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NOMENCLATURE 

 b̂ x  = Approximation of system parameters 

 ˆ
rb   = Approximation of system parameters 

r  = Controller parameter determining speed of reaching the surface 

s  = Controller parameter determining speed of reaching the surface 

rF  = Upper bound on the modeling imprecision 

sF  = Upper bound on the modeling imprecision 

 f̂ x  = A nominal function used to describe inertial effects along with all 

other resistive forces that may be applied on the vessel 

 ˆ ,rf     = A nominal function used to describe inertial effects along with all 

other resistive forces that may be applied on the arm 

GPS = Global Positioning System 

rk  = Controller gain 

sk  = Controller gain 

r  = Controller parameter determining sliding speed on the surface 

s  = Controller parameter determining sliding speed on the surface 

MSV = Marine Surface Vessel 

s  = Parameter describing width of boundary layer 

 ,r r rs x x  = Sliding surface 



 

 ,ss x x  = Sliding surface 

   = Angular displacement of the throttle arm 

cv  = Control voltage to the DC servomotor to rotate the throttle arm 

eqcv  = Equivalent control voltage 

( , )i iX Y  = thi waypoint of the desired path 

ix  = Boat position projected onto the thi  segment of the desired path 

c

d
ix  = Desired cruising speed 

m

d
ix  = Desired maneuvering speed 

( ) , ( )s r  = Subscripts s and r correspond to surge speed controller and 

surge recovery controller, respectively 
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CHAPTER 1   INTRODUCTION 

The current study centers around the experimental validation of the robust 

performance of a surge speed controller for autonomous piloting of under-actuated 

marine surface vessels.  The controller design assumes no prior knowledge of the vessel’s 

dynamics.  In addition, all tests were conducted in open water under unpredictable and 

widely varying environmental conditions. 

1.1 Motivation and Objectives 

The overwhelming majority of marine surface vessels are under-actuated systems 

whereby the number of actuators is less than the number of degrees of freedom that need 

to be controlled.  For trajectory tracking, marine surface vessels commonly utilize two 

actuators, namely, the propeller and the rudder, to control the surge speed, the sway 

motion, and the heading angle of the ship.  The propeller thrust is employed for 

controlling the surge speed while the rudder action is used to simultaneously control the 

sway motion and the heading angle.  This is usually performed by integrating the 

controller with a guidance system. 

Due to the highly nonlinear behavior of marine surface vessels (Bulian, 2005; 

Nayfeh et al., 1973, 1974; Nayfeh and Mook, 1979; Sagatun and Fossen, 1991; Sagatun, 

1992; Fossen, 1994; Suleiman, 2000; Vassalos, 1999; Vassalos et al., 2000; 

Lewandowski, 2004; Perez, 2005), accurate modeling of these systems for precision 

control is insurmountably difficult.  Exemplary nonlinearities include coriolis and 

centripetal accelerations, wave excitation, nonlinear restoring forces, retardation forces, 

wind and sea-current resistive loads (Fossen, 1994; Lewandowski, 2004; Perez, 2005; 

Khaled and Chalhoub, 2011; Ogilvie, 1974; Ogilvie, 1983; Wang, 1976; Lee and 
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Newman, 1991; Fossen, 1994; Clamond et al, 2005).   Therefore, the control challenges 

of under-actuated marine surface vessels are compounded by the facts that the dynamics 

of the vessel are not exactly known and the ship has to operate in a constantly varying 

environment, which is capable of producing unpredictable and considerable 

environmental disturbances induced by waves, wind, sea currents (Fossen, 1994; Perez, 

2005), and ice floes (Cammaert and Muggeridge, 1988; Grace and Ibrahim, 2008). 

Many recent studies have implemented advanced control algorithms on dynamic 

positioning, roll stabilization, heading, and tracking problems (Fossen, 1993; Fossen and 

Grovlen, 1998; Fossen, 2000; Moreira et al., 2007; Berge et al., 1998; Pivano et al., 2007; 

Godhavn, 1996; Strand et al., 1998; Pettersen and Nijmeijer, 2001; Fossen and Strand, 

1999; Li et al., 2009; Aranda et al., 2002; Cimen and Banks, 2004; Lauvdal and Fossen, 

1998; Do et al., 2003; Godhavn et al., 1998).  However, the literature still lacks 

experimental validation of these controllers under realistic and mild to severe sea states.  

Therefore, the objective of the current work is to provide experimental validation for a 

modified version of a robust controller, proposed by Chalhoub and Khaled (2014), to 

control the surge speed of a marine surface vessel under realistic open-water conditions. 

1.2 Literature Survey 

Efforts to solve the challenging control problem of marine vessels date back to the 

early 1900s. In fact, the first implementation of the Proportional-Integral-Derivative 

(PID) controller can be found in a paper concerning ship auto-piloting for the United 

States Navy (Minorsky, 1922).  PID controllers have, thenceforth, been used extensively 

in ship navigation systems due to their ease of use and implementation (Vahedipour and 

Bobis, 1992; Kallstrom et al., 1979; Vukic and Milinovic, 1996; Fossen, 1999; Moreira et 
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al., 2007; Francisco et al., 2008; Minghui, 2008). PID controllers are suitable for 

trajectory tracking in calm sea conditions, but during mild to severe weather conditions or 

intense maneuvering, the PID controllers become less reliable due to their inability to 

compensate for powerful disturbances and strong system’s nonlinearities and 

uncertainties (Kallstrom et al., 1979). Around the same time as Minorsky (1922), Sperry 

mass produced and introduced gyrocompasses onto many marine vessels (Bennett, 1984).  

The use of gyrocompasses in marine vessels allowed for relatively accurate heading 

measurements for the first time. With Minorsky and Sperry's contributions, significant 

advances in the field of marine control have been realized, and PID controllers led the 

way (Minorsky, 1922; Bennett, 1984; Xiao and Austin, 2001; Moradi and Katebi, 2002; 

Caccia et al., 2008).  PID controllers still account for over half of all controllers in the 

maritime industry (Ogata, 1997). 

