6 research outputs found

    Accuracy consideration by DRP schemes for DNS and LES of compressible flow computations

    Get PDF
    Several dispersion relation-preserving (DRP) spatially central discretizations are considered as the base scheme in the framework of the Yee & Sjögreen low dissipative nonlinear filter approach. In addition, the nonlinear filter of Yee & Sjögreen with shock-capturing and long time integration capabilities is used to replace the standard DRP linear filter for both smooth flows and flows containing discontinuities. DRP schemes for computational aeroacoustics (CAA) focus on dispersion error consideration for long time lin- ear wave propagation rather than the formal order of accuracy of the scheme. The resulting DRP schemes usually have wider grid stencils and increased CPU operations count compared with standard central schemes of the same formal order of accuracy. For discontinuous initial data and long time wave propa- gation of smooth acoustic waves, various space and time DRP linear filter are needed. For acoustic waves interacting with shocks and turbulence induced noise, DRP schemes with linear filters alone usually are not capable of simulating such flows. The investigation presented in this paper is focused on the pos- sible gain in efficiency and accuracy by spatial DRP schemes over standard central schemes having the same grid stencil width for general direct numerical simulations (DNS) and large eddy simulations (LES) of compressible flows. Representative test cases for both smooth flows and problems containing discontinuities for 3D DNS of compressible gas dynamics are included

    Uniformly Best Wavenumber Approximations by Spatial Central Difference Operators

    No full text
    We construct accurate central difference stencils for problems involving high frequency waves or multi-frequency solutions over long time intervals with a relatively coarse spatial mesh, and with an easily obtained bound on the dispersion error. This is done by demonstrating that the problem of constructing central difference stencils that have minimal dispersion error in the infinity norm can be recast into a problem of approximating a continuous function from a finite dimensional subspace with a basis forming a Chebyshev set. In this new formulation, characterising and numerically obtaining optimised schemes can be done using established theory

    Recent developments in accuracy and stability improvement of nonlinear filter methods for DNS and LES of compressible flows

    Get PDF
    Recent progress in the improvement of numerical stability and accuracy of the Yee and Sjögreen [49] high order nonlinear filter schemes is described. The Yee & Sjögreen adaptive nonlinear filter method consists of a high order non-dissipative spatial base scheme and a nonlinear filter step. The nonlinear filter step consists of a flow sensor and the dissipative portion of a high resolution nonlinear high order shock-capturing method to guide the application of the shock-capturing dissipation where needed. The nonlinear filter idea was first initiated by Yee et al. [54] using an artificial compression method (ACM) of Harten [12] as the flow sensor. The nonlinear filter step was developed to replace high order linear filters so that the same scheme can be used for long time integration of direct numerical simulations (DNS) and large eddy simulations (LES) for both shock-free turbulence and turbulence-shock waves inter- actions. The improvement includes four major new developments: (a) Smart flow sensors were developed to replace the global ACM flow sensor [21,22,50]. The smart flow sensor provides the locations and the estimated strength of the necessary numerical dissipation needed at these locations and leaves the rest of the flow field free of shock-capturing dissipation. (b) Skew-symmetric splittings were developed for compressible gas dynamics and magnetohydrodynamics (MHD) equations [35,36] to improve numerical stability for long time integration. (c) High order entropy stable numerical fluxes were developed as the spatial base schemes for both the compressible gas dynamics and MHD [37,38]. (d) Several dispersion relation-preserving (DRP) central spatial schemes were included as spatial base schemes in the frame- work of our nonlinear filter method approach [40]. With these new scheme constructions the nonlinear filter schemes are applicable to a wider class of accurate and stable DNS and LES applications, including forced turbulence simulations where the time evolution of flows might start with low speed shock-free turbulence and develop into supersonic speeds with shocks. Representative test cases for both smooth flows and problems containing discontinuities for compressible flows are included

    High order entropy conservative central schemes for wide ranges of compressible gas dynamics and MHD flows

    Get PDF
    The Sjogreen and Yee [31]high order entropy conservative numerical method for compressible gas dynamics is extended to include discontinuities and also extended to equations of ideal magnetohydrodynamics (MHD). The basic idea is based on Tadmor’s [40]original work for inviscid perfect gas flows. For the MHD four formulations of the MHD are considered: (a) the conservative MHD, (b) the Godunov [14]non-conservative form, (c) the Janhunen [19]– MHD with magnetic field source terms, and (d) a MHD with source terms by Brackbill and Barnes[5]. Three forms of the high order entropy numerical fluxes for the MHD in the finite difference framework are constructed. They are based on the extension of the low order form of Chandrashekar and Klingenberg [9], and two forms with modifications of the Winters and Gassner [49]numerical fluxes. For flows containing discontinuities and multiscale turbulence fluctuations the high order entropy conservative numerical fluxes as the new base scheme under the Yee and Sjogreen [31]and Kotov et al. [21,22]high order nonlinear filter approach is developed. The added nonlinear filter step on the high order centered entropy conservative spatial base scheme is only utilized at isolated computational regions, while maintaining high accuracy almost everywhere for long time integration of unsteady flows and DNS and LES of turbulence computations. Representative test cases for both smooth flows and problems containing discontinuities for the gas dynamics and the ideal MHD are included. The results illustrate the improved stability by using the high order entropy conservative numerical flux as the base scheme instead of the pure high order central scheme

    Uniformly Best Wavenumber Approximations by Spatial Central Difference Operators: An Initial Investigation

    No full text
    A characterisation theorem for best uniform wavenumber approximations by central difference schemes is presented. A central difference stencil is derived based on the theorem and is compared with dispersion relation preserving schemes and with classical central differences for a relevant test problem
    corecore