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Implicit and Explicit Concept Relations in Deep
Neural Networks for Multi-Label Video/Image

Annotation
Foteini Markatopoulou, Vasileios Mezaris, Senior Member, IEEE, and Ioannis Patras, Senior Member, IEEE

Abstract—In this work we propose a DCNN (Deep Convolu-
tional Neural Network) architecture that addresses the problem
of video/image concept annotation by exploiting concept relations
at two different levels. At the first level, we build on ideas from
multi-task learning, and propose an approach to learn concept-
specific representations that are sparse, linear combinations of
representations of latent concepts. By enforcing the sharing of the
latent concept representations, we exploit the implicit relations
between the target concepts. At a second level, we build on ideas
from structured output learning, and propose the introduction,
at training time, of a new cost term that explicitly models the
correlations between the concepts. By doing so, we explicitly
model the structure in the output space (i.e., the concept labels).
Both of the above are implemented using standard convolutional
layers and are incorporated in a single DCNN architecture that
can then be trained end-to-end with standard back-propagation.
Experiments on four large-scale video and image datasets show
that the proposed DCNN improves concept annotation accuracy
and outperforms the related state-of-the-art methods.

Index Terms—Video/image concept annotation, deep learning,
multi-task learning, structured outputs, multi-label learning,
concept correlations, video analysis.

I. INTRODUCTION

Video/image concept annotation, also known as classifi-
cation [1], is the task of annotating video fragments (e.g.,
keyframes, video shots) or images with semantic labels re-
ferred to as concepts, e.g., object-related concepts (table,
chair), general terms (sky, sun), or action-related concepts
(running). The dominant approach for doing this is training
DCNNs in whose architectures the concepts share features
up to the very last layer, and then branch off to T different
classification branches (using typically one layer), where T
is the number of concepts [2]. However, in this way, the
implicit feature-level relations between concepts, e.g. the way
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in which concepts such as a car and motorcycle share lower-
level features modeling things like their wheels, are not
directly considered. Also, in such architectures, the relations or
interdependencies of the concepts at a semantic level, i.e. the
fact that two specific concepts may often appear together or,
inversely, the presence of the one may exclude the other, are
also not directly taken into consideration. While some methods
have been proposed for exploiting in a more elaborate way one
of these two different types of concept relations, there is no
single method that jointly exploits visual- and semantic-level
concept relations in a unified DCNN architecture.

Other related problems that also take advantage of concept
relations, include object detection [3], pedestrian detection [4],
and attribute and relationship detection [5]. However, these
problems are usually addressed using different, problem-
specific techniques, and for this reason they are out of the
scope of this work.

In this work we propose a DCNN architecture 1 that
captures therefore both implicit and explicit concept relations,
i.e., both visual-level and semantic-level concept relations.
First, implicit concept relations are modeled in a DCNN
architecture that learns T concept-specific feature vectors that
are themselves linear combinations of k < T latent concept
feature vectors. In this way, in the shared representations
(i.e., the latent concepts feature vectors), higher-level concepts
may share visual features - for example, concepts such as
car, motorcycle, and airplane may share features encoding
the wheels in their depiction [6]. This bears similarities to
multi-task learning (MTL) schemes, like GO-MTL [7] and
the two-sided network proposed in [8] that factorize the 2D
weight matrix that encodes concept specific features. However,
in contrast to GO-MTL [7], in our work the factorization is
achieved in two standard convolutional network layers, and
in contrast to [8], our network does not only verify whether
a certain concept that is given as input to the one side of
the network is present in the video/image that is given as
input to the other side. Instead, it provides scores for all
concepts in the output, similar to classical multi-label DCNNs.
Second, explicit concept relations are introduced by a new
cost term, implemented using a set of standard CNN layers
that penalize differences between the matrix encoding the
correlations among the ground-truth labels of the concepts, and
the correlations between the concept label predictions of our
network. In this way, we introduce constraints on the structure

1Source code available at: https://github.com/markatopoulou/fvmtl-ccelc
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of the output space by utilizing the label correlation matrix -
this will explicitly capture, for example, the fact that daytime
and nighttime are negatively correlated concepts.

The main contributions of this work are:
1) We propose a new approach, named FV-MTL (Shared

Latent Feature Vectors using Multi-task Learning), that
learns shared feature vectors corresponding to latent con-
cepts, and expresses the concept-specific feature vectors
as their sparse linear combination. This corresponds to
a factorization of the weight matrix and is implemented
using a set of standard CNN layers.

2) We propose a new cost function, named CCE-LC (Cost
Sigmoid Cross-entropy with Label Constraint), which
exploits a form of semantic relations, namely corre-
lations between pairs of concepts, in order to predict
structured outputs. This is again implemented using a
set of standard CNN layers.

3) We incorporate both of the above in a single DCNN
architecture that is trained end-to-end to solve the
video/image concept annotation problem. We evaluate
the trained DCNN both as a standalone classifier, where
the direct output of the complete network is evaluated,
and as feature generator, where SVM classifiers are
trained on DCNN-generated features. In both cases
we obtain state of the art results in publicly available
datasets and show the benefits of each of the proposed
contributions both alone and in tandem.

The remainder of the paper is organized as follows: Sec-
tion II reviews related work, focusing on MTL and structured
output prediction. Section III presents the proposed FV-MTL
approach, the proposed CCE-LC cost function, and also the
way that FV-MTL can be used jointly with the CCE-LC
cost in a unified DCNN architecture. Section IV reports our
experiments, results, and comparisons, and finally, Section V
summarizes our main conclusions and highlights future work.

II. RELATED WORK

Image or video concept annotation is a challenging multi-
label classification problem that in recent years is typically
addressed using DCNN models that choose a specific DCNN
architecture [9], [10] and put a multi-label cost function
on the top of it [11]–[13]. As is the case in other multi-
label problems, there exist relations between the different
concepts, and several methods attempt to utilise/model them
so as to improve the performance or reduce the complexity
of classification models that treat each concept independently.
These methods can be roughly divided in two main categories.
In the first category, methods that fall under the framework of
multi-task learning (MTL), attempt to learn representations or
classification models that, at some level, are shared between
the different concepts (tasks) [7], [8], [14]–[24]. In the
second category, methods that fall under the framework of
structured-output prediction attempt to learn models that make
multi-dimensional predictions that respect the structure of the
output space using either label constraints or post-processing
techniques [8], [25]–[30], [30]–[44]. Label constraints refer
to regularizations that are imposed into the learning system

in order to exploit label relations (e.g., correlations) [8],
[30], [31], [42]–[45]. Post-processing techniques refer to re-
calculating the concept prediction results using either meta-
learning classifiers or other re-weighting schemes [25]–[29].
In what follows, we first review works in those two broad
categories and then highlight their relation and differences with
the proposed method.

A. Multi-task Learning
Multi-task Learning (MTL) refers to jointly learning clas-

sifiers for many tasks by sharing knowledge across them so
as to improve their accuracy, instead of learning individual
models for each task. Video/image concept annotation can
be treated as a MTL problem, where each task is about
recognizing one concept. MTL methods can be divided into
two broad categories: i) Shallow MTL methods that focus
on shallow linear models and typically require pre-computed
features as input, for example local descriptors or DCNN-
based pre-computed features and ii) MTL methods that are
an integral part of deep network architectures.