One of the main pursuits of this field is for marine vessels to achieve accurate 

tracking of predetermined desired trajectories via a guidance system paired with a control 

algorithm. Integrating the guidance system with the controller yields another layer of 

insurance that the vessel will remain on course. However, the most difficult control issue 

for marine vessels remains sea conditions, modeling imprecision, and the inherent 

system’s nonlinearity, which have been proven to be challenging for PID controllers. 

To alleviate the shortcomings of PID controllers, their gains have been varied 

with ship speed (Kallstrom et al, 1979).  A direct comparison of a PID controller to a 

sliding mode controller, both modeled in an identical set up, shows better tracking 

performance and reaching speed across the board for the sliding mode controller (Perera 

and Guedes Soares, 2012). 
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Furthermore, many studies have introduced model-based controllers to control 

marine surface vessels (Van Amerongen, 1975; Van Amerongen, 1984; Lopez and 

Rubio, 1992; Moreira et al., 2007; Godhavn, 1996; Fossen, 1993; Fossen, 2000; Fossen 

and Grovlen, 1998; Berge et al., 1998; Strand et al., 1998).  Backstepping algorithms with 

feedback dominance, as opposed to the typical feedback linearization, have been 

implemented (Li, Sun, and Oh, 2009).  Nonlinear backstepping is very similar to 

feedback linearization techniques, the most notable difference between the two is that 

instead of complete cancellation of nonlinearities as in feedback linearization, 

backstepping actually exploits the so-called “good” nonlinearities and dampens “bad” 

nonlinearities (Fossen and Strand, 1999). Nonlinear backstepping has been shown to 

offer improvements over traditional PID or PD controllers in ship course keeping 

(Witkowska and Śmierzchalski, 2009). As with many nonlinear control methods, 

backstepping has a weakness in that it still relies on modeling accuracy. Other methods 

suffering the same weakness include linear quadratic regulators and linear quadratic 

tracking compensators (Lopez and Rubio, 1992), as well as standard feedback 

linearization (Fossen, 1993; Pettersen and Nijmeijer, 2001).  

While model-based controllers can yield fairly good results in digital simulations, 

one would expect a significant degradation in their performances when implemented on 

an actual marine vessel operating under real world conditions.  This is due to the adverse 

effects of structured and unstructured uncertainties that are not accounted for in the 

controller design. 

To deal with marine vessels’ nonlinearities, many studies have implemented 

nonlinear control schemes that are still heavily dependent on knowing the system’s 
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dynamics (Fossen and Grovlen, 1998; Fossen and Strand, 1999a; Godhavn, 1996; 

Pettersen and Nijmeijer, 2001; Moreira et al., 2007).  While these controllers are capable 

of handling known system’s nonlinearities; their designs remain vulnerable to modeling 

imprecision and external disturbances.  Thus, a control algorithm that can provide 

robustness despite system’s nonlinearities and imperfect system model knowledge 

became paramount. Such a robust controller, which has its roots in the variable structure 

systems theory (Utkin, 1981; Rundell et al, 1996; Drakunov, 1983), is the sliding mode 

controller (Slotine and Li, 1991; Bazzi and Chalhoub, 2005; Chalhoub et al, 2006; 

Chalhoub and Khaled, 2009; Chalhoub and Khaled, 2014; Perera and Guedes Soares, 

2012; Cheng, 2007; Lantos and Márton, 2011). These controllers do not require the 

system’s dynamics to be fully known and can handle external disturbances as long as the 

upper bounds of modeling imprecision and external disturbances are known. It should be 

mentioned that most of the literature regarding sliding mode control of marine vessels is 

predominantly simulation based (Li et al, 2009; Hao et al, 2013; Borhaug, 2011; Kim, 

2000; Cheng, 2007; Moreira et al, 2007; Khaled and Chalhoub, 2013; Fossen, 2002; 

Breivik, 2003; Chalhoub and Khaled, 2009; Breivik, 2003; Fossen, 1993; Perera, 2012).  

These studies demonstrate the robustness of the sliding mode controller in the presence of 

environmental disturbances and modeling inaccuracies. 

Recently, many research studies have focused on combining the advantages of the 

sliding mode methodology with those of the fuzzy logic approach.  This was done by 

using fuzzy inference systems (FIS) to provide on-line tuning of the sliding mode 

controller (Chalhoub et al, 2006; Ha et al, 1999; Choi and Kim, 1997; Lee et al, 2001).  

While other studies have used a self-tuned Takagi-Sugeno fuzzy logic controller whose 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CCUQFjAB&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5876946&ei=FEEOVPf6M8KzogTj-oKIBw&usg=AFQjCNEIl4x4dDSaxQIdQC--epAEq-zm_w&bvm=bv.74649129,bs.1,d.eXY
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tuning terms involve switching functions based on sliding surfaces (Khaled and 

Chalhoub, 2013; Khaled and Chalhoub, 2014; Shaocheng and Li, 2009; Shaocheng et al, 

2009). The asymptotic stability of such controllers is proven by the Lyapunov stability 

theory.  

While there exists much theoretical work with simulations involving the control 

and guidance of marine surface vessels (Chalhoub and Khaled, 2009; Khaled and 

Chalhoub, 2013; Khaled and Chalhoub, 2014; Breivik, 2003; Fossen, 1993; Perera and 

Guedes Soares, 2012), actual experimental work is scarce.  This is confirmed in the 

sample table, provided by Fahimi and Van Kleeck (2012), concerning the experimental 

work on marine surface vessels, which reveals a lack for outdoor experimental studies. 

