11 research outputs found

    Deceiving Google's Cloud Video Intelligence API Built for Summarizing Videos

    Full text link
    Despite the rapid progress of the techniques for image classification, video annotation has remained a challenging task. Automated video annotation would be a breakthrough technology, enabling users to search within the videos. Recently, Google introduced the Cloud Video Intelligence API for video analysis. As per the website, the system can be used to "separate signal from noise, by retrieving relevant information at the video, shot or per frame" level. A demonstration website has been also launched, which allows anyone to select a video for annotation. The API then detects the video labels (objects within the video) as well as shot labels (description of the video events over time). In this paper, we examine the usability of the Google's Cloud Video Intelligence API in adversarial environments. In particular, we investigate whether an adversary can subtly manipulate a video in such a way that the API will return only the adversary-desired labels. For this, we select an image, which is different from the video content, and insert it, periodically and at a very low rate, into the video. We found that if we insert one image every two seconds, the API is deceived into annotating the video as if it only contained the inserted image. Note that the modification to the video is hardly noticeable as, for instance, for a typical frame rate of 25, we insert only one image per 50 video frames. We also found that, by inserting one image per second, all the shot labels returned by the API are related to the inserted image. We perform the experiments on the sample videos provided by the API demonstration website and show that our attack is successful with different videos and images

    Positive and negative label propagation

    Get PDF

    Person Identity Label Propagation in Stereo Videos

    Get PDF

    Generalized Multi-manifold Graph Ensemble Embedding for Multi-View Dimensionality Reduction

    Get PDF
    In this paper, we propose a new dimension reduction (DR) algorithm called ensemble graph-based locality preserving projections (EGLPP); to overcome the neighborhood size k sensitivity in locally preserving projections (LPP). EGLPP constructs a homogeneous ensemble of adjacency graphs by varying neighborhood size k and finally uses the integrated embedded graph to optimize the low-dimensional projections. Furthermore, to appropriately handle the intrinsic geometrical structure of the multi-view data and overcome the dimensionality curse, we propose a generalized multi-manifold graph ensemble embedding framework (MLGEE). MLGEE aims to utilize multi-manifold graphs for the adjacency estimation with automatically weight each manifold to derive the integrated heterogeneous graph. Experimental results on various computer vision databases verify the effectiveness of proposed EGLPP and MLGEE over existing comparative DR methods

    Implicit and Explicit Concept Relations in Deep Neural Networks for Multi-Label Video/Image Annotation

    Get PDF
    IEEE In this work we propose a DCNN (Deep Convolutional Neural Network) architecture that addresses the problem of video/image concept annotation by exploiting concept relations at two different levels. At the first level, we build on ideas from multi-task learning, and propose an approach to learn conceptspecific representations that are sparse, linear combinations of representations of latent concepts. By enforcing the sharing of the latent concept representations, we exploit the implicit relations between the target concepts. At a second level, we build on ideas from structured output learning, and propose the introduction, at training time, of a new cost term that explicitly models the correlations between the concepts. By doing so, we explicitly model the structure in the output space (i.e., the concept labels). Both of the above are implemented using standard convolutional layers and are incorporated in a single DCNN architecture that can then be trained end-to-end with standard back-propagation. Experiments on four large-scale video and image datasets show that the proposed DCNN improves concept annotation accuracy and outperforms the related state-of-the-art methods

    Aprendizado de representações e correspondências baseadas em grafos para tarefas de classificação