The MTL methods belonging to the first category extend
typical linear models (e.g., Support vector machines (SVMs))
in order to incorporate task relatedness, i.e., the type of
knowledge that should be shared. In a single-task learning
(STL) concept annotation scenario, a supervised classifier is
trained per concept on positive/negative keyframes/images of
this concept. If the classifier is linear (e.g., SVM) its goal is to
minimize the empirical cost: min(wj) L(wj) +Θ(wj), where
wj ∈ Rd1×1 is the task parameter vector to be estimated
from the training samples, L(wj) is the empirical cost on
the training set, Θ(wj) is a regularization term and d1 is
the dimensionality of the input feature representation. MTL
methods learn the parameters of all of the tasks together at
the same time. As a result, assuming T tasks, all the task pa-
rameter vectors wj for j = 1...T are concatenated in a single
parameter matrix W ∈ Rd1×T and the classifier’s goal is to
minimize the empirical cost: min(W ) L(W ) +Θ(W ), where
Θ(W ) now encodes task relatedness. The main difference
between MTL methods is the way they define task relatedness.
Some methods identify shared feature representations between
different tasks and use regularization over W to model task
relatedness [14]–[16]. Others identify a shared subspace over
the task parameter vectors [17]–[19]. The methods above make
the strong assumption that all tasks are related; some newer
methods consider the fact that some tasks may be unrelated.
For example, the clustered MTL algorithm (CMTL) [20] uses
a clustering approach to assign to the same cluster param-
eters of tasks that lie nearby in terms of their L2 distance.
Adaptive MTL (AMTL) [21] decomposes the task parameters
into a low-rank structure that captures task relations, and a
group-sparse structure that detects outlier tasks. The GO-MTL
(Grouping and Overlap in Multi-Task Learning) algorithm [7]
and the online version of it [22] use a matrix factorization
method, e.g., wj = V s>j , that allows two tasks from different
groups to overlap by having one or more bases in common. V
corresponds to the parameter vectors of k latent tasks, while
sj ∈ R1×k is a task-specific weight vector that contains the
coefficients of the linear combination of the latent tasks.
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With respect to the second category of MTL methods,
for start, DCNNs themselves are MTL models that consist
of many layers of feature extractors, with the bottom layers
learning more generic features that are shared across all
of the tasks and the top-most layers being more concept-
specific [46]. Typical DCNN architectures follow a hard
feature/parameter sharing, i.e., each task uses exactly the same
weight matrix for the corresponding layer; and similarly a
hard feature/parameter separation, i.e., the last layer (a.k.a. the
classification layer) takes as input the output of the second-
last layer and translates it into a set of concept annota-
tion scores learning weight matrices independently for each
task [9], [10], [47]. However, more elaborate MTL methods
that introduce soft feature/parameter sharing, i.e., adjusting
how much information and across which tasks should be
shared, have been presented. Such methods mainly focus on
reformulating existing shallow linear MTL methods in order to
be incorporated in DCNNs. For example, [24] proposes a two-
sided neural network that unifies several shallow linear MTL
methods that use a predictor matrix factorization approach,
e.g., wj = V s>j [7]. MTL in deep learning architectures
has also been proposed for facial landmark detection [23]
and human pose estimation [48]. In [23] the single task of
facial landmark detection is optimized with the assistance of
an arbitrary number of related tasks. This is a special case
of the conventional MTL that typically aims to maximize the
performance of all tasks. In [48], the task of human detection
is learned jointly with the task of body locations estimation,
which results in improved human pose estimation. In [8] the
two-sided neural-network of [24] is modified and extended,
for transferring a network that has been originally trained on
a source image dataset for concept annotation, to a target video
dataset and a corresponding new set of target concepts.

Sometimes the terms MTL and multi-domain learning
(MDL) are used interchangeably. However, the problems that
each of them aims to solve are different. In MDL shared
knowledge is exploited across different domains for the same
tasks. For example, in [49] a cross-media (text, image, audio
etc.) MDL retrieval method is proposed, where across the do-
mains, the same set of concepts need to be learned. Similarly,
an asymmetric MDL approach for person re-identification
is proposed in [12] and a multiple-scene surveillance video
understanding approach in [50], where in these works different
domains refer to different video capture conditions. Asymmet-
ric learning, aka domain adaptation [51], [52], refers to the
fact that the method of [12] utilizes information from different
source domains in order to improve the performance on the
target domain, without considering potential improvement to
the source domains as well.

Transfer learning is another related problem that uses the
knowledge captured in a source domain in order to learn
a target domain without caring about the improvement in
the source domain. When a small-sized dataset is available
for training a DCNN then a transfer learning technique is
followed, where a conventional DCNN, e.g. [10], is firstly
trained on a large-scale dataset and then the classification
layer is removed, the DCNN is extended by one or more
fully-connected layers that are shared across all of the tasks,

and a new classification layer is placed on the top of the last
extension layer (having size equal to the number of concepts
that will be learned in the target domain). Then, the extended
network is fine-tuned in the target domain [2].

B. Structured Output Prediction

Structured output prediction refers to methods that exploit
semantic relations that may exist between the concept labels,
and has received a lot of attention in the deep learning and
the broader machine learning field. In contrast to MTL that
exploits the common structure that task parameters or low-
level features may have across the different tasks, structured
output prediction focuses on the semantic relations that exist
at the outputs, e.g., concept correlations. Video/image concept
annotation is a multi-label learning problem, where given a
set of concept labels, each keyframe/image is often associated
with more than one labels. In most concept annotation datasets,
ground-truth annotation is provided without any accompanying
structure information concerning the concept labels; however,
in many cases the concept labels are statistically related. For
example, in the TRECVID-SIN video annotation dataset [53],
which is one of the datasets used in this study, there are
several groups of mutually exclusive labels, such as indoor-
outdoor or nighttime-sun. The dataset also includes several
positive correlations, such as car-vehicle and dog-animal.
The automated learning of such relationships can incorporate
useful knowledge into the model, improving the accuracy
of the DCNN. In order to do so, many structured output
prediction methods impose some label structural constraints
either explicitly, i.e., using predefined rules that are known for
the training dataset, or implicitly, i.e., the model is forced to
discover existing label relations and considers them as label
constraints. Existing methods can again be divided in those
that take as input any pre-computed features and those that
are tightly integrated with deep learning architectures.

With respect to the the first category, i.e., methods that take
as input pre-computed features, two main sub-categories have
appeared in the literature: a) Stacking-based approaches that
collect the concept annotation scores produced either by a
baseline set of concept detectors (e.g., SVMs) or by a DCNN
when used as a standalone classifier, and introduce a second
learning step in order to refine them, and b) Inner-learning
approaches that follow a single-step learning process, which
jointly considers extracted features and semantic relations.
Stacking approaches aim to detect relations across concepts in
the last layer of the stack. In [25] concept annotation scores are
obtained from individual concept detectors in the first layer,
in order to create a model vector for each shot. These vectors
form a meta-level training set, which is used to train a second
layer of independently trained concept detectors. In [26], a
graph-based method is proposed that uses the ground-truth
annotation to build decision trees that describe the relations
across concepts, separately for each concept, and refines the
initial scores by approximating these graphs. Using external
knowledge of label relations, Deng et al. [27] proposed a
representation, the HEX graph, to express and enforce ex-
clusion, inclusion and overlap relations between labels. This
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model was further extended for “soft” label relations using
the Ising model by Ding et al. [28]. A different approach
that outperforms the above was proposed by [29]. There the
authors use model vectors to train multi-label classification
algorithms that explicitly exploit label relations, instead of
learning a second round of independent concept detectors or
graph-models. All the above-mentioned approaches implicitly
capture label relations from the meta-level training set of
model vectors; as a result, they rely on starting with good
concept probability estimates in the model vectors, otherwise
the errors are propagated to the next layers.

Inner-learning approaches, on the other hand, use the ex-
tracted features and exploit concept relations in a single
learning step. For example, the authors of [30] and [31]
propose methods that simultaneously learn the relation be-
tween visual features and concepts and also the correlations
between concepts. In [45] a joint learning-to-rank approach is
proposed, which naturally combines the benefits of training
a DCNN with a structural SVM model that is used for
concept ranking. In [54] the temporal consistency of concept
labels across neighboring video shots is exploited. While
in [55] an AdaBoost classifier is trained by carefully selecting
positive and negative correlated concepts that will be used per
iteration. However, inner-learning approaches suffer of compu-
tational complexity. For example, [30] has complexity at least
quadratic to the number of concepts, making it inapplicable
to real video/image concept annotation problems, where the
number of concepts is large (e.g. hundreds or thousands).
The LMGE algorithm (Label correlation Mining with relaxed
Graph Embedding) [31], is a faster approach with linear
complexity with respect to the number of concepts; however,
the complexity of the training process is about n3, where n
refers to the number of training samples. Many more methods
can be found in this category for multi-label image annotation,
which explore such label relations to improve the classification
accuracy at the expense of increased computational complexity
compared to the stacking-based ones, e.g., [32]–[41].

