ0/∂

(x2k
0

2k

)
, γ′′

0 = ∂2γ0/∂
(x2k

0

2k

)2, and a0 is a positive constant. It should not be confusing
between the notation ′ here and ⋆ used in Theorem 2.2, as such γ⋆

0 = dγ0/dx0 = γ′
0∂
(x2k

0

2k

)
/∂x0 = γ′

0x
2k−1
0 .

Remark 3.1:
1) Different choice of the class K∞ function γ0 in (26) allows different strength of nonlinearity of

the Lyapunov function candidate V0, i.e., V0 can be either nonlinearly weak or nonlinearly strong.
Nonlinearly weak Lyapunov function candidates have a potential application in control of under-
actuated stochastic mechanical systems as these systems usually require Lyapunov functions of a
nonlinearly weak form even in deterministic cases [27], [28], [29]. Examples of γ0(•) are γ0(•) = •
and γ0(•) =

√
1 + • − 1. Indeed, a quartic form proposed in [30], [31] is of a special case of (26).

2) The condition k ≥ 2 eases the calculation of the upper-bound of the Hessian term of the infinitesimal
generator LV0(x0) in the control design later.



6

From (26) and the first equation of (1), applying the formula (14) results in LV0(x0) as

LV0(x0) =
∂V0

∂x0

u0 +
1

2
Tr
(
φ0(x0)

∂2V0

∂x2
0

φT
0 (x0)

)
= γ′

0x
2k−1
0 u0 +

1

2

(
γ′
0(2k − 1)x2k−2

0 + γ′′
0x

2(2k−1)
0

)
∥φ0(x0)∥2

= γ′
0x

2k−1
0 u0 +

1

2
∆0(x0)x

2(k−1)
0 ∥φ0(x0)∥2,

(28)

where ∆0(x0) is defined in (27). Assumption 1.1 on φ0(x0) implies from the mean-value theorem that
there exists a smooth vector function φ00(x0) such that

φ0(x0) = x0φ00(x0). (29)

Substituting (29) into the last equation of (28) results in

LV0(x0) = γ′
0x

2k−1
0

(
u0 + x0p0(x0)

)
, (30)

where
p0(x0) =

1

2γ′
0

∆0(x0)∥φ00(x0)∥2, (31)

which has no problem with γ′
0 in the denominator since Properties of γ0 in (27) ensure that γ′

0 > 0 for
all x0 ∈ R. Since x0 = 0 is the equilibrium point of the x0-subsystem, the control u0(t) is expected to be
zero for all t ≥ t0 ≥ 0 if x0(t0) = 0. However, u0(t) = 0 for all t ≥ t0 ≥ 0 results in uncontrollability
of the x-subsystem. Our goal is to achieve limt→∞ u0(t) = 0 and globally asymptotically stabilizes the
x0-subsystem simultaneously. Therefore, we consider two cases x0(t0) ̸= 0 and x0(t0) = 0.

A. Design of inverse pre-optimal control u⋄
0

1) Case x0(t0) ̸= 0: Motivated by Remark 2.1, the control u⋄
0, which is a modified type of Sontag’s

formula [32], is designed from (30) as follows

u⋄
0 = −

(
k0 +

√
c0 + p20(x0)

)
x0 := ϑ⋄

0(x0), (32)

where c0 and k0 are positive constants. The constant k0 is chosen such that

k0 >
2k − 1

2k
ϵ

2k
2k−1a

1
2k−1

0 + 2ϵ, (33)

with ϵ being a strictly positive constant. This choice of k0 is to be used in stability analysis of the x-
subsystem in the next sections. Substituting (32) into (30) results in

LV0(x0)|(32) = −γ′
0x

2k
0

(
k0 +

√
c0 + p20(x0)− p0(x0)

)
≤ −k0γ

′
0x

2k
0 . (34)

It will be shown in Theorem 3.1 and Theorem 5.1 that the inverse pre-optimal control u⋄
0 given by (32)

achieves global asymptotic stabilization of the x0-subsystem and can be amended to achieve optimality.
2) Case x0(t0) = 0: The control u⋄

0 is designed such that it first drives the state x0(t) of the x0-subsystem
away from zero but still keeps this subsystem well-defined then forces the state x0(t) asymptotically
converge to zero. As such, the procedure to design the control u⋄

0 as follows:
Procedure 3.1:
1) If |ϑ⋄

0(x0)| ≤ δ0 with ϑ0(x0) being defined in (32) and δ0 being a small positive constant (theoretically
δ0 can be chosen to be zero), then the control u⋄

0 is chosen as

u⋄
0 = −

(
k0 +

√
c0 + p20(x0)

)
x0 + η0, (35)

where η0 is a positive constant and satisfies η0 > δ0.



7

2) If |ϑ⋄
0(x0)| > δ0, the control u⋄

0 is switched from (35) to

u⋄
0 = −

(
k0 +

√
c0 + p20(x0)

)
x0. (36)

The above control design procedure is interpreted as follows. At the initial time t0, x0(t0) = 0, the
control u⋄

0 given by (35) drives the state x0(t) away from zero. Since η0 > δ0, we have u⋄
0 ≥ η0 − δ0 > 0.

Having driven the state x0(t) away from zero, the control u⋄
0 is switched to (36) to forces the state x0(t)

to asymptotically converge to zero in probability. Let t⋄s denote the time when u⋄
0 is switched from (35)

to (36). With the above control design procedure, the infinitesimal generator (30) can be written as LV0(x0)|(35) = −γ′
0x

2k
0

(
k0 +

√
c0 + p20(x0)− p0(x0)

)
+ γ′

0x
2k−1
0 η0, for t ≤ t⋄s,

LV0(x0)|(36) = −γ′
0x

2k
0

(
k0 +

√
c0 + p20(x0)− p0(x0)

)
, elsewhere.

(37)

Applying Young’s inequality (8) to the term γ′
0x

2k−1
0 η0 yields

γ′
0x

2k−1
0 η0 ≤ ε1(γ

′
0)

1
2k−1γ′

0x
2k
0 + ε2η

2k
0 , (38)

where
ε1 =

2k − 1

2k
ϵ

2k
2k−1 , ε2 =

1

2kϵ2k
. (39)

Substituting (38) into (37) with a note that γ′
0 ≤ a0, see (27), yields LV0(x0)|(35) ≤ −

(
k0 − ε1a

1
2k−1

0

)
γ′
0x

2k
0 + ε2η

2k
0 , for t ≤ t⋄s,

LV0(x0)|(36) ≤ −k0γ
′
0x

2k
0 , elsewhere.

(40)

B. Design of inverse optimal control u∗
0

1) Case x0(t0) ̸= 0: Applying Theorem 2.2 to the first equation of (1) results in the inverse optimal
control u∗

0 as follows

u∗
0 = −β0

2
R−1

0 γ′
0x

2k−1
0

(σ⋆
0)

−1
(∣∣∣R−1/2

0 γ′
0x

2k−1
0

∣∣∣)∣∣R−1/2
0 γ′

0x
2k−1
0

∣∣ , (41)

where β0 ≥ 2, R0(x0) is a positive definite function of x0, σ0 is a class K∞ function, σ⋆
0(•) = dσ0

d• , and the
notation (σ⋆

0)
−1(•) denotes the inverse function of σ⋆

0 . The class K∞ function σ0 is chosen by the designer.
We now determine R0(x0). By Theorem 2.2, the control u⋄

0, which stabilizes the first equation of (1),
should be of the form (20), i.e.,

u⋄
0 = −R−1

0 γ′
0x

2k−1
0

ℓσ0

(∣∣∣R−1/2
0 γ′

0x
2k−1
0

∣∣∣)∣∣R−1/2
0 γ′

0x
2k−1
0

∣∣2 . (42)

The positive definite function R0(x0) is to be determined so that the control u⋄
0 given in (32) is the same

with the one given in (42). As such, comparing (42) with (32) results in the fact that R0(x0) needs to
satisfy the following equation

R−1
0 γ′

0x
2k−1
0

ℓσ0

(∣∣∣R−1/2
0 γ′

0x
2k−1
0

∣∣∣)∣∣R−1/2
0 γ′

0x
2k−1
0

∣∣2 =
(
k0 +

√
c0 + p20(x0)

)
x0

(43)

for all x0 ∈ R. The equation (43) is equivalent to ℓσ0

(∣∣R−1/2
0 γ′

0x
2k−1
0

∣∣) = γ′
0x

2k
0

(
k0 +

√
c0 + p20(x0)

)
,

which gives

R0(x0) =

 ∣∣γ′
0x

2k−1
0

∣∣
(ℓσ0)−1

(
γ′
0x

2k
0

(
k0 +

√
c0 + p20(x0)

