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a b s t r a c t 

Recent progress in the improvement of numerical stability and accuracy of the Yee and Sjögreen [49] 

high order nonlinear filter schemes is described. The Yee & Sjögreen adaptive nonlinear filter method 

consists of a high order non-dissipative spatial base scheme and a nonlinear filter step. The nonlinear 

filter step consists of a flow sensor and the dissipative portion of a high resolution nonlinear high order 

shock-capturing method to guide the application of the shock-capturing dissipation where needed. The 

nonlinear filter idea was first initiated by Yee et al. [54] using an artificial compression method (ACM) 

of Harten [12] as the flow sensor. The nonlinear filter step was developed to replace high order linear 

filters so that the same scheme can be used for long time integration of direct numerical simulations 

(DNS) and large eddy simulations (LES) for both shock-free turbulence and turbulence-shock waves inter- 

actions. The improvement includes four major new developments: (a) Smart flow sensors were developed 

to replace the global ACM flow sensor [21,22,50]. The smart flow sensor provides the locations and the 

estimated strength of the necessary numerical dissipation needed at these locations and leaves the rest 

of the flow field free of shock-capturing dissipation. (b) Skew-symmetric splittings were developed for 

compressible gas dynamics and magnetohydrodynamics (MHD) equations [35,36] to improve numerical 

stability for long time integration. (c) High order entropy stable numerical fluxes were developed as the 

spatial base schemes for both the compressible gas dynamics and MHD [37,38]. (d) Several dispersion 

relation-preserving (DRP) central spatial schemes were included as spatial base schemes in the frame- 

work of our nonlinear filter method approach [40]. With these new scheme constructions the nonlinear 

filter schemes are applicable to a wider class of accurate and stable DNS and LES applications, including 

forced turbulence simulations where the time evolution of flows might start with low speed shock-free 

turbulence and develop into supersonic speeds with shocks. Representative test cases for both smooth 

flows and problems containing discontinuities for compressible flows are included. 

Published by Elsevier Ltd. 

1. Introduction 

The construction of spatially stable and accurate numerical 

methods for long time integration of complex multiscale compress- 

ible shock free turbulent flows, turbulent flows containing discon- 

tinuities, steep gradients, and vortical flows is very different from 

shorter time integration of non-turbulence/non-acoustic unsteady 

flows and rapidly developing shock-wave interaction simulations. 

Standard direct numerical simulations (DNS) and large eddy simu- 

lations (LES) usually require high accuracy schemes with low dis- 

sipative and low dispersive errors in space and time. It is common 

� Yee-Sjogreen 2nd paper for a special issue in honor of Prof. Eleuterio F. Toro’s 
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to have numerically induced high frequency oscillations (spurious 

numerical artifacts) due to long time integration of non-dissipative 

or low-dissipative finite discretizations. A good numerical method 

for DNS and LES should be able to minimize these spurious os- 

cillations while maintaining stability and accuracy during an en- 

tire long-time evolution. This paper only addresses the spatial dis- 

cretization by the method-of-lines approach. Controlling low dissi- 

pative and low dispersive temporal errors is important but outside 

the scope of this investigation. Highly accurate appropriate tem- 

poral discretizations and, when appropriate, small time steps are 

assumed to be used in conjunction with the current development. 

Numerical stability and accuracy considerations are an intri- 

cate balancing act for turbulence flows with discontinuities. More 

stable numerical methods usually contain more numerical dissi- 

pation than their higher accuracy method counterparts. Improv- 

ing nonlinear stability without smearing physical turbulent fluc- 

tuations for long time integrations are conflicting requirements 

http://dx.doi.org/10.1016/j.compfluid.2017.08.028 
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Fig. 1. Smooth initial data of the linear advection problem. 

for numerical methods development. Since the turn of this cen- 

tury, many optimized compact and non-compact WENO schemes 

have been developed to address some of the pacing difficulties. 

See, e.g., [10,16,27] . These numerical methods are very high in CPU 

operation counts and most often still suffer from numerical sta- 

bility/accuracy for long time integration. Other optimized numer- 

ical methods for combating these conflicting requirements com- 

bine the non-dissipative or low dissipative, and low dispersive 

spatial schemes with high order high resolution shock-capturing 

schemes. The blending of these two types of schemes requires ex- 

treme care to ensure numerical conservation and stability at inter- 

face locations [30] . Other more efficient numerical methods which 

avoid the interfacing problem are the [21,22,33,33,49,54] nonlin- 

ear filter schemes. Numerical stability can be improved by skew- 

symmetric splitting of the inviscid flux derivatives [35,36,53] and 

by high order stable entropy conservative numerical fluxes [37,38] . 

Another source of accuracy improvement is the dispersion relation- 

preserving (DRP) schemes for computational aeroacoustics (CAA) 

[40] . 

Nonlinear filter schemes : The Yee and Sjögreen [50] adaptive 

nonlinear filter method consists of a high order non-dissipative 

spatial base scheme and a nonlinear filter step. The nonlinear 

filter step consists of a flow sensor and the dissipative portion 

of a high resolution high order shock-capturing method to guide 

the application of the shock-capturing dissipation where needed. 

The nonlinear filter idea was first initiated by Yee et al. [54] us- 

ing an artificial compression method (ACM) of Harten [12] as the 

flow sensor. The nonlinear filter step was developed to replace 

high order linear filters so that the same scheme can be used for 

long time integration of direct numerical simulations (DNS) and 

large eddy simulations (LES) for both shock-free turbulence and 

turbulence-shock wave interactions. Smart flow sensors were de- 

veloped at a later stage by the same investigators and collaborators 

in [21,22,33,33,49] . The smart flow sensor provides the locations 

and the estimated strength of the necessary numerical dissipation 

needed at these locations and leaves the rest of the flow field free 

of shock-capturing dissipations. It is noted that the nonlinear filter 

approach of Yee and Sjögreen [50] requires one Riemann solver per 

time step per grid point for each spatial direction. It is independent 

of the time discretization. However, hybrid schemes (switching be- 

tween high order non-dissipative methods and high order shock- 

capturing methods) would require four Riemann solvers per time 

step per grid point for each spatial direction if, e.g., a fourth-stage 

Runge-Kutta time discretization is used. Unlike the hybrid method, 

our highly parallelizable adaptive nonlinear filter schemes do not 

rely on switching between schemes to avoid the related numer- 

ical instability and conservation consideration at switching loca- 

tions. These nonlinear filter schemes with adaptive numerical dis- 

sipation control in high order shock-capturing schemes and their 

hybrid cousins have shown excellent performance for certain tur- 

bulent test cases. For more practical 3D test cases of DNS and LES 

of compressible shock-free turbulence, low speed turbulence with 

shocklets, and supersonic turbulence for non-periodic boundaries 

in curvilinear geometries, some improvement in numerical stabil- 

ity is needed without resorting to added numerical dissipation that 

can interfere with the accuracy of numerical simulations. 

Skew-symmetric splitting of the inviscid flux derivative : 

Starting in the early 1980s skew-symmetric splitting of certain 

components of the inviscid flux derivatives in conjunction with 

central schemes was shown to help with numerical stability for 

long time integration. For certain splittings they can provide a sta- 

ble energy norm estimate for the Euler equations with smooth 

flows. For other skew-symmetric formulations they can provide 

a discrete momentum conservation or a discrete kinetic energy 

preservation property. See Arakawa [1] , Blaisdell et al. [2] , Ducros 

et al. [8] , Kotov et al. [21, 22] , Sjögreen and Yee [34] , Yee and Sjö- 

green [49,50] , Yee et al. [53] for some discussions and performance 

of the combined approach for DNS and LES applications. A semi- 

conservative skew-symmetric splitting (entropy splitting) of Yee 

et al. [53] in conjunction with the nonlinear filter approach to im- 

prove numerical stability without added ad hoc numerical dissi- 

pation was conducted in 20 0 0. It has been utilized extensively in 

DNS of shock-free turbulence. See [32] and their later work for 

their wide applications. For their skew-symmetric splitting exten- 

sion to the ideal magnetohydrodynamics (MHD), see Sjögreen and 

Yee [35,36] , Yee et al. [53] . Note that some of the skew-symmetric 

splittings for the gas dynamics flux derivatives are not applica- 

ble and/or cannot be straightforwardly extended to the ideal MHD 

[53] . Their degree of stability improvement is also dependent on 

the MHD governing equation formulation. 

High order entropy conservative schemes : Entropy conserva- 

tive schemes [7,42,48] are another class of methods that might 

have better stability properties than straightforward pure centered 

discretizations and compact spatial schemes. Here, entropy con- 

servative schemes refer to conservative schemes satisfying a dis- 

crete entropy equation. In view of the fact that methods proposed 

in [7,42,48] are low order and their linear numerical dissipation 

approaches for shock-capturing require further improvement, Sjö- 

green and Yee combined some of these ideas to construct a form of 

the high order conservative entropy numerical fluxes. Starting with 

the high order entropy conservative development of Sjögreen and 

Yee [34] for gas dynamics in smooth flows, construction of efficient 

high order conservative numerical fluxes for problems containing 

discontinuities and for the ideal MHD are reported in Sjögreen and 

Yee [37, 38] . Note that the extension of high order entropy conser- 

vative numerical fluxes that were developed for gas dynamics to 

the MHD is not straightforward due to the non-strictly hyperbolic 

nature of the conservative ideal MHD equations. See [37,38] . 