With respect to the second category, i.e., methods that are
an integral part of DCNN architectures, structured output pre-
diction techniques have been proposed for application mainly
to the pixel-wise semantic segmentation problem. The most
popular approach is to combine a DCNN with a graphical
model [42], [43], [44]. For example, in [42] a Markov random
field is jointly used on top of a DCNN architecture in order
to incorporate the spatial relations and label correlations of
the assigned labels on the pixels of an image. Similarly,
in [44] the conditional random field model is formulated as
a recurrent neural network (RNN) and plugged in as part of
a DCNN. Structured output prediction for DCNNs has also
been proposed for other visual recognition problems, such as
group activity recognition [43]. All of these methods employ
probabilistic inference to correct the marginal probability of
each label. In contrast to the above methods that use graphical
models, in [8] an auxiliary cost function that approximates the
correlations between the concept labels gets added to the total
network’s cost. This auxiliary cost function takes the form of
a constraint over the task-specific parameters of the network
and is shown to improve its accuracy.

C. Related Work and the Proposed Approach

Our method has some similarities with the MTL methods [7]
and [8]. However, in contrast to [7] that uses pre-computed
features and a shallow linear model to factorize the 2D weight
matrix that encodes concept-specific features, our approach
learns shared representations as an integral part of a DCNN
architecture implementing the factorization in two standard
CNN layers. Furthermore, in contrast to [8] that uses a two-
sided CNN taking as input in the one side a keyframe/image,
and in the other side a semantic descriptor that verifies whether
a certain concept is present in the keyframe/image, our method
requires only the raw keyframe/image and no additional in-
formation regarding the task that should be learned/predicted.
Both [7] and [8] can be optimized for only binary or multi-
class classification cost functions (e.g., logistic loss), thus ig-
noring the multi-label nature of the concept-based video/image
annotation problem. In contrast, our method works for any
multi-label classification cost (e.g., cross-entropy). Our method
is also most closely related to [8] and [22], that jointly consider
MTL and structured outputs, but differs from them as follows:
In [22] pre-computed features are used, specifically, a shallow
linear MTL method is proposed that is instantiated with a
new cost function that exploits concept correlations and takes
as input pre-computed DCNN-based features. In contrast, we
propose a single DCNN architecture, trained end-to-end, that
incorporates both MTL and structured-output prediction, both
of which are implemented using standard convolutional layers,
resulting in a more effective classifier. In [8] an auxiliary
label-based cost function is proposed that forces the network’s
output to fit the distribution of a single row of the concept
correlation matrix. In contrast, our approach adds a concept
correlation cost term to the network’s main cost function that
forces positively-correlated concepts to receive similar scores
and negatively-correlated ones to receive dissimilar scores,
again leading to better results.

III. PROPOSED APPROACH

A. Problem Formulation and Method Overview

We consider a set of concepts C = {c1, c2, ..., cT }
and a multi-label training set P = {(xi,yi) : xi ∈
X ,yi ∈ {0, 1}T×1, i = 1...N}, where xi is a 3 channel
keyframe/image, and yi is its ground-truth annotation. A
video/image concept annotation system learns T supervised
learning tasks, one for each target concept cj . More specif-
ically, it learns a real-valued function f : X → Y , where
Y = [0, 1]T×N could then be binarized (e.g., thresholded) in
order to provide a hard classification result, if needed.

We propose a DCNN architecture that exploits both visual-
level and semantic-level concept relations for video/image con-
cept annotation by building on ideas from MTL and structured
output prediction, respectively. In Fig. 1 (i) we illustrate a
typical (Π + 1)-layer DCNN architecture, e.g., ResNet, that
shares all the layers but the last one (steps (a),(b))) [9], [10];
in Fig. 1 (ii) we illustrate how the typical DCNN architecture
of Fig. 1 (i) is extended by one FC extension layer, which
was shown to outperform the typical DCNN architecture
when used in transfer learning problems [2] (steps (c)-(e));
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Fig. 1. Sub-figure (i) presents the typical DCNN architecture (e.g., ResNet [10]). Sharing all layers but the last one. Sub-figure (ii) presents the typical
DCNN extension strategy proposed in [2]. A shared fully-connected layer, a.k.a the extension layer, and a concept-specific classification layer (a second
fully-connected classification layer that maps a common feature representation to concept categories, independently for each concept), are placed on the top
of a typical DCNN architecture (e.g., ResNet [10]). Sub-figure (iii) presents the proposed FV-MTL with CCE-LC cost function: FV-MTL is modeled as a
stack of standard CNN layers, on the top of which the CCE-LC cost function is placed, which consist of two terms i) the cross-entropy cost term and ii) the
auxiliary correlation cost term that integrates structural information. CCE-LC is also modeled as a stack of standard CNN layers.

and finally, in Fig. 1 (iii) we present the proposed DCNN
architecture (steps (f)-(k)). In the next subsections we first
introduce the new FV-MTL approach for learning implicit
visual-level concept relations; this is done using the network
layers as shown in Fig. 1 in steps (f) to (i). Second, we
introduce the new CCE-LC cost function that learns explicit
semantic-level concept relations, which is done in step (k).
CCE-LC predicts structured outputs from concept correlations
that we can acquire from a training dataset’s ground-truth
annotations. The source code of our method can be found
at https://github.com/markatopoulou/fvmtl-ccelc.

B. Shared Latent Feature Vectors using Multi-task Learning
(FV-MTL)

In our approach, similarly to GO-MTL [7], we assume
that the parameter vectors of the tasks that present visual-
level concept relations (i.e., defined in GO-MTL as belonging
to the same group) lie in a low-dimensional subspace, thus
sharing information; and, at the same time, dissimilar tasks
(i.e., belonging to different groups) may also partially overlap
by having one or more bases in common. Allowing the sharing
also between dissimilar tasks is more natural than creating
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TABLE I
DEFINITION OF THE SYMBOLS

Symbols Definitions
x A keyframe/image

y
A vector containing the ground-truth concept annotations
for a keyframe/image

N The number of training keyframes/images
c A concept
T The number of concepts, i.e., number of tasks
i Keyframe/image index, i.e., i = 1...N
j Concept/task index, i.e., j = 1...T

ŷ
A vector containing the concept prediction scores for a
keyframe/image

Lx Latent concept feature vectors of a keyframe/image

S
Concept-specific weight matrix, each column corresponds
to a task containing the coefficients of the linear
combination with Lx

LxS
Concept-specific feature vectors incorporating information
from k latent concept representations

U Concept-specific parameter matrix for the final classification
k The number of latent tasks
σ(.) The sigmoid function

Φ
The concept correlation matrix calculated
from the ground-truth annotated training set

m A cost vector utilized for data balancing
β Regularization parameter
z Normalization factor vector

disjoint groups of task models. In order to do so, we learn T
concept-specific feature vectors that are linear combinations
of a small number of latent concept feature vectors that are
themselves learned as well. Specifically, our approach uses a
shared latent feature vector Lx ∈ Rd×k for all task models,
where the columns of Lx correspond to d-dimensional feature
representations of k latent tasks; and produces T different
concept-specific feature vectors Lxsj , for j = 1...T , where
each of them incorporates information from relevant latent
tasks, with sj ∈ Rk×1 being a task-specific weight vector
that contains the coefficients of the linear combination. Each
linear combination is assumed to be sparse in Lx, i.e, sj’s
are sparse vectors. In this way we assume that there exist a
small number of latent basis tasks and each concept-specific
feature vector is a linear combination of them. The overlap in
the sparsity patterns of any two tasks, (i.e., how much overlap
is observed between two different task-specific weight vectors
sj and sj′ , where j 6= j′) controls the amount of sharing
between them.