))
2

, (44)
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where the notation (ℓσ0)
−1(•) denotes the inverse function of ℓσ0(•). The function R0(x0) given by (44)

is continuous away from the origin and positive definite for all x0 ∈ R. Substituting R0(x0) given in (44)
into (41) yields an explicit expression of the optimal control u∗

0, see Appendix B, as

u∗
0 = −β0

2

(k0 +√
c0 + p20(x0)

)
+R−1

0 γ′
0x

2k−2
0

σ0

(
(σ⋆

0)
−1
(∣∣∣R−1/2

0 γ′
0x

2k−1
0

∣∣∣))∣∣R−1/2
0 γ′

0x
2k−1
0

∣∣2
x0 := ϑ∗

0(x0). (45)

Substituting (45) into (30) yields

LV0(x0)|(45) =−γ′
0x

2k
0

β0

2

(
k0 +

√
c0 + p20(x0)

)
−p0(x0) +

β0

2
R−1

0 γ′
0x

2k−2
0

σ0

(
(σ⋆

0)
−1
(∣∣∣R−1/2

0 γ′
0x

2k−1
0

∣∣∣))∣∣R−1/2
0 γ′

0x
2k−1
0

∣∣2


≤ −β0k0
2

γ′
0x

2k
0 ,

(46)

where we have used the fact that β0 ≥ 2 and k ≥ 2.
2) Case x0(t0) = 0: Similarly to the design of the inverse pre-optimal control u⋄

0 in Procedure 3.1, the
inverse optimal control u∗

0 is chosen as in the following procedure.
Procedure 3.2:
• If |ϑ∗

0(x0)| ≤ δ0 with ϑ∗
0(x0) being defined in (45), the inverse optimal control u∗

0 is chosen as

u∗
0 = −β0

2

(k0 +√
c0 + p20(x0)

)
+R−1

0 γ′
0x

2k−2
0

σ0

(
(σ⋆

0)
−1
(∣∣∣R−1/2

0 γ′
0x

2k−1
0

∣∣∣))∣∣R−1/2
0 γ′

0x
2k−1
0

∣∣2
x0 + η0. (47)

• If |ϑ∗
0(x0)| > δ0, the inverse optimal control u∗

0 is switched from (47) to

u∗
0 = −β0

2

(k0 +√
c0 + p20(x0)

)
+R−1

0 γ′
0x

2k−2
0

σ0

(
(σ⋆

0)
−1
(∣∣∣R−1/2

0 γ′
0x

2k−1
0

∣∣∣))∣∣R−1/2
0 γ′

0x
2k−1
0

∣∣2
x0. (48)

Let t∗s denote the time when u∗
0 is switched from (47) to (48). With the above control design procedure

and the use of the same techniques in derivation of (40) and (46) , we can write (30) as LV0(x0)|(47) ≤ −
(
k0 − ε1a

1
2k−1

0

)
γ′
0x

2k
0 + ε2η

2k
0 , for t ≤ t∗s,

LV0(x0)|(48) ≤ −k0γ
′
0x

2k
0 , elsewhere.

(49)

We now present the first result on stability and convergence of the x0-subsystem. This result is crucial
for the input-to-state scaling and the design of the control u1 in the next sections.

Theorem 3.1: Under Assumption 1.1, for any initial value x0(t0) ∈ R, the following results hold:
1) With the inverse pre-optimal control u⋄

0 given by (32) for the case x0(t0) ̸= 0 or in Procedure 3.1 for
the case x0(t0) = 0, the solution x0(t) of the x0-subsystem exists uniquely and asymptotically converges
to zero in probability. Moreover, the control u⋄

0 does not cross zero and asymptotically converges to zero
in probability.

2) Under an additional condition on σ0(•) that σ⋆
0(•) is a class K∞ function of •, the inverse optimal

control u∗
0 given by (41) for the case x0(t0) ̸= 0 or in Procedure 3.2 for the case x0(t0) = 0 guarantees

existence, uniqueness and global asymptotic convergence to zero in probability of the solution x0(t) of
the x0-subsystem. In addition, the control u∗

0 does not cross zero and asymptotically converges to zero in
probability. Moreover, the following cost functional is minimized:

J0(u0) = E
{∫ ∞

t∗0

[
l0(x0) + β2

0σ0

(
2

β0

∣∣∣R1/2
0 u0

∣∣∣)]dt}, (50)
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where t∗0 = max(t0, t
∗
s) and

l0(x0) =2β0

[
ℓσ0

(∣∣γ′
0x

2k−1
0 R

−1/2
0

∣∣)− 1

2
∆0(x0)∥φ0(x0)∥2)

]
+ β0(β0 − 2)ℓσ0

(∣∣γ′
0x

2k−1
0 R

−1/2
0

∣∣), (51)

with ∆0(x0) being given by (27).
Proof. See Appendix C.

C. Example 1.1 (cont’d)
We now continue Example 1.1. For illustration, we take s = 1 and ζ0(x0, x1, x2) = x2

0 + x2
1 + x2

2. It
is seen that the cart kinematic system (5) is of the form of (1) with φ0(x0) = 0, φ1(x0, x1) = 0, and
φ2(x0, x1, x2) = x2

0 + x2
1 + x2

2. Here, we apply the control design in this section to design the control u0,
i.e, the first equation of (5) is considered. The illustration on the design of the control u1 will be presented
in subsections IV-B and V-C. As such, let σ0(χ) =

χ4

4
and γ0(χ) = χ. We then have

σ⋆
0(χ) = χ3, (σ⋆

0)
−1(χ) = χ1/3, ℓσ0(χ) =

3

4
χ4/3, (ℓσ0)

−1(χ) =
(4
3
χ
)3/4

,

γ′
0 = 1, γ′′

0 = 0, ∆0 = 2k − 1, φ00(x0) = 0, p0(x0) = 0.
(52)

With the above expressions, the function R0(x0) is calculated from (44) as follows

R0(x0) =

 ∣∣x2k−1
0

∣∣(
4
3
x2k
0

(
k0 +

√
c0 + p20(x0)

))3/4


2

=

∣∣xk−2
0

∣∣(
4
3

(
k0 +

√
c0

))3/2
. (53)

For the case x0(t0) ̸= 0, the inverse optimal control u∗
0 is calculated from (45) with R0(x0) in (53) as

follows:
u∗
0 = −2β0

3

(
k0 +

√
c0
)
x0 := ϑ∗

0(x0). (54)

For the case x0(t0) = 0, the inverse optimal control u∗
0 is calculated from Procedure 3.2 as follows:

If |ϑ∗
0(x0)| ≤ δ0 with ϑ∗

0(x0) being defined in (54), we have

u∗
0 = −2β0

3

(
k0 +

√
c0
)
x0 + η0. (55)

If |ϑ∗
0(x0)| > δ0, the inverse optimal control u∗

0 is switched from (55) to

u∗
0 = −2β0

3

(
k0 +

√
c0
)
x0. (56)

IV. INPUT-TO-STATE SCALING

Having designed the inverse pre-optimal control u⋄
0 or the inverse optimal control u∗

0 possessing properties
in Theorem 3.1, the remaining obstacle is the appearance of u0 (or u⋄

0 or u∗
0) as a factor of each xi,

i = 1, ..., n− 1, see (1). Since u0 (or u⋄
0 or u∗

0) asymptotically converges to zero in probability, the control
u1 needs to be designed such that xi, i = 1, ..., n − 1 converges to zero faster than u0 (or u⋄

0 or u∗
0) to

avoid loss of controllability for the x-subsystem. This is done by 1) introducing the input-to-state scaling
[1] and 2) designing the control u1 to globally asymptotically stabilize the scaled system in probability. In
the rest of the paper, we consider the inverse optimal control u∗

0 since it is more efficient than the inverse
pre-optimal control u⋄

0.
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A. Input-to-state scaling for system (1)
We introduce the following input-to-state scaling transformation

zi =
xi

(u∗
0)

n−i
, i = 1, ..., n. (57)

Applying the stochastic differentiation formula (13) and using (1) result in

dx0 = u∗
0(x0)dt+ ϕT

0 (x0)dw,

dzi =
(
zi+1 + fi(x0, zi)

)
dt+ ϕT

i (x0, z̄i)dw, i = 1, ..., n− 1,

dzn = u1dt+ ϕT
n (x0,z)dw,

(58)

where we have also rewritten dx0 for convenience, the optimal control u∗
0(x0) is given in (45) for the case

x0(t0) ̸= 0 and in Procedure 3.2 for the case x0(t0) = 0, z̄i = col(z1, ..., zi), z = col(z1, ..., zn), and the
functions ϕ0(x0), fi(x0, zi), ϕi(x0, z̄i), and ϕn(x0,z) are given by

fi(x0, zi) =
∂zi
∂u∗

0

(
∂u∗

0

∂x0

u∗
0(x0) +

1

2

∂2u∗
0

∂x2
0

∥φ0(x0)∥2
)
+

1

2

∂2zi
∂(u∗

0)
2

∥∥∥∥∂u∗
0

∂x0

φ0(x0)

∥∥∥∥2

,

ϕi(x0, z̄i) =
∂zi
∂xi

φi(x0, u
∗
0, x̄i) +

∂zi
∂u∗

0

∂u∗
0

∂x0

φ0(x0), i = 1, ..., n− 1,

ϕ0(x0) = φ0(x0), ϕn(x0,z) = φn(x0, u
∗
0,x).