Ashrafiuon et al (2008) implemented a sliding mode controller to perform 

trajectory tracking tasks on an under-actuated autonomous surface vessel.  The objective 

of the control law was to make the mass center of the boat accurately track a desired 

trajectory.  The experimental work was conducted on a small-scale experimental system 

with a length of 0.45 m in a 1.9 m by 2.6 m indoor pool.  Such a controlled environment 

cannot be used to demonstrate the robustness of the controller against wind, sea-currents, 

and wave excitations.  Moreover, the concept of using the x and y coordinates of the mass 

center as output signals without feeding back the boat’s orientation may work under calm 

sea conditions with hardly any disturbances (Fahimi and Van Kleeck, 2013).  This is due 

to the longitudinal hydrodynamic forces, which cause the boat heading to be inherently 

stable under small perturbations.  However, under significant environmental disturbances 

and with the lack of feeding back the heading angle, the controller will be oblivious to the 

heading errors and cannot compensate for them.  As a consequence, the boat may be 
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pointing backward while its mass center accurately follows the desired trajectory (Fahimi 

and Van Kleeck, 2013). 

To alleviate this problem, Fahimi and Van Kleeck (2013) and Schoerling et al 

(2010) have used a sliding mode controller to perform a trajectory tracking of a so-called 

“controlled” point, which is different from the mass center of the vessel.  In their 

experimental work, Fahimi and Van Kleeck (2013) conducted their tests on a small boat 

having a mass of 7.8 kg and a length of 0.8 m.  The tests were performed in a large 

outdoor pond in William Hawrelak Park, Edmonton, Alberta.  The travel distance of the 

boat during the maneuver was less than 25 m.  The desired path for the unmanned marine 

vessel was a figure eight.  The desired speed of the vessel upon entering the desired 

trajectory was specified to be 0.25 m/s. This speed was then gradually increased to 0.5 

m/s in a 15 s period.  It was found that in case of large initial tracking errors, the sliding 

mode control signals would saturate for an extended period of time, which can cause 

stability problems.  Therefore, a waypoint PD controller was then employed to reduce the 

initial tracking errors to certain level below which the sliding mode controller is 

activated.  The controller, incorporating system dynamics in its design, performed well 

for both a calm day and a windy day; thus, demonstrating the viability of the sliding 

mode controller (Fahimi and Van Kleeck, 2012).  It should be stressed that all these 

studies have incorporated nominal models of the boat in their controller design.  

Instead of using a “controlled” point to perform trajectory tracking of the boat, the 

current work follows the trend of enabling under-actuated marine surface vessels to 

accurately track their desired trajectories by integrating the boat controller with a 
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guidance system (Moreira et al, 2007; Khaled and Chalhoub, 2013).  Such an approach is 

currently a very active research field. 

1.3 Thesis Overview 

The aim and main contribution of this project is to experimentally implement and 

validate the sliding mode controller, developed by Chalhoub and Khaled (2014), in 

controlling the surge speed of an under-actuated 16 ft tracker boat in a completely 

uncontrolled real-world setting of the open-water in Lake St. Clair, Michigan.  Moreover, 

the goal is to prove that sliding mode controllers can be successfully implemented 

without accounting for the boat’s dynamics in their design; thus, rendering them to be 

model-less controllers. 

The experimental set-up, used in generating the experimental results, is described 

in detail in the next chapter.  Subsequently, the surge speed controller is presented in 

Chapter 3.  The experimental results are shown in Chapter 4.  They focus on proving 

experimentally the robust performance of the sliding mode controller in accurately 

tracking the desired surge speed profile in spite of significant environmental disturbances 

that are induced by wave excitations, sea-currents, and winds.  Chapter 5 summarizes the 

work, highlights the findings of this study, and proposes prospective research topics in 

this field. 
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CHAPTER 2  EXPERIMENTAL SETUP FOR THE SURGE SPEED 

CONTROLLER 

To ensure that a marine surface vessel (MSV) adheres to its desired trajectory, its 

longitudinal (surge) and transverse (sway) motions along with its yaw angular 

displacement have to be accurately controlled.  A typical MSV has only two actuators to 

control its three degrees of freedom; thus, resulting in an under-actuated system.  This 

challenging control task is generally addressed by coupling the controller with a guidance 

system (Moreira et al, 2007; Healey and Marco, 1992; Fossen, 2002; Breivik, 2003; 

Khaled and Chalhoub, 2013). 

The first actuator is the propeller, which generates the thrust needed to control the 

surge speed of the boat.  While the second actuator is the rudder that produces the 

moment required for steering the vessel.  To operate the boat in a fully autonomous 

manner, the controller has to be able to automatically vary the thrust of the propeller and 

the rudder angle.  Therefore, the marine vessel has to be retrofitted with two separate 

mechanisms that yield the control of the propeller thrust and the rudder angle to the 

controller.  Since the scope of this study is limited to the control of the surge speed then 

only the mechanism that was built for varying the propeller thrust will be discussed in 

this chapter. 

2.1 Description of the Experimental Setup 

The marine vessel used in this work consists of a 4.88 m Tracker boat (see Fig. 2-

1).  The throttle mechanism, shown in Fig. 2-2, has been designed and built in-house to 

enable the controller to automatically rotate the handle that yields the desired propeller 

thrust.  The entire mechanism is mounted on an X-Y table (Velmex model AXY2506) in 
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order to allow for a precise positioning and alignment of the mechanism with the throttle 

arm.  Each axis of the table has a 5.08 cm range.  The movement along each axis is 

caused by manual rotation of a leadscrew with a fine pitch of 0.254 cm per revolution. 

The drive in the throttle mechanism has been selected to be a compact DC 

servomotor (Faulhaber model No. 3564) with a 12 V requirement for its nominal 

operation.  The latter was a key factor in the selection of this particular drive due to the 

limited battery power supply on the boat.  Moreover, the motor speed is rated at 822 

rad/sec (7850 rpm) with a stall torque of 291 mN.m, which is not sufficient to rotate the 

stiff throttle handle.  Therefore, a planetary gearhead (Faulhaber Series 38/2) with a gear 

ratio of 415:1 was then used in conjunction with the motor to produce a large control 

torque that can easily rotate the throttle handle. 