The above can be implemented in a DCNN architecture by
using the network layers depicted in Fig. 1 in steps (f) to
(i). Specifically, an input training-set keyframe is processed
by a typical DCNN architecture (e.g., ResNet) and a fully-
connected layer, to produce a shared representation of the
keyframe across all of the tasks (Fig. 1: step (f); this is the
same as step (c) in the typical DCNN extension architecture).
Subsequently, the output of the fully-connected layer is re-
shaped to the matrix Lx (Fig. 1: step (g)). Consequently, the
reshaped layer outputs k feature vectors that correspond to
k latent concepts. Those representations are shared between
the T concepts. The subsequent layers calculate T concept-
specific feature vectors, where T is the number of the concepts
we are interested in detecting. Each of those feature vectors
is a combination of k latent concept feature vectors, with

coefficients that are specific to the concept in question. This
is implemented as a 1D convolutional layer on the k feature
masks - in the case that the 1D convolutional layer implements
a linear transform, i.e., we do not use a non-linear activation
function, then these two layers implement a feature extraction
scheme with a bilinear factorization of the weight matrix
(Fig. 1 step (h)). Once T feature vectors are extracted, then
an additional layer (Fig. 1: step (i)) transforms each of the
T feature vectors into T concept annotation scores, one for
each of the concepts that we are set to recognize (Fig. 1:
step (j)). The above process leads to a soft feature sharing,
because the latent concept feature vectors adjust how much
information and across which tasks should be shared. By
contrast, both the typical DCNN and the DCNN extension
architecture of [2] output a single feature vector (Fig. 1: step
(a) and (d), respectively) that is shared across all of the target
concepts and it is subsequently hard translated into concept
annotation scores independently for each concept (Fig. 1: step
(b) and (e), respectively), as was also discussed in Section II.

Formally, the predicted score for the j-th task (concept) and
the i-th datapoint (keyframe/image) is given by:

ŷi,j = diag(u>j (Lxi
sj)), (1)

where Lxi
is the output of the last fully-connected layer of

the right part of Fig. 1 (see step (f)), after reshaping the
calculated vector of dimension 1× (d · k), in order to have a
matrix of d rows and k columns (Fig. 1: step (g)). Specifically,
Lxi

= reshape(α(L′y(Π)
i + b)), where L ∈ Rd1×d·k the

parameters of the last fully-connected layer, y(Π)
i ∈ Rd1×1

the output of the previous layer, and α the layer’s activation
functions, e.g. the ReLU. G = {g(π)}Ππ=1 is the set of network
parameters for the first Π layers. sj ,uj are the j-th columns
of the parameter matrices S ∈ Rk×T and U ∈ Rd×T ,
respectively. Each sj contains a task-specific weight vector
of the coefficients of the linear combination with the shared
latent feature vector Lxi

. This linear combination indicates for
each concept which latent tasks describe it. Each uj contains
a concept-specific weight vector that transforms the concept-
specific feature vectors Lxi

S to concept scores.
Similarly to other DCNN works, we optimize the sigmoid

cross entropy between the predicted and the ground truth labels
that is formed as:

λ1i,j = yi,j logσ(ŷi,j) + (1− yi,j)log(1− σ(ŷi,j)), (2)

where σ(·) refers to the sigmoid function σ(x) = 1/(1 +
exp(−x)). That is, we optimize Eq. 2 with respect to the
parameters of the network. This is the cost of the classification
cost term branch in Fig. 1 and differs from the GO-MTL cost
function [7] in the following ways:

First, while GO-MTL aims to approximate the parameter
vector of the j-th observed task wj by a linear combination
of a subset of latent tasks wj = V sj , where V ∈ Rd×T is a
shared knowledge basis, our goal is given a keyframe/image i,
to learn a new set of concept-specific feature vectors Lxi

sj ,
one per task, that leverage shared properties with all the other
tasks. Our assumptions are similar, and we also use a predictor
matrix factorization approach LxiS, however, in a different
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way: In the proposed approach, given an input keyframe/image
our method transforms it into T different concept-specific
feature vectors that leverage information from a set of latent
concept feature vectors using a bilinear factorization of the
weight matrix, as described above. Subsequently, parame-
ter matrix U is used in order to transform these concept-
specific representations to concept scores, i.e., U>(Lxi

S).
Differently, GO-MTL factorizes the 2D weight matrix that
encodes concept-specific features and directly transforms the
image/keyframe into concept scores.

Second, GO-MTL [7] uses iterative optimization and shal-
low linear models to learn the parameters. For example, in
each iteration of the GO-MTL [7] method all parameters
except for one are kept fixed and the function is optimized
towards the non-fixed parameter. In our case a complete
DCNN architecture is used, which makes it easy to calculate
error differentials per layer w.r.t. its inputs, in order to back-
propagate them to previous layers.

Third, the GO-MTL cost function can be optimized with
respect either to regression loss (e.g., squared loss) or
binary/multi-class classification loss (e.g., logistic loss), thus
ignoring the multi-label nature of the problem. In contrast,
our method works for any multi-label classification cost (e.g.,
the sigmoid cross entropy loss, presented above). It should be
noted here that we use the sigmoid function on each activation
separately and as a result the different outputs do not compete
with each other (i.e., their sum does not equal to 1).

To make clear the difference of the proposed architecture
from the typical and extension DCNN architectures (Fig. 1 (i)
and (ii), respectively) we set α(Ly(Π)

i + b) = ∆ and rewrite
Eq. 1 as: ŷi,j = diag(u>j (reshape(∆)sj)).

Similarly, the predicted score for the j-th task and i-th
datapoint with respect to the typical and extension DCNN
architecture is given by: ŷTi,j = w>Tj (α(y

(Π)
i + b)), and

ŷEi,j = w>Ej ∆, respectively. The task-specific weight vector
sj used in our method contains the coefficients of the latent
task feature vectors that will be combined with respect to
concept j. This is exactly the way that our method achieves a
soft feature sharing separately for each concept, i.e., by letting
similar concepts to be described by the same latent task feature
vectors according to sj . In contrast, the other two architectures
of Fig. 1 do not use this linear combination of latent concept
feature vectors but let the second-last layer, a single feature
vector, to be shared across all of the concepts, thus, a hard
translation into concept scores is performed independently for
each concept.

C. Label Constraints for Structured Output Prediction

Cross-entropy cost is not adequate for capturing semantic
concept relations. In this section we present an additional cost
term that constitutes an effective way to integrate structural
information. By structural information we refer to the inher-
ently available concept correlations in a given ground-truth
annotated collection of training videos/images. In order to
consider this information we firstly calculate the correlation
matrix Φ ∈ [−1, 1]T×T from the ground-truth annotated data
of the training set. Each position of this matrix corresponds

to the φ-correlation coefficient between two concepts cj , cj′
calculated as:

φj′,j =
AD −BC

(A+B)(C +D)(A+ C)(B +D)
, (3)

where φj′,j refers to j′-element of the j-th row of the
correlation matrix Φ that contains the correlation between
concepts cj′ and cj . A = p(cj ∧ cj′ |yi, i = 1...N), B =
p(cj ∧ ¬cj′ |yi, i = 1...N), C = p(¬cj ∧ cj′ |yi, i = 1...N),
D = p(¬cj ∧ ¬cj′ |yi, i = 1...N), where p(a|b) refers to the
probability of a given b. The logical operator ∧ expresses
conjunction, e.g., cj∧cj′ , means that both cj and cj appear on
the image/keyframe, according to its ground-truth annotations;
and ¬ expresses negation, e.g., cj ∧¬cj′ , means that cj′ does
not appear on the image/keyframe.

