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a b s t r a c t 

Several dispersion relation-preserving (DRP) spatially central discretizations are considered as the base 

scheme in the framework of the Yee & Sjögreen low dissipative nonlinear filter approach. In addition, the 

nonlinear filter of Yee & Sjögreen with shock-capturing and long time integration capabilities is used to 

replace the standard DRP linear filter for both smooth flows and flows containing discontinuities. DRP 

schemes for computational aeroacoustics (CAA) focus on dispersion error consideration for long time lin- 

ear wave propagation rather than the formal order of accuracy of the scheme. The resulting DRP schemes 

usually have wider grid stencils and increased CPU operations count compared with standard central 

schemes of the same formal order of accuracy. For discontinuous initial data and long time wave propa- 

gation of smooth acoustic waves, various space and time DRP linear filter are needed. For acoustic waves 

interacting with shocks and turbulence induced noise, DRP schemes with linear filters alone usually are 

not capable of simulating such flows. The investigation presented in this paper is focused on the pos- 

sible gain in efficiency and accuracy by spatial DRP schemes over standard central schemes having the 

same grid stencil width for general direct numerical simulations (DNS) and large eddy simulations (LES) 

of compressible flows. Representative test cases for both smooth flows and problems containing discon- 

tinuities for 3D DNS of compressible gas dynamics are included. 

Published by Elsevier Ltd. 

1. Introduction 

The construction of stable and accurate numerical methods for 

long time integration of complex multiscale compressible shock- 

free turbulent flows, turbulent flows containing discontinuities, 

steep gradients, and vortical flows share some common require- 

ments with dispersion relation-preserving (DRP) schemes (opti- 

mized low-dispersion schemes) for computational aeroacoustics 

(CAA) [5,8,27,28] . The design criteria for accurate and stable meth- 

ods for such applications are very different from those for shorter 

time integration of non-turbulence/non-acoustic unsteady flows 

and rapidly developing shock-wave interaction simulations. Stan- 

dard direct numerical simulations (DNS) and large eddy simula- 

tions (LES) usually require high accuracy schemes in terms of low 

dissipative and low dispersive errors in space and time. It is com- 

mon to have numerically induced high frequency oscillations (spu- 

rious numerical artifacts) due to long time integration of non- 
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dissipative or low-dissipative finite discretizations. A good numer- 

ical method for DNS and LES should be able to minimize these 

spurious oscillations while at the same maintaining stability and 

accuracy during an entire long-time evolution. Unlike many DNS 

and LES numerical considerations, the amplitude of acoustic waves 

is similar to that of numerical noise. A good CAA method should 

be able to distinguish the two. This paper only addresses the spa- 

tial discretization by the method-of-lines approach. Controlling low 

dissipative and low dispersive temporal errors is important but 

outside the scope of this investigation. Highly accurate appropriate 

temporal discretizations and, when appropriate, with small time 

steps are assumed to be used in conjunction with the current de- 

velopment 

Here, the term “DRP” schemes has been used loosely, according 

to the recent definition of DRP methods by Tam [27] , to include 

general schemes that perform various optimizations to reduce nu- 

merical dispersion errors for different applications. Most CAA re- 

lated DRP methods employed techniques to minimize dispersion 

error to resolve linear acoustic waves over long distances without 

compromising the real physical behavior of the wave form prop- 

agation of the initial boundary value problem (IBVP). A large per- 

centage of DRP methods utilized least squares, L 1 -norm, L 2 -norm, 

L ∞ 

-norm, and other integral metrics to minimize the numerical 

https://doi.org/10.1016/j.compfluid.2017.09.017 
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wavenumber error over prescribed intervals in order to obtain the 

grid stencil coefficients. The resulting DRP schemes usually have 

wider grid stencil than their standard central schemes of the same 

order of accuracy. Low dispersive temporal discretization and spe- 

cial treatments for IBVPs of the different CAA applications are also 

needed. See Tam [27,28] , Brambley [5] , and Haras & Taasan [8] and 

Linders & Nordström and Linders et al. [15,16] for formulations 

and overviews. Some of the DRP schemes might perform poorly 

for decaying or growing oscillations. See Brambley [5] for a study. 

For discontinuous initial data and long time wave propagations of 

smooth acoustics waves, various space and time DRP linear filters 

are needed. For acoustics waves interacting with shocks and turbu- 

lence induced noise, DRP schemes with linear filters alone usually 

are not capable of simulating such flows. 

According to Tam [27] , optimized compact schemes are also 

DRP schemes. For over 20 years high order compact spatial dis- 

cretizations in conjunction with linear high order compact filters 

have been methods of choice for many DNS and LES of incom- 

pressible and low speed compressible turbulent/acoustic flows due 

to their advantage of requiring a very low number of grid points 

per wavelength and flexibility in geometry handling. However, 

most optimized compact schemes were not designed for long- 

time integration and additional constraints are needed. See Ha- 

ras & Taasan [8] for the construction of compact finite difference 

schemes for long time integration. In addition, the advantage of 

compact schemes seems to require additional investigation and re- 

search for compressible turbulent flows containing moderate and 

strong shock waves. One popular method is by employing a blend- 

ing of high order compact spatial schemes with high order shock- 

capturing schemes. Another more efficient approach for turbulence 

with discontinuities is the nonlinear filter approach of Yee et al., 

Yee & Sjögreen and Sjögreen & Yee [20,31,36] . They employed the 

high order compact scheme as their spatial base scheme. The Yee & 

Sjögreen studies [33] indicated that for shock-wave turbulence in- 

teractions the accuracy performance of compact schemes is similar 

to the central scheme of the same order under the Yee & Sjögreen 

nonlinear filter approach. 

The Yee & Sjögreen [32] adaptive nonlinear filter method con- 

sists of a high order non-dissipative spatial base scheme and a 

nonlinear filter step. The nonlinear filter step consists of a flow 

sensor and the dissipative portion of a high resolution high or- 

der shock-capturing method to guide the application of the shock- 

capturing dissipation where needed. The nonlinear filter idea was 

first initiated by Yee et al. [36] using an artificial compression 

method of Harten [9] as the flow sensor. Smart flow sensors were 

developed at a later stage by the same investigators and collabo- 

rators in [13,14,20,20,31] . The smart flow sensor provides the loca- 

tions and the estimated strength of the necessary numerical dis- 

sipation needed at these locations and leaves the rest of the flow 

field free of shock-capturing dissipations. It is noted that the non- 

linear filter approach of Yee & Sjögreen [32] requires one Riemann 

solver per time step per grid point for each spatial direction. It is 

independent of the time discretization to be used. However, hy- 

brid schemes (switching between high order non-dissipative meth- 

ods and high order shock-capturing methods) would require four 

Riemann solvers per time step per grid point for each spatial di- 

rection if a fourth-stage Runge–Kutta time discretization is used. 

