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We show how the presence of entanglement in a bipartite Gaussian state can be detected by the amount of
work extracted by a continuous-variable Szilard-like device, where the bipartite state serves as the working
medium of the engine. We provide an expression for the work extracted in such a process and specialize it
to the case of Gaussian states. The extractable work provides a sufficient condition to witness entanglement
in generic two-mode states, becoming also necessary for squeezed thermal states. We extend the protocol to
tripartite Gaussian states and show that the full structure of inseparability classes cannot be discriminated based
on the extractable work. This suggests that bipartite entanglement is the fundamental resource underpinning work
extraction.
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I. INTRODUCTION

One of the most striking (to the point of being considered
paradoxical for a long time) and yet fundamental ways to
extract work with the help of a heat engine is to exploit
the availability of information about the state of the engine
itself. A machine following this paradigm is referred to as
an information engine. In this way thermodynamics accom-
modates information in an operational way: The information
acquired about a system effectively brings it out of equilibrium
and useful work can be extracted by implementing suitable
conditional operations [1,2].

Recently there has been a great deal of interest in explor-
ing information-to-work conversion when the information is
encoded in a quantum system [3]. For instance, fundamental
thought experiments such as Maxwell’s demons and Szilard’s
engine have been formulated for quantum systems [4–6].
Concerning work extraction, the most significative departure
from a classical picture may be expected when the information
is encoded in the correlations between two or more parties, by
virtue of the unique role played by entanglement [7]. This
has triggered the study of work extraction from correlated
quantum systems [8–12]. Yet little is known when such
correlations are shared across a multipartite quantum working
medium.

Interestingly, in Refs. [13,15] an alternative viewpoint
was adopted by somehow reversing the question: What
can the extractable work tell us about the nature of the
correlations present in the working medium? Could it be used
to discriminate a separable state from an entangled one? In the
present work we build on this approach, using the extractable
work as an investigative tool to gather some knowledge about
the properties of a continuous-variable Szilard engine. We
show how the extractable work is related to the one-way
classical correlations established between two parties via a
local measurement [16] and that it is a suitable quantity to
witness bipartite entanglement in two-mode Gaussian states
[17,18]. We further apply our diagnostics to tripartite Gaussian
states, revealing how the work-extraction criterion overlooks
differences in the inseparability classes.

We start by recalling the paradigm of the Szilard engine
and information-to-work conversion in Sec. II. In Sec. III we
formulate the work extracting protocol for correlated quantum
systems. In Secs. IV and V we address in particular the relevant
case of Gaussian states subjected to Gaussian measurements
and show our main findings. An extension of the protocol
beyond the Gaussian realm is discussed in Sec. VI, while in
Sec. VII we attack the richer problem of work extraction from
tripartite states. Finally, Sec. VIII reports our conclusions and
some future perspective.

II. INFORMATION-TO-WORK CONVERSION
IN A SZILARD ENGINE

Szilard proposed a thought experiment, which now goes
under the name of the Szilard engine, to highlight the link
between information and thermodynamics and its apparently
paradoxical consequences [19]. Inspired by Maxwell’s demon,
he conceived a minimalist model to show how, through the
acquisition of information and the implementation of feedback
operations, the second law of thermodynamics may apparently
be circumvented. Consider a single particle in a box with a
frictionless wall that can be inserted and removed at half the
length. If some information about the location of the particle
becomes available, it can be exploited to extract some work
(out of a freely available thermal bath) as follows: If the particle
is known to be in one side of the container we can attach
a weight on that side in such a way that when we let the
particle expand isothermally, the “pressure” exerted on the
wall can pull up the weight. Assuming an isothermal expansion
from the initial volume V/2 to the full volume, we have W =
kBT ln 2. After the expansion the system has returned to its
initial configuration so that the work extraction process can in
principle be implemented cyclically. If the knowledge about
the position of the particle is probabilistic, we have

W = kBT ln 2[1 − H (X)], (1)

where H (X) = −∑
x px ln px , x = {R,L}, is the Shannon

entropy of the right-left distribution [1]. When both sides
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have the same probability the average extractable work is
zero. This a priori information is usually symbolized by
a demon, whose knowledge of the microscopic state of
the system can be converted into useful work. Due to the
demon’s action, a thermodynamic cycle which generates work
absorbing heat from a single reservoir may be realized. The
paradoxical consequences of this thought experiment have
attracted attention for quite a while, until Landauer recognized
that the solution to the paradox was in the role played by
the memory [20]. The demon needs to store the result of
the measurements in a memory, and given that no physical
memory can be taken to be infinite, the demon eventually
needs to reset it in order to prevent overflow [21]. The erasure
step is intrinsically irreversible and dissipates an amount
of heat at least equal to the work extracted in Eq. (5),
thus restoring the second law. Maxwell’s demonlike devices
and Landauer’s erasure have been respectively realized and
confirmed experimentally in recent years [22–26].

III. EXTRACTING WORK FROM CORRELATED
SZILARD ENGINES

Imagine now having two correlated particles and suppose
they are trapped in separate containers so as to have two Szilard
engines with correlated working substances A and B. The work
extractable by one party, say, A, now depends on the state of
the other one, namely, W (A|B) = kBT ln 2[1 − H (A|B)]. If
some operation is performed on B the state of knowledge
of A must be updated. Given that the mutual information
I (A : B) = H (A) − H (A|B) � 0 is non-negative, we have
H (A) � H (A|B), that is, conditioning reduces the uncertainty.
It immediately follows that W (A|B) � W (A), which proves
that we can extract more work from correlated Szilard engines.