The proposed auxiliary concept correlation cost term that
uses the correlation matrix Φ is formed as follows:

λ2i,j =
1

T -1

T∑
j′=1,
j′ 6=j

{
φj′,j ‖σ(ŷi,j)− σ(ŷi,j′)‖2 , if φj′,j ≥ 0

(−φj′,j) ‖σ(ŷi,j) + σ(ŷi,j′)‖2 , otherwise

(4)

This term works as a label-based constraint and its role is
to add a penalty to concepts that are positively correlated
but were assigned with different concept annotation scores.
Similarly, it adds a penalty to concepts that are negative-
correlated but were not assigned with opposite annotation
scores. Contrarily, it does not add a penalty to non-correlated
concepts.

We can implement the λ2i,j correlation term (Eq. 4) using
a set of standard CNN layers, as presented on the top of the
right part of Fig. 1. One matrix layer encodes the correlations
between the ground-truth labels of the concepts (denoted
as Φ), and the other matrix layer contains the correlations
between the concept label predictions of our network in the
form of squared differences (denoted as Q ∈ RT×T , i.e.,
the matrix Q contains the differences of activations from the
previous layer). Specifically, the matrix Q gets multiplied, by
element-wise multiplication, with the correlation matrix Φ,
i.e., Q ◦ Φ. All the rows in the resulting T × T matrix are
added, which leads to a single row vector.

D. FV-MTL with Cost Sigmoid Cross-entropy with Label
Constraint (FV-MTL with CCE-LC)

The two cost terms presented in Sections III-B and III-C,
i.e., Eq. 2 and Eq. 4, respectively, can be added in a single cost
function that forms our total FV-MTL with CCE-LC network’s
cost as follows:

L =
N∑
i=1

1

T

T∑
j=1

mi,j

zj

(
λ1i,j + βλ2i,j

)
(5)

where parameter β controls the importance of concept corre-
lation term.

In the above cost function we introduce the vector mi ∈
RT×1 that was originally proposed by [13] to address the
problem of class imbalance. Class imbalance is a common
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problem in concept annotation, where for most datasets the
distribution between negative to positive examples per concept
is highly imbalanced, with the former outnumbering the latter
in most cases. This results in bias of the classifier towards the
class (positive or negative) that contains the largest number
of samples. Consequently, we introduce the cost vector mi in
our cost function in order to balance the number of positive to
negative examples per concept. Let us denote by pj the number
of the positive examples and nj the number of negative
examples for the concept cj . Then, the ratio rj of the negative
to positive examples is computed as:

rj =


nj
pj
, if nj and pj 6= 0

1, otherwise
(6)

We create a weight vector mi = [mi,1, ...,mi,T ], for each
training example i.e., for i = 1...N . Where mi,j = 1 if yi,j =
0, mi,j = 0 if yi,j is unlabeled and mi,j = rj if yi,j = 1,
where rj is given by Eq. 6, and is different for each concept
j. This weight vector is multiplied element-wise with the cost
function. By doing so we adjust the misclassification cost of
positive examples so as to prevent the biasing of the network
towards the negative class when only a few positive examples
are available. Furthermore, the normalization factor z ∈ RT×1
that is introduced in Eq. 5 is calculated as: z =

∑N
i=1mi ,

where each position of this vector, i.e., zj , denotes the sum of
the weights for concept cj .

In our overall network architecture, an additional layer is
used in order to implement the complete FV-MTL with CCE-
LC cost function, adding the two cost terms (λ1, λ2) and
scaling their sum by the m (Eq., 5). In this way, the complete
DCNN architecture learns by considering both the actual
ground-truth annotations and also the concept correlations that
can be inferred from it (Fig. 1: step (k)). In contrast, a typical
DCNN architecture simply incorporates knowledge learned
from each individual ground-truth-annotated sample.

IV. EXPERIMENTAL STUDY

A. Datasets and Experimental Setup

Our experiments were performed on four large multi-label
video/image classification datasets, namely the TRECVID-SIN
2013 [53], the PASCAL-VOC 2007 [1], the PASCAL-VOC
2012 [56], and the NUS-WIDE [57], presented in Table II.
For assessing concept annotation performance, the indexing
problem as defined in [53] was evaluated, i.e., given a concept,
the goal was to retrieve the 2000 video shots (or images,
depending on the dataset) that are mostly related with it.

The TRECVID-SIN 2013 [53] dataset consists of approx-
imately 600 and 200 hours of internet archive videos for
training and testing, respectively. The training set is partially
annotated with 346 semantic concepts. The test set is evaluated
on 38 concepts for which ground-truth annotations exist, i.e.,
a subset of the 346 concepts. The PASCAL-VOC 2007 [1]
dataset consists of 5011 training and validation images and
4952 test images. The PASCAL-VOC 2012 [56] dataset con-
sists of 22531 images divided into training, validation and test
sets (5717, 5823 and 10991 images, respectively). We used

the training set to train the various methods of our study,
and evaluated them on the validation set. We did not use
the original test set because ground-truth annotations are not
publicly available for it (the evaluation of a method on the
test set is possible only through the evaluation server provided
by the PASCAL-VOC competition, submissions to which are
restricted to two per week). Both for the PASCAL-VOC 2007
and 2012 the images are annotated with 20 object classes. The
NUS-WIDE [57] dataset consists of 269648 Flickr images that
have been annotated with 81 semantic concepts. We used a
subset of 161789 images for training and the rest of them
for testing. Since the available ground-truth annotations for
each of the four datasets are not adequate in number in order
to train a deep network from scratch without over-fitting its
parameters, similarly to other studies [2], we used transfer
learning. I.e., we used as a starting point the ResNet-50
network [10], which was originally trained on 1000 ImageNet
categories [58], and fine-tuned its parameters towards each of
these four datasets.

In order to evaluate the methods’ performance in the
PASCAL-VOC 2007, 2012 and NUS-WIDE datasets we used
the mean average precision (MAP) measure, while, the mean
extended inferred average precision (MXinfAP) [59], which is
an approximation of MAP, was used for the TRECVID-SIN
dataset. MXinfAP is suitable for the partial ground-truth that
accompanies the latter dataset.

B. Implementation Details

For the rest of this section, when DCNN training takes
place we did it by using the pre-trained ResNet-50 ImageNet
network [10] (removing the last classification layer) and fine-
tuning it on the target concept annotations. The network’s
learning rate and momentum was set to 10−5 and 0.9, re-
spectively, whereas the mini-batch size was restricted by our
hardware resources and set to 32. Multi-label stratification
was used in order to ensure similar distribution of positive
examples per class on each batch. Stochastic gradient descent
(SGD) was used as the network’s optimization function. All
networks were trained and implemented in Caffe [60]. Re-
garding the proposed method, the new layers learning rate
and momentum were set to 0.1 and 5 · 10−4, respectively,
and β was set to 10. This value for β was chosen based
on preliminary experiments on the TRECVID SIN dataset
(Fig., 2) that show that this is an appropriate value, and also
that the proposed approach is not sensitive to the value of β.
The diagonal of the Φ correlation matrix was set to zero. The
model parameter values with respect to the compared methods
were either selected experimentally or following the typical
heuristics and strategies proposed in the corresponding works.
We conducted our experiments on two NVIDIA TitanX GPUs.

Each trained DCNN was used in two different ways to
annotate new images/keyframes with semantic concepts: a) As
a standalone classifier, where each test image/keyframe was
forward-propagated by the network and the network’s output
was used as the final class distribution that was assigned to the
image/keyframe. b) As a feature generator, where the training
set was once again forward-propagated by the network, and
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TABLE II
DATASETS AND THEIR STATISTICS. LABEL CARDINALITY (I.E., THE AVERAGE NUMBER OF CONCEPTS PRESENTED PER IMAGE/VIDEO SHOT), CONCEPT

CARDINALITY (I.E., THE AVERAGE NUMBER OF POSITIVE IMAGES/VIDEO SHOTS PER CONCEPT), AND MISSING LABELS (I.E., THE AVERAGE NUMBER OF
NON-ANNOTATED LABELS PER IMAGE/VIDEO SHOT) HAVE BEEN CALCULATED ON THE TRAINING SET FOR EACH DATASET.