DRP schemes : DRP schemes (optimized low dispersion 

schemes) for CAA are also a class of methods that might have bet- 

ter accuracy than pure centered schemes. Unlike typical DNS and 

LES numerical considerations, the magnitude of acoustic solutions 

is similar to numerical noise but is different from numerically in- 

duced high frequency oscillations due to long time integration of 

non-dissipative or low dissipative finite discretizations. Here, the 

term “DRP” schemes has been used loosely, according to the recent 

definition of DRP methods by Tam [44] , to include general schemes 

that perform various optimizations to reduce numerical dispersion 

errors for different applications. Most CAA-related DRP methods 

employed techniques to minimize dispersion error to resolve lin- 

ear acoustic waves over long distances without compromising the 
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Fig. 2. Gaussian pulse: C08 (top left) and optimized schemes without any linear or nonlinear filter, DRP4S7 (top right), DRP4S9 (bottom right), and STO9 (bottom left). 

Solutions at t = 3 of the linear advection problem. Computed solution plotted in blue color, exact solution shown in black color. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 

real physical behavior of the wave form propagation of the initial 

boundary value problem (IBVP). A large percentage of DRP meth- 

ods utilize least squares, L 1 -norm, L 2 -norm, L ∞ 

-norm, and other in- 

tegral metrics to minimize the numerical wavenumber error over 

prescribed intervals in order to obtain the grid stencil coefficients. 

The resulting DRP schemes usually have wider grid stencils than 

their standard central schemes of the same order of accuracy. Low 

dispersive temporal discretization and special treatments for IBVPs 

of the different CAA applications are also needed. See Tam [44,45] , 

Brambley [6] , Haras and Taasan [11] , and Linders and Nordström 

[24] , Linders et al. [25] for formulations and overviews. Some of 

the DRP schemes might perform poorly for decaying or growing 

oscillations. See Brambley [6] for a study. For discontinuous initial 

data and long time wave propagations of smooth acoustic waves, 

various space and time DRP linear filters are needed. For acoustic 

waves interacting with shocks and turbulence induced noise, DRP 

schemes with linear filters alone usually are not capable of simu- 

lating such flows. 

According to Tam [44] , optimized compact schemes are also 

DRP schemes. For over 20 years high order compact spatial dis- 

cretizations in conjunction with linear high order compact filters 

have been methods of choice for many DNS and LES of incom- 

pressible and low speed compressible turbulent/acoustic flows due 

to their advantage of requiring a very low number of grid points 

per wavelength and flexibility in geometry handling. However, 

most optimized compact schemes were not designed for long- 

time integration and additional constraints are needed. See Haras 

and Taásan [11] for the construction of compact finite difference 

schemes for long time integration. In addition, the advantage of 

compact schemes seems to require additional investigation and re- 

search for compressible turbulent flows containing moderate and 

strong shock waves. One popular method is by employing a blend- 

ing of high order compact spatial schemes with high order shock- 

capturing schemes. Another more efficient approach for turbulence 

with discontinuities is the nonlinear filter approach of Sjögreen 

and Yee [33] , Yee and Sjögreen [49] , Yee et al. [54] . They employed 

the high order compact scheme as their spatial base scheme. The 

Yee and Sjögreen studies [51] indicated that for shock-wave turbu- 

lence interactions the accuracy performance of compact schemes 

is similar to the central scheme of the same order under the Yee 

and Sjögreen nonlinear filter approach. 

Objectives : Here recent progress in high order, nonlinear filter 

numerical method development for DNS and LES applications is re- 

viewed. The improvement includes four major new developments: 

(a) Smart flow sensors were developed to replace the global ACM 

flow sensor [21,22,50] . The smart flow sensor provides the loca- 

tions and the estimated strength of the necessary numerical dis- 

sipation needed at these locations and leaves the rest of the flow 

Please cite this article as: H.C. Yee, B. Sjögreen, Recent developments in accuracy and stability improvement of nonlinear filter methods 
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Fig. 3. Gussian pulse: Standard nonlinear filter scheme C08+WENO7fi (top left). Optimized nonlinear filter schemes, DRP4S7+WENO7fi (top right), DRP4S9+WENO7fi (middle 

left), STO9+WENO7fi (middle right), and standard shock-capturing scheme WENO7 (bottom left). Solutions at time t = 3 of the linear advection problem. Computed solution 

plotted in blue color, exact solution shown in black. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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Fig. 4. Square pulse: C08 (top left). Optimized schemes without linear or nonlinear filter, DRP4S7 (top right), DRP4S9 (bottom left), and STO9 (bottom right). Solutions 

at t = 3 of the linear advection problem with square pulse initial data. Computed solution plotted in blue color, exact solution shown in black. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

field free of shock-capturing dissipation. (b) Skew-symmetric split- 

tings were developed for the compressible gas dynamics and MHD 

equations [35,36] to improve numerical stability for long time inte- 

gration. (c) High order entropy stable numerical fluxes were devel- 

oped as the spatial base schemes for both the compressible gas dy- 

namics and MHD equations [37,38] . (d) Several dispersion relation- 

preserving (DRP) central spatial schemes were included as spa- 

tial base schemes in the framework of our nonlinear filter scheme 

method approach [40] . 

This paper only considers several DRP central spatial schemes 

as the base scheme in the framework of the Yee and Sjögreen 

[50] low dissipative nonlinear filter method approach. DRP time 

discretizations are not considered. For time discretization we uti- 

lize the low dissipative fourth-order Runge–Kutta method with 

small time steps for the investigation to minimize dispersion er- 

ror due to time discretization. The investigation is focused on the 

possible gain in accuracy by high order entropy numerical fluxes 

and DRP schemes as the base scheme over the standard central 

schemes of the same grid stencil for general DNS and LES com- 

pressible flow computations. As mentioned before, CAA focuses on 

dispersion error for long time linear wave propagation rather than 

the formal order of accuracy of the scheme. The resulting DRP 

schemes usually have wider grid stencils and an increase in CPU 

operations count compared to their standard central schemes of 

the same order of accuracy. For discontinuous initial data and long 

time wave propagations of smooth acoustic waves various space 

and time DRP linear filters are needed. For acoustic waves interact- 

ing with shocks and turbulence induced noise, DRP schemes with 

linear filters alone usually are not capable of simulating such flows. 

Due to this fact, here, the Yee and Sjögreen nonlinear filter step 

with shock-capturing and long time integration properties replaces 

the spatial DRP linear filter. 

With these new scheme constructions the nonlinear filter 

schemes are applicable to a wider class of accurate and stable 

DNS and LES applications, including forced turbulence simulations 

where the time evolution of flows might start with low speed 

shock-free turbulence and develop into supersonic speeds with 

shocks. See [21,22,36] for two of our simulations. 

The next four sections give summaries of the four new major 

developments. 

2. An overview of skew-symmetric split approximations for gas 

dynamics 

Standard centered difference approximations of nonlinear con- 

servation laws normally encounter nonlinear instabilities after a 

Please cite this article as: H.C. Yee, B. Sjögreen, Recent developments in accuracy and stability improvement of nonlinear filter methods 
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Fig. 5. Square pulse: Standard nonlinear filter scheme C08+WEBO7fi (left top). Optimized nonlinear filter schemes, DRP4S7+WENO7fi (top right), DRP4S9+WENO7fi (middle 

left), STO9+WENO7fi (middle right), and standard shock-capturing scheme WENO7 (bottom left). Solutions at t = 3 of the linear advection problem with square pulse initial 

data. Computed solution plotted in blue color, exact solution shown in black. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

short time integration without added numerical dissipation. It is 

well known that the appearance of these instabilities can be de- 

layed if the convective flux derivatives are written in an equivalent 

desired split form before the pure central approximation is em- 

ployed. Hereafter this is referred to as a split approximation. 

For example, a split approximation starts from rewriting the 

derivative of the product ( ab ) x as 

(ab) x = α(ab) x + γ ab x + βa x b (1) 

Please cite this article as: H.C. Yee, B. Sjögreen, Recent developments in accuracy and stability improvement of nonlinear filter methods 
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Fig. 6. 1D Osher-Shu test case. Close up of the density at time 1.8 for C08-DS+WENO7fi, DRP4S7-DS+WENO5fi, DRP4S9-DS+WENO7fi, and STO9-DS+WENO7fi using a grid 

with 201 points. 