How can we extend this argument to quantum systems? In
Ref. [13] the authors considered Alice and Bob to share an
ensemble of identically prepared pairs of qubits and perform
on both parties’ projective measurements at angles θ and φ,
respectively. The work W (Aθ |Bφ) is subsequently extracted
by Alice from the outcomes of the measurements, with Bob
sharing his outcomes with her. In this context work extraction
is to be understood as follows: Each bit of information of the
measurement outcome can be regarded as a particle in the left
and right side of a container (in principle, the information can
be copied in such a Szilard register without extra energy cost)
[1]. In this way the work-extracting protocol is implemented
at the level of the classical information obtained from a
correlated quantum state via local measurements and classical
communication. This is reminiscent of a Bell-like scenario for
testing local realism.

In Ref. [13] it was shown that the extracted work
W (Aφ|Bφ)/kBT ln 2, once averaged over the interval [0,2π ),
cannot exceed a limiting value (equal to 0.4423 bits) if Alice
and Bob share a separable state, thus leading to a form of work-
assisted entanglement detection. On the contrary, by sharing
entangled qubits, more work can be extracted. The result can
be intuitively understood by considering the case where Alice
and Bobs share pairs of maximally entangled states: In that
case the conditional entropy H (Aφ|Bφ) identically vanishes,
which enables one to extract more work. This protocol has
been recently implemented in a photonic platform [14].

â b̂

(a)

(b)

W

T 0 1 1 0 ...

0 1 1 0 ......0 10 0

(c)

W

π̂b

π̂a

σπb
a

π̂b

T

FIG. 1. (a) Gaussian demons Alice (orange) and Bob (purple)
share a bipartite Gaussian state of modes â and b̂ and want to know
whether the state is entangled (yellow line) or separable (gray line).
In order to do so, they check how much work Alice can extract from
a heat bath when only local Gaussian measurements are allowed. In
the first strategy (b) Bob performs a Gaussian measurement π̂b and
Alice extracts mechanical work by letting her conditional state σπb

a

expand (from orange to red), e.g., pushing the demon’s board. As a
result of the protocol Alice extracts an amount of work W . In the
second approach (c), both demons perform a measurement and the
work is extracted from the classical register of the results.

We generalize such an approach and study the insepara-
bility of bipartite continuous-variable states by inspecting the
amount of work extracted by two local agents, or demons,
Alice and Bob [see Fig. 1(a)].1 We note that, in order to
run an information engine, Alice does not need to perform
a measurement on her system and extract work from the
recorded outcomes. She can exploit the backaction induced
by Bob’s measurement on their joint state and simply act
locally by letting her state thermalize. The expansion can
be converted into mechanical work. This work-extracting
procedure is sketched in Fig. 1(b) with explicit reference to
the Gaussian scenario and discussed in the next section. When
both demons perform a local measurement, as in Fig. 1(c), the
work is extracted by Alice from the register of measurements
outcomes.

In the argument above, we did not considered the energetic
and entropic cost of implementing the measurement. While
this is certainly an important point to consider when attempting
to investigate the thermodynamic balance associated with a
given protocol, here the main scope is to use the extractable
work as a diagnostic tool to investigate the nature of quantum

1To avoid confusion, we stress that the demons are modeled as
physical agents that locally act on the state and not as physical entities
that interact and get correlated with the system itself, as often done
when discussing measurement and feedback control.
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correlations. Therefore, the quantification of such costs is not
crucial for our purposes. For discussions of these issues see,
e.g., Refs. [27–29].

IV. WORK EXTRACTION FROM BIPARTITE
GAUSSIAN STATES

In this section we explicitly formulate the work-extracting
protocol for Gaussian states sketched in Fig. 1(b) and discuss
the results. Gaussian demons Alice (orange) and Bob (purple)
share a bipartite Gaussian state of modes â and b̂ which is
completely characterized by the covariance matrix

σab =
(

σa cab

cT
ab σb

)
, (2)

where σa (b) is the reduced covariance matrix of Alice (Bob)
while cab contains the correlations between the modes. The
first moments are inconsequential for our reasoning and can
be set to zero. A bipartite Gaussian state can always be cast in
the form [18]

σa = diag(a,a), σb = diag(b,b), cab = diag(c,d), (3)

which is referred to as the standard form. In the following we
will consider Gaussian states of this form, which are thus fully
characterized by the set of parameters (3) of their covariance
matrix. Bob then performs a measurement on his mode. We re-
strict the study to Gaussian measurements of the form π̂b(X) =
π−1D̂b(X)�̂πb D̂

†
b(X), where D̂b(X) = exp(Xb̂† − X∗b̂) is the

displacement operator and �̂πb is a pure Gaussian state with
covariance matrix γ πb = R(φ)diag(λ/2,λ−1/2)R(φ)T , where
λ ∈ [0,∞] and R(φ) = cos φ1 − i sin φσy is a rotation matrix
(σy refers to the y-Pauli matrix). The conditional state of mode
â on the measurement π̂b(X) turns out to be independent of
the outcome of the measurement itself, i.e., σ

πb

a|X ≡ σπb
a , and

its expression is given by

σπb

a = σa − cab(σb + γ πb )−1cT
ab. (4)

As a result of the measurement, the reduced state of mode â is
now out of equilibrium and Alice can extract work from a heat
bath by letting her state diffuse quasistatically in the phase
space [e.g., by pushing the board in Fig. 1(b)]. She puts the
system prepared in the postmeasurement state in contact with
the thermal bath and waits for it to reach equilibrium σ

eq
a . As

her state is independent of the outcome, its average entropy is
simply

∫
dX pXS(σπb

a|X) = S(σπb
a ). Following Eq. (1), we can

thus define the extractable work as

W = kBT
[
S
(
σ eq

a

) − S
(
σπb

a

)]
. (5)

Let us first address the simplest case in which σab is in the
standard form (3) and the reference thermal state has the
same energy as Alice’s initial state, i.e., σ

eq
a = σa . In this

way all the work extracted is due to measurement backaction.
Indeed, we notice that the extractable work corresponds, up
to a multiplicative factor, to the one-way classical correlations
J ←(�ab), operationally associated with the distillable com-
mon randomness between the two parties [30]. By maximizing
it over all the possible measurements, it quantifies the total
classical correlations between the two parties [16] and can

be analytically evaluated for Gaussian states and Gaussian
measurements [31,32].