Unlike the hybrid method, our highly parallelizable adaptive non- 

linear filter schemes do not rely on switching between schemes 

to avoid the related numerical instability and conservation con- 

sideration at switching locations. These nonlinear filter scheme 

with adaptive numerical dissipation control in high order shock- 

capturing schemes and their hybrid cousins have shown excellent 

performance for certain turbulent test cases. For more practical 3D 

test cases of DNS and LES of compressible shock-free turbulence, 

low speed turbulence with shocklets, and supersonic turbulence 

for non-periodic boundaries in curvilinear geometries, some im- 

provement in numerical stability is needed without resorting to 

added numerical dissipation that can interfere with the accuracy 

of numerical simulations. 

Starting in the early 80s, skew-symmetric splitting of certain 

components of the inviscid flux derivatives in conjunction with 

central schemes was shown to help with numerical stability for 

long time integration. For certain splittings they can provide a sta- 

ble energy norm estimate for the Euler equations with smooth 

flows. For other skew-symmetric formulations they can provide a 

discrete momentum conservation or a discrete kinetic preserva- 

tion property. See Arakawa, Blaisdell et al., Yee et al., Yee & Sjö- 

green, Sjögreen & Yee and Kotov et al. [1,2,6,13,14,21,31,32,35] for 

some discussions and performance of the combined approach for 

DNS and LES applications. A semi-conservative skew-symmetric 

splitting (entropy splitting) of Yee et al. [35] in conjunction with 

the nonlinear filter approach to improve numerical stability with- 

out added ad hoc numerical dissipation was conducted in 20 0 0. 

It has been utilized extensively in DNS of shock-free turbulence. 

See [26] and their later work for their wide applications. For 

the present study for test cases governed by nonlinear conser- 

vation laws, (especially with discontinuities), Ducros et al. skew- 

symmetric splitting [6] is also part of the Yee & Sjögreen [32] non- 

linear filter scheme approach for DRP spatial base scheme oper- 

ations. Note that some of the skew-symmetric splitting for the 

gas dynamics flux derivatives are not applicable and/or cannot be 

straightforwardly extended to the ideal MHD [35] . Their construc- 

tion is also dependent on the MHD governing equation formu- 

lation. For their skew-symmetric splitting extension to the ideal 

MHD, see Sjögreen & Yee and Sjögreen et al. [22,23] . 

This paper only considers several DRP central spatial schemes 

as the base scheme in the framework of the Yee & Sjögreen [32] 

low dissipative nonlinear filter method approach. DRP time dis- 

cretizations are not considered. For time discretization we utilize 

the low dissipative fourth-order Runge–Kutta method with small 

time steps for the investigation to minimize dispersion error due 

to time discretizations. The investigation is focused on the pos- 

sible gain in accuracy by DRP schemes over the standard central 

schemes of the same grid stencil for general DNS and LES com- 

pressible flow computations. As mentioned before, CAA focuses on 

dispersion error consideration for long time linear wave propaga- 

tion rather than the formal order of accuracy of the scheme. The 

resulting DRP schemes usually have wider grid stencil and increase 

in CPU operations count than their standard central schemes of 

the same order of accuracy. For discontinuous initial data and long 

time wave propagations of smooth acoustics waves various space 

and time DRP linear filters are needed. For acoustics waves in- 

teracting with shocks and turbulence induced noise DRP schemes 

with linear filters alone usually are not capable of simulating such 

flows. Due to this fact, here, the Yee & Sjögreen nonlinear filter 

step with shock-capturing and long time integration properties is 

to replace the spatial DRP linear filter. To show the performance of 

our current approach, representative test cases for smooth flows, 

problems containing discontinuities and 3D DNS computations for 

the compressible gas dynamics are included. 

2. Ducros et al. conservative splitting 

Standard centered difference approximations of nonlinear con- 

servation laws normally encounter nonlinear instabilities after a 

short time integration without added numerical dissipation. It is 

well known that the appearance of these instabilities can be de- 

layed if the convective flux derivatives are written in an equivalent 

desired split form before the pure central approximation is em- 

ployed. Hereafter this is referred to as a split approximation. 
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For nonlinear systems, such as the Euler equations of gas dy- 

namics, split approximations have been used for a long time; see, 

e.g., Ducros et al. and Blaisdell et al. [2,6] . A split approximation 

starts from rewriting the derivative of the product ( ab ) x as 

1 

2 

(ab) x + 

1 

2 

(a ) x b + 

1 

2 

a (b) x , (1) 

and this split form is approximated by, 

1 

2 

D (ab) + 

1 

2 

D (a ) b + 

1 

2 

aD (b) , (2) 

where D is a finite difference operator, and a and b are functions 

of x . 

As shown in Ducros et al. [6] , the approximation (2) can be 

written in conservation form. For example, with the second-order 

operator Du j = (u j+1 − u j−1 ) / (2�x ) , it holds that 

1 

2 

D (ab) + 

1 

2 

D (a ) b + 

1 

2 

aD (b) = 

1 

4�x 
�+ [(a j + a j−1 )(b j + b j−1 )] , 

(3) 

where �+ q j = (q j+1 − q j ) . 