Fig. 7. 1D Osher-Shu test case: Close up of the oscillations in density at time 1.8 for C08 Econs _ CK+WENO7fi (left) and WENO7 (right). 

before discretization. Here a and b are functions of x and α, γ and 

β are parameters so chosen to be still equivalent to the original 

( ab ) x before discretization. A common split derivative is by setting 

α = γ = β = 1 / 2 resulting in the form 

(ab) x = 

1 

2 

(ab) x + 

1 

2 

ab x + 

1 

2 

a x b. (2) 

These methods have a long history in finite difference approxi- 

mations; see, .e.g., [1,23] . See also a generalized conservative split 

convective derivative operators study by Pirozzoli [29] . The key 

mathematical idea is that formulas of type (2) can be used to es- 

timate the L 2 norm or the energy norm of the computed solu- 

tion. From physical considerations some of the splittings provide 

the discrete conservation of momentum or preservation of discrete 

kinetic energy. A well-known example is the linear system of con- 

servation laws 

u t + A (x ) u x = 0 0 < x < L, (3) 

where A ( x ) is a symmetric matrix, and we solve for the unknown 

vector u = u (x, t) from given initial data u (x, 0) = u 0 (x ) . Boundary 

data are given at x = 0 and x = L . To show how this is done, e.g., 

we rewrite (3) in an mathematically equivalent form: 

u t + 

1 

2 

(A (x ) u ) x + 

1 

2 

A (x ) u x − 1 

2 

A (x ) x u = 0 (4) 

and define the scalar product and norm by 

(u , v ) = 

∫ L 

0 

u 

T v dx || u || 2 = (u , u ) . (5) 

A norm estimate is obtained if (4) is multiplied by u and integrated 

over [0, L ]. We obtain 

1 

2 

d 

dt 
|| u || 2 = −1 

2 

(u , (A u ) x ) − 1 

2 

(u , A u x ) + 

1 

2 

(A x u , u ) 

= −1 

2 

u 

T A u | L 0 + 

1 

2 

(A x u , u ) , (6) 

where the second equality is obtained from partial integration of 

( u , ( A u ) x ), and from the symmetry of A which allows it to be 

moved between the arguments of the scalar product. If the bound- 

ary data are such that u 

T A u | L 0 ≥ 0 , then the estimate 

1 

2 

d 

dt 
|| u || 2 ≤ 1 

2 

(A x u , u ) (7) 

holds, which under the assumption that max x | A x | is bounded leads 

to a stability estimate by use of Gronwall’s lemma. 

Let x j = j�x, j = 0 , . . . , N be a grid with spacing �x , and let 

u j ( t ) denote a numerical approximation of u ( x j , t ). Consider the 

semi-discrete approximation of (4) 

d 

dt 
u j + 

1 

2 

D (A (x j ) u j ) + 

1 

2 

A (x j ) D u j −
1 

2 

A (x j ) x u j = 0 , (8) 
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Fig. 8. 3D compressible Euler equations. Taylor-Green vortex test case. Total kinetic 

energy (Ekin) vs. time (top) and enstrophy vs. time (bottom) for six different meth- 

ods. 

where D is a centered finite difference operator approximating 

d / dx . Note that A ( x ) is a given function, so that the exact deriva- 

tive A x can be used in (8) . The discrete scalar product and norm 

are defined by 

(u , v ) h = 

N ∑ 

j=0 

ω j u 

T 
j v j �x || u || h = (u , u ) h , 

where ω j > 0 are weights that are equal to one at most grid 

points, but are given special values near the boundaries j = 0 and 

j = N. The boundary modified norm weights, together with spe- 

cial boundary modifications of D , lead to the summation-by-parts 

property, 

(u , D v ) h = −(D u , v ) h + u 

T 
N v N − u 

T 
0 v 0 , 

see [39] for details. Thanks to the summation-by-parts property, 

the same technique that led to the estimate (7) can be used to 

obtain the semi discrete estimate 

1 

2 

d 

dt 
|| u || 2 h ≤

1 

2 

(A x u , u ) h . (9) 

The possible growth rate is determined by A x in both (7) and (9) , 

so that the discrete estimate will have the same growth rate as the 

estimate of the continuous problem. 

Fig. 9. 3D DNS of the Taylor-Green vortex test case. Total kinetic energy vs. time 

(top) and enstrophy vs. time (bottom) for six different methods. 

Ducros et al. type conservative splitting : For nonlinear systems, 

such as the Euler equations of gas dynamics, split approximations 

have been used for a long time see, e.g., Ducros et al. and Blaisdel 

et al [2,8] .. 

The split approximations makes use of (2) to rewrite different 

terms in the Euler equations as sums of three terms. The terms of 

the split form (2) are approximated by 

1 

2 

D (ab) + 

1 

2 

D (a ) b + 

1 

2 

aD (b) , (10) 

where D is a finite difference operator, and a and b are functions 

of x . 

As shown in Ducros et al. [8] , the approximation (10) can be 

written in conservation form. For example, with the second order 

operator Du j = (u j+1 − u j−1 ) / (2�x ) , it holds that 

1 

2 

D (ab) + 

1 

2 

D (a ) b 

+ 

1 

2 

aD (b) = 

1 

4�x 
�+ [(a j + a j−1 )(b j + b j−1 )] , (11) 

where �+ q j = (q j+1 − q j ) . 
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Eq. (11) can be generalized to standard centered difference op- 

erators of 2 p th order of accuracy, 

D p u j = 

1 

�x 

p ∑ 

k =1 

α(p) 
k 

(u j+ k − u j−k ) . (12) 

The coefficients α(p) 
k 

satisfy 

∑ 

k =1 

p 
kα(p) 

k 
= 

1 

2 

p ∑ 

k =1 

α(p) 
k 

k 2 n +1 = 0 , n = 1 , . . . , p − 1 . (13) 

To derive the conservative form of the split approximation for 

an arbitrary operator, the right hand side of the algebraic identity 

a j+ k b j+ k − a j−k b j−k + (a j+ k − a j−k ) b j + a j (b j+ k − b j−k ) 

= (a j+ k + a j )(b j+ k + b j ) − (a j + a j−k )(b j + b j−k ) (14) 

is written in conservative form by 

(a j+ k + a j )(b j+ k + b j ) − (a j + a j−k )(b j + b j−k ) 

= 

k −1 ∑ 

m =0 

(a j−m 

+ a j+ k −m 

)(b j−m 

+ b j+ k −m 

) 

−
k −1 ∑ 

m =0 

(a j−1 −m 

+ a j−1+ k −m 

)(b j−1 −m 

+ b j−1+ k −m 

) . (15) 

The conservative form of the split approximation becomes 

1 

2 

D p (ab) + 

1 

2 

D p (a ) b + 

1 

2 

aD p (b) 

= 

1 

�x 

p ∑ 

k =1 

1 

2 

α(p) 
k 

(
(a j+ k b j+ k − a j−k b j−k ) + a j (b j+ k − b j−k ) 

+ (a j+ k − a j−k ) b j 
)

= 

1 

�x 

p ∑ 

k =1 

α(p) 
k 

2 

( 

k −1 ∑ 

m =0 

(a j−m 

+ a j+ k −m 

)(b j−m 

+ b j+ k −m 

) 

−
k −1 ∑ 

m =0 

(a j−1 −m 

+ a j−1+ k −m 

)(b j−1 −m 

+ b j−1+ k −m 

) 

) 

= 

1 

�x 
(h j+1 / 2 − h j−1 / 2 ) , (16) 

where the numerical flux is defined by 

h j+1 / 2 = 

p ∑ 

k =1 

1 

2 

α(p) 
k 

k −1 ∑ 

m =0 

(a j−m 

+ a j+ k −m 

)(b j−m 

+ b j+ k −m 

) . (17) 

To simplify the formulas of the conservative form of split approxi- 

mations for systems of equations, define 

�(p) 
j+1 / 2 

(a, b) = 

p ∑ 

k =1 

1 

2 

α(p) 
k 

k −1 ∑ 

m =0 

(a j−m 

+a j+ k −m 

)(b j−m 

+b j+ k −m 

) . (18) 

For the three dimensional Euler equations of gas dynamics, the 

x -direction inviscid flux is 

f = (ρu, ρu 

2 + p, ρu v , ρuw, (e + p) u ) T , (19) 

where ( u , v , w ) denotes the velocities in the x -, y -, and z -directions 

respectively, ρ denotes the density, p is the pressure, and e is the 

total energy. Let ρ j , u j , v j , w j , e j , and p j denote the values of the 

discretized variables at grid point x j . The flux components can be 

written as products of two factors in many different ways, leading 

to different split approximations. One Ducros et al. split-type ap- 

proximation of the gas dynamics flux derivative that will be used 

in this study is given by 

f x | x = x j ≈

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 
2 

Dρ j u j + 

1 
2 
ρ j Du j + 

1 
2 

u j Dρ j 

1 
2 

Dρ j u 

2 
j 
+ 

1 
2 
ρ j u j Du j + 

1 
2 

u j Dρ j u j + Dp j 
1 
2 

Dρ j u j v j + 

1 
2 
ρ j v j Du j + 

1 
2 

u j Dρ j v j 
1 
2 

Dρ j u j w j + 

1 
2 
ρ j w j Du j + 

1 
2 

u j Dρ j w j 

1 
2 

Du j (e j + p j ) + 

1 
2 

u j D (e j + p j )+ 

1 
2 
(e j + p j ) Du j 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (20) 

which by (17) can be written in conservative form with numerical 

flux function 

h j+1 / 2 = 

1 

2 

p ∑ 

k =1 

α(p) 
k 

k −1 ∑ 

m =1 

⎛ 

⎜ ⎜ ⎝ 

(ρ j−m 

+ ρ j+ k −m 

)(u j−m 

+ u j+ k −m 

) 
(ρ j−m 

u j−m 

+ ρ j+ k −m 

u j+ k −m 

)(u j−m 

+ u j+ k −m 

) + p j−m 

+ p j+ k −m 

(ρ j−m 

v j−m 

+ ρ j+ k −m 

v j+ k −m 

)(u j−m 

+ u j+ k −m 

) 
(ρ j−m 

w j−m 

+ ρ j+ k −m 

w j+ k −m 

)(u j−m 

+ u j+ k −m 

) 
(e j−m 

+ p j−m 

+ e j+ k −m 

+ p j+ k −m 

)(u j−m 

+ u j+ k −m 

) 