An optical encoder (Faulhaber model No. HEDS5500C), capable of emitting 100 

pulses per revolution, was mounted on the motor shaft.  The encoder along with the high 

gear ratio of the gearhead has allowed the angular displacement of the throttle arm to be 

measured with a resolution of 0.0008675 degree/pulse.  The emitted pulses of the encoder 

were counted by 24-bit up/down counters that are housed in the dSPACE1005 module 

(see Fig. 2-3). 

The motor shaft is connected to the throttle arm by a coupler, which is passed 

through two tapered bearings to allow for smooth rotation and resist any axial loading 

that may be exerted on the motor shaft (see Fig. 2-2).  The arm, which is rigidly attached 

to the coupler at its lower end, is used to transmit the rotational motion of the gearhead 

shaft to the throttle handle through a fork-shaped element.  The latter is allowed to rotate 

with respect to the arm in order to avoid any sticking or jamming between the arm and 
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the throttle handle that may be induced by their misalignment.  The fork-shaped element 

is supported by a collared shaft that goes through two tapered bearings that are mounted 

back-to-back in the upper end of the arm.  The assembled system, shown in Fig. 2-2, 

provides the surge controller with the capability of directly changing the throttle angle in 

order to generate the required propeller thrust. 

Two types of controllers are used in this work.  The first one is the “surge speed” 

controller and the second one is the “surge recovery” controller.  At any given time 

during a boat maneuver, only one of these controllers is active.  The surge recovery 

controller is automatically activated by a high level monitoring code in case of 

emergency, which can be triggered by either a push of a panic button or by having the 

throttle handle exceeding its allowable range of rotation.  In case of emergency, the 

monitoring code will override the surge speed controller and activate the surge recovery 

controller whose main objective is to bring back the throttle handle to the zero-thrust 

position in a controlled manner.  The main feedback signal to the surge recovery 

controller is the angular displacement of the throttle arm, which is provided by the optical 

encoder that is mounted on the motor shaft (see Fig. 2-3). 

On the other hand, the feedback signals for the surge speed controller are the 

(X,Y) coordinates of the boat with respect to a reference frame whose orientation is 

determined from a gyro-compass system (Cloud Cap Technology, Crista IMU).  The 

origin of the reference frame is considered to coincide with the initial position of the boat, 

which is provided by a Hemisphere V101 Compass Global Positioning System (GPS) 

receiver that runs on a 12 V battery pack.  The GPS has a serial connection over which it 

can send a wide variety of data packages. For the purpose of our work, the BIN1 data 
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packet, including latitude,  , in degrees north and longitude,  , in degrees east, has been 

selected. The measured data is converted to Universal Transverse Mercator (UTM) 

coordinates by using the following set of equations that were adopted from Ref. (Kawase, 

2012): 
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where nZ  is the zone number, which was found to be 17T for the area where the 

experimental work was conducted. 

It should be pointed out that the Easting and Northing measurements in this study 

have a resolution of 0.6 m  due to the receiver's Differential GPS (DGPS). The DGPS 

utilizes ground-based reference station signals which serve as survey markers to improve 

upon the accuracy of the GPS satellite signal. 

2.2 Chapter Summary 

The experimental setup used in controlling the surge speed of the marine surface 

vessel has been discussed in this chapter. Autonomous physical manipulation of the 

throttle arm has been achieved via the proposed throttle mechanism.  The measured GPS 

signals are converted to Universal Transverse Mercator (UTM) coordinates and fed back 

to the surge speed controller, which is covered in detail in the next chapter. 

 

 
 

Fig. 2-1 Marine surface vessel used in the experimental work 
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Fig. 2-2 Propeller thrust drive mechanism 

 

 

 

 

 

 
Fig. 2-3 Block diagram of the experimental set-up for controlling the surge speed 
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CHAPTER 3  DESIGN OF A SURGE SPEED CONTROLLER 

The surge control problem of a marine surface vessel is a very challenging one due to 

the system’s inherent nonlinearities and unpredictable environmental disturbances.  To 

effectively deal with this tracking problem, a robust controller based on the slide mode 

methodology has been chosen in this work to cope with the modeling imprecision and 

external disturbances (Slotine and Li, 1991).  Such controllers have been shown to 

exhibit robust performances in the presence of structured and unstructured uncertainties 

as long as the upper bounds on the modeling imprecision and external disturbances are 

known (Zhang, 2010; Hong, 1993; Cheng, 2007; Kim, 2000; Xu, 2005; Bazzi and 

Chalhoub, 2005; Chalhoub et al, 2006; Khaled and Chalhoub, 2011; Chalhoub and Matta, 

2012). 

Two robust nonlinear controllers were designed in this study.  The objective of the 

first one is to perform the tracking task while the second one allows the boat to safely 

recover from an emergency situation.  Both controllers along with their supervisory code 

will be described in detail in this chapter. 

3.1 Hybrid Surge Speed Controller  

A hybrid controller has been developed in this work to control the surge speed of a 

marine surface vessel.  Its three main components are the supervisory code, the surge 

speed controller, and the recovery controller. 

3.1.1 Supervisory Component  

The supervisory component of the hybrid controller monitors the overall performance 

of the boat and decides whether the surge speed controller or the recovery controller 

should be activated.  Currently, it has been developed to receive inputs from two different 
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sources.  The first one is the signal from an emergency push button that can be pressed by 

a human observer based on his/her assessment of an impending dangerous situation.  It 

should be stressed that this is the only human intervention that is allowed in the proposed 

fully autonomous operation of the marine vessel.  Upon receiving such a signal, the 

supervisory code will abort the tracking task by deactivating the surge speed controller 

and enabling the recovery controller.  The latter was designed in order to control the rate 

at which the boat speed is reduced down to zero.  Note that an abrupt shut-off of the 

propeller thrust can jeopardize the safety of the crew and can cause a large rush of water 

to flood the stern of the boat.   