Eq. (3) can be generalized to arbitrary 2 p + 1 point wide anti- 

symmetric operators 

D p u j = 

1 

�x 

p ∑ 

k =1 

αk (u j+ k − u j−k ) (4) 

For example, standard centered difference operators of p th-order 

of accuracy are of this form with coefficients αk = α(p) 
k 

determined 

by the order conditions 

p ∑ 

k =1 

kα(p) 
k 

= 

1 

2 

p ∑ 

k =1 

α(p) 
k 

k 2 n +1 = 0 , n = 1 , . . . , p − 1 . (5) 

To derive the conservative form of the split approximation for an 

arbitrary operator, the right hand side of the algebraic identity 

a j+ k b j+ k − a j−k b j−k + (a j+ k − a j−k ) b j + a j (b j+ k − b j−k ) 

= (a j+ k + a j )(b j+ k + b j ) − (a j + a j−k )(b j + b j−k ) (6) 

is written on conservative form by 

(a j+ k + a j )(b j+ k + b j ) − (a j + a j−k )(b j + b j−k ) 

= 

k −1 ∑ 

m =0 

(a j−m 

+ a j+ k −m 

)(b j−m 

+ b j+ k −m 

) 

−
k −1 ∑ 

m =0 

(a j−1 −m 

+ a j−1+ k −m 

)(b j−1 −m 

+ b j−1+ k −m 

) (7) 

The conservative form of the split approximation becomes 

1 

2 

D p (ab) + 

1 

2 

D p (a ) b + 

1 

2 

aD p (b) = 

1 

�x 

p ∑ 

k =1 

1 

2 

αk 

(
(a j+ k b j+ k 

− a j−k b j−k ) + a j (b j+ k − b j−k ) + (a j+ k − a j−k ) b j 
)

= 

1 

�x 

p ∑ 

k =1 

αk 

2 

×
( 

k −1 ∑ 

m =0 

(a j−m 

+ a j+ k −m 

)(b j−m 

+ b j+ k −m 

) −
k −1 ∑ 

m =0 

(a j−1 −m 

+ a j−1+ k −m 

)(b j−1 −m 

+ b j−1+ k −m 

) 
)

= 

1 

�x 
(h j+1 / 2 − h j−1 / 2 ) 

(8) 

where the numerical flux is defined by 

h j+1 / 2 = 

p ∑ 

k =1 

1 

2 

αk 

k −1 ∑ 

m =0 

(a j−m 

+ a j+ k −m 

)(b j−m 

+ b j+ k −m 

) (9) 

For the three dimensional gas dynamics equations the inviscid flux 

in the x -direction flux is 

f = ([ ρu, ρu 

2 + p, ρu v , ρuw, (e + p) u ] T , 

where ρ denotes density, u, v, w are velocities in the x -, y -, and 

z -directions, p is the pressure, and e is the total energy. The flux 

components can be written as products of two factors in many dif- 

ferent ways, leading to different split approximations. The Ducros 

et al. split approximation of the gas dynamics flux derivative that 

will be used in this study is given by 

f x | x = x j ≈

⎛ 

⎜ ⎜ ⎜ ⎝ 

1 
2 

Dρ j u j + 

1 
2 
ρ j Du j + 

1 
2 

u j Dρ j 
1 
2 

Dρ j u 

2 
j 
+ 

1 
2 
ρ j u j Du j + 

1 
2 

u j Dρ j u j + Dp j 
1 
2 

Dρ j u j v j + 

1 
2 
ρ j v j Du j + 

1 
2 

u j Dρ j v j 
1 
2 

Dρ j u j w j + 

1 
2 
ρ j w j Du j + 

1 
2 

u j Dρ j w j 
1 
2 

Du j (e j + p j ) + 

1 
2 

u j D (e j + p j ) + 

1 
2 
(e j + p j ) Du j 

⎞ 

⎟ ⎟ ⎟ ⎠ 

. 

(10) 

which by (9) can be written on conservative form with numerical 

flux function 

h j+1 / 2 = 

1 

2 

p ∑ 

k =1 

αk 

k −1 ∑ 

m =1 

×

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

(ρ j−m 

+ ρ j+ k −m 

)(u j−m 

+ u j+ k −m 

) 
(ρ j−m 

u j−m 

+ ρ j+ k −m 

u j+ k −m 

) 
(u j−m 

+ u j+ k −m 

) + p j−m 

+ p j+ k −m 

(ρ j−m 

v j−m 

+ ρ j+ k −m 

v j+ k −m 

)(u j−m 

+ u j+ k −m 

) 
(ρ j−m 

w j−m 

+ ρ j+ k −m 

w j+ k −m 

)(u j−m 

+ u j+ k −m 

) 
(e j−m 

+ p j−m 

+ e j+ k −m 

+ p j+ k −m 

) 
(u j−m 

+ u j+ k −m 

) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(11) 

3. DRP schemes 

Since our objective is to utilize wave number optimized 

schemes for general DNS and LES applications, no attempt is made 

to obtain optimized schemes for specific IBVPs with specific initial 

data and boundary data. In this study three different optimized 

finite difference operators are considered. See Tam [27] and De 

Roeck et al. [18] for the development and references cited therein. 

These are: (a) DRP4S7, the original Tam & Webb fourth-order accu- 

rate DRP operator with a seven-point wide grid stencil, (b) DRP4S9, 

the fourth-order accurate DRP operator with a nine-point wide 

grid stencil, and (c) STO9, the fourth-order accurate operator with 

a nine-point wide stencil by Bogey & Bailly [3] . All three opera- 

tors have antisymmetric coefficients and are optimized over wave 

number intervals 0 ≤ k �x ≤ 1.1 for DRP4S7 and π /16 ≤ k �x ≤π /2 

for DRP4S9 and STO9. Here �x is the grid spacing and the inte- 

ger k is the mode number. DRP4S7 and STO9 were studied in [18] . 

Remark. Numerical experiments made with DRP4S7 optimized 

over π /16 ≤ k �x ≤π /2 gave worse accuracy than with DRP4S7 op- 

timized over the more standard choice 0 ≤ k �x ≤ 1.1 used here. It is 

reasonable to expect that with fewer free parameters, the interval 

of optimization would be made shorter. 

DRP4S7 and DRP4S9 use least square minimization of the abso- 

lute error, i.e., integral over the square of the error in wave number 

space. The STO9 scheme uses L 1 optimization of the relative error 

in wave number space, i.e., integral over the absolute value of the 

error divided by k �x , since k �x is the exact wave number. 