⎞ 

⎟ ⎟ ⎠ 

. (21) 

The more compact notation introduced in (18) allows (21) to be 

rewritten as 

h j+1 / 2 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

�(p) 
j+1 / 2 

(ρ, u ) 

�(p) 
j+1 / 2 

(ρu, u ) + �(p) 
j+1 / 2 

(p, 1) 

�(p) 
j+1 / 2 

(ρv , u ) 

�(p) 
j+1 / 2 

(ρw, u ) 

�(p) 
j+1 / 2 

(e + p, u ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (22) 

A natural nonconservative splitting (not in the Ducros et al. 

type category) : 

The homogeneity property of the inviscid flux of perfect gas dy- 

namics implies that f (u ) = A (u ) u , where A ( u ) is the Jacobian of 

f ( u ). To make use of the homogeneity property, a non-conservative 

natural splitting is 

1 

2 

f x + 

1 

2 

A u x + 

1 

2 

A x u , (23) 

where the discretization is 

d 

dt 
u j + 

1 

2 

D p f j + 

1 

2 

A j D p u j + 

1 

2 

D p (A j ) u j = 0 . (24) 

Here A x and D p A denote element-wise application of differentia- 

tion and differencing respectively. The approximation (24) can be 

rewritten in conservative form with numerical flux 

h j+1 / 2 = 

5 ∑ 

m =1 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

�(p) 
j+1 / 2 

(A 1 ,m 

, u m 

) 

�(p) 
j+1 / 2 

(A 2 ,m 

, u m 

) 

�(p) 
j+1 / 2 

(A 3 ,m 

, u m 

) 

�(p) 
j+1 / 2 

(A 4 ,m 

, u m 

) 

�(p) 
j+1 / 2 

(A 5 ,m 

, u m 

) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

where A k, m 

denotes element ( k, m ) of the matrix-valued function 

A ( x ), and u m 

denotes the m th component of the vector u . 

A semi-conservative entropy splitting of the Euler flux 

derivatives : 

Another splitting that gives entropy stability of the Euler equa- 

tions of gas dynamics is by Gerritsen and Olsson [15] , Olsson and 

Oliger [28] , Yee et al. [53] . They made use of Harten’s symmetriz- 

able form of the Euler equations in terms of the entropy variables 

[13] to obtain a semi-discrete splitting of the Euler equations with 

a discrete entropy stability by the summation-by-parts approach. 

During the computations, the entropy splitting is written in terms 
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Fig. 10. 3D Isotropic turbulence test case. Energy spectra at the final time by six 

schemes using 64 3 grid points. DNS using 256 3 grid points also shown for compar- 

ison. 

of the sum of a conservative portion for the interior scheme (inte- 

rior grid points) and with a summation-by-parts for the boundary 

scheme (boundary points). Note that the Harten [13] and Gerritsen 

& Olsson entropy splitting form selects the un-physical branch of 

the inequality and was later corrected by Yee et al. [53] , hereafter 

referred to as the entropy splitting of the Euler equations. It is con- 

sidered to be a semi-conservative splitting except at the boundary 

grid points. The entropy splitting of Olsson & Oliger, Gerritsen and 

Olsson, and Yee et al. [15,28,53] is a splitting which is of a form 

that is more suitable for the discrete stable energy norm estimate 

technique, including boundary scheme estimate for arbitrary order 

of central spatial schemes. See Yee et al. [54] for the formulation. 

For the 1D Euler equations the inviscid flux derivative f ( u ) x for a 

perfect gas is split into the following via the entropy variables W 

discussed in Harten [13] . 

f x = 

β

β + 1 

f x + 

1 

β + 1 

f W 

W x , β � = −1 (25) 

W = [ w 1 , w 2 , w 3 , w 3 , w 5 ] 
T 

= 

p ∗

p 

[
e + 

α − 1 

γ − 1 

p, −ρu, −ρv , ρw, ρ

]T 

, (26) 

where 

p ∗ = −( pρ−γ ) 
1 

α+ γ (27) 

and 

β = 

α + γ

1 − γ
, α > 0 or α < −γ . (28) 

See Yee et al. [32,53,54] for the formulation, the choice for α, 

and numerical examples. 

Several split discretizations were compared in [14] where dis- 

cretization by the entropy splitting form was shown by numerical 

experiments to be one of the best performing for smooth flows. 

For their skew-symmetric splitting extension to the ideal MHD, see 

Sjögreen et al. [35,36] . 

3. Generalization of skew-symmetric splitting to the ideal MHD 

Due to the incomplete hyperbolic nature of the conservative 

ideal MHD governing equations, not all of the skew-symmetric 

splittings for gas dynamics can be extended to the ideal MHD. 

See Yee et al. [53] for a discussion. For the MHD the Ducros et al. 

Table 1 

Coefficients of DRP4S7, opti- 

mized over [0, 1.1]. 

k a k 

1 0 .77088238051822552 

2 −0.16670590441458047 

3 0 .02084314277031176 

[8] variants were constructed. In addition, four formulations of 

the MHD were considered: (a) the conservative MHD, (b) the Go- 

dunov/Powell non-conservative form, (c) the Janhunen MHD with 

magnetic field source terms [18] , and (d) a MHD with source terms 

of [4] . The different formulation of the MHD equations in con- 

junction with the variants of Ducros et al. type skew-symmetric 

splitting have a strong effect on the stability of non-dissipative 

approximations. For their skew-symmetric splitting extension to 

the ideal MHD, see Yee et al., Sjögreen and Yee and Sjögreen et al. 

[35,36,53] for the formulation. Representative test cases for both 

smooth flows and problems containing discontinuities for the ideal 

MHD can be found in [35,36,53] . Their results illustrate the im- 

proved stability by using the skew-symmetric splitting as part of 

the central base scheme instead of the pure high order central 

scheme. 

4. DRP schemes 

Since our objective is to utilize wavenumber optimized schemes 

for general DNS and LES applications, no attempt is made to ob- 

tain optimized schemes for specific IBVPs with specific initial data 

and boundary data. In this study three different optimized fi- 

nite difference operators are considered. See Tam [44] and De 

Roeck et al. [31] for the development and references cited therein. 

These are: (a) DRP4S7, the original Tam & Webb fourth-order accu- 

rate DRP operator with seven-point wide grid stencil, (b) DRP4S9, 

the fourth-order accurate DRP operator with nine-point wide grid 

stencil, and (c) STO9, the fourth-order accurate operator with nine- 

point wide stencil by Bogey & Bailly [3] . All three operators have 

antisymmetric coefficients and are optimized over wavenumber in- 

tervals 0 ≤ k �x ≤ 1.1 for DRP4S7 and π /16 ≤ k �x ≤π /2 for DRP4S9 

and STO9. Here �x is the grid spacing and the integer k is the 

mode number. DRP4S7 and STO9 were studied in [31] . 

Remark: Numerical experiments made with DRP4S7 optimized 

over π /16 ≤ k �x ≤π /2 gave worse accuracy than with DRP4S7 op- 

timized over the more standard choice 0 ≤ k �x ≤ 1.1 used here. It is 

reasonable to expect that with fewer free parameters, the interval 

of optimization should be made shorter. 

DRP4S7 and DRP4S9 use least square minimization of the abso- 

lute error, i.e., integral of the square of the error in wavenumber 

space. The STO9 scheme uses L 1 optimization of the relative error 

in wavenumber space, i.e., integral over the absolute value of the 

error divided by k �x , since k �x is the exact wavenumber. 

Their difference operators D for the first-order derivative of a 

grid function u j are of the form 

Du j = 

1 

�x 

q ∑ 

k =1 

a k (u j+ k − u j−k ) . (29) 

Table 1 gives the coefficients of the DRP4S7 scheme, Table 2 lists 

the coefficients of the DRP4S9 scheme, and Table 3 shows the co- 

efficients of the STO9 scheme. The STO9 coefficients were obtained 

from [31] , where they are given to 12 decimals. In this work we 

extended the number of decimals by enforcing the fourth order 

accuracy constraint to high precision. 

Note that the centered operators (29) are of the same asym- 

metric form as (12) . This means that the Ducros et al. splitting de- 
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Fig. 11. 3D Isotropic turbulence test case. Evolution of kinetic energy (upper left), enstrophy (upper right), temperature variance (lower left), and dilatation (lower right), 

computed by six schemes, using 64 3 grid points. DNS using 256 3 grid points is also shown for comparison. 

Fig. 12. 3D Isotropic turbulence test case: Energy spectra at the final time for en- 

tropy conserving base scheme (C08EC+WENO7fi, blue), Ducros split base scheme 

(C08DS+WENO7fi, red) and WENO7fi (green). (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this arti- 

cle.) 