The second source for triggering a switch from the surge speed controller to the 

recovery controller is the optical encoder that is mounted on the servo-motor shaft, which 

is used for rotating the throttle arm.  During a boat maneuver, the supervisory code will 

continuously monitor the optical encoder signal representing the angular displacement of 

the throttle arm,  t .  As long as  t  is within the specified range  min max,  , the 

supervisory code will keep the surge speed controller activated.  Otherwise, it will switch 

to the recovery controller, which will send the throttle arm back to its initial position in a 

controlled manner.  Note that max  is specified to limit the maximum propeller thrust 

available during a given boat maneuver.  This is done to safeguard against any unstable 

behavior of the closed-loop system.  Furthermore, the current system can only provide 

positive values of the propeller thrust.  Therefore, min  has been set to prevent the 

controller from driving the throttle handle into the neutral or reverse position.    
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3.1.2 Surge Speed Controller  

The objective of the surge speed controller is to track a speed profile specified along 

the desired trajectory of the marine surface vessel.  The trajectory is usually defined by a 

set of waypoints connected by straight segments.  Figure 3-1 illustrates the position of the 

vessel with respect to the 
thi  segment of the trajectory.  The boat position is projected 

onto this segment to yield a local coordinate ix  defined along the direction of the 

segment and represents the location of the projection point with respect to the 
thi  

waypoint  ,i iX Y .  The desired surge speed profile along any segment has been designed 

to have an acceleration phase, a cruising phase, and a deceleration phase. 

For the purpose of illustration, a flattened multi-segment desired trajectory has been 

drawn in Fig. 3-2.  The surge speeds at both initial and final waypoints have been set to 

zero.  The circles of acceptance represent zones where the boat undergoes turning 

maneuvers during which the surge speed will be reduced from cruising speed, 
c

d
ix  to 

maneuvering speed, 
m

d
ix .  In the first segment between  1 1,X Y  and  2 2,X Y  waypoints, 

the desired speed profile reveals a constant acceleration phase whereby the vessel speed 

is increased from 0 to a specified cruising speed, 
c

d
ix .  The latter is expected to vary with 

the sea-state.  A cruising phase will follow and remains in effect till the boat reaches the 

circle of acceptance that is centered at  2 2,X Y .  At this point, a constant deceleration 

phase will begin till the vessel speed reaches 
m

d
ix .  The maneuvering speed is maintained 

until the boat exits the circle of acceptance at which point the acceleration phase for the 
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subsequent segment will begin.  This pattern is repeated for all segments of the trajectory.  

The desired velocity profile is generated by a MATLAB code that yields the desired 

surge speed as a function of distance from the initial waypoint of the segment.  Distance-

dependent velocity profile along a segment is advantageous, particularly when the 

waypoints are selected close enough to each other to prevent the vessel from accelerating 

to the cruising speed and then decelerating to the maneuvering speed. Thus, in the event 

that the boat approaches the final waypoint of a segment before it has had the time to 

reach its cruising speed then the vessel will start decelerating to the maneuvering speed in 

order to make the turn safely.  This scenario is illustrated in the speed profile of the third 

segment in Fig. 3-2, which clearly reveals the absence of a cruising phase.  It should be 

pointed out that the acceleration and deceleration rates along with the cruising and 

maneuvering surge speeds are set to practical values based on the sea-state. 

Next the surge speed controller is designed based on the sliding mode methodology.  

The controller is similar in concept to the one devised by Chalhoub and Khaled (2014) 

but slightly modified to make it suitable for the current experimental work.  The objective 

of the current work is to experimentally validate the performance of the proposed surge 

speed controller in the presence of considerable modeling imprecision and environmental 

disturbances.  The nominal state equation for the surge motion of the boat can be written 

as follows 

    cx f x b x v   (3-1) 

where ix x  is the surge speed along the thi  segment of the trajectory.  It is deduced 

from the measured data of the GPS.   Moreover,  f̂ x  is a nominal function used to 

describe inertial effects along with all other resistive forces that may be applied on the 
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vessel.  cv  is the control voltage for the DC servomotor responsible for rotating the 

throttle arm.  A  10V saturation limits were placed on the output control signal to 

prevent overloading the 12V servomotor.  The  f̂ x  and  b̂ x  terms represent the best 

approximations available for the actual  f x  and  b x  functions, which will never be 

known with absolute certainty in a real life situation.   b̂ x  is approximated as follows 

(Slotine and Li, 1991): 

min maxb̂ b b  (3-2a) 

max

min

b

b
   (3-2b) 

where minb and maxb  are assumed to be known.  An integral form of the sliding surface 

has been selected:   

   
2

0 0

, where

t t
d

s s i i

d
s x x xd x x x d

dt
  

 
    
 

   (3-3) 

where s  is a control parameter.  By setting 0ss  , one would get the equivalent control 

signal to be 

21 ˆ0 2
ˆeq

d
s c i s ss v f x x x

b
       

 
 (3-4) 

The complete expression of the control signal is given by 

 sgn
ˆeq

s
c c s

k
v v s

b
   (3-5) 

The gain sk  is determined by satisfying the following sliding condition:  

 2
1

2

s

s s

d s
s

dt
   (3-6) 
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where s  is a control parameter.  To satisfy the above inequality, sk  has to be: 

  2ˆ1 2 d
s s s s s ik F f x x x            (3-7) 

Note that sF  is the upper bound on the modeling imprecision.  It is defined as 

sup

ˆ
sF f f   (3-8) 

In addition, the term  , defined in Eq. (3-2b), satisfy the following inequality (Slotine 

and Li, 1991): 

1 1 ˆb b     (3-9) 

To minimize the chattering in the control signal when the vessel is operating in the 

vicinity of the sliding surface, the ( )ssgn s  term has been substituted by a saturation 

function in Eq. (3-5) as follows 

sat
ˆeq

s s
c c

s

k s
v v

b 

 
   

 
 (3-10) 

where the s  term represents the thickness of the boundary layer surrounding the sliding 

surface.   

