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Abstract—In this paper a novel method is introduced for
propagating person identity labels on facial images extracted
from stereo videos. It operates on image data with multiple
representations and calculates a projection matrix that preserves
locality information and a priori pairwise information, in the
form of must-link and cannot-link constraints between the
various data representations. The final data representation is a
linear combination of the projections of all data representations.
Moreover, the proposed method takes into account information
obtained through data clustering. This information is exploited
during the data propagation step in two ways: to regulate the sim-
ilarity strength between the projected data and to indicate which
samples should be selected for label propagation initialization.
The performance of the proposed Multiple Locality Preserving
Projections with Cluster-based Label Propagation (MLPP-CLP)
method was evaluated on facial images extracted from stereo
movies. Experimental results showed that the proposed method
outperforms state of the art methods.

I. INTRODUCTION

Annotation typically aims at multimedia data archival and
fast search, based on their semantic annotation (tags). This
situation arises, for example, in the case of television content
annotation in broadcasters’ audiovisual archives. In this case,
archivists usually perform a coarse annotation of the entire
video, which, in many cases, is insufficient for journalists to
directly access video shots/frames of interest. Such problems
can be overcome with semi-automatic annotation techniques,
based on label propagation [1], which is a semi-automatic
process for spreading semantic labels from a small set of
available labeled data to a much larger set of unlabeled
data. In the case of television content annotation, one type
of semantic information, which is of interest to archivists,
concerns the person identities and appearances in videos to be
archived. Label propagation techniques take into consideration
the following assumptions: 1) visual data, e.g., video shots,
frames, facial images, that are similar to each other, according
to a similarity measure, or that lie in the same feature space
structure (e.g., cluster, manifold) should be assigned the same
label and 2) the initial labeled data should retain their label
during/after label propagation.

The research leading to these results has received funding from the
European Union Seventh Framework Programme (FP7/2007-2013) under
grant agreement number 287674 (3DTVS). This publication reflects only the
author’s views. The European Union is not liable for any use that may be
made of the information contained therein.

Most label propagation methods operate on similarity
graphs [1]. In these methods, the graph nodes represent the
visual data and the graph edge weights represent their pairwise
similarities, which depend on the features that were selected
for data representation. Then, label inference is performed
along graph paths that connect labeled nodes to unlabeled
ones. When the data can be represented in multiple ways, more
than one graphs can be constructed to represent the same data
set. Such a situation arises for example in the case of label
propagation in stereo videos, where the visual information is
coming from the two luminance channels, or from the video
and the depth (disparity) channels [2]. In such cases, the label
propagation methods can take into consideration information
extracted from all similarity graphs.

Label propagation effectiveness depends on two factors:
the graph construction and the label inference method. Graph
construction deals with the choice of the data representation
and the pairwise similarity (or distance) metric. In the case
where the data are facial images, i.e., detected rectangular
facial image regions of interest (ROI) of size Nx×Ny pixels,
the image data usually undergo a dimensionality reduction
step. A typical reduced dimensionality image representation
can be obtained by finding a projection matrix that maps
the images xi, i = 1, . . . ,M residing on the original space
<N , (N = NxNy) on a subspace <L, L << N . The
N × L projection matrix A forms the basis matrix in the
resulting space <L and the data projections x′i = ATxi ∈ <L
form the image features to be used in graph construction.
Such a subspace representation that is widely used in person
identification algorithms is the Locality Preserving Projection
(LPP) [3]–[5]. In LPP, the data are projected to such a reduced
dimensionality space, so that the locality information of the
original data is preserved, i.e., when ‖xi − xj‖ is small,
then ‖x′i − x′j‖ is small as well. In [6], sparsity constraints
were imposed in the objective function of LPP, so that the
sparse reconstructive weights are preserved, while in [5],
a regularized LPP method is presented, that extracts useful
discriminant information from the entire feature space. LPP
is an unsupervised dimensionality reduction technique, since
it exploits information obtained only from the data structure
in the original space <N . However, several extensions of LPP
have been proposed, that exploit prior information about the
data and extend LPP to the semi-supervised and the fully-
supervised framework. Discriminant constraints obtained from
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the availability of labeled data are introduced in [7], [8].
In [7], the maximization of the between-class distance and
the minimization of the within-class distance is proposed.
The discriminant LPP method proposed in [8] maximizes
the difference between the locality preserving between-class
scatter matrix and locality preserving within-class scatter ma-
trix. Moreover, orthogonality constraints were imposed on the
discriminant LPP in [9].