Table 2 

Coefficients of DRP4S9, opti- 

mized over [ π /16, π /2]. 

k a k 

1 0 .846863763009931 

2 −0.251240526 84 9904 

3 0 .063181723773749 

4 −0.008481970157843 

scribed in Section 2 is also straightforwardly applicable to the opti- 

mized operators described in this section. These DRP formulations 

are applicable to the ideal MHD equations. 

Table 3 

Coefficients of STO9, optimized 

over [ π /16, π /2], from [31] . 

k a k 

1 0 .841570216389881 

2 −0.244678789340406 

3 0 .059463699920073 

4 −0.007650934367322 

5. High order entropy conservative numerical fluxes 

We consider the system of conservation laws, 

u t + f (u ) x = 0 , −∞ < x < ∞ t > 0 (30) 

where the unknown u = u (x, t) is given at t = 0 . Entropy conserv- 

ing schemes for (30) were introduced in the 1980s. See, e.g., [43] . 

These schemes are in conservation form, and admit a discrete con- 

servation law for the entropy. An entropy, E ( u ), and an entropy 

flux, F ( u ), are two functions satisfying 

E T u A (u ) = F T u . 

Here, E u denotes the gradient of E with respect to u , and A ( u ) is 

the Jacobian of the flux function f ( u ). Furthermore, E ( u ) is assumed 

to be a convex function. The entropy variables are defined by v = 

E u (u ) . Multiplying (30) by v T and using 

v T u t + v T A u x = E(u ) t + F T u u x = E(u ) t + F (u ) x 

gives the additional conservation law for the entropy, 

E(u ) t + F (u ) x = 0 . 

The entropy flux potential, defined by 

ψ = v T f − F , 

has the property that f = ψ v . 

If the numerical flux function h j+1 / 2 = h (u j+1 , u j ) satisfies 

(v j+1 − v j ) 
T h j+1 / 2 = ψ j+1 − ψ j , (31) 
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Fig. 13. 3D Isotropic turbulence test case: Evolution of kinetic energy (upper left), enstrophy (upper right), temperature variance (lower left), and dilatation (lower right), 

computed by entropy conserving base scheme (C08EC+WENO7fi, blue), Ducros split base scheme (C08DS+WENO7fi, red) and WENO7fi (green). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

then the semi-discrete approximation 

du j 

dt 
+ 

1 

�x 
(h j+1 / 2 − h j−1 / 2 ) = 0 

is entropy conserving, see [42] . This result can be generalized, by 

defining 

h 

(k ) 
j+ k/ 2 

= h (u j+ k , u j ) , k = 1 , 2 , . . . 

where h (u j+1 , u j ) is an entropy-conserving numerical flux func- 

tion. The difference scheme 

du j 

dt 
+ 

1 

�x 

p ∑ 

k =1 

αk (h 

(k ) 
j+ k/ 2 

− h 

(k ) 
j−k/ 2 

) = 0 , (32) 

is then entropy conserving for arbitrary coefficients αk . It is 

straightforward to verify that (32) can be written in conservative 

form, with numerical flux function 

h 

(ec) 
j+1 / 2 

= 

p ∑ 

k =1 

2 αk 

k ∑ 

m =1 

h (u j+ m 

, u j+ m −k ) . 

Early entropy conserving schemes were second-order accurate. 

High order entropy-conserving schemes can be constructed by 

using the scheme (32) with suitable coefficients, αk . The 2 p th- 

order accurate standard centered finite difference operator is de- 

fined by (12) with coefficients α(p) 
k 

satisfying (13) . Let h j+1 / 2 = 

h (u j+1 , u j ) be a second-order accurate entropy-conserving numer- 

ical flux function. The difference scheme 

du j 

dt 
+ 

1 

�x 

p ∑ 

k =1 

2 α(p) 
k 

(h (u j+ k , u j ) − h (u j , u j−k )) , (33) 

is then 2 p th-order accurate and entropy-conserving, see [34,37] . 

Furthermore, (33) can be written in conservative form with nu- 

merical flux function 

h 

ecp 
j+1 / 2 

= 

p ∑ 

k =1 

2 α(p) 
k 

k ∑ 

m =1 

h (u j+ m 

, u j+ m −k ) . (34) 

The scheme (33) is both 2 p th-order accurate and entropy conserv- 

ing. 

Similarly, any finite difference operator of the form (29) , have 

an entropy-conserving counterpart for nonlinear systems of con- 

servation laws, approximating the flux derivative f ( u ) x . For exam- 

ple, it is possible to define entropy conserving DRP schemes, by 

substituting the coefficients α(p) 
k 

in (34) for the coefficients a k of 

(29) . 

Examples of entropy conserving numerical fluxes : 

Numerical fluxes for the 3D Euler x -direction flux (19) . The Eu- 

ler equations of compressible gas dynamics have several differ- 

ent entropies. The different entropies lead to different entropy- 

conserving schemes. Furthermore, even for a fixed entropy, the 

entropy-conserving numerical flux function is not unique, since 

the entropy conservation condition (31) is only one constraint on 

the five (in the case of 3D Euler x -direction fluxes (19) ) numeri- 

cal flux components. Eq. (31) can be satisfied by first expressing 

the entropy flux potential, ψ in terms of entropy variables, v , and 

secondly rewrite the difference ψ j+1 − ψ j in terms of differences 

v j+1 − v j . This can become algebraically involved. To simplify the 

algebra, a parameter vector, z can be introduced. The derivation is 

then carried out by expressing both ψ j+1 − ψ j and v j+1 − v j as dif- 

ferences z j+1 − z j . For an example, see [48] , where the derivation 

is expressed in detail for the equations of MHD. 

This subsection will denote the average of a function q by 

{ q } = (q j+1 + q j ) / 2 

and the logarithmic average by 

q ln = 

ln q j+1 − ln q j 

q j+1 − q j 
. 
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The second-order accurate numerical flux function 

h (u j+1 , u j ) = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

ρ ln { u } 
ρ ln { u } 2 + 

{ ρ} 
{ ρ/p} 

ρ ln { u }{ v } 
ρ ln { u }{ w } 
h 5 

⎞ 

⎟ ⎟ ⎟ ⎠ 

, (35) 

where h 5 is the longer expression 

h 5 = { u } 
( { ρ} 

{ ρ/p} + 

1 

γ − 1 

ρ ln 

(ρ/p) ln 
− 1 

2 

ρ ln ({ u 

2 } + { v 2 } + { w 

2 } ) 

+ ρ ln ({ u } 2 + { v } 2 + { w } 2 ) 
)

(36) 

is entropy-conserving for the entropy 

E = − ρ

γ − 1 

ln pρ−γ . 

For a derivation of (35) , see [38] . 

Another example, derived in [34] , is the numerical flux function 

h (u j+1 , u j ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

{ u }{ ρ(pρ) −
γ

γ +1 } Q 

{ u }{ ρu (pρ) −
γ

γ +1 } Q + { 1 ρ (pρ) 
γ

γ +1 }{ (pρ) 
1 

γ +1 } 
{ u }{ ρv (pρ) −

γ
γ +1 } Q 

{ u }{ ρw (pρ) −
γ

γ +1 } Q 

{ u }{ e (pρ) −
γ

γ +1 } Q + { u ρ (pρ) 
γ

γ +1 }{ (pρ) 
1 

γ +1 } 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, 

(37) 

where 

Q = (γ − 1) 
(p j+1 ρ j+1 ) 

1 
γ +1 − (p j ρ j ) 

1 
γ +1 

(p j+1 ρ j+1 ) 
1 −γ
γ +1 − (p j ρ j ) 

1 −γ
γ +1 

. 

When (pρ) j+1 − (pρ) j is small Q approaches (pρ) 
γ

γ +1 . The numer- 

ical flux function (37) conserves the entropy 

E = 

1 + γ

1 − γ
(ρp) 

1 
γ +1 . 

The entropy conservative high order base schemes in the nu- 

merical experiments in this paper use the numerical flux function 

(34) together with (35) . 

Entropy conservative schemes are centered non-dissipative ap- 

proximations. For flows where shock waves are present, entropy 

conservation is unphysical and entropy conservative schemes will 

generate strong oscillations around discontinuities. To be useful for 

compressible flows, it is necessary to add some shock-capturing 

dissipation to the entropy conservative approximation. This is 

sometimes done by using linear dissipation, applied to the entropy 

variables. In the nonlinear filter method by Yee and Sjögreen (de- 

scribed in the next subsection), it is straightforward to use entropy 

conserving schemes. All that is needed is to substitute the centered 

scheme of the base scheme step by an entropy-conserving scheme. 

The description above is made for the case of standard gas dy- 

namics. Entropy conserving schemes for the equations of MHD is 

a subject where there has been recent progress, see, e.g., [38] . The 

ideas presented here, for example, the generalization of second- 

order accuracy to higher order by the numerical flux (34) , apply 

equally well to the equations of MHD. 

6. Classical central, entropy stable and DRP as base Schemes 

with skew-symmetric splitting as the preprocessing step in the 

framework of the nonlinear filter method of Yee and Sjögreen 

[50] 

This section gives a brief overview of the high-order nonlinear 

filter scheme of Yee et al. and Yee and Sjögreen [49,50,52,53] for 

accurate computations of DNS and LES of compressible turbulence 

for a wide range of flow types by introducing as little shock- 

capturing numerical dissipation as possible. For simplicity, the dis- 

cussion uses the 3D inviscid Euler equations. 