In order to quantify the entropy of the reduced state (4), we
employ the Rényi entropy of order 2, S2(�) = − ln Tr[�2].
When restricted to Gaussian states S2(�) becomes a fully
legitimate entropy functional, satisfying strong subadditivity
[33], and takes a simple expression in terms of the covariance
matrix

S2(σab) = 1
2 ln(det σab). (6)

The expression of the work (5) then becomes

W = kBT

2
ln

(
det σa

det σπb
a

)
. (7)

From now on we express the extractable work in units of kBT .
We recall that for our scope W must be regarded as the output
of a suitable work-extraction protocol (which we consider as
a black-box process). A nonzero W clearly corresponds to the
presence of (classical) correlations between the two demons
Alice and Bob. We will see that the knowledge of W , together
with that of the local energies, always provides a sufficient
criterion to detect entanglement.

A. Symmetric squeezed thermal state

Let first address the case of quantum states of the form
�ab = S2(r)νβ ⊗ νβS2(r)†, generated by acting with a two-
mode squeezing operator S2(r) = exp{r(a†b† − ab)} on two
thermal states νβ = e−βa†a/Z with the same temperature.
Their corresponding covariance matrix is in standard form with
σa = σb = diag(a,a) and cab = diag(c,−c), where a � 1

2 and

|c| �
√

a2 − 1
4 . Following Bob’s measurement (with strength

λ and angle φ), Alice can extract an average amount of work
given by

W (λ) = 1

2

∑
k=0,1

ln

[
a(2aλk + λ1−k)

2(a2 − c2)λk + aλ1−k

]
. (8)

We notice there is no dependence on the measurement angle.
In the limit c → 0 the expression vanishes, i.e., no work can
be extracted from uncorrelated states. One can check that
both the entanglement and W (λ) are monotonically increasing
with the parameter c and decreasing with the local energy
parameter a. As a consequence, the maximum amount of
work W (λ)

sep extractable by a separable state is achieved at the
separability threshold csep = a − 1/2. The latter expression is
obtained by applying the standard Peres-Horodecki criterion
to the covariance matrix [34]. The condition W (λ) > W (λ)

sep is
therefore both necessary and sufficient for entanglement of
σab. The corresponding value of W (λ)

sep reads

W (λ)
sep = 1

2

∑
k=0,1

ln

[
2a(2aλk + λ1−k)

(4a − 1)λk + 2aλ1−k

]
. (9)

Moreover, when the correlations attain the maximum value
cmax =

√
a2 − 1/4 (corresponding to a two-mode squeezed

vacuum) the expression of the work is

Wmax = ln 2a, (10)

independently of the strength of the measurement.

062311-3



BRUNELLI, GENONI, BARBIERI, AND PATERNOSTRO PHYSICAL REVIEW A 96, 062311 (2017)

FIG. 2. Extractable work W (in units of kBT ) against a for randomly generated states. Each point corresponds to a state obtained by a
uniform sampling of the parameters a and c. Points corresponding to entangled (separable) states are marked in yellow (gray). (a) Homodyne
detection and (b) heterodyne detection. The red dashed curve represents the maximum amount of extractable work Wmax, while the black
solid curve stands for the work at the separability threshold W (k)

sep, k = 0,1. (c) Extractable work against the parameter c for different Gaussian
measurements and a = 3. Solid, dashed, and dot-dashed curves refer to λ = 0, 5, and 1, respectively. The vertical dashed line refers to the
value csep = a − 1/2, while the horizontal ones refer to the corresponding values of W (k)

sep, k = 0,1.

In Fig. 2(a) and 2(b) we plot the curves (9) and (10) for
the relevant case λ = 0 (λ = 1) corresponding to homodyne
(heterodyne) detection, together with randomly generated
symmetric states. As expected, points corresponding to sep-
arable (gray) and entangled (yellow) states occupy disjoint
regions, confirming how the extractable work provides a
necessary and sufficient condition for separability. From the
plots it also is possible to see that for heterodyne measurements
the maximum amount of work extractable from a separable
state is larger than for the case of homodyne measurements.
It is important to stress that the threshold is not universal,
i.e., a constant value, but instead depends on the value of
local energy: The couple (a,W ) then fully characterizes the
separability of the state. Explicit expressions for λ = 0,1 are
listed below:

W (0) = 1

2
ln

(
a2

a2 − c2

)
, W (0)

sep = 1

2
ln

(
4a2

4a − 1

)

and

W (1) = ln

[
a(2a + 1)

2(a2 − c2) + a

]
, W (1)

sep = ln

[
2a(2a + 1)

1 − 6a

]
.