After data feature extraction through LPP and graph con-
struction through a chosen similarity measure, label propaga-
tion is performed on the visual data (graph nodes), according
to a label inference method, which specifies the way the
labels are spread from the set of labeled data to the set of
unlabeled data. Usually, iterative label inference methods are
employed [1]. In these algorithms, label spread is performed
gradually on the unlabeled data, according to some update
rule. The final label allocation converges to a stationary state,
as t → ∞. The stationary state of the iterative algorithm
can be computed beforehand. Therefore, in such cases, these
methods are performed in a single step. Such label propagation
methods are introduced in [10]–[12]. The performance of label
propagation methods depends highly on the selection of the
initially labeled data set. A method for selecting the initially
labeled data set is presented in [2].

In cases where the data can be represented in more than
one feature spaces, one graph for each representation method
can be constructed. The fusion of multiple data representations
can be performed either at the graph construction level (early
fusion), e.g., by concatenating the separate feature vectors
into a global feature vector, or at the decision level (late
fusion), e.g., by learning a propagation algorithm for each
data representation and fusing the propagation results. Late
fusion is also called ”multi-modal fusion” of ”multi-modality
learning” [13]. A study on early versus late fusion methods
for semantic analysis of multi-modal video can be found in
[14]. Label propagation methods on multiple graphs have been
introduced in [13], [15], [16].

In this paper, we propose a novel method for label propaga-
tion on data with multiple representations that finds application
in person identity label propagation on multi-view camera
systems. The proposed method exploits information obtained
from multiple data representations, by finding a projection
matrix that preserves locality information and additional a
priori pairwise information between the data in all data
representations. The method calculates one projection matrix
for all data representations. Each data representation influ-
ences the projection matrix calculation with a weight that
is learned automatically from the regularization framework.
The data representations are then projected on the same
reduced-dimensionality space. The projections of the various
data representations are then combined in two ways, in order
to perform label propagation. In the first way, the data are
combined in a single representation as a weighted linear com-
bination of the various data representations. Label propagation
is then performed like any label propagation method that
operates on a single graph. In the second way, one graph

is constructed for each data representation projection. Then,
label propagation is performed concurrently on the graphs
by extending the single-graph regularization framework to
consider information obtained from all graphs. Moreover, the
proposed method exploits the data structure in label inference
in two novel ways: in the construction of the weight matrix
of the final data representation and in the selection of the data
set which will be initially manually labeled. The proposed
method was employed on facial images extracted from stereo
movies. In this case, the facial images have inherently two
representations, one for the left and one for the right stereo
video channel. The scope for the algorithm is to propagate
facial identity information on all the facial images that appear
in the videos, starting from a small set of manually labeled
facial images. Experimental results showed the effectiveness of
the proposed method in propagating face identity information
with respect to state of the art methods.

The rest of the paper is organized as follows. An overview
on locality preserving projections and label propagation with
local and global consistency is presented in Section II. Locality
preserving projections on multiple graphs are introduced in
Section III. Two methods for fusing the various data repre-
sentation projections, as well as a method for initializing the
labeled data set is introduced in Section IV. Experimental
results are presented in Section V. Finally, conclusions are
drawn in Section VI.

II. LOCALITY PRESERVING PROJECTIONS AND LABEL
PROPAGATION

A. Locality Preserving Projections

Locality Preserving Projections [3] is a method for linear
dimensionality reduction that operates on graphs. LPP calcu-
lates a projection matrix that projects the data to a reduced
dimensionality space, so that the locality information of the
original data is preserved. Let X = {xi ∈ <N , i = 1, . . . ,M}
be the data set in the original space and G = (X , E) be the
graph, whose nodes are the data entries xi in the set X and
whose edges are the pairwise data relationships. The edge in
the graph that connects the nodes i and j is assigned with a
value Wij that indicates the similarity between the adjacent
graph nodes. This similarity is often computed according to
the heat kernel equation [3]:

Wij = e−
‖xi−xj‖

2

σ , (1)

were σ is the mean edge length distance among neighbors.
LPP tries to find a projection matrix A ∈ <N×L, such that,
if the similarity between xi and xj is strong (i.e., Wij takes
a large value), then the data projections x′i = ATxi, x′j =
ATxj , are mapped close to each other. Let a ∈ <N be a
transformation vector (a column of A). The objective of LPP
is to find the vectors a that minimize the function:
M∑

i,j=1

(aTxi − aTxj)
2Wij = aTX(D−W)XTa = aTXLXTa,

(2)
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where X = [x1, . . . ,xM ] ∈ <N×M is the data matrix,
D is a diagonal matrix with entries Dii =

∑M
j=1Wij and

L = D−W is the graph Laplacian, subject to the constraint:

aTXDXTa = 1, (3)

which guarantees distance preservation in <L. The trans-
formation vector that minimizes (2) is the eigenvector that
corresponds to the minimum eigenvalue of the generalized
eigenvector problem:

XLXTa = λXDXTa. (4)

Finally, the projection matrix A consists of the eigenvectors
that correspond to the L smallest eigenvalues of (4).