Preprocessing step by skew-symmetric splitting for gas dy- 

namics : Before the application of a high-order non-dissipative spa- 

tial base scheme, a preprocessing step is employed to improve 

numerical stability. The inviscid flux derivatives of the governing 

equations are split in the following two ways, depending on the 

flow types and the desire for rigorous mathematical analysis or 

physical argument. 

• Entropy splitting of [53] or the natural splitting described 

previously. These are non-conservative splittings and they are 

among some of the best in improving numerical stability for 

non-dissipative central schemes, especially for long time inte- 

gration of shock-free turbulence. It has been utilized extensively 

in DNS of shock-free turbulence. See [32] and their later work 

for their wide applications. 
• The Ducros et al. splitting [8] for systems (or variants of the 

conservative skew-symmetric splitting described earlier): These 

are conservative splittings and are suitable for problems with 

discontinuities. 

Remark. For problems containing discontinuities, conservative 

skew-symmetric splittings should be used. 

Base scheme step using the preprocessing step : A full time 

step is advanced using a high-order non-dissipative or very low 

dissipersive spatially central scheme on the split form of the gov- 

erning partial differential equations (PDEs) (i.e., after the prepro- 

cessing step). For the current study, fourth-order to eighth-order 

classical central schemes, and the three DRP4S7, DRP4S9 and STO9 

DRP schemes are considered as base schemes. 

The full time step of high-order temporal discretization such as 

the fourth-order Runge–Kutta (RK4) method is used. It is remarked 

that other DRP temporal discretizations can be used for the base 

scheme step. See Tam [44,45] , Brambley [6] , and Haras and Taasan 

[11] . 

Base scheme step using the high order entropy conservative 

numerical fluxes The preprocessing step is left out if the spatial 

discretization of the base scheme is made by an entropy conserv- 

ing method. In this case, again the base scheme step advances the 

non-dissipative discretization one full time step by an explicit time 

integrator. 

Post-processing (Nonlinear filter step) : To further improve the 

accuracy of the computed solution from the base scheme step, af- 

ter a full time step of a non-dissipative high-order spatial base 

scheme on the split form of the governing equation(s), the post- 

processing step is used to nonlinearly filter the solution by a dissi- 

pative portion of a high-order shock-capturing scheme with a local 

flow sensor. Comparable order of accuracy of the nonlinear filter 

dissipation with the base scheme usually is considered. For non- 

entropy satisfying shock-capturing schemes it is assumed that en- 

tropy satisfying fixes for both 1D and multi-D are employed [55] . 

For extreme flows positivity-preserving shock-capturing schemes 

should be used. See Kotov et al. [19,20] for some performance of 

positivity-preserving nonlinear filter schemes. 

The flow sensor provides locations and amounts of built-in 

shock-capturing dissipation that can be further reduced or elimi- 

nated. At each grid point a local flow sensor is employed to an- 

alyze the regularity of the computed flow data. Only the strong 

discontinuity locations would receive the full amount of shock- 

capturing dissipation. In smooth regions no shock-capturing dissi- 

pation would be added unless high frequency oscillations develop, 

owning to the possibility of numerical instability in long time inte- 

grations of nonlinear governing PDEs. In regions with strong turbu- 
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lence, if needed, a small fraction of the shock-capturing dissipation 

would be added to improve stability. 

Note that the filter numerical fluxes only involve the invis- 

cid flux derivatives, regardless if the flow is viscous or inviscid. 

If viscous terms are present, a matching high order central differ- 

ence operator (as the inviscid difference operator) is included on 

the base scheme step. For ease of summation-by-parts numerical 

boundary closure implementation for the viscous flux derivatives, 

the same inviscid central difference operator for the first derivative 

is employed twice for the viscous flux derivatives. 

Remark. For the gas dynamics the post-processing (nonlinear filter 

step) is employed for all of the equation set for both non-reacting 

and reacting flows. For the MHD on a uniform Cartesian grid, in 

order to obtain zero discrete div B error without any div B cleaning, 

the nonlinear filter step is not employed for the three magnetic 

field equations. See Yee and Sjögreen [52] for details. 

For simplicity of presentation, consider the 3D Euler equations 

∂U 

∂t 
+ 

∂E 

∂x 
+ 

∂F 

∂y 
+ 

∂G 

∂z 
= 0 , (38) 

where E, F and G are inviscid fluxes in the x, y and z directions, 

respectively. 

Let U 

∗ be the solution after the completion of the full time step 

of the base scheme step. The final update of the solution after the 

filter step is 

U 

n +1 
j,k,l 

= U 

∗
j,k,l −

�t 

�x 
[ H 

∗(x ) 
j+1 / 2 ,k,l 

− H 

∗(x ) 
j−1 / 2 ,k,l 

] 

− �t 

�y 
[ H 

∗(y ) 
j,k +1 / 2 ,l 

−H 

∗(y ) 
j,k −1 / 2 ,l 

]− �t 

�z 
[ H 

∗(z) 
j,k,l+1 / 2 

−H 

∗(z) 
j,k,l−1 / 2 

] , (39) 

H 

∗(x ) 
j+1 / 2 ,k,l 

and H 

∗(x ) 
j−1 / 2 ,k,l 

are “filter” numerical fluxes in the x - 

direction in terms of Roe’s average states based on U 

∗. Similarly 

H 

∗(y ) 
j,k +1 / 2 ,l 

and H 

∗(z) 
j,k,l+1 / 2 

are numerical filter fluxes in the y - and 

z -directions respectively. From here on, the simplified notation 

H 

∗
j+1 / 2 

will be used for the x -direction filter flux H 

∗(x ) 
j+1 / 2 ,k,l 

, and the 

grid point indices k, l will be suppressed on all quantities defined 

below. The discussion will focus on the x -direction flux, the y - and 

z -direction fluxes are defined similarly. The filter flux is defined in 

characteristics components by 

H 

∗
j+1 / 2 = R j+1 / 2 H j+1 / 2 , (40) 

where R j+1 / 2 ,k,l is the matrix of right eigenvectors of the Jaco- 

bian of the inviscid flux vector in terms of Roe’s average states 

based on U 

∗. Denote the elements of the filter numerical flux vec- 

tor H j+1 / 2 ,k,l by h 
l 

j+1 / 2 , l = 1 , 2 , . . . , 5 , where h 
l 

j+1 / 2 has the form 

h 

l 

j+1 / 2 = 

κ l 
j+1 / 2 

2 

w 

l 
j+1 / 2 φ

l 
j+1 / 2 . (41) 

Here w 

l 
j+1 / 2 

is a flow sensor to activate the nonlinear numer- 

ical dissipation portion of a high order shock-capturing scheme 
1 
2 φ

l 
j+1 / 2 

, and κ l 
j+1 / 2 

is a positive flow dependent parameter that is 

less than or equal to one to control the amount of shock-capturing 

dissipation to be used. The nonlinear dissipative portion of a high- 

resolution shock-capturing scheme “ 1 
2 φ

l 
j+1 / 2 

” can be any shock- 

capturing scheme. The choice of the parameter κ l 
j+1 / 2 

can be dif- 

ferent for different flow types and is automatically chosen by using 

the local κ l 
j+1 / 2 

described in [50] . The flow sensor w 

l 
j+1 / 2 

can be a 

variety of formulae introduced in the literature or can be switched 

from one flow sensor to another, depending on the computed flow 

data at that particular location. For a variety of local flow sen- 

sors with automatic selection of the proper parameter, depend- 

ing on different flow type, see [50] . The form of Tauber–Sandham 

[47] for the filter numerical flux uses the Ducros et al. flow sen- 

sor [9] as κ l 
j+1 / 2 

and the Harten artificial compression method for- 

mula (ACM) [12] as the flow sensor indicated in [54] and similarly 

in [26] is part of the Yee and Sjögreen adaptive numerical dissipa- 

tion control generalization filter formulae. For the numerical exper- 

iments presented, we mainly concentrate on the wavelet flow sen- 

sor of Yee and Sjögreen, the Ducros et al. flow sensor [9] and the 

artificial compression method flow sensor of [54] . For the wavelets 

and ACM flow sensors, see the aforementioned references cited. 

The Ducros et al. flow sensor was designed mainly to capture flows 

containing shocks and vorticity with the divcurl tolerance of the 

form: 

sw = 

( ∇ · u ) 2 

( ∇ · u ) 2 + ω 

2 + ε 
. (42) 

Here u is the velocity vector, ω is the vorticity magnitude and ε is 

a small number to avoid division by zero (e.g., 10 −6 ). The Ducros 

et al. flow sensor consists of a cut off parameter δ as an input 

parameter based on the value of sw that can be used to switch 

on or off the dissipative portion of the high order shock-capturing 

scheme. If δ is set to be one, the dissipation only switches on when 

it encounters a shock wave. For a lower value of the cut off δ pa- 

rameter, vorticity can be detected. The δ parameter is used as the 

κ l 
j+1 / 2 

for the Durcros et al. flow sensor. 

The low Mach number κ curve was developed in Yee and Sjö- 

green [50] and detail is omitted here. Local flow sensors for a 

wide spectrum of flow speed and shock strength developed in 

[21,22,50] are also omitted here. 