It is also instructive to look at the behavior of the extractable
work W against the correlations between the two modes. In
Fig. 2(c) we show the behavior of W as a function of the
parameter c for a fixed value of the energy (fixed a). Here
W is monotonically increasing with respect to the amount
correlations shared between the two modes. For product
states (c = 0) the extractable work vanishes, while it achieves
its maximum for a two-mode squeezed vacuum (c = cmax).
Moreover, we can see that different measurement strategies
allow for the extraction of different amounts of work. In
particular, we notice that the average work W (λ) extractable
by implementing a Gaussian measurement of strength λ is
both upper and lower bounded, i.e., W (0) � W (λ) � W (1). In
particular, heterodyne detection turns out to be optimal for
work extraction. For any a and c, W (λ) is monotonically
increasing with respect to λ in the interval λ ∈ [0,1] and
monotonically decreasing in λ ∈ [1,∞).

B. Squeezed thermal state

The very same analysis can be extended to the class of
nonsymmetric squeezed thermal states (STSs) having different

thermal occupation in each mode, obtained by setting cab =
diag(c,−c) in Eq. (3). The parameters fulfill a � 1

2 , b �
1
2 , and |c| � max{

√
(a + 1

2 )(b − 1
2 ),

√
(a − 1

2 )(b + 1
2 )}. The

extractable work W (λ) in this case reads

W (λ) = 1

2

∑
k=0,1

ln

[
a(2bλk + λ1−k)

2(ab − c2)λk + aλ1−k

]
, (11)

which still does not depend on the measurement angle and
reduces to Eq. (8) when b → a. Also, here one can verify
that, for fixed a and b, by increasing c, one both increases
the value of W (λ) and moves from the class of separable
states to entangled states (or increases the entanglement). Thus
the extractable work, supplemented with the local purities,
still provides a necessary and sufficient condition for the
entanglement of the initial state, by checking the condition
W (λ) > W (λ)

sep , where W (λ)
sep is obtained by substituting the

threshold value csep = √
(a − 1/2)(b − 1/2) as found by the

Peres-Horodecki criterion [34]. In Fig. 3 we show the most
relevant cases of homodyne and heterodyne detection, along
with the separability thresholds W (λ)

sep and maximum work Wsep,
whence we can see that for λ = 1 the extractable work is no
longer symmetric with respect to a and b, and Wmax now
acquires a dependence on the measurement. We also stress
that the maximum amount of work extractable from a separable
state is achieved by a heterodyne measurement, i.e., not by a
projective measurement.

We can then consider the case where exhaustive information
about the local purities is not available. Let us assume that only
one local energy is known exactly, say, a, while on the other
only an upper bound is available, i.e., b � bmax. This situation
is illustrated in Fig. 4 for the case of a homodyne measurement.
Since (gray) points corresponding to separable states only
occupy the portion of the graph below a threshold, we can
conclude that the criterion is still sufficient for entanglement
detection. The separability threshold is provided by the corre-
sponding expression of the STS W (λ)

sep evaluated at b = bmax,
while W (λ)

max is evaluated along the bisection line b = a.

C. General two-mode Gaussian state

Let us now consider two-mode states in the standard form
(3). In this case the expression of the extractable work W (λ)(φ)
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FIG. 3. Extractable work W (in units of kBT ) against local
energies a and b for randomly generated STSs. Each point corre-
sponds to a state obtained by a uniform sampling of the parameters
a, b and c. Points corresponding to entangled (separable) states
are marked in yellow (gray). (a) Homodyne detection (λ = 0) and
(b) heterodyne detection (λ = 1). Maximum work W (k)

max (red) and
separable work W (k)

sep (black), k = 0,1 correspond to red and gray
surfaces, respectively. In the right column, sections of both plots are
shown.

depends on the measurement angle, so we will consider the

average W
(λ) = 1

2π

∫ 2π

0 dφ W (λ)(φ). In this case we cannot
prove any analytical relation between the extractable work
and the separability of the initial bipartite state. In Fig. 5 we

display W
(λ)

against the local energies for randomly generated

FIG. 4. Extractable work W (in units of kBT ) for a STS against
the parameter a. Random generated states are constrained to have
b � bmax where we set bmax = 3. Points corresponding to entangled
(separable) states are marked in yellow (gray) and we performed
homodyne detection. The black solid curve is given by W (0)

sep evaluated
at b = bmax, while the red dashed one is given by W (0)

max evaluated at
b = a.

FIG. 5. Extractable work W
(λ)

(in units of kBT ) averaged over
the detection angle φ against the local energies a and b. Points are
obtained by random sampling. Detection strength has been fixed to
a generic value λ = 3. Points corresponding to entangled (separable)
states are marked in yellow (gray). Maximum and separable work

W (λ)
max and W

(λ)
sep correspond to red dashed and black solid curves,

respectively.

states of the form (3) and we observe that the amount of work
extractable from separable states (gray points) looks upper
bounded and thus seems to provide a necessary condition
for detecting entanglement. Numerical inspection shows that

the correlations, and in turn the extractable work W
(λ)

, are
maximized, at fixed a, b, and c, by either the corresponding
STS (recovered in the limit d → −c) for which we already
know the bound or states having a covariance matrix given by
Eq. (3) with ca,b = diag(c,0). We denote members of the latter
class by σ ′. These states are always separable, but sometimes
they can be more correlated than a separable STS (with the
same a and b). For these states the bounds on physicality
and separability coincide. We will refer to that bound, to be
averaged over φ, as W (λ)

sep(σ ′) and the corresponding analytical
expression is reported in the Appendix. Therefore, we propose
the following upper bound on the extractable work from
separable states:

W
(λ)
sep(σab) = max

[
W (λ)

sep(σSTS),W
(λ)
sep(σ ′)