3.1.3 Recovery Controller  

The objective of the recovery controller is to decrease the surge speed to zero in a 

controlled manner in order to avoid any abrupt change in the operating conditions of the 

boat.  The inputs of the controller are the angular displacement,  , and velocity,  , of 

the throttle arm as measured by the optical encoder.  The nominal equation of motion of 

the throttle arm including the dynamics of the actuator can be expressed in the following 

general form as 

   ,r r cf b v      (3-11) 
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Note that   is deduced from the optical encoder measurement.  cv  is the control voltage 

for the DC servomotor responsible for rotating the throttle arm.  Both  ˆ ,rf    and 

 ˆ
rb   are approximations of the actual  ,rf    and  rb  , which are unknown 

functions.  Similar to the design of the surge speed controller,  ˆ
rb   is approximated as 

follows (Slotine and Li, 1991): 

min max

ˆ
r r rb b b  (3-12a) 

max

min

r
r

r

b

b
   (3-12b) 

1 1 ˆ
r r r rb b     (3-12c) 

The sliding mode recovery controller is considered to have the following sliding surface: 

   *, wherer r r r r r rs x x x x x       (3-13) 

where r  is a control parameter and 
*  is assigned an appropriate constant value.  By 

setting 0rs  , the equivalent control signal becomes 

1 ˆ
ˆeqc r r r

r

v f x
b

   
   (3-14) 

The complete expression of the control signal is given by 

 sgn
ˆeq

r
c c r

r

k
v v s

b
   (3-15) 

The gain rk  is determined by satisfying the following sliding condition:  

 2
1

2

r

r r

d s
s

dt
   (3-16) 
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where r  is a control parameter.  To satisfy the above inequality, rk  has to be: 

  ˆ1r r r r r r r rk F f x         (3-17) 

Note that rF  is the upper bound on the modeling imprecision.  It is defined as 

sup

ˆ
r r rF f f   (3-18) 

Again, a saturation function was substituted for the “sgn” function in the control signal to 

yield: 

sat
ˆeq

r r
c c

rr

k s
v v

b 

 
   

 
 (3-19) 

where the r  term represents the thickness of the boundary layer surrounding the sliding 

surface. 

The surge speed and recovery controllers have been built in MATLAB Simulink and 

downloaded to a dSPACE 1005 Real-time processor for on-line implementation.  

3.2 Summary 

 This chapter covers the design of the hybrid surge speed controller.  Its three major 

components comprise of the supervisory code, the surge speed controller, and the 

recovery controller.  These components have been discussed herein in great detail. 

The hybrid surge speed controller is experimentally validated by the experimental 

work that will be described in the next chapter. 
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Fig. 3-1 Relative position of the vessel with respect to the 
thi  segment of its desired 

trajectory 

 

 

 

Fig. 3-2  Surge speed profile along a flattened multi-segment desired trajectory of the 

marine surface vessel 
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CHAPTER 4 EXPERIMENTAL VALIDATION OF THE SURGE SPEED 

CONTROLLER 

Most of the work that has been reported in the literature pertaining to the robust 

and adaptive control of marine surface vessels has been limited to digital simulations 

(Chalhoub and Khaled, 2009; Khaled and Chalhoub, 2013; Khaled and Chalhoub, 2014; 

Breivik, 2003; Fossen, 1993; Perera and Guedes Soares, 2012).  The few experimental 

studies in this field have implemented advanced control schemes on very small scale 

marine systems and the tests were carried out either in indoor pools/tanks (Ashrafiuon et 

al, 2008; Li et al, 2009) or in an outdoor pond (Fahimi and Van Kleeck, 2013; Schoerling 

et al, 2010).  All these studies have dealt with hobby-type marine vessels.  Therefore, 

there is an urgent need for experimental validation of the theoretical advances in control 

theory on actual marine surface vessels to be conducted in a completely uncontrolled 

real-life setting.  It is the intent of this chapter to provide an experimental validation of 

the surge speed sliding mode controller proposed by Chalhoub and Khaled (2014).  

4.1 Experimental Results 

 The experimental data were generated by using the modified 16 ft (4.88 m) 

tracker boat that was described in Chapter 2 (see Fig. 2-1).  The throttle mechanism, 

shown in Fig. 4-1, has been designed to yield the control of the propeller thrust to the 

sliding mode controller.  In any test, two types of controllers were implemented.  The 

first one is the “sliding mode surge speed” controller while the second one is a “surge 

recovery” controller.  At any given time during a boat maneuver, only one of these 
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controllers is active.  The surge recovery controller is automatically activated by a high 

level monitoring code in case of emergency, which can be triggered by either  

 

 

Fig. 4-1 Propeller thrust drive mechanism 

 

 

 

 

Fig. 4-2 Pictorial description of the surge speed controller 
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a push of a panic button or by having the throttle handle exceeding its allowable range of 

rotation.  In case of emergency, the monitoring code will override the sliding mode surge 

speed controller and activate the surge recovery controller whose main objective is to 

bring the throttle handle back to the zero-thrust position in a controlled manner.  This is 

pictorially depicted in Fig. 4-3, which reveals that the main feedback signal to the surge 

recovery controller is the angular displacement of the throttle arm, which is measured by 

the optical encoder that is mounted on the motor shaft. However, the feedback signals to 

the sliding mode surge speed controller are the (X,Y) coordinates of the boat with respect 

to a reference frame whose origin is considered to coincide with the initial position of the 

boat.  The latter is provided by a Hemisphere V101 Compass Global Positioning System 

(GPS) receiver.
 