Their difference operators D for the first-order derivative of a 

grid function u j are of the form 

Du j = 

1 

h 

q ∑ 

k =1 

a k (u j+ k − u j−k ) . (12) 

Table 1 gives the coefficients of the DRP4S7 scheme, Table 2 lists 

the coefficients of the DRP4S9 scheme, and Table 3 shows the co- 

efficients of the STO9 scheme. The STO9 coefficients were obtained 
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Table 1 

Coefficients of DRP4S7, optimized over 

[0, 1.1]. 

k a k 

1 0.77088238051822552 

2 –0.16670590441458047 

3 0.02084314277031176 

Table 2 

Coefficients of DRP4S9, optimized over 

[ π /16, π /2]. 

k a k 

1 0.846863763009931 

2 –0.251240526 84 9904 

3 0.063181723773749 

4 –0.008481970157843 

Table 3 

Coefficients of STO9, optimized over 

[ π /16, π /2], from [18] . 

k a k 

1 0.841570216389881 

2 –0.244678789340406 

3 0.059463699920073 

4 –0.007650934367322 

from [18] , where they are given with 12 decimals. In this work we 

extended the number of decimals by enforcing the fourth order ac- 

curacy constraint to high precision. 

Note that the centered operators (12) are of the same anti- 

symmetric form as (4) . This means that the Ducros et al. split- 

ting described in Section 2 is also straightforwardly applicable to 

be used for these optimized operators described in this section. 

4. Classical central and DRP as base schemes with 

skew-symmetric splitting as preprocessing step in the 

framework of the nonlinear filter method of Yee & Sjögreen 

[32] 

This section gives a brief overview of the high-order nonlinear 

filter scheme of Yee et al. and Yee & Sjögreen [31,32,34,35] for ac- 

curate computations of DNS and LES of compressible turbulence 

for a wide range of flow types by introducing as little shock- 

capturing numerical dissipation as possible. For simplicity, the dis- 

cussion uses the 3D inviscid Euler equation. 

Preprocessing Step by Skew-symmetric Splitting for Gas Dynamics : 

Before the application of a high-order non-dissipative spatial base 

scheme, a preprocessing step is employed to improve numerical 

stability. The inviscid flux derivatives of the governing equations 

are split into the following two ways, depending on the flow types 

and the desire for rigorous mathematical analysis or physical argu- 

ment. 

• Entropy splitting of [35] or the natural splitting described in 

previous section: These are non-conservative splittings and they 

are among some of the best in improving numerical stability 

for non-dissipative central schemes, especially for long time in- 

tegration of shock-free turbulence. 
• The Ducros et al. splitting [6] for systems (or variants of the 

conservative skew-symmetric splitting described earlier): These 

are conservative splittings and are suitable for problems with 

discontinuities. 

Remark. For problems containing discontinuities, conservative 

skew-symmetric splittings should be used. 

Fig. 1. Smooth initial data of the linear advection problem. 

Base Scheme Step after the Preprocessing Step : A full time step 

is advanced using a high-order non-dissipative (or very low dissi- 

pation) spatially central scheme on the split form of the govern- 

ing partial differential equations (PDEs) (i.e., after the preprocess- 

ing step). For the current study fourth-order to eighth-order classi- 

cal central schemes and the three DRP4S7, DRP4S9 and STO9 DRP 

schemes are considered as base schemes. Only results by eighth- 

order central scheme are shown in the numerical experiment sec- 

tion. 

For the base scheme step a full time step of high-order tem- 

poral discretization such as the fourth-order Runge–Kutta (RK4) 

method is used. It is remarked that other DRP temporal discretiza- 

tions can be used for the base scheme step. See Tam [27,28] , Bram- 

bley [5] , and Haras & Taasan [8] . 

Post-Processing (Nonlinear Filter Step) : To further improve the ac- 

curacy of the computed solution from the base scheme step, after 

a full time step of a non-dissipative high-order spatial base scheme 

on the split form of the governing equation(s), the post-processing 

step is used to nonlinearly filter the solution by a dissipative 

portion of a high-order shock-capturing scheme with a local flow 

sensor. Comparable order of accuracy of the nonlinear filter dis- 

sipation with the base scheme usually is considered. For non- 

entropy satisfying shock-capturing schemes it is assumed that en- 

tropy satisfying fixes for both 1D and multi-D are employed [37] . 

For extreme flows positivity-preserving shock-capturing schemes 

should be used. See Kotov et al. [11,12] for some performance of 

positivity-preserving nonlinear filter schemes. 

The flow sensor provides locations and amounts of built-in 

shock-capturing dissipation that can be further reduced or elimi- 

nated. At each grid point a local flow sensor is employed to an- 

alyze the regularity of the computed flow data. Only the strong 

discontinuity locations would receive the full amount of shock- 

capturing dissipation. In smooth regions no shock-capturing dissi- 

pation would be added unless high frequency oscillations develop, 

owning to the possibility of numerical instability in long time inte- 

grations of nonlinear governing PDEs. In regions with strong turbu- 

lence, if needed, a small fraction of the shock-capturing dissipation 

would be added to improve stability. 

Note that the filter numerical fluxes only involve the invis- 

cid flux derivatives, regardless if the flow is viscous or inviscid. 

If viscous terms are present, a matching high order central differ- 

ence operator (as the inviscid difference operator) is included on 

the base scheme step. For ease of summation-by-parts numerical 

boundary closure implementation for the viscous flux derivatives, 

the same inviscid central difference operator for the first derivative 

is employed twice for the viscous flux derivatives. 
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Fig. 2. Gaussian pulse: C08 (left top) and optimized schemes without any linear or nonlinear filter, DRP4S7 (right top), DRP4S9 (right bottom), and STO9 (left bottom). 

Solutions at t = 3 of the linear advection problem. Computed solution plotted in blue color, exact solution shown in black color. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 

Remark. For gas dynamics the post-processing (nonlinear filter 

step) is employed for all of the equations for both non-reacting and 

reacting flows. For the MHD on a uniform Cartesian grid, in order 

to obtain zero discrete div B error without any div B cleaning, the 

nonlinear filter step is not employed for the three magnetic field 

equations. See Yee & Sjögreen [34] for details. 

For simplicity of presentation, considered the 3D Euler equa- 

tions 

∂U 

∂t 
+ 

∂E 

∂x 
+ 

∂F 

∂y 
+ 

∂G 

∂z 
= 0 , (13) 

where E, F and G are inviscid in the x, y and z directions, respec- 

tively. 