    Get PDF
    Orientador: Ricardo da Silva TorresTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Muitas situações do mundo real podem ser modeladas por meio de objetos e seus relacionamentos, como, por exemplo, estradas conectando cidades em um mapa. Grafo é um conceito derivado da abstração dessas situações. Grafos são uma poderosa representação estrutural que codifica relações entre objetos e entre seus componentes em um único formalismo. Essa representação é tão poderosa que é aplicada em uma ampla gama de aplicações, de bioinformática a redes sociais. Dessa maneira, diversos problemas de reconhecimento de padrões são modelados para utilizar representações baseadas em grafos. Em problemas de classificação, os relacionamentos presentes entre objetos ou entre seus componentes são explorados para obter soluções efetivas e/ou eficientes. Nesta tese, nós investigamos o uso de grafos em problemas de classificação. Nós propomos duas linhas de pesquisa na tese: 1) uma representação baseada em grafos associados a objetos multi-modais; e 2) uma abordagem baseada em aprendizado para identificar correspondências entre grafos. Inicialmente, nós investigamos o uso do método Sacola de Grafos Visuais para representar regiões na classificação de imagens de sensoriamento remoto, considerando a distribuição espacial de pontos de interesse dentro da imagem. Quando é feita a combinação de representações de cores e textura, nós obtivemos resultados efetivos em duas bases de dados da literatura (Monte Santo e Campinas). Em segundo lugar, nós propomos duas novas extensões do método de Sacola de Grafos para a representação de objetos multi-modais. Ao utilizar essas abordagens, nós combinamos visões complementares de diferentes modalidades (por exemplo, descrições visuais e textuais). Nós validamos o uso dessas abordagens no problema de detecção de enchentes proposto pela iniciativa MediaEval, obtendo 86,9\% de acurácia nos 50 primeiros resultados retornados. Nós abordamos o problema de corresponência de grafos ao propor um arcabouço original para aprender a função de custo no método de distância de edição de grafos. Nós também apresentamos algumas implementações utilizando métodos de reconhecimento em cenário aberto e medidas de redes complexas para caracterizar propriedades locais de grafos. Até onde sabemos, nós fomos os primeiros a tratar o processo de aprendizado de custo como um problema de reconhecimento em cenário aberto e os primeiros a explorar medidas de redes complexas em tais problemas. Nós obtivemos resultados efetivos, que são comparáveis a diversos métodos da literatura em problemas de classificação de grafosAbstract: Many real-world situations can be modeled through objects and their relationships, like the roads connecting cities in a map. Graph is a concept derived from the abstraction of these situations. Graphs are a powerful structural representation, which encodes relationship among objects and among their components into a single formalism. This representation is so powerful that it is applied to a wide range of applications, ranging from bioinformatics to social networks. Thus, several pattern recognition problems are modeled to use graph-based representations. In classification problems, the relationships among objects or among their components are exploited to achieve effective and/or efficient solutions. In this thesis, we investigate the use of graphs in classification problems. Two research venues are followed: 1) proposal of graph-based multimodal object representations; and 2) proposal of learning-based approaches to support graph matching. Firstly, we investigated the use of the recently proposed Bag-of-Visual-Graphs method in the representation of regions in a remote sensing classification problem, considering the spatial distribution of interest points within the image. When we combined color and texture representations, we obtained effective results in two datasets of the literature (Monte Santo and Campinas). Secondly, we proposed two new extensions of the Bag-of-Graphs method to the representation of multimodal objects. By using these approaches, we can combine complementary views of different modalities (e.g., visual and textual descriptions). We validated the use of these approaches in the flooding detection problem proposed by the MediaEval initiative, achieving 86.9\% of accuracy at the Precision@50. We addressed the graph matching problem by proposing an original framework to learn the cost function in a graph edit distance method. We also presented a couple of formulations using open-set recognition methods and complex network measurements to characterize local graph properties. To the best of our knowledge, we were the first to conduct the cost learning process as an open-set recognition problem and to exploit complex network measurements in such problems. We have achieved effective results, which are comparable to several baselines in graph classification problemsDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação2016/18429-141584/2016-5CAPESFAPESPCNP

    Enabling Graph Analysis Over Relational Databases

    Get PDF
    Complex interactions and systems can be modeled by analyzing the connections between underlying entities or objects described by a dataset. These relationships form networks (graphs), the analysis of which has been shown to provide tremendous value in areas ranging from retail to many scientific domains. This value is obtained by using various methodologies from network science-- a field which focuses on studying network representations in the real world. In particular "graph algorithms", which iteratively traverse a graph's connections, are often leveraged to gain insights. To take advantage of the opportunity presented by graph algorithms, there have been a variety of specialized graph data management systems, and analysis frameworks, proposed in recent years, which have made significant advances in efficiently storing and analyzing graph-structured data. Most datasets however currently do not reside in these specialized systems but rather in general-purpose relational database management systems (RDBMS). A relational or similarly structured system is typically governed by a schema of varying strictness that implements constraints and is meticulously designed for the specific enterprise. Such structured datasets contain many relationships between the entities therein, that can be seen as latent or "hidden" graphs that exist inherently inside the datasets. However, these relationships can only typically be traversed via conducting expensive JOINs using SQL or similar languages. Thus, in order for users to efficiently traverse these latent graphs to conduct analysis, data needs to be transformed and migrated to specialized systems. This creates barriers that hinder and discourage graph analysis; our vision is to break these barriers. In this dissertation we investigate the opportunities and challenges involved in efficiently leveraging relationships within data stored in structured databases. First, we present GraphGen, a lightweight software layer that is independent from the underlying database, and provides interfaces for graph analysis of data in RDBMSs. GraphGen is the first such system that introduces an intuitive high-level language for specifying graphs of interest, and utilizes in-memory graph representations to tackle the problems associated with analyzing graphs that are hidden inside structured datasets. We show GraphGen can analyze such graphs in orders of magnitude less memory, and often computation time, while eliminating manual Extract-Transform-Load (ETL) effort. Second, we examine how in-memory graph representations of RDBMS data can be used to enhance relational query processing. We present a novel, general framework for executing GROUP BY aggregation over conjunctive queries which avoids materialization of intermediate JOIN results, and wrap this framework inside a multi-way relational operator called Join-Agg. We show that Join-Agg can compute aggregates over a class of relational and graph queries using orders of magnitude less memory and computation time
    corecore