]
. (12)

In Fig. 5, W
(λ)
sep is shown in black, with the dotted curve

showing the smaller of the two components appearing in
Eq. (12). We can see that for small a and b, states σ ′ result
in more extractable work than σSTS and we cannot find any
random separable state violating the bound. This result is in
agreement with the findings of Ref. [13]. Our result holds
for generic measurement strength λ and is not restricted to
projective measurements (λ → 0,∞).
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V. MEASUREMENT ON BOTH PARTIES

In this section we address the second scenario, sketched
in Fig. 1(c) and addressed for qubits in Ref. [13], where
both demons Alice and Bob perform measurements on their
reduced state. The second Gaussian measurement performed
by Alice is described as π̂a(Y ) = π−1D̂a(Y )�̂πa D̂

†
a(Y ), where

D̂a(Y ) = exp(Y â† − Y ∗â) and �̂πa is a pure Gaussian state
with covariance matrix γ πa = R(θ )diag(μ/2,μ−1/2)R(θ )T ,
μ ∈ [0,∞]. The probability distribution corresponding to the
measurement on mode â, conditioned by the measurement
π̂b(X) performed on mode b̂, turns out to be a Gaussian
distribution whose covariance matrix is independent of the
outcome of the measurements, i.e., σπb,πa

ab = σπb
a + γ πa , where

σπb
a is given by Eq. (4). Since work is extracted by a diffusion-

like process in the phase space, starting with a less localized
state intuitively results in less work extracted. In this case the
extractable work is quantified via the Shannon entropies of the
corresponding probability distribution H (Pr(X,Y )), which is
equal to the entropy of the Gaussian distribution H (σπb,πa

ab ).
We thus have

W = kBT
[
H (σa + γ πa ) − H

(
σ

πb,πa

ab

)]
= kBT

2
ln

[
det(σa + γ πa )

det
(
σ

πb
a + γ πa

)
]
. (13)

The generic expression W = W (λ,μ)(φ,θ ) must then be av-
eraged over the angles θ and φ. This is the work extracted
from the statistics of the outcome distributed according
to a Gaussian distribution with covariance matrix σ

πb,πa

ab .
Expression (13) also elucidates why we chose the Rényi-2
entropy (6) in place of the usual von Neumann entropy as
the entropic quantifier for a state. With that choice the one-
and two-measurement work extracting protocols are smoothly
linked since the respective work outputs (13) and (7) are related
by a Gaussian convolution.

For the case of a symmetric STS and two homodyne or
heterodyne measurements we get

W (1,1) = 1

2
ln

[
(2a + 1)4

[(2a + 1)2 − 4c2]2

]
(14)

and

W (0,0)(φ,θ ) = 1

2
ln

[
2a2

2a2 − c2{cos[2(θ + φ)] + 1}
]
. (15)

From expression (15) we see that for θ + φ = (2k + 1)π/2,
k ∈ Z, the extractable work identically vanishes, which ex-

plains why the meaningful quantity is given by W
(0,0)

. In Fig. 6

we compare W
(0,0)

(W (1,1)) to W (0) (W (1)). We can see the
reduction of the extractable work due to the smearing of the
distribution imparted by the second measurement. Contrary
to the single-measurement scenario, now also for a two-mode

squeezed vacuum c = cmax a considerable gap between W
(0,0)

and W (1,1) opens, which significantly penalizes homodyne
measurements.

W

c
0 1 2 3
0

0.5

1

1.5

FIG. 6. Extractable work W (in units of kBT ) for symmetric STS
against the parameter c and for fixed a = 3. The red dashed curve

is for W (1,1), while the black solid one is for W
(0,0)

. We also show a
comparison with work extracted via single heterodyne detection W (1)

(light red thin dashed curve) and homodyne detection W (0) (gray thin
curve). The vertical dashed line refers to the value csep = a − 1/2.

Relation with the mutual information

Interestingly, when Alice and Bob both perform heterodyne
detection, a clear connection between the extractable work
W (1,1) and a form of mutual information emerges. The
extractable work W (1,1) can be cast in the form

W (1,1) = kBT

2
ln

(
Ĩ1Ĩ2

Ĩ4

)
, (16)

where Ĩ1(2) = det σ̃a(b) and Ĩ4 = det σ̃ab are the symplectic
invariants of the covariance matrix σ̃ab = σab + 1/2. The latter
can be seen as the result of a convolution between the original
covariance matrix and the vacuum. Indeed, it can be checked
that Eq. (16) equals kBT times the mutual information com-
puted with the Wehrl entropy S(�) = − ∫

dα Q(α) ln Q(α),
i.e., the Shannon entropy of the Husimi Q function Q(α) =
1
π
〈α|�|α〉. The Husimi Q function is related to the Wigner

function through convolution with the vacuum.
On the other hand, if we consider the case where Bob

performs two sets of homodyne measurements at φ = 0 and
φ = π/2 (namely, the q quadrature and p quadrature), the
work that Alice can extract can be expressed as

W (0)(q,p) = kBT

2
ln

(
I1I2

I4

)
, (17)

where I1,2 and I4 are now the local and global symplectic
invariants of σab. Equation (17) coincides with the mutual
information computed with the Rényi-2 entropy I(σa:b) =
S2(σab||σa ⊕ σb), namely, the Kullback-Leibler divergence
between the joint Wigner function and the product of the
reduced ones [33]. It can also be checked that a second
potential measurement performed by Alice is inconsequential.