(59)

B. Example 1.1 (cont’d)
We now continue Example 1.1 to illustrate the input-to-state scaling developed in this section. Applying

the input-to-state scaling (57) results in

z1 =
x1

u∗
0

, z2 = x2,

ϕ0(x0) = 0, ϕ1(x0, z1) = 0, ϕ2(x0, z1, z2) = x2
0 + u∗2

0 z21 + z22 , f1(x0, z1) =
∂z1
∂u∗

0

∂u∗
0

∂x0

u∗
0(x0).

(60)

V. CONTROL DESIGN: x-SUBSYSTEM

A. Case x0(t0) ̸= 0

1) Design of the stabilizing control u1 and inverse pre-optimal control u⋄
1: Define

ei = zi − αi−1(x0, z̄i−1), i = 1, ..., n, (61)

where αi−1(x0, z̄i−1) is referred to as the virtual control of zi, and α0 = 0. Applying the stochastic
differentiation formula (13) to (61) and using (58) give

dei =
(
ei+1 + αi(x0, z̄i) + Ωi(x0, z̄i)

)
dt+ λT

i (x0, z̄i)dw, i = 1, ..., n− 1,

den =
(
u1 + Ωn(x0, z)

)
dt+ λT

n (x0,z)dw,
(62)

where

Ωi(x0, z̄i) = fi(x0, zi)−
∂αi−1(x0, z̄i−1)

∂x0

u∗
0(x0)−

1

2

∂2αi−1(x0, z̄i−1)

∂x2
0

∥ϕ0(x0)∥2

−
i−1∑
p=1

∂2αi−1(x0, z̄i−1)

∂x0∂zp
ϕT

p (x0, z̄p)ϕ0(x0)−
i−1∑
j=1

∂αi−1(x0, z̄i−1)

∂zj
(zj+1 + fj(x0, z̄j))

− 1

2

i−1∑
p=1,q=1

∂2αi−1(x0, z̄i−1)

∂zp∂zq
ϕT

p (x0, z̄p)ϕq(x0, z̄q),

λi(x0, z̄i) = ϕi(x0, z̄i)−
∂αi−1(x0, z̄i−1)

∂x0

ϕ0(x0)−
i−1∑
j=1

∂αi−1(x0, z̄i−1)

∂zj
ϕj(x0, z̄j),

(63)
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for i = 1, ..., n with fn(x0,z) = 0. Since ϕ0(0) = 0 and ϕi(0, 0) = 0 (due to u∗
0(0) = 0) thanks to

Assumption 1.1, we have

λi(x0, z̄i) = x0λi0(x0, z̄i) +
i∑

j=1

ejλij(x0, z̄i), i = 1, ..., n, (64)

where λi0(•), and λij(•) are smooth functions of their arguments. We now design the virtual controls
αi(x0, z̄i) and the actual control u1(x0, z) simultaneously by considering the Lyapunov function candidate

V1(e) =
n∑

i=1

γi

(
e2ki
2k

)
, (65)

where e = col(e1, ..., en), and γi(•) is a class K∞ of • that has the same properties as γ0(•) defined in
(27), i.e.,

0 < γ′
i ≤ ai,

∆i(ei) = γ′′
i e

2k
i + γ′

i(2k − 1) > 0,
(66)

for all ei ∈ R, γ′
i = ∂γi/∂

( e2ki
2k

)
, γ′′

i = ∂2γi/∂
( e2ki

2k

)2, and ai is a positive constant. Using (62), the
infinitesimal generator LV1(e) can be calculated as

LV1(e) =
∂V1

∂en

(
u1 + Ωn(x0,z)

)
+

n−1∑
i=1

∂V1

∂ei

(
ei+1 + αi(x0, z̄i) + Ωi(x0, z̄i)

)
+

1

2

n∑
i=1

Tr
(
λi(x0, z̄i)

∂2V1

∂e2i
λT

i (x0, z̄i)

)

=γ′
ne

2k−1
n

(
u1 + Ωn(x0,z)

)
+

n−1∑
i=1

γ′
ie

2k−1
i

(
αi(x0, z̄i) + Ωi(x0, z̄i)

)
+

n−1∑
i=1

γ′
ie

2k−1
i ei+1 +

1

2

n∑
i=1

∆i(ei)e
2k−2
i ∥λi(x0, z̄i)∥2,

(67)

where ∆i(ei) is defined in (66). We now find the upper bounds of the last two terms in the right hand
side of (67). Applying conditions (27) and (66) on γ′

0 and γ′
i, and the Young inequality yields

n−1∑
i=1

γ′
ie

2k−1
i ei+1 ≤

n∑
i=1

γ′
ibie

2k
i , (68)

where bi is a positive constant. Using (64), conditions (27) and (66) on γ′
0 and γ′

i, and the Young inequality,
it can be shown that

1

2
∆i(ei)e

2k−2
i ∥λi(x0, z̄i)∥2 ≤ ϵ1i0γ

′
0x

2k
0 +

i−1∑
j=1

ϵ1ijγ
′
je

2k
j + Φi(x0, ēi)γ

′
ie

2k
i , i = 1, ..., n, (69)

where ϵ1ij with i = 1, .., n and j = 0, ..i−1 are nonnegative constants, and Φi(x0, ēi)γ
′
ie

2k
i with i = 1, ..., n

is a smooth function of x0 and ēi = col(e1, ..., ei). It is noted that the function Φi(x0, ēi) also depends on
the constants ϵ1ij . Summing the left and right hand sides of (69) yields

1

2

n∑
i=1

∆i(ei)e
2k−2
i ∥λi(x0, z̄i)∥2 ≤ ϵ10γ

′
0x

2k
0 +

n−1∑
i=1

ϵ1iγ
′
ie

2k
i +

n∑
i=1

γ′
iΦi(x0, ēi)e

2k
i , (70)

where

ϵ10 =
n∑

i=1

ϵ1i0, ϵ1i =
n∑

j=i+1

ϵ1ji. (71)
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We choose the constants ϵ1i0 with i = 1, ..., n such that ϵ10 is strictly less than ϵ defined in (33). Substituting
(68) and (70) into (67) yields

LV1(e) ≤
n−1∑
i=1

γ′
ie

2k−1
i (αi + Ωi + qi(x0, ēi)ei) + γ′

ne
2k−1
n (u1 + Ωn + qn(x0, e)en) + ϵ1γ

′
0x

2k
0 , (72)

where
qi(x0, ēi) = bi + ϵ1i + Φi(x0, ēi), i = 1, ..., n− 1

qn(x0, ēi) = bn + Φn(x0, ēn).
(73)

-Design of the inverse pre-optimal control u⋄
1: Since fi(0, 0) = 0, ϕ0(0) = 0 and ϕi(0, 0) = 0 (due

to u∗
0(0) = 0) αi−1(x0, z̄i−1) will be designed such that αi−1(0, 0) = 0 thanks to Assumption 1.1, we have

Ωi(x0, z̄i) = x0Ωi0(x0, z̄i) +
i∑

j=1

ejΩij(x0, z̄i), i = 1, ..., n, (74)

where Ωi0(x0, z̄i) and Ωij(x0, z̄i) are smooth functions of x0 and z̄i. Using (74), conditions (27) and (66)
on γ′

0 and γ′
i, and the Young inequality, it can be shown that

γ′
ie

2k−1
i Ωi ≤ ϵ2i0γ

′
0x

2k
0 +

i−1∑
j=1

ϵ2ijγ
′
je

2k
j +Ψi(x0, ēi)γ

′
ie

2k
i , i = 1, ..., n, (75)

where ϵ2ij with j = 0, ..i−1 are nonnegative constants, and Ψi(x0, ēi)γ
′
ie

2k
i is a smooth function of x0 and

ēi = col(e1, ..., ei). It is noted that the function Ψi(x0, ēi) also depends on the constants ϵ2ij . Summing
the left and right hand sides of (75) yields

n∑
i=1

γ′
ie

2k−1
i Ωi ≤ ϵ20γ

′
0x

2k
0 +

n−1∑
i=1

ϵ2iγ
′
ie

2k
i +

n∑
i=1

γ′
iΨi(x0, ēi)e

2k
i , (76)

where ϵ20 =
∑n

i=1 ϵ2i0 and ϵ2i =
∑n

j=i+1 ϵ2ji. We choose the constants ϵ2i0 with i = 1, ..., n such that ϵ20
is strictly less than ϵ defined in (33). Substituting (68) and (76) into (72) yields

LV1(e) ≤
n−1∑
i=1

γ′
ie

2k−1
i (αi + pi(x0, ēi)ei) + γ′

ne
2k−1
n (u1 + pn(x0, e)en) + (ϵ10 + ϵ20)γ

′
0x

2k
0 , (77)

where
pi(x0, ēi) = qi(x0, ēi) + ϵ2i +Ψi(x0, ēi), i = 1, .., n− 1,

pn(x0, ēn) = qn(x0, ēn) + Ψn(x0, ēn).
(78)

From (77), we choose

α⋄
i = −

(
ki +

√
ci + p2i (x0, ēi)

)
ei, i = 1, ..., n− 1

u⋄
1 = −

(
kn +

√
cn + p2n(x0, e)

)
en,

(79)

where we have used the notations α⋄
i and u⋄

1 instead of αi and u1 to emphasize that α⋄
i and u⋄

1 are the
inverse pre-optimal virtual and actual controls, and ci and ki, i = 1, ..., n are positive constants.