Dataset Training
Instances

Testing
Instances

Training set
Concepts

Test set
Concepts

Concept
Cardinality

Label
Cardinality

Missing
Labels

TRECVID-SIN 239495 112677 346 38 3206.3 2.2 294.6
PASCAL-VOC2012 5717 5823 20 20 416.6 1.5 0.0
PASCAL-VOC2007 5011 4952 20 20 379.2 1.4 0.0
NUS-WIDE 161789 107859 81 81 3066.1 1.9 0.0

Fig. 2. MXinfAP (%) for different values of β (Eq 5) for the proposed
FV-MTL with CCE-LC cost.

the values calculated in the last layer of the network were
used as feature vectors to subsequently train one Support
Vector Machine (SVM) per concept. Then, each test image
was firstly forward-propagated by the DCNN to extract the
features and subsequently was served as input to the trained
SVM classifiers.

C. Preliminary Experiments - Design Choices

In Table III we examine the best way of using the proposed
FV-MTL with CCE-LC cost by comparing different param-
eters and intermediate versions of them. We performed this
set of experiments on the TRECVID-SIN dataset using as a
starting point the ResNet-50 network.
• As a baseline we used the extension strategy proposed

in [2], i.e., the DCNN architecture illustrated in Fig. 1
(ii). The results are presented in Table III: (d)). The
dimensionality of the extension layer (Fig. 1: step (c))
is indicated in Table III: (a). Sigmoid cross-entropy was
used as the network’s cost function.

• We compared the baseline approach with: i) The proposed
CCE-LC cost when used on the top of the baseline DCNN
architecture, replacing the sigmoid cross-entropy cost
(Table III: (e)), i.e., the FV-MTL method was ignored. ii)
The proposed FV-MTL with CCE-LC, where for the latter
parameter β was set to 0, i.e., the concept correlation term
λ2 in Eq. 5 was ignored (Table III: (f)). iii) The complete
proposed FV-MTL with CCE-LC cost for β = 10, i.e.,
both cost terms, λ1 and λ2, were considered (Table III:
(g)). Each row of Table III corresponds to a different
dimension of our FV-MTL first FC layer (shown in Fig. 1:
step (f)).

Each of the above DCNN architectures was fine-tuned
on the 346 TRECVID-SIN concepts using the TRECVID
development dataset [53]. Using these results, we assess i) how
the number of the latent tasks k and feature dimensionality
d affect FV-MTL (Table III: (a)-(c)), ii) the usefulness of

exploiting semantic-level (explicit) concept relations using the
CCE-LC cost instead of the typical sigmoid cross-entropy cost,
iii) the usefulness of exploiting visual-level (implicit) concept
relations using the proposed FV-MTL with CCE-LC when
ignoring the concept correlation term λ2 in Eq. 5 (Table III:
(f)), and iv) the usefulness of jointly exploiting visual-level
and semantic-level concept relations by adopting MTL and
structured output prediction using the proposed FV-MTL with
CCE-LC cost when both cost terms (λ1, λ2 in Eq. 5) are
considered (Table III: (g)). It should be noted that our proposed
FV-MTL with CCE-LC cost is most beneficial when used
on datasets with non-exclusive labels (e.g., TRECVID SIN,
PASCAL-VOC, NUS-WIDE) where CCE-LC can exploit and
capture concept correlations across the labels. Such concept
correlations are missing in single-label classification datasets
such as ImageNet.

The choice of parameter k, which determines the number
of latent tasks, is important because it determines the amount
of sharing between the tasks. If k is very high, the tasks are
not forced to share information with each other. On the other
hand, if k is very low, the latent space may shrink too much.
In Table III we compare different values for this parameter
in order to see how it affects the proposed FV-MTL method
(Table III: (f),(g)). We observe that the larger the value of k
the better the accuracy of the FV-MTL approach. According
to the rest of the results, we observe that structured output
prediction using the proposed CCE-LC cost (Table III:(e)), and
MTL using the proposed FV-MTL approach (Table III: (f)) are
two different ways to improve concept annotation accuracy,
as according to Table III the two methods always outperform
the baseline (Table III:(d)). Jointly using MTL and structured
output prediction, in a DCNN architecture (Table III: (g))
almost always outperforms all the other methods, reaching
the best result of 32.83% when parameter k equals to 32
and parameter d equals to 64, i.e., the columns of Lx equal
to 2048. One exception is seen in the first row of Table III,
where we observe a small decrease in performance of β = 10
compared to β = 0. This is due to the low number of feature
dimensions and latent tasks, which are not sufficient for the
CCE-LC term to capture well the correlation information.

D. Main Findings - Comparisons With Related Methods

Table IV compares the proposed complete FV-MTL with
CCE-LC (for β = 10) with other related methods on the three
datasets. In addition, we evaluate the two intermediate versions
of our complete DCNN architecture that were also evaluated
in Table III. I.e., a) Extension strategy [2] for DCNNs with
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TABLE III
PERFORMANCE (MXINFAP, %) FOR DIFFERENT DIMENSIONS OF THE COLUMNS OF THE Lx MATRIX (FIG. 1 STEP (E)) THAT WE USED IN THE

EXPERIMENTS. FOR THE METHODS (D), (E) THAT DO NOT USE MTL, I.E., SIMPLY USE ONE EXTENSION LAYER AND ONE CLASSIFICATION LAYER ON THE
TOP OF IT, COL. C INDICATES THE DIMENSIONALITY OF THIS EXTENSION LAYER. EXTENSION STRATEGY [2] WITH SIGMOID CROSS-ENTROPY COST

SERVES AS OUR BASELINE.

Lx #columns
d× k

Latent
tasks k

Feature
dimension d

DCNN (extension
strategy [2]) with STL
sigmoid cross-entropy

Proposed
CCE-LC cost

Proposed FV-MTL
with CCE-LC

(β = 0)

Proposed FV-MTL
with CCE-LC

(β = 10)
(a) (b) (c) (d) (e) (f) (g)
128 4 32 23.18 28.76 30.01 29.43
256 4 64 26.91 30.84 30.50 31.38
512 8 64 28.44 30.95 30.37 31.92
1024 16 64 29.76 31.21 30.25 32.1
2048 32 64 30.95 32.44 31.60 32.83
4096 32 128 31.06 31.94 31.65 32.02
4096 64 64 31.06 31.94 31.71 32.07

TABLE IV
MXINFAP (%) FOR 38 TRECVID-SIN AND MAP (%) FOR 20 PASCAL-VOC2007, 20 PASCAL-VOC2012 AND 81 NUS-WIDE CONCEPTS,

RESPECTIVELY, FOR DIFFERENT STL, MTL, STRUCTURED OUTPUT AND JOINT MTL AND STRUCTURED PREDICTION METHODS USING THE IMAGENET
RESNET-50 AS THE BASE NETWORK.