VI. WORK EXTRACTION BEYOND
THE GAUSSIAN FRAMEWORK

So far we have assumed the demons shared a Gaussian state
(in standard form) and implemented Gaussian measurements.
In particular, this entails that the reduced states of Alice and
Bob are both thermal, so the amount of work extracted (by
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Alice) is a direct measure of the one-way classical correlations
J ←(�ab). Let us here briefly explain how the expression of
the extractable work can be generalized to a generic bipartite
state. We will extend the notation adopted for covariance
matrices σab to density operators �ab and measure the entropy
by the von Neumann entropy S(�ab) = −Tr[�ab ln �ab]. Bob
performs a measurement π̂b(X) � 0,

∫
dX π̂b(X) = 1, on

his side, getting the X outcome with probability p(X) =
Tr[�ab1a ⊗ π̂b(X)], and Alice’s reduced state must be updated
to �a|X. The (nonoptimized) one-way classical correlations
is given byJ ←(�ab) = S(�a) − ∫

dX p(X)S(�a|X). Recalling
that �

eq
a = Z−1

a exp(−Ha/kBT ) is the final equilibrium state
after thermalization with the reservoir and comparing with
Eq. (5), in general we have

W = kBT
[
J ←(�ab) + S

(
�eq

a

) − S(�a)
]
. (18)

We notice that J ←(�ab) � 0 and S(�eq
a ) � S(�a), �

eq
a being

the equilibrium state with the same average energy, so the
presence of initial quantum coherence in Alice’s state leads
to an increased amount of extractable work. By adding and
subtracting the term kBT Tr[�a ln �

eq
a ], we can rewrite the

previous equation as

W = kBT
[
J ←(�ab) + S

(
�a||�eq

a

)] + �Qa, (19)

where S(�||σ ) = Tr[� ln � − � ln σ ] is the quantum relative
entropy between two states [35] and �Qa = Tr[(�eq

a − �a)Ha]
is the heat absorbed from the bath in an isothermal expansion
from the premeasurement state to the final state. When
�a = �

eq
a , as for Gaussian states in standard form, both extra

terms in Eq. (19) vanish and the previous result is recovered.
However, we notice that Eq. (19) also applies to Gaussian states
with nondiagonal reduced covariance matrix σa �= diag(a,a).
Further exploration of this relation is left for future work.

VII. WORK EXTRACTION FROM TRIPARTITE
GAUSSIAN STATES

We now move to investigate the extraction of work from
a multipartite system. In analogy with the bipartite case, one
can think of the extracting protocol as a continuous-variable
Szilard engine with a multipartite working substance and a
demon acting on each party. As in the previous sections, we
are interested in the extractable work as a tool to investigate the
nature of the correlations shared within the working medium.
The classification of entanglement in multipartite systems is an
extremely challenging problem [7]. In the following we will
focus on the tripartite case, whose (in)separability structure
is already considerably richer and more complex than the
bipartite case. Let us consider a tripartite Gaussian state with
covariance matrix

σabc =

⎛
⎜⎝

σa cab cac

cT
ab σb cbc

cT
ac cT

bc σc

⎞
⎟⎠, (20)

where σj is the reduced covariance matrix of each mode and
cjk contains the correlations between modes j and k, where
j,k ∈ {a,b,c}, j �= k. When considering a given bipartition of

the state, say, (ab,c), we can equivalently employ the notation

σabc =
(

σab cab,c

cT
ab,c σc

)
, (21)

where cab,c = (cac cbc)T is a 4 × 2 matrix containing correla-
tions between c and the two-mode state ab.

Let us recall the separability structure of the class (20).
For any bipartition of the state, positivity under partial trans-
position (PPT) provides a necessary and sufficient condition
for separability. The PPT criterion singles out four distinct
(in)separability classes: (i) states which are not separable under
any bipartition of the modes and are called fully inseparable
and share genuine tripartite entanglement; (ii) states which
are separable with respect to one bipartition only, referred
as 1-biseparable states; (iii) states which are separable for
two different bipartitions (2-biseparable states); and (iv) states
separable under all three bipartitions (3-biseparable states)
[36]. Notice that fully separable states of thee three modes,
i.e., states of the form �̂sep = ∑

k pk�̂a,k ⊗ �̂b,k ⊗ �̂c,k , belong
to class (iv). Thus entangled states are present in all the classes
listed, ranging from genuinely tripartite entangled states in (i)
to bound entangled states in (iv).

In the natural extension of the work-extracting protocol
that we consider, Alice extracts work from a local heat bath
by acting on her state, after Bob and Charlie performed local
measurements on their modes. Again, by restricting the study
to a Gaussian measurement with a pure seed, the conditional
state of Alice and Bob after Charlie’s measurement π̂c is given
by

σ
πc

ab = σab − cab,c(σc + γ πc )−1cT
ab,c (22)

=
(

σπc
a c

πc

ab

c
πc,T
ab σ

πc

b

)
, (23)

so a second measurement π̂b on Bob’s side leaves Alice with
the conditional state

σπb,πc

a = σab −
(

cac

cbc

)
(σc + γ πc )−1(cac cbc). (24)

By letting the state (24) thermalize, Alice can thus extract an
amount of work given by

W = kBT

2
ln

(
det σa

det σπb,πc
a

)
. (25)

We are now in position to address how the different separability
classes of states (20) affect the work-extracting protocol.