The aforementioned high order nonlinear filter method is valid 

for the four forms of the MHD formulation and the four skew- 

symmetric splittings of the MHD to be used as the preprocessing 

step. In addition, the aforementioned high order nonlinear filter 

method is valid for the four forms of the MHD formulation and the 

different high order entropy conservative numerical fluxes such as 

the spatial base schemes discussed in Sections 4 and 5 of Sjögreen 

and Yee [37,38] . 

From here on, without loss of generality, the term “a split 

scheme” refers to the use of a high order central scheme to 

discretize a skew-symmetric splitting form of the inviscid flux 

derivatives. If the three considered DRP4S7, DRP4S9 and STO9 

schemes are used as the base schemes, and the dissipative por- 

tion of the seventh-order WENO (WENO7) is used as the nonlinear 

filter, they are denoted by DRP4S7+WENO7fi, DRP4S9+WENO7fi, 

and STO9+WENO7fi respectively. Similarly if WENO5fi is used, 

they are denoted by DRP4S7+WENO5fi, DRP4S9+WENO5fi, and 

STO9+WENO5fi. If an eighth-order classical central difference oper- 

ator is used as the base scheme for the aforementioned three DRP 

schemes, it is denoted by C08+WENO7fi. If Ducros et al. splitting is 

used, e.g., it is denoted by C08-DS+WENO7fi. 

Note that any good high-resolution high order shock-capturing 

methods are suitable as the dissipative portion of the nonlin- 

ear filter approach. Here standard Jiang and Shu [17] WENO5 

and WENO7 are chosen for the numerical experiments. Optimized 

WENO schemes are not as robust for our nonlinear filter approach. 

7. Numerical results 

This section shows some numerical results for compressible gas 

dynamics. Extensive grid refinement and scheme comparison, in- 

cluding 3D forced turbulence, LES and MHD simulations can be 

found by the authors and collaborators in [21,22,35–38] and ref- 

erences cited therein. The test cases shown here include problems 

with smooth flows, problems containing shock waves, shock-free 

turbulence and turbulence with weak shocks. These test cases are 

well known test cases in the literature and will be used to illus- 

trate the performance of the proposed methods. The first two test 
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cases are commonly used simple test cases as a prelude to turbu- 

lent computations. The comparison results for a 2D compressible 

Euler simulation of isentropic vortex convection can be found in 

the aforementioned references. The last two test cases are 3D DNS 

computations of the Taylor-Green vortex and isotropic turbulence. 

They are included to show that our proposed schemes are suitable 

for DNS of turbulent flows. 

Here, for illustration purposes, only two smart flow sensors 

(among the many variants indicated in [50] and Kotov et al. [21,22] ) 

are chosen for the numerical experiment for the nonlinear filter 

approach. Except for the DNS test cases, the third-order B-spline 

wavelet flow sensor developed in Sjögreen and Yee [33] was em- 

ployed. For the DNS computations the Ducros et al. flow sensor was 

employed. This is due to the fact that the Ducros et al. flow sensor 

is most suited for these two particular DNS computations. See Ko- 

tov et al. [21,22] for the DNS and LES of Navier-Stokes computations 

using the nonlinear filter method, including a supersonic stationary 

shock interacting with turbulent initial data. 

7.1. Scalar linear wave results 

In this subsection the scalar advection equation 

u t + u x = 0 t ≥ 0 (43) 

is solved on an interval 0 ≤ x ≤ 3.9 with periodic boundary con- 

ditions. Initial data will be either a Gaussian pulse or a square 

pulse. The domain and initial data are scaled such that the prob- 

lem is equivalent to the linear advection problem solved in [31] . 

It is noted that Ducros et al. splitting is not applicable to linear 

constant coefficient equations. In addition, the Ducros et al. flow 

sensor is only applicable to higher than 1D nonlinear Euler/Navier- 

Stokes equations. 

7.1.1. Smooth initial data: Gaussian pulse 

The advection Eq. (43) is solved with initial data 

u (x, 0) = 

1 

2 

e −K(x −x c ) 
2 

, 

where K = 1369 . 2 and x c = 0 . 48 . The spatial discretization has 520 

grid points, the CFL number is 0.1, and the problem is solved to 

time t = 3 , which since the wave speed is 1, means that the pulse 

has traveled 3 length units. Fig. 1 shows a close up of the ini- 

tial data near x c . The pulse is resolved with approximately 15 grid 

points. Computed results are displayed in Figs. 2 and 3 . The nine- 

point stencil optimized nonlinear filter schemes, DRP4S9+WENO7fi

and STO9+WENO7fi, appear to be more accurate than the other 

methods, especially on the lower left side of the pulse. The dissi- 

pative nature of the WENO7 scheme is also visible as a somewhat 

lower peak value than the other methods. 

7.1.2. Discontinuous initial data: Square pulse 

The advection Eq. (43) is solved with initial data 

u (x, 0) = 

{
1 0 . 3124 ≤ x < 0 . 6875 

0 otherwise 
. 

Also for this initial data, the spatial discretization has 520 grid 

points, the CFL number is 0.1, and the problem is solved to time 3. 

Computed results are displayed in Figs. 4 and 5 . The C08, DRP4S7, 

DRP4S9 and STO9 without nonlinear filter exhibit oscillatory so- 

lutions. With linear filters and DRP time discretization indicated 

in [31,44] , the oscillations are suppressed. See [31] for the re- 

sult. Here, the nonlinear filter version of the DRP methods are 

able to suppress some of the oscillations. However, the WENO7 

scheme, which is designed for discontinuous solutions, shows the 

best performance. The optimized nine-point stencil nonlinear fil- 

ter methods agree somewhat better with the exact solution, espe- 

cially near the ’corners’ of the pulse, than DRP4S7+WENO7fi and 

C08+WENO7fi. 

7.2. 1D compressible euler test case with shocks: Shu-Osher problem 

The Shu-Osher problem [41] is a one-dimensional Mach 3 shock 

moving into an oscillatory density. A highly oscillatory flow field 

(1D turbulent flow) develops behind the shock wave. The problem 

is defined for the one dimensional Euler equations with γ = 1 . 4 

and initial data 

(ρ, u, p) = 

{
(3 . 857143 , 2 . 629369 , 10 . 33333) , x < −4 

(1 + 0 . 2 sin 5 x, 0 , 1) , x ≥ 4 

(44) 

on the domain −5 ≤ x ≤ 5 . The grid has 201 points, correspond- 

ing to discretization size �x = 0 . 05 . The CFL number was 0.3 for 

all computations in this subsection. The nonlinear numerical dissi- 

pation is multiplied with sensors designed to activate it only in 

the neighborhood of shocks. In the computations shown here a 

wavelet sensor was used with two wavelet levels and a cut-off

smoothness exponent 0.5. 

The left subplot of Fig. 6 shows the density at the final time 

computed by the optimized stencil schemes DRP4S7, DRP4S9, and 

STO9, implemented in the Ducros et al. split form of the equa- 

tions. The seventh order WENO dissipation is used as postpro- 

cessing filter (DRP4S7-DS+WENO7fi, DRP4S9-DS+WENO7fi, STO9- 

DS+WENO7fi). Also shown in the figure is the solution by the 

standard centered eighth-order nine-point scheme, with Ducros 

et al. splitting and WENO7 filter (C08-DS+WENO7fi). The com- 

puted densities by STO9-DS+WENO7fi and DRP4S9-DS+WENO7fi

are almost on top of each other. STO9-DS+WENO7fi, plotted in 

red, is almost completely covered by the cyan colored DRP4S9- 

DS+WENO7fi. 

For comparison, the right subplot of Fig. 6 shows the solution 

by the Jiang and Shu WENO5 and WENO7 schemes. Except for 

DRP4S7-DS+WENO5fi, the filter scheme captures the physical os- 

cillations well on this very coarse grid. Accuracy compares very fa- 

vorably with the results from the WENO7 scheme. Higher accuracy 

can be obtained with a local smart flow sensor in the use of the 

Yee and Sjögreen nonlinear filter scheme. Here we only show re- 

sults using one global flow sensor for the computation. Results for 

the same problem, but using entropy conserving base schemes in- 

stead of split schemes together with the WENO7 filter denoted by 

C08 Econs _ CK+WENO7fi is shown in Fig. 7 . The accuracy is similar 

to C08-DS+WENO7fi. One advantage of split schemes is their com- 

putational cost is in general lower than the cost of entropy con- 

serving schemes. 

Fig. 7 shows a close up of the oscillatory regions of the plots in 

Fig. 6 . 

7.3. 3D compressible Euler shock-free turbulence test case: 

Taylor-Green vortex 

The Taylor-Green vortex [46] is a well-known shock-free com- 

pressible turbulence test problem that has been studied exten- 

sively. Extensive scheme comparison is reported in Kotov et al. 