Category Method
TRECVID-SIN PASCAL-VOC2007 PASCAL-VOC2012 NUS-WIDE

(a) (b) (c) (d) (e) (f) (g) (h)
direct last layer direct last layer direct last layer direct last layer

i) Baseline
(without fine-tuning)

ResNet-50 [10] as
feature generator 29.21 29.78 83.90 83.76 82.98 83.04 51.30 56.20

ii) Typical DCNN
fine-tuning ResNet-50 [10] 27.35 28.66 76.38 83.06 81.20 82.15 51.17 56.32

iii) DCNNs (extension
strategy [2]) with
STL cost functions

Hinge-loss 29.08 30.06 78.32 79.23 86.6 87.23 52.80 57.49
Sigmoid cross-entropy 31.06 32.2 80.74 84.97 86.94 86.80 53.94 57.20
CCE [13] 31.93 32.52 84.07 84.92 85.52 85.39 54.58 55.0
DWE [12] 28.03 29.17 77.25 78.12 85.14 86.00 51.10 56.08

iv) MTL for DCNNs
or shallow
linear models

AMTL [21] 29.36 30.15 83.15 84.37 83.17 84.05 53.40 54.22
CMTL [20] 29.89 30.45 83.44 84.42 83.55 84.60 51.80 52.40
2-sidedNN [24] 29.91 30.01 83.50 84.53 83.70 84.45 51.97 52.67

v) Structured
outputs

Stacking-LP [29] 30.01 31.05 84.68 85.12 84.25 85.30 51.96 52.98
LMGE [31] 30.17 31.24 84.32 85.02 84.52 85.64 53.07 54.62

vi) Joint MTL +
Structured outputs

ELLA LC [22] 28.15 29.09 81.98 82.84 82.15 83.17 52.40 54.68
DMTL LC [8] 28.23 31.71 82.01 84.07 82.23 84.30 52.35 54.70

vii) Proposed
CCE-LC cost 32.44 33.55 85.40 86.73 86.32 86.39 56.40 60.73
FV-MTL with
CCE-LC (β = 0) 31.60 32.15 82.21 86.96 87.10 88.51 55.45 54.69

FV-MTL with
CCE-LC (β = 10) 32.83 33.77 85.70 87.00 87.54 88.69 55.54 60.22

the proposed CCE-LC cost, i.e., the typical complete DCNN
architecture illustrated in Fig. 1 replacing the sigmoid cross-
entropy cost with the proposed CCE-LC cost, and b) FV-MTL
with CCE-LC for β = 0. We set k equal to 32 and d equal to
64, which was the pair that reached the best overall MXinfAP
according to Table III; similarly, in the case that CCE-LC
is used alone the dimension of the extension layer was set to
2048. We performed comparisons with the following methods:

• i) A baseline where we use the ResNet-50 pre-trained
network as feature generator; one SVM classifier per
concept was trained using as features either the ResNet’s
output or its last FC layer.

• ii) The typical DCNN architecture with sigmoid cross-
entropy cost, i.e., the ResNet-50 pre-trained network fine-
tuned on each of the four datasets by simply replacing the
classification layer with a new layer with dimension that
equals to the number of concepts in the target domain as
illustrated in Fig. 1 (i).

• iii) Extension strategy [2] for DCNNs, i.e., the DCNN
architecture illustrated in Fig. 1 (ii), and four different

STL cost functions: a) hinge-loss, b) sigmoid cross-
entropy, c) cost sigmoid cross-entropy (CCE) [13], an
extended version of (b) that also addresses the class-
imbalance problem, and d) dynamic weighted euclidean
loss (DEW) [12], an extension of the euclidean loss
suitable for multi-label classification giving a greater
penalty to concept prediction scores that have been ranked
higher than the negative ground-truth annotated concepts.
The size of the extension layer was set to 4096, according
to the findings of Table III. This category of methods
uses exactly the same architecture with the first interme-
diate version of our complete architecture (denoted as a)
above), with the difference that each of the above three
cost functions is used instead of the CCE-LC cost.

• iv) MTL, either as an integral part of DCNNs or for
shallow linear models: a) AMTL [21], b) CMTL [20] and
c) the 2-sided NN that was proposed in [24] for solving
the GO-MTL method objective function [7].

• v) Structured output prediction: a) Stacking-LP [29], a
two-layer stacking architecture combined with the label
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power-set algorithm [29]. b) LMGE [31], an inner learn-
ing approach that uses the extracted features and exploits
concept correlations in a single step.

• vi) Methods jointly using MTL and structured output
prediction: a) DMTL LC [8], and b) ELLA LC [22].

We selected all the parameter values for these methods based
on the training data, and in accordance with the recommenda-
tions provided in the corresponding papers.

We apply and evaluate all the above methods in two differ-
ent ways (in a direct analogy to what is discussed in the last
paragraph of Section IV-B); the specifics of these depended
on whether they are complete DCNN architectures or shallow
models that use pre-computed DCNN features. To the first
category belong the following methods: Typical DCNN fine-
tuning (group (ii)), all methods of group (iii) above, the 2-sided
NN of [24], DMTL LC [8], the proposed FV-MTL with CCE-
LC and the latter’s two intermediate versions. These methods
are used a) as standalone classifiers, where the direct output
of the complete network is evaluated (denoted as “direct” in
Table IV), b) as feature generators, where SVM classifiers are
trained on DCNN-based features. In the latter case, the output
of the last layer of the complete trained network for each
method was used as a feature vector to train one SVM per
concept (denoted as “last layer” in Table IV). The remaining
methods (that belong to the second category), i.e., the baseline
of group (i) above, AMTL [21], CMTL [20], ELLA LC [22],
Stacking-LP [29] and LMGE [31], use the pre-trained ResNet-
50 network as feature generator and the extracted features
were used to train each of these methods. The methods
specifically used in our experiments a) the ResNet-50 output
layer (denoted as “direct” in Table IV), b) the ResNet-50 last
FC layer (denoted as “last layer” in Table IV).

Table IV presents the results in terms of MXinfAP for the
TRECVID-SIN dataset and in terms of MAP for the PASCAL-
VOC and NUS-WIDE datasets. With respect to the direct
output (Table IV: (a),(c),(e),(g)) we observe that the two inter-
mediate versions of our proposed method perform quite well,
outperforming the compared methods in the majority of cases.
One exception is observed between the compared extension
strategy [2] with sigmoid cross-entropy cost and the proposed
FV-MTL with CCE-LC for β = 0, where their difference
is that the latter also incorporates MTL. The results present
fluctuations concerning which of the two methods performs
better, depending on the dataset. However, jointly combining
MTL and structured output prediction, using the proposed FV-
MTL with CCE-LC for β = 10, further improves the concept
annotation accuracy and outperforms all the other previously-
published methods across all of the evaluated datasets, reach-
ing the best overall concept annotation accuracy of 32.83%,
85.70%, 87.54% and 55.54% for TRECVID-SIN, PASCAL-
VOC2007, PASCAL-VOC2012 and NUS-WIDE, respectively.
The only exception is the NUS-WIDE dataset, where our
intermediate version of the typical extension strategy with
CCE-LC cost presents the best accuracy, and our complete
architecture reaches the second-best performance. It should
be noted that we compare our method with very recent
methods; even our baseline is the ResNet-50 network that
was ranked first in the ImageNet 2016 competition and our

method outperforms it by approximately 3 to 4 percentage
points. Similarly clear differences can be observed with respect
to all the other compared methods. Even compared to the most
recent DCNN with CCE cost [13], although the differences are
smaller, we consistently outperform it by approximately 1 to
1.5 percentage points in all three datasets. Similar conclusions
can be reached regarding the results presented in columns
(b), (d), (f) and (h) of Table IV that refers to the second
way of applying the compared methods, as described in the
beginning of this section. We also evaluated the XinfAP
per task regarding the proposed FV-MTL with CCE-LC and
the other two best performing methods (i.e., DCNN with
sigmoid cross-entropy cost and DCNN with CCE cost [13])
in the TRECVID-SIN dataset. Besides our overall best result
(33.77% - Table IV), our method performs better than these
other two well-performing methods for 25 out of the 38
evaluated concepts.

To investigate the statistical significance of the difference
of the results of each method from the best performing
method, i.e., the proposed FV-MTL, we used a paired t-
test as suggested by [61]. We found that differences between
the proposed FV-MTL with CCE-LC (β = 10) and all
other previously-published mehtods that we compare with, per
column of Table IV, are significant at 5% significance level.