 

The desired surge speed profile is shown in Fig. 4-3 with respect to time.  This 

profile corresponds to the desired surge speed along two straight line segments 

connecting three waypoints of a specified trajectory.  It consists of ramping up the boat 

speed to 12 km/hr (3.333 m/s) in 5 seconds, cruising at 12 km/hr for 55 seconds, 

decelerating to 9 km/hr (2.5 m/s) in 15 seconds, cruising at the lower speed for 10 

seconds, ramping up the speed back to 12 km/hr in 5 seconds, cruising at 12 km/hr for 52 

seconds, and then decelerating for 20 seconds.  The specified profile of Fig. 4-3 will 

require the boat to traverse a total distance of 444.4 m during this test (see Fig. 4-4), 

which caused the boat to endure significantly different wave heights and conditions in the 

rough environment of Lake St. Clair. 

It should be pointed out that all tests were conducted without allowing negative 

propeller speed; thus, the controller can only reduce or bring down the propeller speed to 
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zero (no negative propeller thrust).  This is the reason why the deceleration period was 

specified to be significantly longer than the acceleration period in the desired surge speed 

profile of Fig. 4-3. 

 

 

 

 

 

 

 

 
Fig. 4-3 Desired surge speed profile with respect to time 
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Fig. 4-4 Desired surge speed profile with respect to boat position 
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However, the profile in Fig. 4-3 is defined with respect to time.  This can certainly 

be problematic, particularly, in cases where the boat might experience a severe resistance 

from waves, sea currents, or winds.  Under such circumstances, the propulsion system 

may not be able to produce the thrust required to generate or maintain the desired surge 

speed.  Consequently, the positional error of the boat may accumulate and the marine 

vessel may encounter situations whereby the boat is moving along the 
thi  segment of the 

trajectory while the reference signal given to the controller pertains to the  1
th

i  

segment.  This difficulty has been circumvented in this work by specifying the desired 

surge speed profile as a function of the boat position along the desired trajectory.  Thus, 

the desired surge speed profile of Fig. 4-4, instead of Fig. 4-3, was used in controlling the 

surge speed of the marine vessel. 

The current experimental work aimed at validating the robust performance and good 

tracking characteristic of the sliding mode surge speed controller that was presented in 

Chapter 3.  The test was conducted in the open-water of Lake St. Clair in Michigan.  The 

wave height ranged from 1 to 2 ft.  The experimental results are illustrated in Figs 4-5 to 

4-8.  Figure 4-5 serves to prove the good tracking characteristic of the controller in spite 

of significant wave excitations that varied considerably from one region in the lake to 

another.  This is clearly manifested by the large fluctuations of the actual surge speed 

around the desired one during the second segment of the desired trajectory.  These 

fluctuations were also present but to a much lesser extent as the boat traversed the first 

segment of the desired trajectory.  These results serve to prove the robustness of the 

controller not only to environmental disturbances, induced by waves, wind, and sea 

currents, but also to the marine vessel dynamics, which were completely ignored in the 
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design of the controller.  Note that the spikes in Fig. 4-5 stem from anomalies in the GPS 

raw data. 

 

 

 

 

 
Fig. 4-5 Actual and desired surge speed of the marine vessel  
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 Both the sliding surface, surges , and the control signal, surgeu  are shown in Fig. 4-6.  

For good tracking, surges  should be ideally kept at zero after the reaching phase.  

However, due to modeling imprecision and external disturbances, surges  will deviate from 

zero.  Therefore, the surges  deviations from zero during the cruising phases are primarily 

induced by wave excitations and sea currents and to a lesser extent to wind.  However, 

the controller was always able to converge surges  to zero; thus, recovering from the 

environmental disturbances.  It should also be noted that the large deviation of surges  

during the first few seconds is attributed to the reaching phase during which the system is 

recovering from a mismatch between the initial values of the actual and desired boat 

speeds.  Furthermore, surges  took large values during the deceleration phase.  This is 

because negative propeller speeds were not allowed in the current work.  As a 

consequence, the controller can only reduce or bring down the propeller speed to zero; 

thus, handicapping the capability of the controller in the deceleration phase.  Therefore, a 

realistic desired deceleration profile cannot be specified to be faster than the rate at which 

the boat’s momentum can die out to zero.  This is the rationale behind specifying the 

deceleration phases to be three to four times longer than the acceleration phases. 

Figure 4-6 reveals that the control signal is always dominated by the switching term 

due to the fact that surgeu  is always out-of-phase with surges , which is one of the main 

characteristic of the sliding mode controller. 

Moreover, the spikes in the curves of Fig. 4-6 reflect the sensitivity of both the sliding 

surface and the control signal to anomalies in the GPS raw data.  Thus, ways for 
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removing these anomalies from the GPS data should be further investigated in order to 

remove their direct  

 

 

 

 
Fig. 4-6 Sliding surface and surge speed control signal 
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Fig. 4-7 Angular displacement of the control handle of the propeller thrust 
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adverse effects on the controller performance.  Figure 4-7 reveals the angular 

displacement of the control handle of the propeller thrust. 

4.2 Summary 

The experimental setup described in Chapter 2 has been used to experimentally 

validate the sliding mode surge speed controller that was described in Chapter 3.  The 

results served to demonstrate and experimentally validate the robustness and good 

tracking capability of the proposed surge speed controller in the presence of considerable 

and unpredictable environmental disturbances induced by wave excitations, sea-currents, 

and winds.  Moreover, the good performance of the boat was achieved in spite of the fact 

that the controller completely ignored the dynamics of the marine vessel in its design; 

thus, proving the controller robustness to significant unstructured uncertainties. 
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CHAPTER 5 SUMMARY AND MAIN CONTRIBUTIONS 

This chapter summarizes the work, highlights the findings of this study, and 

proposes prospective research topics in this field. 