B. Locality Preserving Projections with Pairwise Constraints

LPP can also incorporate side information, in the form
of pairwise similarity and dissimilarity constraints, in order
to improve classification performance [17]. In this case, be-
sides locality preservation, the objective of LPP is to find
a projection matrix such that the data projections satisfy the
pairwise constraints, i.e., data that satisfy similarity constraints
should be mapped close to each other and data that satisfy
dissimilarity constraints should be mapped far away from each
other. Let S be the set of similar pairs:

S = {(i, j)|xi,xj must have the same label}, (5)

and D be the set of dissimilar pairs:

D = {(i, j)|xi,xj must have different labels}. (6)

Two weight matrices are constructed, Ws and Wd, for the
similar and dissimilar constraints, respectively, as follows:

Ws,ij =

{
1, if (i, j) ∈ S
0, otherwise. (7)

Wd,ij =

{
1, if (i, j) ∈ D
0, otherwise (8)

The objective function of LPP then becomes:

argmin
a

M∑
i,j=1

(aTxi − aTxj)
2Wij+

∑
(i,j)∈S

(aTxi − aTxj)
2

−
∑

(i,j)∈D

(aTxi − aTxj)
2, (9)

or equivalently:

argmin
a

aTX(D+Ds +Dd −W−Ws −Wd)X
Ta, (10)

where Ds, Dd are diagonal matrices with entries Ds,ii =∑M
j=1Ws,ij and Dd,ii =

∑M
j=1Wd,ij , subject to the con-

straint:
aTX(D+Ds +Dd)X

Ta = 1. (11)

C. Propagating the Pairwise Constraints

Intuitively, we can say that, if we know that two nodes
have the same labels from prior knowledge, then the neighbors
of these nodes should also have the same label, due to
neighboring node similarity. In a similar argumentation, if we
know that two nodes have dissimilar labels, then the nodes
that belong to the neighborhood of one node should have
different label from the other node and vice versa. This means
that we can generalize the pairwise constraints to include
neighboring nodes in an iterative procedure, similarly to label
propagation. Let Ni be the neighborhood of node i, based on,
e.g., thresholding the Euclidean distance between two nodes
and P ∈ <M×M be a sparse weight matrix with entries:

Pij =

{ 1
|Ni| , if j ∈ Ni
0, otherwise,

(12)

where |Ni| is the cardinality of the set Ni. It is clear that
the sum of each row of P is 1. We define a function Fs that
assigns a real value to every graph node that indicates its label
similarity to the other graph nodes. In each iteration, the node
incorporates some information from its neighbors and retains
some information from its initial state Ws. At t-th iteration,
the label similarity is equal to:

F(t)
s = aPF(t−1)

s + (1− a)Ws, (13)

or equivalently:

F(t)
s = (aP)(t−1)Ws + (1− a)

(t−1)∑
t′=1

(aP)(t
′)Ws. (14)

Parameter a, 0 ≤ a ≤ 1, regulates the percentage of
information the node will receive from its neighbors and from
its initial state. Since Pij ≥ 0 and

∑
j Pij = 1, the Perron-

Frobenius theorem [18] holds and (14) converges to the steady
state [19]:

Fs = (1− a)(I− aP)−1Ws. (15)

Similarly, the label dissimilarity is propagated according to:

F
(t)
d = aPF

(t−1)
d + (1− a)Wd, (16)

which converges to the steady state:

Fd = (1− a)(I− aP)−1Wd. (17)

D. Label Propagation with Local and Global Consistency

Let us define the set of labeled data XL = {xi}mli=1,
which are assigned labels from the set L = {lj}Qj=1 and
a set of unlabeled data XU = {xi}mui=1. Without loss of
generality, we define the set of labeled and unlabeled data as
X = {x1, . . . ,xml ,xml+1, . . . ,xM}, M = ml + mu. The
vector Y = [y1, . . . , yml , 0, . . . , 0]