A. Tripartite pure states

Let us first address the case of pure tripartite states σP
abc. For

these states an explicit parametrization can be given in terms
of the diagonal elements alone. The standard form of a pure
tripartite state is given by
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σP
abc =

⎛
⎜⎜⎜⎜⎜⎝

a 0 c+
ab 0 c+

ac 0
0 a 0 c−

ab 0 c−
ac

c+
ab 0 b 0 c+

bc 0
0 c−

ab 0 b 0 c−
bc

c+
ac 0 c+

bc 0 c 0
0 c−

ac 0 c−
bc 0 c

⎞
⎟⎟⎟⎟⎟⎠, (26)

where a,b,c � 1/2 and

c±
ij =

√
[4(i − j )2 − (2k − 1)2][4(i − j )2 − (2k + 1)2] ±

√
[4(i + j )2 − (2k − 1)2][4(i + j )2 − (2k + 1)2]

16
√

ij
, (27)

with j,k ∈ {a,b,c}, j �= k. For such states, the separability
structure is considerably simpler: If a = b = c = 1/2 the
state is the product of three single-mode vacua; otherwise
it can either be the product of the vacuum in one mode and
a maximally entangled state of the other two (1-biseparable
state) or be fully inseparable. In particular, no states in class
(iii) can be found or any state in (iv) which is not in the
factorized form.

It is well known that for the qubit case two inequivalent
classes of pure tripartite entangled states emerge: Greenberger-
Horne-Zeilinger (GHZ) states with maximal genuine tripartite
entanglement and zero bipartite entanglement in any two-qubit
reduction and W states with maximal bipartite entanglement
across any bipartition but vanishing tripartite entanglement
[37]. On the contrary, it can be shown that the subclass
of pure symmetric Gaussian states retains at the same time
the entanglement properties of both GHZ and W states. By
either maximizing the bipartite entanglement in any two-mode
reduction (W -like) or maximizing the genuinely tripartite
entanglement (GHZ-like), the same family of state is singled
out, namely, the state of the form (26) with a = b = c and

c± = 4a2 − 1 ±
√

(4a2 − 1)(36a2 − 1)

16a
. (28)

Let us recall that in Ref. [15] a suitable strategy based on the
local extractable work was proposed to distinguish between
GHZ and W states.

In the present case the expression for the extractable work
(25) can be analytically evaluated and reads

WP = ln 2a. (29)

By direct comparison with Eq. (10) we see that WP co-
incides with the maximum work extractable from a two-
mode symmetric state. This amount of work turns out to be
independent of the measurements implemented by the demons
Bob and Charlie. Moreover, the same amount of work as
in Eq. (29) can be extracted from the tripartite pure state
in Eq. (26) for fixed purities b and c, independently of the
measurement. Therefore, since the same amount of work is
extracted from a pure bipartite entangled state and a fully
inseparable three-mode state (with the same a), we conclude
that the demon Alice would not boost work extraction by
entangling her Gaussian Szilard engine with a third mode.
On the other hand, based on the amount of work extracted,
Alice cannot distinguish between states belonging to class (ii)
of the form |0〉b ⊗ Ŝ2(ξ )|00〉ac and |0〉c ⊗ Ŝ2(ξ )|00〉ab and a

genuinely tripartite symmetric state. This fact seems to indicate
that bipartite entanglement is the essential resource behind the
work extracting protocol. If the Gaussian demon Alice had to
decide based on the extractable work only, she could not tell
whether she is extracting work from a bipartite Szilard engine
with a pure entangled working substance or from a tripartite
one.

B. Symmetric mixed states

Another relevant class is the one of fully symmetric mixed
states, namely, tripartite states invariant under the permutation
of any mode. Their covariance matrix in block form is given
by [38]

σS
abc =

⎛
⎜⎝

σa C C

CT σa C

CT CT σa

⎞
⎟⎠, (30)

with σa = a12 and C = diag(c+,c−) with elements

c+ = 4a2 − 5 +
√

36a2(4a2 − 2) + 25

16a
,

c− = 5 − 36a2 +
√

36a2(4a2 − 2) + 25

48a
. (31)

These are states which are either factorized for a = 1/2 or
fully inseparable whenever a > 1/2. They can be obtained by
maximizing the entanglement between any bipartition while at
the same time imposing no entanglement to be present within
the two-mode state. For such a class of states the extractable
work can be computed analytically, although the resulting
expressions are quite involved. In Fig. 7 we plot the extractable
work for states σS

abc when demons Bob and Charlie perform
either heterodyne detection (red dashed curve) or homodyne
detection (black solid curve). The dashed curve represents
WP , i.e., the work extracted with pure tripartite states σP

abc

for any measurement. In particular, we notice that WP is
asymptotically reached for heterodyne detection even if the
state is mixed. We can thus conclude that, besides the presence
of genuinely tripartite entanglement, also the global mixedness
of the state does not play a crucial role when work extraction
is concerned.
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FIG. 7. Extractable work W (in units of kBT ) against local energy
a for a fully symmetric mixed state σS

abc when either heterodyne
detection (red dot-dashed curve) or homodyne detection (black solid
curve) is performed on both Bob’s and Charlie’s sides. In the case of
homodyne detection the work has been averaged over the two angular
variable. The black dashed line corresponds to the work extracted
from a pure symmetric tripartite state σP

abc.