Remark 5.1: From (72), Theorem 2.1 suggests that one would design the following control u1 to
asymptotically stabilize (62) in probability as u1 = −knen − Ωn − qn(x0, e)en with αi = −kiei − Ωi −
qi(x0, ēi)ei, i = 1, ..., n − 1, where ki, i = 1, ...n, are positive constants. The above stabilizing control
u1 given cancels the term (Ωn + qn(x0, e)en) while the inverse pre-optimal control u⋄

1 in (79) dominates
the term pn(x0, e)en. This domination is necessary to make it possible to amend the inverse pre-optimal
control so that optimality can be achieved as shown in Theorem 5.1.

The design of the inverse pre-optimal control u⋄
1 for the case x0(t0) ̸= 0 has been completed. Substituting

u⋄
1 given by (79) into (77) yields

LV1(e)|(79) ≤ −
n∑

i=1

kiγ
′
ie

2k
i + (ϵ10 + ϵ20)γ

′
0x

2k
0 . (80)
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2) Design of the inverse optimal control u∗
1: Applying Theorem 2.2 to (62) results in

u∗
1 = −β1

2
R−1

1 γ′
ne

2k−1
n

(σ⋆
1)

−1
(∣∣R−1/2

1 γ′
ne

2k−1
n

∣∣)∣∣R−1/2
1 γ′

ne
2k−1
n

∣∣ , (81)

where β1 ≥ 2, σ1 is a class K∞ function, σ⋆
1(•) = dσ1

d• , the notation (σ⋆
1)

−1(•) denotes the inverse function
of σ⋆

1 , and since u∗
1 is scalar, R1(e) is sought to be a positive definite function of e. The class K∞ function

σ1 is chosen by the designer. We now determine R1(x0, e). By Theorem 2.2, the control u⋄
1, which stabilizes

(62), should be of the form (20), i.e.,

u⋄
1 = −R−1

1 γ′
ne

2k−1
n

ℓσ1

(∣∣R−1/2
1 γ′

ne
2k−1
n

∣∣)∣∣R−1/2
1 γ′

ne
2k−1
n

∣∣2 . (82)

The positive definite function R1(x0, e) is to be determined so that the inverse pre-optimal control u⋄
1 given

in (79) is the same with the one given in (82). As such, comparing (82) with (79) results in the fact that
R1(x0, e) needs to satisfy the following equation

R−1
1 γ′

ne
2k−1
n

ℓσ1

(∣∣R−1/2
1 γ′

ne
2k−1
n

∣∣)∣∣R−1/2
1 γ′

ne
2k−1
n

∣∣2 =
(
kn +

√
1 + p2n(x0, e)

)
en. (83)

Using the same technique in Subsection III-B1 to solve (83) for R1(x0, e), we find

R1(x0, e) =

[ ∣∣γ′
ne

2k−1
n

∣∣
(ℓσ1)−1

(
γ′
ne

2k
n

(
kn +

√
cn + p2n(x0, e)

))]2

, (84)

which is continuous away from the origin and positive definite for all x0 ∈ R and e ∈ Rn. Again, using
technique in Subsection III-B1 we can write the inverse optimal control u∗

1 from (81) as

u∗
1 =−β1

2

[
kn +

√
cn + p2n(x0, e) +R−1

1 γ′
ne

2k−2
n

σ1

(
(σ⋆

1)
−1
(∣∣R−1/2

1 γ′
ne

2k−1
n

∣∣))∣∣R−1/2
1 γ′

ne
2k−1
n

∣∣2
]
en. (85)

Substituting (85) and αi given by (79) into (77) yields

LV1(e)|(85) ≤−
[ n−1∑

i=1

kiγ
′
ie

2k
i +

β1kn
2

γ′
ne

2k
n

]
+ (ϵ10 + ϵ20)γ

′
0x

2k
0 , (86)

where we have used the fact that β1 ≥ 2 and k ≥ 2.

B. Case x0(t0) = 0

Since the control u∗
0 is given in Procedure 3.2, the design of the stabilizing control u1, the inverse pre-

optimal control u⋄
1, and the optimal control u∗

1 is slightly different from the design for the case x0(t0) ̸= 0
when t ≤ t∗s. We only present the differences. When t ≤ t∗s, we have from Procedure 3.2 that u∗

0(0) = η0,
see (47). As a result, we cannot write λi(x0, z̄i) and Ωi(x0, z̄i) as in (64) and (74), respectively, under
Assumption 1.1 in general (an example is the case when the function φi(x0, u0,xi) contains a polynomial
function of u0). This means that we cannot obtain the bounds in (69) and (75) (or (70) and (76)). As such,
we need to re-examine equations (64) and (74), and thus the inequalities (69) and (75).

1) If t ≤ t∗s: Using u∗
0(0) = η0 and Assumption 1.1, we can write λi(x0, z̄i) and Ωi(x0, z̄i) as

λi(x0, z̄i) = x0λ̄i0(x0, z̄i) +
i∑

j=1

ejλ̄ij(x0, z̄i) + τ̄i0(x0, z̄i),

Ωi(x0, z̄i) = x0Ω̄i0(x0, z̄i) +
i∑

j=1

ejΩ̄ij(x0, z̄i) + Θ̄i0(x0, z̄i),

(87)
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where λ̄i0(x0, z̄i), λ̄ij(x0, z̄i), τ̄i0(x0, z̄i), Ω̄i0(x0, z̄i), Ω̄ij(x0, z̄i), and Θ̄i0(x0, z̄i) are smooth functions of
x0 and z̄i. It is noted that τ̄i0(x0, z̄i) and Θ̄i0(x0, z̄i) depend on the constant η0. Using the first equation
of (87), conditions (27) and (66) on γ′

0 and γ′
i, and the Young inequality, it can be shown that

1

2
∆i(ei)e

2k−2
i ∥λi(x0, z̄i)∥2 ≤ ϵ1i0γ

′
0x

2k
0 +

i−1∑
j=1

ϵ1ijγ
′
je

2k
j + Φ̄i(x0, ēi)γ

′
ie

2k
i + Φ̄i0, i = 1, ..., n, (88)

where Φ̄i(x0, ēi) are smooth functions of x0 and ēi, and Φ̄i0 are nonnegative constants depending on the
constant η0. Similarly, using the second equation of (87), conditions (27) and (66) on γ′

0 and γ′
i, and the

Young inequality, it can be shown that

γ′
ie

2k−1
i Ωi ≤ ϵ2i0γ

′
0x

2k
0 +

i−1∑
j=1

ϵ2ijγ
′
je

2k
j + Ψ̄i(x0, ēi)γ

′
ie

2k
i + Ψ̄i0, i = 1, ..., n, (89)

where Ψ̄i(x0, ēi) is a smooth function of x0 and ēi, and Ψ̄i0 is a nonnegative constant depending on the
constant η0. Summing the left and right hand sides of (88) and (89) yields

1

2

n∑
i=1

∆i(ei)e
2k−2
i ∥λi(x0, z̄i)∥2 ≤ ϵ10γ

′
0x

2k
0 +

n−1∑
i=1

ϵ1iγ
′
ie

2k
i +

n∑
i=1

γ′
iΦ̄i(x0, ēi)e

2k
i + Φ̄0,

n∑
i=1

γ′
ie

2k−1
i Ωi ≤ ϵ20γ

′
0x

2k
0 +

n−1∑
i=1

ϵ2iγ
′
ie

2k
i +

n∑
i=1

γ′
iΨ̄i(x0, ēi)e

2k
i + Ψ̄0,

(90)

where Φ̄0 =
∑n

i=1 Φ̄i0 and Ψ̄0 =
∑n

i=1 Ψ̄i0. Substituting (68) and the first inequality of (90) into (67)
yields

LV1(e) ≤
n−1∑
i=1

γ′
ie

2k−1
i (αi + Ωi + q̄i(x0, ēi)ei) + γ′

ne
2k−1
n (u1 + Ωn + q̄n(x0, e)en) + ϵ10γ

′
0x

2k
0 + Φ̄0, (91)

where

q̄i(x0, ēi) = bi + ϵ1i + Φ̄i(x0, ēi), i = 1, .., n− 1,

q̄n(x0, ēn) = bn + Φ̄n(x0, ēn).
(92)

with bi being defined just below (68). From (91), one would design a stabilizing control u1 as u1 =
−knen −Ωn − q̄n(x0, e)en with αi = −kiei −Ωi − q̄i(x0, ēi)ei, i = 1, ..., n− 1. However, this stabilizing
control cannot be amended to become an (inverse) optimal control as noted in Remark 5.1.