Let U 

∗ be the solution after the completion of the full time step 

of the base scheme step. The final update of the solution after the 

filter step is (with the numerical fluxes in the y - and z -directions 

as well as their corresponding y - and z -direction indices on the x 

inviscid flux omitted) 

U 

n +1 
j,k,l 

= U 

∗
j,k,l −

�t 

�x 
[ H 

∗
j+1 / 2 − H 

∗
j−1 / 2 ] , H 

∗
j+1 / 2 = R j+1 / 2 H j+1 / 2 , (14) 

where R j+1 / 2 is the matrix of right eigenvectors of the Jacobian 

of the inviscid flux vector in terms of Roe’s average states based 

on U 

∗. H 

∗
j+1 / 2 

and H 

∗
j−1 / 2 

are “filter” numerical fluxes in terms of 

Roe’s average states based on U 

∗. Denote the elements of the filter 

numerical flux vector H j+1 / 2 by h 
l 

j+1 / 2 , l = 1 , 2 , . . . , 5 , where h 
l 

j+1 / 2 

has the form 

h 

l 

j+1 / 2 = 

κ l 
j+1 / 2 

2 

w 

l 
j+1 / 2 φ

l 
j+1 / 2 . (15) 

Here w 

l 
j+1 / 2 

is a flow sensor to activate the nonlinear numer- 

ical dissipation portion of a high order shock-capturing scheme 
1 
2 φ

l 
j+1 / 2 

, and κ l 
j+1 / 2 

is a positive flow dependent parameter that is 

less than or equal to one to control the amount of shock-capturing 

dissipation to be used. The nonlinear dissipative portion of a high- 

resolution shock-capturing scheme “ 1 
2 φ

l 
j+1 / 2 

” can be any shock- 

capturing scheme. The choice of the parameter κ l 
j+1 / 2 

can be dif- 

ferent for different flow types and is automatically chosen by using 

the local κ l 
j+1 / 2 

described in [32] . The flow sensor w 

l 
j+1 / 2 

can be a 

variety of formulae introduced in the literature or can be switched 

from one flow sensor to another, depending on the computed flow 

data at that particular location. For a variety of local flow sen- 

sors with automatic selection of the proper parameter, depend- 

ing on different flow type, see [32] . The form of Tauber–Sandham 

[30] for the filter numerical flux uses the Ducros et al. flow sen- 

sor [7] as κ l 
j+1 / 2 

and the Harten artificial compression method for- 

mula (ACM) [9] as the flow sensor indicated in [36] and similarly 

in [17] is part of the Yee & Sjögreen adaptive numerical dissipa- 

tion control generalization filter formulae. For the numerical ex- 

periments presented, we mainly concentrate on the wavelet flow 

sensor of Yee & Sjögreen, the Ducros et al. flow sensor [7] and the 

artificial compression method flow sensor of [36] . For the wavelets 
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Fig. 3. Gussian pulse: Standard nonlinear filter scheme C08 + WENO7fi (left top). Optimized nonlinear filter schemes, DRP4S7 + WENO7fi (right top), DRP4S9 + WENO7fi (mid- 

dle left), STO9 + WENO7fi (middle right), and standard shock-capturing scheme WENO7 (left bottom). Solutions at time t = 3 of the linear advection problem. Computed 

solution plotted in blue color, exact solution shown in black color. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

and ACM flow sensors, see the aforementioned references cited. 

The Ducros et al. flow sensor was designed mainly to capture flows 

containing shocks and vorticity with the divcurl tolerance of the 

form 

sw = 

( ∇ · u ) 2 

( ∇ · u ) 2 + ω 

2 + ε 
. (16) 

Here u is the velocity vector, ω is the vorticity magnitude and ε is 

a small number to avoid division by zero (e.g., 10 −6 ). The Ducros 

et al. flow sensor consists of a cut off parameter δ as an input 

parameter based on the value of sw that can be used to switch 

on or off the dissipative portion of the high order shock-capturing 

scheme. If δ is set to be one, the dissipation only switches on when 

it encounters a shock wave. For a lower value of the cut off δ pa- 

rameter, vorticity can be detected. The δ parameter is used as the 

κ i 
j+1 / 2 

for the Durcros et al. flow sensor. 

The low Mach number κ curve was developed in Yee & Sjö- 

green [32] and detail is omitted here. Local flow sensors for a 

wide spectrum of flow speed and shock strength developed in 

[13,14,32] are also omitted here. 

The aforementioned high order nonlinear filter method is valid 

for the four forms of the MHD formulation and the four skew- 
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Fig. 4. Square pulse: C08 (left top). Optimized schemes without linear or nonlinear filter, DRP4S7 (right top), DRP4S9 (left bottom), and STO9 (bottom right). Solutions at 

t = 3 of the linear advection problem with square pulse initial data. Computed solution plotted in blue color, exact solution shown in black color. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

symmetric splittings of the MHD to be used as the preprocessing 

step. In addition, the aforementioned high order nonlinear filter 

method is valid for the four forms of the MHD formulation and the 

different high order entropy conservative numerical fluxes, such as 

the spatial base schemes discussed in Sections 4 and 5 of Sjögreen 

& Yee [24,25] . 

From here on, without loss of generality, the term “a split 

scheme” refers to the use of a high order central scheme to 

discretize a skew-symmetric splitting form of the inviscid flux 

derivatives. If the three considered DRP4S7, DRP4S9 and STO9 

schemes are used as the base schemes, and the dissipative por- 

tion of the seventh-order WENO (WENO7) is used as the nonlinear 

filter, they are denoted by DRP4S7+WENO7fi, DRP4S9+WENO7fi, 

and STO9+WENO7fi respectively. Similarly if WENO5fi is used, 

they are denoted by DRP4S7+WENO5fi, DRP4S9+WENO5fi, and 

STO9+WENO5fi. If an eighth-order classical central difference oper- 

ator is used as the base scheme for the aforementioned three DRP 

schemes, it is denoted by C08+WENO7fi. If Ducros et al.splitting is 

used, e.g., it is denoted by C08-DS+WENO7fi. 

5. Numerical results 

This section shows numerical results for five test cases for the 

compressible gas dynamics. The test cases include problems with 

smooth flows, problems containing shock waves, shock-free turbu- 

lence and turbulence with weak shocks. These test cases are well 

known test cases in the literature and will be used to illustrate the 

performance of the proposed methods. The first three test cases 

are commonly used simple 1D and 2D test cases as a prelude to 

turbulent computations. The last two test cases are 3D DNS com- 

putations of the Taylor-Green vortex and isotropic turbulence. They 

are included to show that our proposed schemes are suitable for 

DNS of turbulent flows. 

