2,035 research outputs found

    An equivariant isomorphism theorem for mod p\mathfrak p reductions of arboreal Galois representations

    Get PDF
    Let ϕ\phi be a quadratic, monic polynomial with coefficients in OF,D[t]\mathcal O_{F,D}[t], where OF,D\mathcal O_{F,D} is a localization of a number ring OF\mathcal O_F. In this paper, we first prove that if ϕ\phi is non-square and non-isotrivial, then there exists an absolute, effective constant NϕN_\phi with the following property: for all primes pOF,D\mathfrak p\subseteq\mathcal O_{F,D} such that the reduced polynomial ϕp(OF,D/p)[t][x]\phi_\mathfrak p\in (\mathcal O_{F,D}/\mathfrak p)[t][x] is non-square and non-isotrivial, the squarefree Zsigmondy set of ϕp\phi_{\mathfrak p} is bounded by NϕN_\phi. Using this result, we prove that if ϕ\phi is non-isotrivial and geometrically stable then outside a finite, effective set of primes of OF,D\mathcal O_{F,D} the geometric part of the arboreal representation of ϕp\phi_{\mathfrak p} is isomorphic to that of ϕ\phi. As an application of our results we prove R. Jones' conjecture on the arboreal Galois representation attached to the polynomial x2+tx^2+t.Comment: Comments are welcome

    Detecting Gaussian entanglement via extractable work

    Get PDF
    We show how the presence of entanglement in a bipartite Gaussian state can be detected by the amount of work extracted by a continuos variable Szilard-like device, where the bipartite state serves as the working medium of the engine. We provide an expression for the work extracted in such a process and specialize it to the case of Gaussian states. The extractable work provides a sufficient condition to witness entanglement in generic two-mode states, becoming also necessary for squeezed thermal states. We extend the protocol to tripartite Gaussian states, and show that the full structure of inseparability classes cannot be discriminated based on the extractable work. This suggests that bipartite entanglement is the fundamental resource underpinning work extraction.Comment: 12 pages, 8 figure

    Mathematics teachers learning with video: the role, for the didactician, of a heightened listening

    Get PDF

    Convex set of quantum states with positive partial transpose analysed by hit and run algorithm

    Full text link
    The convex set of quantum states of a composite K×KK \times K system with positive partial transpose is analysed. A version of the hit and run algorithm is used to generate a sequence of random points covering this set uniformly and an estimation for the convergence speed of the algorithm is derived. For K3K\ge 3 this algorithm works faster than sampling over the entire set of states and verifying whether the partial transpose is positive. The level density of the PPT states is shown to differ from the Marchenko-Pastur distribution, supported in [0,4] and corresponding asymptotically to the entire set of quantum states. Based on the shifted semi--circle law, describing asymptotic level density of partially transposed states, and on the level density for the Gaussian unitary ensemble with constraints for the spectrum we find an explicit form of the probability distribution supported in [0,3], which describes well the level density obtained numerically for PPT states.Comment: 11 pages, 4 figure

    On the volume of the set of mixed entangled states

    Get PDF
    A natural measure in the space of density matrices describing N-dimensional quantum systems is proposed. We study the probability P that a quantum state chosen randomly with respect to the natural measure is not entangled (is separable). We find analytical lower and upper bounds for this quantity. Numerical calculations give P = 0.632 for N=4 and P=0.384 for N=6, and indicate that P decreases exponentially with N. Analysis of a conditional measure of separability under the condition of fixed purity shows a clear dualism between purity and separability: entanglement is typical for pure states, while separability is connected with quantum mixtures. In particular, states of sufficiently low purity are necessarily separable.Comment: 10 pages in LaTex - RevTex + 4 figures in eps. submitted to Phys. Rev.
    corecore