-Design of the inverse pre-optimal control u⋄
1: Substituting the second inequality of (90) into (91)

yields

LV1(e) ≤
n−1∑
i=1

γ′
ie

2k−1
i (αi + p̄i(x0, ēi)ei)+γ′

ne
2k−1
n (u1 + p̄n(x0, e)en)+(ϵ10 + ϵ20)γ

′
0x

2k
0 +Φ̄0 + Ψ̄0, (93)

where

p̄i(x0, ēi) = q̄i(x0, ēi) + ϵ2i + Ψ̄i(x0, ēi), i = 1, ..., n− 1,

p̄n(x0, ēn) = q̄n(x0, ēn) + Ψ̄n(x0, ēn).
(94)

From (93), we choose

α⋄
i = −

(
ki +

√
ci + p̄2i (x0, ēi)

)
ei, i = 1, ..., n− 1

u⋄
1 = −

(
kn +

√
cn + p̄2n(x0, e)

)
en.

(95)
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Substituting (95) into (93) yields

LV1(e)|(95) ≤ −
n∑

i=1

kiγ
′
ie

2k
i + (ϵ10 + ϵ20)γ

′
0x

2k
0 + Φ̄0 + Ψ̄0. (96)

-Design of the inverse optimal control u∗
1: Using the inverse pre-optimal control u⋄

1 and the same
technique in Subsection V-A2, we find

u∗
1 =−β1

2

[
kn +

√
cn + p̄2n(x0, e) +R−1

1 γ′
ne

2k−2
n

σ1

(
(σ⋆

1)
−1
(∣∣R−1/2

1 γ′
ne

2k−1
n

∣∣))∣∣R−1/2
1 γ′

ne
2k−1
n

∣∣2
]
en, (97)

where

R1(x0, e) =

[ ∣∣γ′
ne

2k−1
n

∣∣
(ℓσ1)−1

(
γ′
ne

2k
n

(
kn +

√
cn + p̄2n(x0, e)

))]2

. (98)

Substituting (97) and αi given by (95) into (93) yields

LV1(e)|(97) ≤−
[ n−1∑

i=1

kiγ
′
ie

2k
i +

β1kn
2

γ′
ne

2k
n

]
+ (ϵ10 + ϵ20)γ

′
0x

2k
0 + Φ̄0 + Ψ̄0. (99)

2) If t > t∗s: The stabilizing control u1, the inverse pre-optimal control u⋄
1, and the optimal control u∗

1

are the same as those for the case x0(t0) ̸= 0.
Note that all the virtual controls α⋄

i and the controls u⋄
1 and u∗

1 are discontinuous at t = t∗s. Due to strong
nonlinear functions φi in (1), if one applies a control input u⋄

1 = constant or u∗
1 = constant for t0 ≤ t ≤ t∗s

as proposed in [13], [7], the solution of the x-subsystem may blow up before the control u∗
0 is switched.

We now present the second result in the following theorem.
Theorem 5.1: Under Assumption 1.1, for any initial values x0(t0) ∈ R and xi(t0) ∈ R with i = 1, ..., n,

the following results hold:
1) Case x0(t0) ̸= 0 or case x0(t0) = 0 when t > t∗s: With the inverse optimal control u∗

0 given by (45) or
(48), the inverse pre-optimal control u⋄

1 given by (79), ensures that the solution x(t) = col(x1(t), ..., xn(t))
of the x-subsystem exists uniquely and asymptotically converges to zero in probability.

Under an additional condition on the class K∞ function σ1 that σ⋆
1 is also a class K∞ function, the inverse

optimal control u∗
1 given by (85) guarantees existence, uniqueness, and global asymptotic convergence to

zero in probability of the solution x(t). Moreover, the following cost functional is minimized:

J1(u1) = E
{∫ ∞

t∗0

[
l1(x0,x) + β2

1σ1

(
2

β1

∣∣∣R1/2
1 u1

∣∣∣)]dt}, (100)

where t∗0 = max(t0, t
∗
s) and

l1(x0,x) =2β1

[
ℓσ1

(∣∣γ′
ne

2k−1
n R−1/2

n

∣∣)− 1

2
∆n(en)∥φn(x0, e)∥2)

]
+β1(β1 − 2)ℓσ1

(∣∣γ′
ne

2k−1
n R

−1/2
1

∣∣), (101)

with ∆n(en) being given by (66).
2) Case x0(t0) = 0 when t ≤ t∗s: With the inverse optimal control u∗

0 given by (47), the inverse pre-
optimal control u⋄

1 given by (95) or the inverse optimal control u∗
1 given by (97) guarantees existence and

uniqueness of the solution x(t) of the x-subsystem.
Proof. See Appendix D.
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C. Example 1.1 (cont’d)
We continue Example 1.1 to illustrate the control design developed in this section. From (61), we have

e1 = z1, e2 = z2 − α1(x0, z1). (102)

Applying (62) results in the error dynamics

de1 =
(
e2 + α1(x0, z1) + Ω1(x0, z1)

)
dt+ λ1(x0, z1)dw,

de2 =
(
u1 + Ω2(x0, z1, z2)

)
dt+ λ2(x0, z1, z2)dw,

(103)

where from (63) we have

Ω1(x0, z1) = f1(x0, z1), λ1(x0, z1) = 0,

Ω2(x0, z1, z2) = −∂α1

∂x0

u∗
0(x0)−

∂α⋄
1

∂z1
(z2 + f1), λ2(x0, z1, z2) = ϕ2(x0, z1, z2),

(104)

with u∗
0(x0) being given in (54) for the case x0(t0) ̸= 0, and (55) and (56) for the case x0(t0) = 0, and

f1(x0, z1) and ϕ2(x0, z1, z2) being given in (60).
1) Design of the virtual control α⋄

1: Applying (64) and (74) to (104) with ϕ1(x0, z1) and f1(x0, z1)
being given in (60), and φ0(x0) = 0 and φ1(x0, x1) = 0, see Subsection III-C, results in the following
factors of λ1(x0, z1) and Ω1(x0, z1):

λ10 = 0, λ11 = 0, Ω10 = 0, Ω11 = − 1

u∗
0

∂u∗
0

∂x0

u∗
0. (105)

We choose γ1(χ) = χ and γ2(χ) = χ. This choice gives γ′
1 = γ′

2 = 1, γ′′
1 = γ′′

2 = 0, and ∆1 = ∆2 = 2k−1.
Calculating the following bounds according to (68), (69) and (75) using (105) results in

b1 =
2k − 1

2k
ϵ
2k−1
2k

0 , b2 =
1

2kϵ2k0
,

ϵ110 = 0, Φ1(x0, z1) = 0, ϵ210 = 0, Ψ1(x0, z1) = Ω11,

ϵ11 = ϵ121, ϵ21 = ϵ221.

(106)

With (106), we calculate q1(x0, e1) and p1(x0, e1) from (73) and (78), respectively, as follows:

q1(x0, e1) = b1 + ϵ11 + Φ1, p1(x0, e1) = q1 + ϵ21 +Ψ1. (107)

The inverse pre-optimal virtual control α⋄
1 is designed based on (79) as follows:

α⋄
1(x0, e1) = −

(
k1 +

√
c1 + p21(x0, e1)

)
e1. (108)

2) Design of the control u⋄
1 and u∗

1: Applying (64) and (74) to (104) with ϕ1(x0, z1), ϕ2(x0, z1, z2), and
f1(x0, z1) being given in (60), and and φ0(x0) = 0, φ1(x0, x1) = 0, and φ2(x0, u0, x1, x2) = x2

0 + x2
1 + x2

2,
see Subsection III-C, and α⋄

1 being given in (108) results in the following factors of λ2(x0, z1, z2) and
Ω2(x0, z1, z2):

λ20(x0, z1, z2) = x0, λ21(x0, z1, z2) = u∗2
0 e1 + α⋄2

11e1, λ22(x0, z1, z2) = e2 + 2α⋄
11e1,

Ω20(x0, z1, z2) = 0, Ω21(x0, z1, z2) = −∂α⋄
11

∂x0

u∗
0(x0)−

∂α⋄
1

∂z1
(α⋄

11 + Ω11), Ω22(x0, z1, z2) = −∂α⋄
1

∂z1
,

(109)

where α⋄
11(x0, e1) = −

(
k1 +

√
c1 + p21(x0, e1)

)
. With (109), we calculate the following bounds as in (69)

and (75) to obtain

ϵ120 =
1

kϵk0
, ϵ121 =

1

kϵk0
, Φ2(x0, e1, e2) =

k − 1

k

(
ϵ0
3∆2

2

) k
k−1

(
λ

2k
k−1

20 + λ
2k
k−1

21

)
+

3∆2

2
λ2
22,

ϵ220 = 0, ϵ221 =
1

2kϵ2k0
, Ψ2(x0, e1, e2) =

2k − 1

2k
(ϵ0Ω21)

2k
2k−1 + Ω22.