Here, for illustration purposes, only two smart flow sensors 

(among the many variants indicated in [32] and Kotov et al. 

[13,14] ) are chosen for the numerical experiment for the nonlin- 

ear filter approach. Except for the DNS test cases, the third-order 

B-spline wavelet flow sensor developed in Sjögreen & Yee [20] was 

employed. For the DNS computations the Ducros et al. flow sensor 

was employed. This is due to the fact that the Ducros et al. flow 

sensor is most suited for these two particular DNS computations. 

See Kotov et al. [13,14] for the studies. 

5.1. Scalar linear wave results 

In this subsection the scalar advection equation 

u t + u x = 0 t ≥ 0 (17) 

is solved on an interval 0 ≤ x ≤ 3.9 with periodic boundary condi- 

tion. Initial data will be either a Gaussian pulse or a square pulse. 

The domain and initial data are scaled such that the problem is 

equivalent with the linear advection problem solved in [18] . It is 

noted that Ducros et al. splitting is not applicable for linear equa- 

tions. In addition, the Ducros et al. flow sensor is only applicable 

for higher than 1D nonlinear Euler/Navier-Stokes equations. 
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Fig. 5. Square pulse: Standard nonlinear filter scheme C08 + WEBO7fi (left top). Optimized nonlinear filter schemes, DRP4S7 + WENO7fi (right top), DRP4S9 + WENO7fi (left 

middle), STO9 + WENO7fi (right middle), and standard shock-capturing scheme WENO7 (left bottom). Solutions at t = 3 of the linear advection problem with square pulse 

initial data. Computed solution plotted in blue color, exact solution shown in black color. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

5.1.1. Smooth initial data: Gaussian pulse 

The advection Eq. (17) is solved with initial data 

u (x, 0) = 

1 

2 

e −K(x −x c ) 2 , 

where K = 1369 . 2 and x c = 0 . 48 . The spatial discretization has 520 

grid points, the CFL number is 0.1, and the problem is solved to 

time t = 3 , which since the wave speed is 1, means that the pulse 

has traveled 3 length units. Fig. 1 shows a close up of the ini- 

tial data near x c . The pulse is resolved with approximately 15 grid 

points. Computed results are displayed in Figs. 2 and 3 . The nine- 

point stencil optimized nonlinear filter schemes, DRP4S9+WENO7fi

and STO9+WENO7fi, appear to be more accurate than the other 

methods, especially on the lower left side of the pulse. The dissi- 

pative nature of the WENO7 scheme is also visible as a somewhat 

lower peak value than the other methods. 

5.1.2. Discontinuous initial data: Square pulse 

The advection Eq. (17) is solved with initial data 

u (x, 0) = 

{
1 0 . 3124 ≤ x < 0 . 6875 

0 otherwise 
. 

Also for this initial data, the spatial discretization has 520 grid 
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Fig. 6. Compressible 2D Euler equations. Vortex convection on a uniform grid with 

25 2 points. Norm of error vs. time for C08-DS + WENO7fi, DRP4S7-DS + WENO5fi, 

DRP4S9-DS + WENO7fi, and STO9-DS + WENO7fi. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this arti- 

cle.) 

points, the CFL number is 0.1, and the problem is solved to time 3. 

Computed results are displayed in Figs. 4 and 5. The C08, DRP4S7, 

DRP4S9 and STO9 without nonlinear filter exhibit oscillatory so- 

Fig. 7. Compressible 2D Euler equations. Vortex convection on a grid with 

50 2 points. Norm of error vs. time for C08-DS + WENO7fi, DRP4S7-DS + WENO5fi, 

DRP4S9-DS + WENO7fi, and STO9-DS + WENO7fi. 

lutions. With linear filters and DRP time discretization indicated 

in [18,27] , the oscillations are suppressed. See [18] for the re- 

sult. Here, the nonlinear filter version of the DRP methods are 

Fig. 8. Compressible 2D Euler equations. Density contour lines at the final time (t = 72) on a grid with 50 2 grid points. Upper left DRP4S7-DS + WENO5fi, upper right DRP4S9- 

DS + WENO7fi, lower left STO9-DS + WENO7fi, and lower right C08-DS + WENO7fi. 
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Fig. 9. Compressible 2D Euler equations. Vortex convection on a grid with 

100 2 points. Norm of error vs. time for C08-DS + WENO7fi, DRP4S7-DS + WENO5fi, 

DRP4S9-DS + WENO7fi, and STO9-DS + WENO7fi. 

Fig. 10. Compressible 2D Euler equations. Vortex convection on a uniform grid with 

25 2 points. Norm of error vs. time for WENO5 (red) and WENO7 (blue). (For inter- 

pretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

able to suppress some of the oscillations. However, the WENO7 

scheme, which is designed for discontinuous solutions, shows the 

best performance. The optimized nine-point stencil nonlinear fil- 

ter methods agree somewhat better with the exact solution, espe- 

cially near the ‘corners’ of the pulse, than DRP4S7+WENO7fi and 

C08+WENO7fi. 

5.2. 2D Compressible euler simulation of smooth flow: Isentropic 

vortex convection 

The compressible Euler equations in two space dimensions are 

solved with initial data 

ρ(x, y ) = 

(
1 − (γ − 1) β2 

8 γπ2 
e 1 −r 2 

) 1 
γ −1 

(18) 

u (x, y ) = u ∞ 

− β(y − y 0 ) 

2 π
e (1 −r 2 ) / 2 (19) 

Fig. 11. Compressible 2D Euler equations. Vortex convection on a grid with 50 2 

points. Norm of error vs. time for WENO5 (red) and WENO7 (blue). (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

v (x, y ) = v ∞ 

+ 

β(x − x 0 ) 

2 π
e (1 −r 2 ) / 2 (20) 

p(x, y ) = ρ(x, y ) γ , (21) 

where r 2 = x 2 + y 2 , β = 5 , γ = 1 . 4 , u ∞ 

= 1 , and v ∞ 

= 0 . The ex- 

act solution is the initial data translated, u (x, t) = u 0 (x − u ∞ 

t, y −
v ∞ 

t) . 