C. Tripartite mixed states

In order to better understand the interplay between purity,
bipartite and genuinely tripartite quantum correlations, and
work extraction, we now turn our attention to the generic mixed
tripartite case. When cast in standard form [18], the covariance
matrix of a general tripartite state reads

σM
abc =

⎛
⎜⎜⎜⎜⎜⎝

a 0 c1 0 c3 c5

0 a 0 c2 0 c4

c1 0 b 0 c6 c8

0 c2 0 b c9 c7

c3 0 c6 c9 c 0
c5 c4 c8 c7 0 c

⎞
⎟⎟⎟⎟⎟⎠. (32)

Given that the full-fledged problem cannot be attacked analyti-
cally, we proceed by randomly generating states σM

abc sampling
each of the 12 parameters from a uniform distribution. Such
states are then classified by applying the PPT criterion across
every bipartition: States belonging to classes (i)–(iv) are
colored in yellow, red, purple, and gray, respectively. We then
compute the extractable work (25) when the Gaussian demons
Bob and Charlie perform their measurements, and average
the work over the detection angles. The result is shown in
Fig. 8 for the relevant cases of homodyne [Figs. 8(a)–8(c)]
and heterodyne detection [Figs. 8(d)–8(f)].

From Fig. 8 we can see that between states belonging to
class (iv), which are either classically correlated or possess
bound entanglement at most, and genuine tripartite entangled
states (i) there is no a dramatic difference as far as work
extraction is concerned, meaning that the overlapping region
is significant. As reasonably expected, genuine tripartite
entanglement on average leads to higher values of extracted
work. However, the distributions of the work values does not
seem to be lower bounded. In Figs. 8(b) and 8(e) we highlight
this feature for the case of homodyne and heterodyne detection,
respectively.

Moreover, through work extraction the demons can hardly
discriminate between the case where entanglement is present
across all three bipartitions (yellow points) or or just across
one of them (purple points). This is further evidence that

FIG. 8. Extractable work W (in units of kBT ) against local energy
a for randomly generated tripartite states σM

abc. Points corresponding
to fully inseparable states are marked in yellow, 1-biseparable in red,
2-biseparable in purple, and 3-biseparable in gray. (a)–(c) Homodyne
detection (λ = 0) on Bob’s and Charlie’s sides and (d)–(f) heterodyne
detection (λ = 1). The maximum work Wmax corresponds to the black
curve.

work extraction is not sensitive to entanglement being shared
between two demons (either Alice and Bob or Alice and
Charlie) rather than among all three of them. In Figs. 8(c)
and 8(f) we highlight the work extracted from 1-biseparble
and 2-biseparable states.

VIII. CONCLUSIONS AND OUTLOOK

We have formulated a protocol for extracting work (out
of a thermal bath) by means of a correlated quantum system
subjected to measurements. In particular, we focused on a fully
Gaussian framework (Gaussian states and Gaussian measure-
ments), phrasing the protocol in terms of demons acting locally
on a Szilard engine with a multipartite working substance
which may contain quantum correlations. By exploiting the
initial correlations and the measurement backaction, work can
be extracted by one of the demons. We then addressed the
use of the work output as a detector of entanglement. We
provided evidence that this is the case for a two-mode Gaussian
state in standard form. Moreover, for the subclass of squeezed
thermal states we proved that the extractable work (together
with the local purities) also provides a necessary condition for
inseparability. Despite the focus on the Gaussian scenario,
we showed how the framework can be easily generalized
to account for the presence of initial quantum coherence
and generic measurement, thus going beyond the Gaussian
framework.

We then inquired whether the extractable work can be
used to discriminate among richer inseparability structures,
such as the one provided by tripartite Gaussian states. We
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found that genuine tripartite entanglement can hardly be dis-
tinguished from bipartite entanglement. In conclusion, sharing
entanglement among many parties does not seem to boost the
amount of work extracted by one of them and, conversely,
the effectiveness of the work-based separability criterion
considerably weakens moving from two to three parties, even
for a special class of states such as the Gaussian one. On
the other hand, as the structure of tripartite entanglement is
much richer for non-Gaussian states, one may speculate that,
as it happens for finite-dimensional systems [15], this property
would be lost if we do not restrict ourselves to the Gaussian
realm.
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APPENDIX

1. Expressions of the extractable work
for squeezed thermal states

Here we report the expressions of the extractable work for
STSs in the relevant case of homodyne (λ = 0) and heterodyne
(λ = 1) detection

W (0) = 1

2
ln

(
ab

ab − c2

)
, (A1)

W (1) = 1

2
ln

[
(2ab + a)2

(2ab + a − 2c2)2

]
. (A2)

In particular, the maximum extractable work and the upper
bound on the work extractable from a separable state read

W (0)
max = 1

2
ln

[
4ab

1 + 2|a − b|
]
, (A3)

W (1)
max =

{
ln 2a if a � b

ln
[ 2a(1+2b)

1+4a−2b

]
otherwise,

(A4)

W (0)
sep = 1

2
ln

(
4ab

2a + 2b − 1

)
, (A5)

W (1)
sep = 1

2
ln

[
4(2ab + a)2

(4a + 2b − 1)2

]
. (A6)

2. Expression of the separable work for two-mode Gaussian states in standard form

For Gaussian states in standard form (3) the bound on the work extractable from a separable state is given by W
(λ)
sep(σab) =

max[W (λ)
sep(σSTS),W

(λ)
sep(σ ′)], where

W (λ)
sep(σSTS) =

∑
k=0,1

ln

[
2a(2bλk + λ1−k)

(2a + 2b − 1)λk + 2aλ1−k

]1/2

(A7)

and

W (λ)
sep(σ ′) = 1

2
ln

(
16a2b(2b + λ)(2bλ + 1)

(4a2 − 1)(4b2 − 1)(λ2 − 1) cos(2φ) + 4a2[4b2(λ2 + 1) + 8bλ + λ2 + 1] + (4b2 − 1)(4bλ + λ2 + 1)

)
,

(A8)

then to be averaged over φ ∈ [0,2π ].
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