T = [YT
L |YT

U ]
T ∈ LM

contains the labels of the labeled data in the first ml positions
and takes the value 0 in the last mu positions. The objective
of label propagation methods is to spread the labels in L from
the set of labeled data XL to the set of unlabeled data XU .
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A label propagation algorithm that exploits local and global
consistency was introduced in [12]. It begins with the con-
struction of a graph, whose nodes are the labeled and unlabeled
data and whose edges are the pairwise data relationships, based
on, e.g., the heat kernel equation (1). Then, a set of functions
fi, i = 1, . . . ,M is defined that assigns on the i-th graph
node one value for every possible label. By defining the matrix
F = [fT1 , . . . , f

T
M ]T ∈ <M×Q, label propagation is performed

by the iterative process [12]:

Ft+1 = aSFt + (1− a)Y, (18)

where:

S = D−1/2WD−1/2 (19)

and D is the diagonal matrix with Dii =
∑
jWij . Essentially,

the matrix S represents how much the label value of a node is
affected from the label of its neighboring nodes. The matrix
Y ∈ <M×Q represents the initial state, with values:

Yij =

{
1, if node i is labeled as yi = j,
0, otherwise. (20)

It is proven in [12] that the iterative procedure (18) converges
to the solution:

F = (1− a)(I− aS)−1Y. (21)

Finally, the label information is propagated to the nodes
according to the following decision rule:

yi = argmax
j
Fij . (22)

It is proven in [12] that the iterative process given by (18) is
equivalent to a manifold regularization problem defined by:

Q(F) = 1

2
tr
(
FTLF

)
+ µtr

(
(F−Y)T (F−Y)

)
, (23)

where L = D−1/2(D−W)D−1/2 is the normalized graph
Laplacian and µ = 1−a

a .

III. LOCALITY PRESERVING PROJECTIONS ON MULTIPLE
GRAPHS

In this paper, we propose a novel method for performing
linear dimensionality reduction on data with multiple rep-
resentations, by satisfying additional pairwise similarity and
dissimilarity constraints, called Multiple-graph Locality Pre-
serving Projections (MLPP). The proposed method searches
for a N ×L projection matrix A = [a1, . . . ,aL] that operates
on all visual data views (e.g., the left/right video channel) and
also searches for the optimal linear combination of the data
projections. Let xki, k = 1, . . . ,K be the different data repre-
sentations of facial image i and al, l = 1, . . . , L the projection
vectors that form the columns of the projection matrix. The
objective of the proposed method is the minimization of the

function:

argmin
al,τ

∑
k,l

τk


M∑

i,j=1

(aTl xk,i − aTl xk,j)
2Wk,ij

+ β
∑

(i,j)∈S

(aTl xk,i − aTl xk,j)
2Fs,ij

− γ
∑

(i,j)∈D

(aTl xk,i − aTl xk,j)
2Fd,ij

+ ε‖τ‖2, (24)

subject to the constraints:

aTl aj = δlj ,
∑
k

τk = 1, τk ≥ 0, l, j = 1, . . . , L, k = 1, . . . ,K,

(25)
where τk, k = 1, . . . ,K is the weight of the k-th data repre-
sentation in the optimization framework, β, γ are parameters
that regulate the significance of the pairwise similarity and
dissimilarity constraints, respectively and ε is a regularization
parameter that prevents the coefficients vector τ from taking
increased value for only one image representation. The first
sum in (24) ensures that the locality information of the data
in the original space is preserved in the projected space. The
second/third sum in (24) ensure that the similar/dissimilar data
pairs are projected close to/away from each other. Finally, the
first constraint in (25) ensures that the projection matrix A is
orthonormal. By simple algebraic manipulations, (24) can be
written as:

argmin
al,τ

∑
k,l

τka
T
l Xk (Lk + βLs − γLd)XT

k al + ε‖τ‖2,

(26)
where Lk = Dk −Wk is the graph Laplacian for the k-th
data representation and Ls = Ds−Fs, Ld = Dd−Fd are the
graph Laplacians of the pairwise similarity and dissimilarity
constraints, respectively. Lk varies according to the data rep-
resentation, while Ls, Ld are constant for all representations.