5.1 Goal of the Project 

The present work centers around the experimental validation of the robust 

performance and good tracking characteristic of a sliding mode surge speed controller 

(Chalhoub and Khaled, 2014) for autonomous piloting of an under-actuated 16 ft tracker 

boat in a completely uncontrolled real-world setting of the open-water of Lake St. Clair, 

Michigan. Furthermore, the goal is to prove that sliding mode controllers can be 

successfully implemented to track the desired surge speed without considering the 

dynamics of the marine vessel in their design; thus, rendering them to be model-less 

robust controllers. 

5.2 Summary 

The overwhelming majority of marine surface vessels (MSV) are under-actuated 

systems.   This is because a typical MSV has only the propeller and the rudder to control 

its surge, sway and yaw motions. The propeller generates the thrust needed to control the 

surge speed of the boat.  While the rudder is used to simultaneously control the heading 

angle and the sway motion of the boat.  Normally, this is done by coupling the controller 

with the guidance system.    

To automate the surge speed control process, the controller has to be able to 

automatically vary the thrust of the propeller as needed.  Therefore, the marine vessel has 
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been retrofitted with a new drive mechanism (see Fig. 2-2) that yields the control of the 

propeller thrust to the controller.  The new drive mechanism has been designed and built 

in-house.  Its detailed description is provided in Chapter 2.   

The surge control problem is a very challenging one due to the system’s inherent 

nonlinearities and unpredictable environmental disturbances.  To effectively deal with 

this tracking problem, a robust controller based on the slide mode methodology has been 

chosen in this work to cope with the modeling imprecision and external disturbances 

(Chalhoub and Khaled, 2014).  This type of controller has been shown to exhibit robust 

performances in the presence of structured and unstructured uncertainties as long as the 

upper bounds on the modeling imprecision and external disturbances are known. 

To safely implement the controller on a marine vessel operating in the open-water 

of a real life setting such as Lake St. Clair, a hybrid controller has been developed in this 

work.  It has three main components consisting of a supervisory algorithm, a surge speed 

controller, and a recovery controller.  All controllers were designed based on the sliding 

mode methodology.  At any given time during the operation of the boat, only one of the 

two controllers is activated.  The surge recovery controller is automatically activated by a 

high level monitoring algorithm in case of emergency, which can be triggered by either a 

push of a panic button or by having the control handle of the throttle thrust exceeding its 

allowable range of rotation.  In case of emergency, the monitoring code will override the 

surge speed controller and activate the surge recovery controller whose main objective is 

to bring back the throttle handle to the zero-thrust position in a controlled manner.  The 

main feedback signal to the surge recovery controller is the angular displacement of the 

control handle.  On the other hand, the feedback signals for the surge speed controller are 
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the (X,Y) coordinates of the boat with respect to a reference frame, which are provided 

by a Hemisphere V101 Compass Global Positioning System (GPS) receiver.  Its 

objective is to track a surge speed profile specified along the desired trajectory of the 

marine surface vessel in spite of considerable modeling imprecision and environmental 

disturbances that are induced by waves, sea-currents, and wind.  A typical profile for the 

desired surge speed is shown in Fig. 3-2.  The details of both the surge speed controller 

and the recovery controller are covered in Chapter 3. 

The majority of advanced control algorithms that have been developed for the 

control of marine surface vessels have only been tested in digital simulations.  Very few 

studies have attempted to provide experimental results by employing hobby-type marine 

vessels.  However, their experimental validation has been performed on very small scale 

marine systems and in controlled environments such as indoor pools/tanks or an outdoor 

pond.   

In the current study, the proposed hybrid controller was used a 16 ft (4.88 m) 

tracker boat and all tests were conducted in a completely uncontrolled environment of 

Lake St. Clair in Michigan.  The results served to demonstrate and experimentally 

validate the robustness and good tracking capability of the proposed control scheme in 

the presence of considerable and unpredictable environmental disturbances induced by 

wave excitations, sea-currents, and winds.  Moreover, the good performance of the boat 

was achieved in spite of the fact that the controller completely ignored the dynamics of 

the marine vessel in its design; thus, proving the controller robustness to significant 

unstructured uncertainties. 
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5.3 Main Contributions of this Project 

The main contributions are: 

 Development of a hybrid surge speed controller entailing a supervisory code, a surge 

speed controller, and a recovery controller. 

 Designed and built in-house a new drive mechanism which yields the control of the 

propeller thrust to the surge speed controller. 

 Provide experimental validation of the robustness and the good tracking characteristic 

of the sliding mode surge speed controller in an uncontrolled real life setting with 

unpredictable and widely varying environmental conditions. 

5.4 Prospective Research Topics 

The following is a suggested list of future research topics in this field: 

 Improve the performance of the surge speed controller by eliminating the anomalies 

in the GPS raw data. 

 Expand the hybrid controller to include heading control and validate the system 

through experimental work. 

 Couple the expanded version of the hybrid controller with a guidance system and 

validate the coupled system through experimental work. 
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The focus of the current work is on providing experimental validation for 

the robust performance and good tracking characteristic of a surge speed 

controller for autonomous piloting of an under-actuated 16 ft boat in the 

completely uncontrolled setting of open-water Lake Saint Clair, Michigan.  

The controller is designed based on the sliding mode methodology and 

completely ignores the dynamics of the marine surface vessel (MSV) in its 

formulation.  The testing was conducted under considerable unstructured 

uncertainties and unpredictable environmental disturbances induced by 

waves, sea-currents, and wind.  The experimental results serve to validate 

the robust tracking characteristic of the controller and prove the successful 

implementation of the controller without prior knowledge of the system 

dynamics; thus, yielding a robust model-less controller. 
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