(110)
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With (110), we calculate q2(x0, e1, e2) and p2(x0, e1, e2) from (73) and (78), respectively, as follows:

q2(x0, e1, e2) = b2 + Φ2, p2(x0, e1, e2) = q2 +Ψ2. (111)

The inverse pre-optimal control u⋄
1 is obtained from (79) as follows:

u⋄
1 = −

(
k2 +

√
c2 + p22(x0, e1, e2)

)
e2. (112)

Now we choose σ1(χ) = χ4

4
. Thus, we have σ⋆

1(χ) = χ3, (σ⋆
1)

−1(χ) = χ1/3, ℓσ1(χ) = 3
4
χ4/3, and

(ℓσ1)
−1(χ) =

(
4
3
χ
)3/4. The function R1(x0, e1, e2) is obtained from (84) as

R1(x0, e1, e2) =

∣∣ek−2
2

∣∣(
4
3

(
k2 +

√
c2 + p22(x0, e1, e2)

))3/2
. (113)

Therefore, the inverse optimal control u∗
1 is obtained from (85) as follows:

u∗
1 = −2β1

3

(
k2 +

√
c2 + p22(x0, e1, e2)

)
e2. (114)

The above controls u⋄
1 and u∗

1 are for both cases x0(t0) ̸= 0 and x0(t0) = 0 because λ1(0, 0) = 0,
λ2(0, 0, 0) = 0, Ω1(0, 0) = 0, and Ω2(0, 0, 0) = 0 regardless u∗

0 given by (54) or (55) or (56).
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(a) Results with the proposed optimal control u∗
1
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(b) Results with a stabilizing control u1

Fig. 2: Simulation results with the proposed optimal control u∗
1 and a stabilizing control u1.

In simulations, we choose ϵ0 = 1, k = 2, k0 = 2, k1 = 1, k2 = 2, β0 = 2, and β1 = 2. It is checked that
k0 satisfies the condition (33). We only provide simulation results for the case x0(t0) = 0 since the results
for the case x0(t0) ̸= 0 are a part of those for the case x0(t0) = 0 for t ≥ t∗s. Figure 2a presents the results
with the initial conditions (x0(0), x1(0), x2(0)) = (0, 0.5, 1), where the switching parameters are chosen as
δ0 = 1 and η0 = 1.2. For a comparison, we also provide simulation results in Fig. 2b with the following
stabilizing control u1 obtained from Remark 5.1:

u1 = −k2e2 − q2e2 − Ω2e2, (115)

where q2 and Ω2 are given (111) and (104), respectively. It is observed from Figs. 2a and 2b that although
convergence of the states x0, x1, and x2 to zero is similar for both controls u∗

1 given in (114) and
u1 given in (115), the difference is in the control effort. The magnitude of the stabilizing control u1

(supt≥0 |u1(t)| = 190.8) is more than double of the inverse optimal control u∗
1 (supt≥0 |u∗

1(t)| = 82.72).
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This is a desired property of an inverse optimal control over a stabilizing one. Basically, the third term
inside the square bracket in (85) or (97) multiplied by −β1

2
en cancels destabilizing terms in en-dynamics

when it is necessary otherwise strengthens stability. A stabilizer obtained from Remark 5.1 or (115) always
cancels the destabilizing terms, see [33] (Sections 3.3-3.5) for more discussion on advantages of an inverse
optimal control over a stabilizer for deterministic systems.

Since the first two equations of (5) do not contain noise, the states x0(t) and x1(t) are not affected by
noise while the state x2(t) contains attenuating noise since the function φ2(x0, x1, x2) vanishes when its
arguments do. Also, all the controls and states are discontinuous when ϑ∗

0(x0) = δ0 (at t∗s ≈ 0.446s).

VI. CONTROL DESIGN SUMMARIZATION

x0-subsystem [Choose function γ0(x
2k
0 /2k), see (26)]

x0(t0) ̸= 0 • Inverse optimal control u∗
0:

u∗
0 = −β0

2

(k0 +√
c0 + p20(x0)

)
+R−1

0 γ′
0x

2k−2
0

σ0

(
(σ⋆

0)
−1

(∣∣∣R−1/2
0 γ′

0x
2k−1
0

∣∣∣))∣∣R−1/2
0 γ′

0x
2k−1
0

∣∣2
x0 := ϑ∗

0(x0), (116)

where k0 is chosen such that k0 > 2k−1
2k

ϵ
2k

2k−1 a
1

2k−1
0 + 2ϵ, see (33) with ϵ being a strictly positive constant, and

R0(x0) =

 ∣∣γ′
0x

2k−1
0

∣∣
(ℓσ0)−1

(
γ′
0x

2k
0

(
k0 +

√
c0 + p20(x0)

))
2

, (117)

with p0(x0) =
1

2γ′
0
∆0(x0)∥φ00(x0)∥2, see (31), and φ00(x0) being calculated from φ0(x0) = x0φ00(x0), see (29).

x0(t0) = 0 • If |ϑ∗
0(x0)| ≤ δ0, i.e., t ≤ t∗s , with δ0 being a small positive constant and η0 > δ0, inverse optimal control u∗

0:

u∗
0 = −β0

2

(k0 +√
c0 + p20(x0)

)
+R−1

0 γ′
0x

2k−2
0

σ0

(
(σ⋆

0)
−1

(∣∣∣R−1/2
0 γ′

0x
2k−1
0

∣∣∣))∣∣R−1/2
0 γ′

0x
2k−1
0

∣∣2
x0 + η0. (118)

• If |ϑ∗
0(x0)| > δ0, i.e., t > t∗s : u∗

0 is the same as in (116).

x-subsystem [Choose functions γi(e
2k
i /2k), see (65)]

• Input-to-state scaling (zi, fi(x0, zi), ϕi(x0, z̄i), ϕn(x0,z)), see (57) and (59):

zi =
xi

(u∗
0)

n−i
, i = 1, ..., n,

fi(x0, zi) =
∂zi
∂u∗

0

(
∂u∗

0

∂x0
u∗
0(x0) +

1

2

∂2u∗
0

∂x2
0

∥φ0(x0)∥2
)
+

1

2

∂2zi
∂(u∗

0)
2

∥∥∥∥∂u∗
0

∂x0
φ0(x0)

∥∥∥∥2

,

ϕi(x0, z̄i) =
∂zi
∂xi

φi(x0, u
∗
0, x̄i) +

∂zi
∂u∗

0

∂u∗
0

∂x0
φ0(x0), i = 1, ..., n− 1,

ϕ0(x0) = φ0(x0), ϕn(x0, z) = φn(x0, u
∗
0,x).

(119)

• Virtual errors ei and functions Ωi(x0, z̄i) and λi(x0, z̄i), see (61) and (63):

ei = zi − αi−1(x0, z̄i−1), i = 1, ..., n,

Ωi(x0, z̄i) = fi(x0, zi)−
∂αi−1(x0, z̄i−1)

∂x0
u∗
0(x0)−

1

2

∂2αi−1(x0, z̄i−1)

∂x2
0

∥ϕ0(x0)∥2 −
i−1∑
p=1

∂2αi−1(x0, z̄i−1)

∂x0∂zp

× ϕT
p (x0, z̄p)ϕ0(x0)−

i−1∑
j=1

∂αi−1(x0, z̄i−1)

∂zj
(zj+1 + fj(x0, z̄j))−

1

2

i−1∑
p=1,q=1

∂2αi−1(x0, z̄i−1)

∂zp∂zq
ϕT

p (x0, z̄p)ϕq(x0, z̄q),

λi(x0, z̄i) = ϕi(x0, z̄i)−
∂αi−1(x0, z̄i−1)

∂x0
ϕ0(x0)−

i−1∑
j=1

∂αi−1(x0, z̄i−1)

∂zj
ϕj(x0, z̄j).