The computational domain was of size 0 ≤ x ≤ 18, 0 ≤ y ≤ 18 with 

periodic boundary conditions. The center of the vortex is chosen 

to be (x 0 , y 0 ) = (9 , 9) . The problem is solved in time with a fourth 

order accurate explicit Runge–Kutta method to time t = 72 , which 

corresponds to four revolutions of the vortex across the domain. 

All four methods were implemented on the split form described 

in Section 2 . 

The problem was solved with three different grid resolu- 

tions. The coarsest grid has 25 × 25 grid points, which gives ap- 

proximately six grid points across the vortex. Fig. 6 shows the 

time evolution of the maximum norm of the error over all five 

equation components on this grid, for the different methods. 

The color coding in the plots is as follows: C08-DS+WENO7fi

(green), DRP4S7-DS+WENO7fi (blue), STO9-DS+WENO7fi (red), and 

DRP4S9-DS+WENO7fi (cyan). Up to time t = 40 the four meth- 

ods produce similar results and are hard to distinguish. At later 

times DRP4S7-DS+WENO5fi and C08-DS+WENO7fi have a smaller 

error than the nine-point optimized schemes. On this coarse grid 

DRP4S9+WENO7fi breaks down with negative density at time t = 

45 . This is the only combination of resolution and scheme that did 

not run the full four periods. 

Fig. 7 shows the evolution of the norm of the error of den- 

sity computed on a grid with 50 × 50 points. Here the two nine- 

point optimized schemes have smallest error up to time t = 

20 . It can be conjectured that this is the resolution at which 

the stencil optimization is effective. Fig. 8 compares the den- 

sity of the vortex at the final time, t = 72 , for the four differ- 

ent schemes. DRP4S7-DS+WENO5fi can be seen to have some- 

what distorted shape, while the other three methods (DRP4S9- 

DS+WENO7fi, STO9-DS-WENO7fi, C08-DS-WENO7fi) show compa- 

rable density contour plots. 

At the higher resolution 100 × 100 grid points, shown in Fig. 9, 

the higher order C08-DS+WENO7fi scheme is superior. In the limit 
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Fig. 12. Compressible 2D Euler equations. Vortex convection on a grid with 100 2 

points. Norm of error vs. time for WENO5 (red) and WENO7 (blue). (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 13. 1D Osher-Shu test case. Close up of the density at time 1.8 for C08- 

DS + WENO7fi, DRP4S7-DS + WENO5fi, DRP4S9-DS + WENO7fi, STO9-DS + WENO7fi, 

WENO5, and WENO7 using a grid with 201 points. 

of increased resolution it is reasonable to expect the schemes of 

highest formal order of accuracy to have the smallest actual errors. 

The errors on the same grids, but computed by WENO5 and 

WENO7 are shown in Figs. 10, 11 , –12 . Here WENO5 is shown in 

red and WENO7 in blue. Note that Figs. 11 –12 have one order of 

magnitude larger upper limit on the y -axis than the corresponding 

low dissipative results in Figs. 7 –9 . 

5.3. 1D Compressible euler test case with shocks: Shu-Osher problem 

The Shu-Osher problem [19] is a one-dimensional Mach 3 shock 

moving into an oscillatory density. A highly oscillatory flow field 

(1D turbulent flow) develops behind the shock wave. The problem 

is defined for the one dimensional Euler equations with γ = 1 . 4 

and initial data 

(ρ, u, p) = 

{
(3 . 857143 , 2 . 629369 , 10 . 33333) , x < −4 

(1 + 0 . 2 sin 5 x, 0 , 1) , x ≥ 4 

(22) 

Fig. 14. 3D Compressible Euler equations. Taylor–Green vortex test case. Total ki- 

netic energy vs. time (top) and enstrophy vs. time (bottom) for six different meth- 

ods. 

on the domain −5 ≤ x ≤ 5 . The grid has 201 points, correspond- 

ing to discretization size �x = 0 . 05 . The nonlinear numerical dissi- 

pation is multiplied with sensors designed to activate it only in 

the neighborhood of shocks. In the computations shown here a 

wavelet sensor was used with two wavelet levels and a cut-off

smoothness exponent 0.5. 

Fig. 13 shows the density at the final time computed by 

the optimized stencil schemes DRP4S7, DRP4S9, and STO9, im- 

plemented in the Ducros et al. split form of the equations. The 

seventh order WENO dissipation is used as postprocessing filter 

(DRP4S7-DS+WENO7fi, DRP4S9-DS+WENO7fi, STO9-DS+WENO7fi). 

Also shown in the figure is the solution by the standard cen- 

tered eight order nine-point scheme, with Ducros et al. splitting 

and WENO7 filter (C08-DS+WENO7fi). The computed densities by 

STO9-DS+WENO7fi and DRP4S9-DS+WENO7fi are very close. STO9- 

DS+WENO7fi, plotted in red color, is almost completely covered by 

the cyan colored DRP4S9-DS+WENO7fi. 

For comparison, Fig. 13 also includes the solution obtained by 

the Jiang & Shu WENO5 and WENO7 schemes. Except for DRP4S7- 

DS+WENO5fi, the filter scheme captures the physical oscillations 

well on this very coarse grid. The resolution at the highly oscilla- 

tory part of Fig. 13 can be seen to be approximately 6 points per 

wavelength. Accuracy compares very favorably with the results by 

the WENO7 scheme. Higher accuracy can be obtained with a lo- 
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Fig. 15. 3D Isotropic turbulence test case. Energy spectra at the final time by six 

schemes using 64 3 grid points. DNS using 256 3 grid points also shown for compar- 

ison. 

cal smart flow sensor in the use of the Yee & Sjögreen nonlinear 

filter scheme. Here we only show one global flow sensor for the 

computation. 

See [24,25] for results on the same problem, but using entropy 

conserving base schemes instead of split schemes together with 

the WENO7 filter. Results in [24,25] with eighth-order accurate en- 

tropy conserving scheme have similar resolution of the post-shock 

oscillations as obtained here with C08-DS+WENO7fi. One advan- 

tage of split schemes is their computational cost is in general lower 

than the cost of entropy conserving schemes. 