Finally, we assess the robustness of the the proposed
and the other two best performing methods (i.e., Sigmoid
cross-entropy, and CCE costs [2], [13]) with respect to the
TRECVID SIN dataset according to Table IV , when they are
trained on smaller datasets for the same number of concepts.
Specifically, Fig. 3 presents the reduction of MXinfAP when
each of the compared methods is trained a) on only half of
the keyframes of TRECVID SIN training set and b) on only
a quarter of the keyframes for the same dataset, compared to
the complete training set. We observe that the DCNN with
sigmoid cross-entropy cost is affected by the smaller training
datasets, as according to Fig. 3 its concept annotation accuracy
is reduced by approximately 6 and 3 percentage points when
the half and quarter training sets are used instead of the
complete training set, respectively. In contrast, the proposed
FV-MTL with CCE-LC for β = 10 and its intermediate
versions, i.e., CCE-LC cost and FV-MTL with CCE-LC for
β = 0, are robust to smaller training sets, exhibiting only a
small reduction of MXinfAP compared to the case of using
the complete training set.

E. Execution Times

We continue the analysis of our results by assessing the
execution times during the training and classification phase of
the different methods compared in this study. Table V sum-
marizes the required execution time in hours for the proposed
FV-MTL with CCE-LC for β = 10 and its two intermediate
versions, defined in earlier sections, and also compares it
with the rest of the methods. We observe that the proposed
method is not considerably more computationally expensive
than DCNN methods that use STL cost functions. Training
of the baseline, AMTL and CMTL methods that use pre-
computed features is a bit faster than the proposed method and
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Fig. 3. Reduction of MXinfAP when only a half and a quarter of the training
samples respectively are used instead of the complete training set, for the
top-5 best performing methods with respect to the TRECVID SIN dataset
according to Table IV. Lower values are better.

TABLE V
MEAN EXECUTION TRAINING/TESTING TIMES IN HOURS.

Category Method TRECVID-SIN
training testing

i) Baseline
(without fine-tuning)

ResNet-50 [10] as
feature generator 14.25 2.45

ii) Typical DCNN
fine-tuning ResNet-50 [10] 17.33 2.47

iii) DCNNs (extension
strategy [2]) with
STL cost functions

Hinge-loss 17.35 2.48
Sigmoid cross-
entropy 17.45 2.47

CCE [13] 17.75 2.50
DWE [12] 17.85 2.50

iv) MTL for DCNNs
or shallow
linear models

AMTL [21] 14.75 2.50
CMTL [20] 14.85 2.58
2-sidedNN [24] 48.12 6.80

v) Structured
outputs

Stacking-LP [29] 23.15 4.51
LMGE [31] 15.17 2.68

vi) Joint MTL +
Structured outputs

ELLA LC [22] 20.97 2.53
DMTL LC [8] 49.27 6.84

vii) Proposed
CCE-LC cost 17.75 2.67
FV-MTL with
CCE-LC (β = 0) 17.53 3.17

FV-MTL with
CCE-LC (β = 10) 18.15 3.10

its intermediate versions; however, all these previous methods
achieved lower accuracy than the proposed one, according
to Table IV. During classification all the compared methods
are executed on very similar time, except for the 2-sidedNN,
Stacking-LP and DMTL LC that are significantly slower. We
conclude that our proposed FV-MTL with CCE-LC is faster
than other MTL methods for DCNNs (2-sidedNN, DMTL LC)
both during training and classification, and also comparable
in execution time with the second-best performing method of
Table IV, i.e., DCNN with CCE cost [13].

F. Data Augmentation and Comparisons

Recently, improved accuracy has been achieved by image
augmentations, i.e., feeding the DCNN with more than one
image crops of the same image. For example, in the PASCAL-
VOC2007 dataset this was shown to improve the MAP by 6
percentage points [11]. In Table VI we compare our proposed
method with these approaches, however, due to the fact that
this is a very computational intensive and time consuming
process we present results only on the PASCAL-VOC2007

TABLE VI
MAP (%) FOR 20 PASCAL-VOC2007 CONCEPTS FOR METHODS THAT

USE IMAGE AUGMENTATIONS.

Method PASCAL-VOC2007
Simonyan et al. [9] 89.3
Wei et al. [11] 90.9
Wang et al. [12] 92.5
FV-MTL with CCE-LC (β = 10)
+ augmentations (VGG16) 93.3

FV-MTL with CCE-LC (β = 10)
+ augmentations (ResNet-50) 94.6

dataset. The following three SoA PASCAL-VOC2007 methods
were selected: (i) Simonyan et al. [9]: A pre-trained ImageNet
DCNN is applied on multiple image representations that are
extracted and aggregated across multiple locations and scales.
The resulting aggregated image descriptor (using the second-
last layer as image feature representation) is used to train a
linear SVM per concept. (ii) Wei et al. [11]: Many object
segment hypotheses are given as input to a shared DCNN
that has been pre-trained in the ImageNet dataset. The shared
network’s output is aggregated with max pooling in order to
return a single multi-label prediction. The shared network is
fine-tuned on the PASCAL-VOC dataset. (iii) Wang et al. [12]:
Similar to Wei et al. [11], a pre-trained ImageNet DCNN is
fine-tuned using many random crop hypotheses. Stochastic
scaling and cropping over images is performed in this case
in order to choose the most useful image crops by proposing
the random crop pooling approach (RCP), instead of object
proposal methods such as [62], [11]. Furthermore, the DWE
loss function, also presented in Table IV, is used on the top
of the network. One linear classifier is trained finally for each
object class. Concerning the proposed architecture (FV-MTL
with CCE-LC (β = 10)), this is fine-tuned on 20 random
image object segment proposals per image extracted using
the RCP method [12]. Similarly to [11] and [12] a shared
DCNN is used to aggregate the probability scores w.r.t. each
proposal using max-pooling and one SVM is trained for each
object class. In this set of experiments, we firstly used the
VGG16 [9] ImageNet pre-trained network as the base network
of the proposed architecture, in order to have a fair comparison
with methods [9], [11] and [12] that also use VGG16. Then,
similarly to all of our previous experiments, we repeated this
experiment using ResNet-50 [10] as our architecture’s base
network. We observe that the proposed method once again
outperforms all the other compared methods and also that
image augmentation is a robust way of increasing the accuracy
of our architecture by approximately 7 percentage points.

V. CONCLUSION AND FUTURE WORK

In this study we proposed a DCNN architecture that jointly
exploits implicit visual-level and explicit semantic-level con-
cept relations. We built on ideas from MTL and structured
output prediction in order to develop the FV-MTL approach
for learning shared latent representations across the different
tasks, and the new CCE-LC cost function that exploits the
correlations between the concepts, respectively. The integrated
DCNN architecture that emerges from combining these ap-
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proaches was shown to improve concept annotation accu-
racy and outperformed the related state-of-the-art methods,
without introducing any significant computational overhead.
Specifically, it outperforms methods that do not impose MTL
and structure outputs (e.g. [10], [2], [13], [12]), by approx-
imately 4 percentage points, it also outperforms methods
that solely consider either MTL or structured outputs (e.g.,
[21], [20], [24], [29], [31]) by approximately 2 percentage
points, and finally it outperforms methods that jointly consider
MTL and structured outputs (e.g., [22], [8]) by approximately
4 percentage points, in all three evaluated datasets. Finally,
introducing image augmentations during the network’s training
was successfully applied to our method, further increasing its
accuracy by approximately 7 percentage points.

Our plans for future research focus on the extension of the
FV-MTL method in order to improve the way that implicit
concept relations are captured, for example, by introducing a
non-linear function. Furthermore, we will focus on different
constraints in order to capture different kinds of semantic re-
lations (i.e., not only correlations) between concepts. Another
possible direction of future work is to extend our proposed
architecture with an incremental learning methodology that
will allow a trained network to be extended with new classes,
without losing the ability of recognising the previously learned
classes. This could speed-up the network’s training, which,
similarly to all other methods considered in this study, cur-
rently requires that the network is fine-tuned again when a
new class needs to be learned.
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