(120)
• Constants bi, see (68):

n−1∑
i=1

γ′
ie

2k−1
i ei+1 ≤

n∑
i=1

γ′
ibie

2k
i . (121)
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x0(t0) ̸= 0 • Constants ϵ1• and functions Φi(x0, ēi), see (70):

1

2

n∑
i=1

∆i(ei)e
2k−2
i ∥λi(x0, z̄i)∥2 ≤ ϵ10γ

′
0x

2k
0 +

n−1∑
i=1

ϵ1iγ
′
ie

2k
i +

n∑
i=1

γ′
iΦi(x0, ēi)e

2k
i , (122)

where ∆i(ei) = γ′′
i e

2k
i + γ′

i(2k − 1), see (66).
• Functions qi(x0, ēi), see (73):

qi(x0, ēi) = bi + ϵ1i +Φi(x0, ēi), i = 1, ..., n− 1

qn(x0, ēi) = bn +Φn(x0, ēn).
(123)

• Constants ϵ2• and functions Ψi(x0, ēi), see (76):

n∑
i=1

γ′
ie

2k−1
i Ωi ≤ ϵ20γ

′
0x

2k
0 +

n−1∑
i=1

ϵ2iγ
′
ie

2k
i +

n∑
i=1

γ′
iΨi(x0, ēi)e

2k
i . (124)

• Functions pi(x0, ēi), see (78), and αi(x0, ēi), see (79):

pi(x0, ēi) = qi(x0, ēi) + ϵ2i +Ψi(x0, ēi), i = 1, .., n− 1,

pn(x0, ēn) = qn(x0, ēn) + Ψn(x0, ēn),

αi(x0, ēi) = −
(
ki +

√
ci + p2i (x0, ēi)

)
ei, i = 1, .., n− 1.

(125)

• Inverse optimal control u∗
1, see (85):

u∗
1 =−β1

2

[
kn +

√
cn + p2n(x0,e) +R−1

1 γ′
ne

2k−2
n

σ1

(
(σ⋆

1)
−1

(∣∣R−1/2
1 γ′

ne
2k−1
n

∣∣))∣∣R−1/2
1 γ′

ne
2k−1
n

∣∣2
]
en, (126)

where R1(x0, e), see (84), is

R1(x0, e) =

[ ∣∣γ′
ne

2k−1
n

∣∣
(ℓσ1)−1

(
γ′
ne2kn

(
kn +

√
cn + p2n(x0, e)

))]2

. (127)

x0(t0) = 0
t ≤ t∗s

• Constants ϵ1•, ϵ2•, Φ̄0, and Ψ̄0, and functions Φ̄i(x0, ēi) and Ψ̄i(x0, ēi), see (90):

1

2

n∑
i=1

∆i(ei)e
2k−2
i ∥λi(x0, z̄i)∥2 ≤ ϵ10γ

′
0x

2k
0 +

n−1∑
i=1

ϵ1iγ
′
ie

2k
i +

n∑
i=1

γ′
iΦ̄i(x0, ēi)e

2k
i + Φ̄0,

n∑
i=1

γ′
ie

2k−1
i Ωi ≤ ϵ20γ

′
0x

2k
0 +

n−1∑
i=1

ϵ2iγ
′
ie

2k
i +

n∑
i=1

γ′
iΨ̄i(x0, ēi)e

2k
i + Ψ̄0.

(128)

• Functions q̄i(x0, ēi), see (129):

q̄i(x0, ēi) = bi + ϵ1i + Φ̄i(x0, ēi), i = 1, .., n− 1,

q̄n(x0, ēn) = bn + Φ̄n(x0, ēn).
(129)

• Function p̄i(x0, ēi), see (94), and αi(x0, ēi), see (95):

p̄i(x0, ēi) = q̄i(x0, ēi) + ϵ2i + Ψ̄i(x0, ēi), i = 1, ..., n− 1,

p̄n(x0, ēn) = q̄n(x0, ēn) + Ψ̄n(x0, ēn),

αi(x0, ēi) = −
(
ki +

√
ci + p̄2i (x0, ēi)

)
ei, i = 1, ..., n− 1.

(130)

• Inverse optimal control u∗
1, see (97):

u∗
1 =−β1

2

[
kn +

√
cn + p̄2n(x0,e) +R−1

1 γ′
ne

2k−2
n

σ1

(
(σ⋆

1)
−1

(∣∣R−1/2
1 γ′

ne
2k−1
n

∣∣))∣∣R−1/2
1 γ′

ne
2k−1
n

∣∣2
]
en, (131)

where R1(x0, e), see (98), is:

R1(x0, e) =

[ ∣∣γ′
ne

2k−1
n

∣∣
(ℓσ1)−1

(
γ′
ne2kn

(
kn +

√
cn + p̄2n(x0,e)

))]2

. (132)

x0(t0) = 0
t > t∗s

• Same as the case x0(t0) ̸= 0 by treating t∗s as t0.

TABLE I: Summarization of the inverse optimal control design
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The proposed inverse optimal control design is summarized in Table I. From this table, it is seen
that a nonexpert in stochastic theory can apply the proposed control design to the stochastic nonholonomic
system (1) since it just requires several fundamental calculations such as partial differentiations and inverse
functions. As such, one should start with the x0-subsystem by designing the inverse optimal control u∗

0 as
in (116) for the case x0(t0) ̸= 0 or as in (118) for the case x0(t0) = 0. For the x-subsystem, one should
follow the following steps for the case x0(t0) ̸= 0: 1) Perform input-to-state scaling to obtain the state zi
and functions (fi(x0, zi), ϕi(x0, z̄i), ϕn(x0, z)) as in (119); 2) Calculate the virtual errors ei and functions
Ωi(x0, z̄i) and λi(x0, z̄i) as in (120). Note that this step requires n sub-steps; 3) Calculate the constants bi
as in (121), ϵ1• and functions Φi(x0, ēi) as in (122), then construct the functions qi(x0, ēi) as in (123); 4)
Calculate the constants ϵ2• and functions Ψi(x0, ēi) as in (76), then construct the functions pi(x0, ēi) and
αi(x0, ēi) as in (125); 5) Calculate the inverse optimal control u∗

1 as in (126). The above steps should be
almost the same as for the case x0(t0) = 0 as shown in Table I.

VII. CONCLUSIONS

A design of global asymptotic and optimal stabilizers with respect to a meaningful cost function for
stochastic nonholonomic systems has been proposed. Both of the x0- and x-subsystems are affine in
stochastic disturbances. A class of fairly general Lyapunov functions was developed for the control design.
By proposing modified Sontag’s formula, the control design is less tedious than those proposed for strict
feedback systems in [17]. Since the Lyapunov functions are not restricted to quadratic or quartic forms,
future work is to utilize the control design techniques in this paper to improve control performance of
those in [34], [35], [36] proposed for underactuated surface ships and underwater vehicles by 1) addressing
system both state-dependent and state-independent stochastic disturbances, and 2) considering optimality.
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APPENDIX A
PROOF OF LEMMA 2.2

From (11), we have

dϕ(t) = a(t)ϕ(t)dt+
r∑

i=1

ci(t)ϕ(t)dwi. (133)

Define ξ(t) = x(t0) +
∫ t

t0

1
ϕ(s)

b(s)ds, which yields dξ(t) = 1
ϕ(t)

b(t)dt. Let x(t) = ϕ(t)ξ(t). Applying
stochastic differentiation formula (13) gives

dx(t) = dϕ(t)ξ(t) + ϕ(t)dξ(t) + dϕ(t)dξ(t) = (a(t)x+ b(t))dt+ x

r∑
i=1

ci(t)dwi, (134)

which verifies (9). �

APPENDIX B
EXPLICIT DERIVATION OF u∗

0

We use the Legendre-Fenchel transform to rewrite the optimal control u∗
0 as follows. Multiplying the

numerator and denominator of the right hand side of (41) by
∣∣R−1/2

0 γ′
0x

2k−1
0

∣∣ then using the Legendre-
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Fenchel transform (7) and (43), we have

u∗
0 = −β0

2
R−1

0 γ′
0x

2k−1
0

(σ⋆
0)

−1
(∣∣∣R−1/2

0 γ′
0x

2k−1
0

∣∣∣)∣∣∣R−1/2
0 γ′

0x
2k−1
0

∣∣∣∣∣∣R−1/2
0 γ′

0x
2k−1
0

∣∣∣2
= −β0

2
R−1

0 γ′
0x

2k−1
0

ℓσ0

(∣∣∣R−1/2
0 γ′

0x
2k−1
0

∣∣∣)∣∣∣R−1/2
0 γ′

0x
2k−1
0

∣∣∣2 +
σ0

(
(σ⋆

0)
−1
(∣∣∣R−1/2

0 γ′
0x

2k−1
0

∣∣∣))∣∣∣R−1/2
0 γ′

0x
2k−1
0

∣∣∣2


= −β0

2
R−1

0 γ′
0x

2k−1
0

(
k0 +

√
c0 + p20(x0)