[21] for DNS and LES simulations with grid refinement studies em- 

ploying the high order central nonlinear filter scheme using the 

Ducros et al. splitting. The 3D Euler equations of compressible gas 

dynamics are solved with γ = 5 / 3 . The computational domain is a 

cube with sides of length 2 π and with periodic boundary condi- 

tions in all three directions. The initial data are 

ρ = 1 , p=100 + { ( cos (2 z) + 2)( cos (2 x ) + cos (2 y )) −2 } / 16 , (45) 

u = sin x cos y cos z, v = − cos x sin y cos z, w = 0 . (46) 

The problem is solved to time 10 on a uniform grid with 64 3 grid 

points. A CFL number of 1.4 was used. 
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The total kinetic energy of the exact solution is constant in 

time. Fig. 8 shows the evolution of the total kinetic energy for the 

four different nonlinear filter schemes. All four methods conserve 

the kinetic energy extremely well. As the flow evolves, smaller 

scales are created, which causes an increase in the enstrophy. The 

enstropy increase for the three different DRP nonlinear filtered 

schemes can be seen in the bottom subplot of Fig. 8 . These com- 

puted results agree well with the filtered DNS using a 256 3 grid 

reported in [22] and the Brachet et al. [5] linearized theory (up 

to time t < 4). The results from WENO5 and WENO7, which per- 

form poorly, are also included for comparison. C08-DS-WENO7fi

performs the best. 

Fig. 9 shows the evolution of the total kinetic energy for 

the three different schemes, the tenth-order central scheme 

with Ducros et al. splitting in conjunction with WENO7fi

C08DS+WENO7fi (blue), the seventh-order entropy conserving 

nonlinear filter scheme C08EC+WENO7fi (red), and the reference 

C10DS (tenth-order central scheme with Ducros et al. splitting, 

black). Results by C08DS (eighth-order central with Ducros et al. 

splitting), C08EC (eighth-order entropy conservative numerical 

flux), C08ES (eighth-order central with Yee et al. entropy splitting 

[53] ), and WENO7 are included for comparison. All methods 

preserve the kinetic energy extremely well. As the flow evolves, 

smaller scales are created, which causes an increase in the enstro- 

phy. The enstropy increase for the three different schemes can be 

seen in the bottom subplot of Fig. 9 . Closer inspection shows that 

C08EC+WENO7fi is closer to the reference solution, C10DS, than 

C08DS+WENO7fi after time t = 9 . These computed results agree 

well with the filter DNS using a 256 3 grid reported in [22] and the 

Brachet et al. [5] linearized theory (up to time t < 4). The figures 

are from Sjögreen et al. [36] where slightly different notations 

were used. 

Remark. For this nearly incompressible low speed test case the 

schemes of choice in the literature are spectral and high order 

compact or central schemes with summation-by-parts boundary 

closures in conjunction with their respective high order linear fil- 

ters. The nonlinear filter step is not needed. This study is to show 

the versatility of the proposed approach when a priori knowledge 

of the flow structure is not known, and/or for flows with a time 

varying random forcing and a wide range of flow speed regimes 

during the entire time-accurate evolution. See the Appendix of Ko- 

tov et al. for an illustration [22] or Sjögreen and Yee [36] . 

7.4. 3D compressible Euler turbulence with shocklets test case: 

isotropic turbulence with eddy shocklets 

This test case is a decaying compressible isotropic turbulence 

with eddy shocklets. For high enough turbulent RMS Mach num- 

bers, weak shocks (shocklets) develop from the turbulent motion. 

In this test the initial turbulent Mach number is 0.6. The equations 

are solved using γ = 1 . 4 . The computational domain is a cube with 

side length 2 π and with periodic boundary conditions in all three 

directions. The initial datum is a random divergence free velocity 

field, u i , 0 , i = 1 , 2 , 3 , that satisfies 

3 

2 

u 

2 
RMS, 0 = 

1 

2 

〈 u i, 0 , u i, 0 〉 = 

∫ ∞ 

0 

E(k ) dk 

with energy spectrum 

E(k ) ∼ k 4 e −2(k/k 0 ) 
2 

. 

The computations below were made with u RMS, 0 = 1 and k 0 = 4 . 

The angular brackets denote averaging over the entire computa- 

tional domain. The density and pressure fields are constant ini- 

tially. See [21] for definitions of the quantities and more details 

about the set up of the problem. The simulation is run to the final 

time 4, using CFL number 1.4. 

Fig. 10 compares the energy spectra computed using four non- 

linear filter methods. Spectra from WENO5 and WENO7 are also 

shown. Fig. 11 shows the evolution in time of kinetic energy, 

enstrophy, temperature variation, and dilatation for the same 

schemes. The notation on the y -axis in Fig. 11 uses the angular 

brackets to denote volume average, 

〈 q 〉 = 

1 

(2 π) 3 

∫ 2 π

0 

∫ 2 π

0 

∫ 2 π

0 

q (x, y, z) dx dy dz. 

and the summation convention is used with velocity vector ( u 1 , 

u 2 , u 3 ) so that the upper left subplot shows 1 
3 〈 u 2 + v 2 + w 

2 〉 , nor- 

malized by u 2 
RMS, 0 

= 1 . The upper right subplot shows the enstro- 

phy averaged over the volume, < ω i ω i > , where ω i , i = 1 , 2 , 3 are 

the components of the velocity curl vector. The plotted enstrophy 

is normalized by u 2 
RMS, 0 

/λ2 
0 
, where λ0 is the Taylor microscale of 

the initial data. For this computation λ0 = 1 / 2 . The lower left sub- 

plot shows the square of the RMS temperature, 〈 (T − < T > ) 2 〉 nor- 

malized by ((γ − 1) T 0 M 

2 
t, 0 

) 2 , where the initial temperature T 0 = 1 

and M t , 0 denotes the initial turbulent Mach number. Finally, the 

lower right subplot shows the average velocity divergence, 〈 (u x + 

v y + w z ) 
2 〉 normalized by u 2 RMS, 0 /λ

2 
0 . 

In Figs. 10 –11 , the results with C08+WENO7fi, STO9+WENO7fi, 

and DRP4S9+WENOfi are indistinguishable, and the cyan colored 

curve (which was plotted last) covers the green and red curves. 

The results show agreement between the central base scheme and 

the optimized (DRP, STO) base schemes. These computed results 

agree well with the filtered DNS using a 256 3 grid reported in 

[22] . Performance of DNS and LES by WENO5 and WENO7 using 

the same 64 3 coarse grid is also reported in [22] . WENO5 and 

WENO7 results are more diffusive than the results obtained by 

nonlinear filter methods. Fig. 12 shows the energy spectra com- 

paring the seventh-order entropy conserving base scheme C08EC- 

WENO7fi (blue) with a computation from the seventh-order Ducros 

et al. split base scheme C08DS+WENO7fi (red–). The difference be- 

tween the two computations is very small. Fig. 13 shows the evo- 

lution in time of kinetic energy, enstrophy, temperature variation, 

and dilatation for the two base schemes. The results show agree- 

ment between the two schemes. These computed results agree 

well with the filtered DNS using a 256 3 grid reported in [22] . Per- 

formance of WENO5 and WENO7 using the same 64 3 coarse grid 

is also reported in [22] . WENO5 and WENO7 results are more dif- 

fusive than the result shown here. 

8. Conclusions 

An overview of the Yee and Sjögreen and Kotov et al. [21,22,35–

38,50] high order numerical methods for compressible flows has 

been presented for long time wave propagation of smooth flows, 

DNS of shock-free turbulence, and DNS of turbulence with weak, 

moderate and strong shocks, including forced turbulent flows. This 

work combines four key ingredients to improve stability and accu- 

racy of DNS computations. Although LES results are not shown, this 

improvement carries over to LES simulations for the subject flows. 

The four ingredients are: (a) Smart flow sensors were developed to 

replace the global ACM flow sensor [21,22,50] . The smart flow sen- 

sor provides the locations and the estimated strength of the neces- 

sary numerical dissipation needed at these locations and leaves the 

rest of the flow field free of shock-capturing dissipation. (b) Skew- 

symmetric splitting of the inviscid flux derivative as a preprocess- 

ing step before the application of the spatial base scheme, (c) high 

order entropy stable conservative numerical fluxes as the spatial 

base scheme, (d) DRP centered schemes as the spatial base scheme, 

and replacing various high order linear filters by the dissipative 

portion of high order high-resolution shock-capturing scheme with 

smart flow sensor to minimize spurious high frequency oscillation 

and Gibbs phenomena across discontinuities. These methods are 
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evaluated on standard test problems in compressible fluid dynam- 

ics, Taylor-Green vortex, shock/turbulence interaction, and isotropic 

turbulence with shock waves. 

Among all of the numerical experiments studied in [21,22,35–

38,50] , only selected four test cases are shown here. Numerical 

experiments demonstrate that DRP schemes and standard central 

schemes of the same grid stencil width in the framework of the 

Yee & Sjögreen nonlinear filter approach are of similar accuracy 

as long as the grid resolution is not extremely high. Their CPU 

operations count for the same grid stencil width is the same per 

method evaluation. The high order entropy stable conservative nu- 

merical fluxes under the Yee & Sjögreen nonlinear filter approach 

have almost identical accuracy as the central schemes of the same 

order employing the skew-symmetric splitting. However, the CPU 

operations count associated with of the high order entropy stable 

conservative numerical fluxes is among the highest of the three 

approaches. Due to the fact that our coding of the entropy stable 

conservative numerical fluxes is not optimized for parallel comput- 

ing in the same way for the other two approaches, the efficiency 

measure among the three approaches cannot be shown here until 

such optimizations are done. 
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