5.4. 3D Compressible euler shock-Free turbulence test case: 

Taylor–Green vortex 

The Taylor–Green vortex [29] is a well-known shock-free com- 

pressible turbulence test problem that has been studied exten- 

sively. Extensive scheme comparison is reported in Kotov et al. 

[13] for DNS and LES simulations with grid refinement studies em- 

ploying the high order central nonlinear filter scheme using the 

Ducros et al. splitting. The 3D Euler equations of compressible gas 

dynamics are solved with γ = 5 / 3 . The computational domain is a 

cube with sides of length 2 π and with periodic boundary condi- 

tions in all three directions. The initial data are 

ρ = 1 p = 100 + { ( cos (2 z) + 2)( cos (2 x ) + cos (2 y )) − 2 } / 16 

(23) 

u = sin x cos y cos z, v = − cos x sin y cos z, w = 0 . (24) 

The problem is solved to time 10 on a uniform grid with 64 3 grid 

points. 

The total kinetic energy of the exact solution is constant in 

time. Fig. 14 shows the evolution of the total kinetic energy for the 

four different nonlinear filter schemes. All four methods conserve 

the kinetic energy extremely well. As the flow evolves, smaller 

scales are created, which causes an increase in the enstrophy. The 

enstropy increase for the four different schemes can be seen in the 

right subplot of Fig. 14 . These computed results agree well with 

the filter DNS using a 256 3 grid reported in [14] and the Bra- 

chet et al. [4] linearized theory (up to time T < 4). The results by 

WENO5 and WENO7, which perform poorly, are also included for 

comparison. 

Remark : For this nearly incompressible low speed test case the 

schemes of choice in the literature are spectral and high order 

compact or central schemes with summation-by-parts boundary 

closures in conjunction with their respective high order linear fil- 

ters. The nonlinear filter step is not needed. This study is to show 

the versatility of the proposed approach when a priori knowledge 

of the flow structure is not known, and/or for flows with a time 

varying random forcing and a wide range of flow speed regimes 

during the entire time-accurate evolution. See the Appendix of Ko- 

tov et al. for an illustration [14] . 

Fig. 16. 3D Isotropic turbulence test case. Evolution of kinetic energy (upper left), enstrophy (upper right), temperature variance (lower left), and dilatation (lower right), 

computed by six schemes, using 64 3 grid points. DNS using 256 3 grid points is also shown for comparison. 
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5.5. 3D Compressible euler turbulence with shocklets test case: 

Isotropic turbulence with eddy shocklets 

This test case is a decaying compressible isotropic turbulence 

with eddy shocklets. For high enough turbulent Mach numbers 

weak shocks (shocklets) develop from the turbulent motion. In this 

test the initial turbulent Mach number is 0.6. The equations are 

solved using γ = 1 . 4 . The computational domain is a cube with 

side length 2 π and with periodic boundary conditions in all three 

directions. The initial datum is a random divergence free velocity 

field, u i , 0 , i = 1 , 2 , 3 , that satisfies 

3 

2 

u 

2 
rms, 0 = 

1 

2 

〈 u i, 0 , u i, 0 〉 = 

∫ ∞ 

0 

E(k ) dk 

with energy spectrum 

E(k ) ∼ k 4 e −2(k/k 0 ) 
2 

. 

The computations below were made with u rms, 0 = 1 and k 0 = 4 . 

The angular brackets denote averaging over the entire computa- 

tional domain. The density and pressure fields are constant ini- 

tially. See [13] for definitions of the quantities and more details 

about the set up of the problem. The simulation is run to the final 

time t = 4 . 

Fig. 15 compares the energy spectra by four nonlinear fil- 

ter methods. Spectra by WENO5 and WENO7 are also shown. 

Fig. 16 shows the evolution in time of kinetic energy, enstrophy, 

temperature variation, and dilatation for the same schemes. In 

Figs. 15 and 16 , the results with C08+WENO7fi, STO9+WENO7fi, 

and DRP4S9+WENOfi are indistiguishable, and the cyan colored 

curve (which was plotted last) covers the green and red curves. 

The results show agreement between the central base scheme and 

the optimized (DRP,STO) base schemes. These computed results 

agree well with the filtered DNS using a 256 3 grid reported in [14] . 

Performance of DNS and LES by WENO5 and WENO7 using the 

same 64 3 coarse grid is also reported in [14] . WENO5 and WENO7 

results are more diffusive than the results obtained by nonlinear 

filter methods. 

6. Conclusions 

The Yee & Sjögreen and Kotov et al. [13,14,32] high order nu- 

merical method with the Ducros et al. skew-symmetric type of 

splitting for compressible gas dynamics has been extensively in- 

vestigated for long time wave propagation of smooth flows, DNS of 

shock-free turbulence, and DNS of turbulence with weak, moderate 

and strong shocks, including forced turbulent flows. 

This work combines DRP centered difference schemes, opti- 

mized for aeroacoustics, with numerical techniques developed for 

compressible fluid flows with shocks and small scale features. 

Specifically, DRP schemes are applied to the Ducros et al. split 

form of the compressible fluid equations, and the solution is post 

processed after each time step with dissipative portion of high- 

resolution shock-capturing methods with smart flow sensor to con- 

trol the amount of numerical dissipation where needed. 

The method is evaluated on standard test problems in com- 

pressible fluid dynamics, long time isentropic vortex convection, 

Taylor-Green vortex, shock/turbulence interaction and isotropic tur- 

bulence with shock waves. Numerical experiments demonstrated 

that DRP schemes and standard central schemes of the same grid 

stencil width in the framework of Yee & Sjögreen nonlinear filter 

approach are with almost similar accuracy on these types of test 

problem, as long as the grid resolution is not extremely high. Their 

CPU operations count for the same grid stencil width is the same 

per method evaluation. 

The new method is designed to perform well propagating small 

scale acoustic perturbations on a background compressible flow 

with shock waves. Future plans include applying the new method 

to problems that are more aeroacoustic in character, for example 

computation of vortex/shock interaction. 

An issue not addressed here is boundary closure of DRP finite 

difference operators. Some results are available in [10] . However, 

this is a far from exhausted topic. A future research direction will 

be to investigate how the order of the SBP boundary approxima- 

tion and the wave number ranges of the DRP optimization affect 

the accuracy and stability of the resulting acoustic wave computa- 

tion. 
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