)
x0

R−1
0 γ′

0x
2k−1
0

+
σ0

(
(σ⋆

0)
−1
(∣∣∣R−1/2

0 γ′
0x

2k−1
0

∣∣∣))∣∣∣R−1/2
0 γ′

0x
2k−1
0

∣∣∣2
 ,

(135)

which can be written as (45). �

APPENDIX C
PROOF OF THEOREM 3.1

A. Part 1
With the inverse pre-optimal control u⋄

0, we prove in this part existence, uniqueness and asymptotic
convergence of the solution x0(t) to zero in probability, and nonzero crossing of the control u⋄

0.
1) Case x0(t0) ̸= 0: The inequality (34) implies from Theorem 2.1 that the solution x0(t) of the x0-

subsystem exists and is unique, and asymptotically converge to zero in probability. Now substituting the
control u⋄

0 given by (32) into the first equation of (1) and using (29) give

dx0 = −
(
k0 +

√
c0 + p20(x0)

)
x0dt+ x0φ

T
00(x0)dw. (136)

Since we have already proved that the solution x0(t) of (136) exists and is unique, p0(x0(t)) and φ00(x0(t))
can be viewed as functions of t. This in turn implies that the system (136) can be regarded as a time-
varying linear stochastic differential equation, whose solution exists and is unique. Therefore, applying
Lemma 2.2 to (136) results in

x0(t) = x0(t0)eΩ0(t), (137)

where

Ω0(t) =

∫ t

t0

(
−
((

k0 +
√

1 + p20(x0(s)) + p0(x0(s))
)
+

1

2
∥φ00(x0(s))∥2

)
ds+φT

00(x0(s))dw(s)

)
. (138)

The equation (137) shows that x0(t) does not cross zero. Thus from (32), u⋄
0(t) does not cross zero.

2) Case x0(t0) = 0: The inequality (40) implies from Theorem 2.1 that the solution x0(t) of of the
x0-subsystem exists and is unique for both cases t ≤ t⋄s and t > t⋄s. We now show that x0(t

⋄
s) is actually

non-zero. Substituting the control u0 given by (35) into the first equation of (1) and using (29) give

dx0 =
[
−

(
k0 +

√
c0 + p20(x0)

)
x0 + η0

]
dt+ x0φ

T
00(x0)dw, for t ≤ t⋄s. (139)

Since we have already proved that x0(t) of (139) exists and is unique, p0(x0(t)) and φ00(x0(t)) can be
considered as functions of t, i.e., the system (139) can be viewed as a time-varying linear stochastic
differential equation, whose solution exists and is unique. Hence, applying Lemma 2.2 to (139) results in

x0(t) =

(
x0(t0) +

∫ t

t0

e−Ω0(s)η0ds

)
eΩ0(t) =

(∫ t

t0

e−Ω0(s)η0ds

)
eΩ0(t), for t ≤ t⋄s, (140)

where we have used the fact that the case x0(t0) = 0 is being considered. The equation (140) shows
that x0(t

⋄
s) is non-zero. Proof of asymptotic convergence of x0(t) to zero in probability and that non-zero

crossing of u0(t) is the same as for the case x0(t0) ̸= 0 by viewing t⋄s as the initial time.
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B. Part 2
Since LV0(x0) satisfies (46) for the case x0(t0) ̸= 0 and (49) for the case x0(t0) = 0, the term

R−1
1 γ′

ne
2k−1
n σ1

(
(σ⋆

1)
−1
(∣∣R−1/2

1 γ′
ne

2k−1
n

∣∣))/∣∣R−1/2
1 γ′

ne
2k−1
n

∣∣2 is nonnegative and continuous away from the
origin, and β0 ≥ 2, proof of existence, uniqueness and asymptotic convergence of the solution x0(t) to
zero in probability, and nonzero crossing of the control u∗

0 and its asymptotic convergence to zero in
probability follows the proof in Subsection C-A. Optimality follows directly from Theorem 2.2. �

APPENDIX D
PROOF OF THEOREM 5.1

We use the following Lyapunov function candidate

V (x0, e) = V0(x0) + V1(e), (141)

where V0(x0) and V1(e) are given by (26) and (65), respectively, for proof of Theorem 5.1.

A. Case x0(t0) ̸= 0 and case x0(t0) = 0 when t > t∗s
1) Case of inverse optimal control u∗

0, stabilizing control u1, and inverse pre-optimal control u⋄
1:

The inverse optimal control u∗
0, and inverse pre-optimal control u⋄

1 are given in (45) or (48), and (79),
respectively. The corresponding infinitesimal generators LV0(x0)|(45) or LV0(x0)|(48), and LV1(e)|(79) are
given by (46) or the second inequality of (49) and (80), respectively. Therefore, the infinitesimal generators
LV (x0, e)|((45) or (48)) and LV (x0, e)|((45) or (48)),(79) satisfy

LV (x0, e)|((45) or (48)) ≤ −
(
β0k0
2

− ϵ10

)
γ′
0x

2k
0 −

n∑
i=1

kiγ
′
ie

2k
i ,

LV (x0, e)|((45) or (48)),(79) ≤ −
(
β0k0
2

− (ϵ10 + ϵ20)

)
γ′
0x

2k
0 −

n∑
i=1

kiγ
′
ie

2k
i .

(142)

Since k0 is chosen as in (33), ϵ10+ϵ20 is strictly less than 2ϵ and β0 ≥ 2,
(
β0k0
2

−ϵ10
)

and
(
β0k0
2

−(ϵ10+ϵ20)
)

are positive constants. Therefore, Theorem 2.1 implies that the solution x(t) of the x-subsystem exists
and is unique, and asymptotically converges to zero in probability.

2) Case of inverse optimal controls u∗
0 and u∗

1: The inverse optimal controls u∗
0 and u∗

1 are given in
(45) or (48) and (85), respectively. The corresponding infinitesimal generators LV0(x0)|(45) or LV0(x0)|(48)
and LV1(e)|(85) are given by (46) or the second inequality of (49) and (86), respectively. Therefore, the
infinitesimal generator LV (x0, e)((45) or (48)),(85) satisfies

LV (x0, e)((45) or (48)),(85) ≤ −
(
β0k0
2

− (ϵ10 + ϵ20)

)
γ′
0x

2k
0 −

[ n−1∑
i=1

kiγ
′
ie

2k
i +

β1kn
2

γ′
ne

2k
n

]
. (143)

Since
(
β0k0
2

−(ϵ10+ϵ20)
)

is a positive constant as shown above, Theorem 2.1 implies that the solution x(t)
of the x-subsystem exists and is unique, and asymptotically converge to zero in probability. Optimality
follows directly from Theorem 2.2 with a note that LG2V (e) = γ′

ne
2k−1
n .

B. Case x0(t0) = 0 when t ≤ t∗s
The inverse optimal control u∗

0, inverse pre-optimal control u⋄
1, and inverse optimal control u∗

1 are given in
(47), (95), and (97), respectively. The corresponding infinitesimal generators LV0(x0)|(47), LV1(e)|(95), and
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LV1(e)|(97) are given by the first inequality of (49), (96), and (99), respectively. Therefore, the infinitesimal
generators LV (x0, e)|(47)), LV (x0, e)|(47),(95), and LV (x0, e)(47),(97) satisfy

LV (x0, e)|(47)) ≤ −
(β0

2
k0 − ε1a

1
2k−1

0 − ϵ10

)
γ′
0x

2k
0 −

n∑
i=1

kiγ
′
ie

2k
i + ε2η

2k
0 + Φ̄0,

LV (x0, e)|(47),(95) ≤ −
(β0

2
k0 − ε1a

1
2k−1

0 − (ϵ10 + ϵ20)
)
γ′
0x

2k
0 −

n∑
i=1

kiγ
′
ie

2k
i + ε2η

2k
0 + Φ̄0 + Ψ̄0.

LV (x0, e)|(47),(97) ≤−
(β0

2
k0 −ε1a

1
2k−1

0 − (ϵ10 + ϵ20)
)
γ′
0x

2k
0 −

[ n−1∑
i=1

kiγ
′
ie

2k
i +

β1kn
2

γ′
ne

2k
n

]
+ε2η

2k
0 +Φ̄0+Ψ̄0.

(144)

Since k0 is chosen as in (33), ϵ10 and ϵ20 are positive constants such that ϵ10 + ϵ20 is strictly less than 2ϵ,
β0 ≥ 2, and ε1 and ε2 are defined in (39),

(
β0

2
k0 − ε1a

1
2k−1

0 − ϵ10
)

and
(
β0

2
k0 − ε1a

1
2k−1

0 − (ϵ10 + ϵ20)
)

are
larger than a positive constant. Therefore, Theorem 2.1 implies that the solution x(t) of the x-subsystem
exists and is unique. �
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