By selecting the parameters β, γ so that the matrix Lc =
βLs − γLd is positive semi-definite, the cost function (26)
under the constraints (25) is convex, with respect to the
variables al and τ . Indeed, if the data number M is greater
than the data dimensions N , then we can consider that the data
are linearly independent and the rank of Xk ∈ <N×M is N .
From the properties of semi-definite matrices, if Lc ∈ <M×M
is positive semi-definite and Xk ∈ <N×M is of rank N ,
then XkLcX

T
k is positive semi-definite [20]. Moreover, the

sum of positive semi-definite matrices is also a positive semi-
definite matrix. The Hessian of the quadratic function (26)
with respect to al is a positive semi-definite matrix. Moreover,
the Hessian of the quadratic function (26) with respect to τ
is the identity matrix, which is positive definite. Therefore,
the quadratic problem defined in (26) is convex with respect
to either al or τ . In the experiments, we set β = 100 and
γ = 0.01 to ensure that matrix Lc is positive semi-definite.
The optimization problem is solved iteratively for al and τ as
follows:

1) First, τ is initialized with the values τk = 1
K , k =

1, . . . ,K.
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2) The system (25), (26) is solved for a by constructing
the Lagrangian function:

L(al, λ) = aTl

[∑
k

τkXk (Lk + βLs − γLd)XT
k

]
al

− λaTl al. (27)

By setting the partial derivative of the Lagrangian func-
tion with respect to al equal to zero ∂L(al,λ)

∂al
= 0, we

get:[∑
k

τkXk (Lk + βLs − γLd)XT
k

]
al = λal. (28)

It is easy to see that the projection vectors al, l =
1, . . . , L that minimize the objective function are the
eigenvectors that correspond to the L smallest eigen-
values of matrix

∑
k τkXk (Lk + βLs − γLd)XT

k . Fi-
nally, the projection matrix A is constructed: A =
[a1, . . . ,aL].

3) Next, (25), (26) are solved with respect to τ , for the
projection matrix A that was calculated as in (28). By
writing (26) in matrix form with respect to τ , we get:

argmin
τ

∑
k

τktr
[
ATXk(Lk + βLs − γLd)XT

kA
]

+ ετT τ , (29)

subject to the constraints:

τT1K = 1, τk ≥ 0, k = 1, . . . ,K, (30)

where 1K ∈ <K is a vector of ones. The system (29)-
(30) is a quadratic programming problem with respect
to τ and can be solved with any quadratic programming
solver.

4) Steps 2 and 3 are repeated until convergence.

The convergence of the proposed iterative procedure is proved
as follows. Let G(A(t), τ (t)) be the value of the objective
function (24) at iteration t. Since the parameters β, γ are
chosen in such a way, so that the matrix Lk + βLs − γLd,
k = 1, . . . ,K is positive semi-definite, G(A(t), τ (t)) is
convex with respect to either A or τ . This means that,
the solution of (28) A(t+1) produces the minimum value of
the objective function G(A(t), τ (t)) given the value of τ (t)

and, subsequently, the solution of (29)-(30) τ (t+1) produces
the minimum value of the objective function G(A(t+1), τ (t))
given the value of A(t+1), or equivalently [21]:

G(A(t), τ (t)) ≥ G(A(t+1), τ (t)) ≥ G(A(t+1), τ (t+1)). (31)

Since G(A, τ ) ≥ 0 and it is convex with respect to either A
or τ , (31) implies that G(A, τ ) converges asymptotically to
a local minimum.

After the projection matrix A and the coefficients vector τ
are computed, the data projections X′k of representation k to
the reduced dimensional space are computed as:

X′k = ATXk. (32)

The data projections X′k are then fused in order to perform
label propagation, as will be described in Section IV. The
steps for dimensionality reduction through locality preserving
projections on multiple graphs is summarized in Figure 1.

IV. LABEL PROPAGATION ON MULTIPLE GRAPHS

After the computation of the data projections X′k, k =
1, . . . ,K, label propagation is performed on the projected data
by fusing the information obtained from all representations.
The fusion of multiple data representations can be performed
either at the graph construction level (early fusion) or at the
decision level based on label propagation (late fusion).

A. Early Fusion

In early fusion, the data representation projections are
linearly combined into a single data representation, by:

X′ =
∑
k

τkX
′
k, (33)

where the weights τ are the ones computed by MLPP (Section
III). The new data representations (33) are used to construct
a new data graph, having a weight matrix computed from (1).
Label propagation is then performed like any label propagation
method that operates on a single graph, by exploiting local and
global consistency, according to (18).

B. Late Fusion

In late fusion, one graph is constructed for each data
representation projection X′k, k = 1, . . . ,K with weight
matrices Wk computed from (1). Then, label propagation is
performed concurrently on the K graphs, by extending the
single-graph regularization framework (23) as a weighted sum
of K objective functions:

Q(F) = 1

2

K∑
k=1

τktr
(
FTLkF

)
+

1

2
µtr
(
(F−Y)T (F−Y)

)
,

(34)
where Lk is the normalized graph Laplacian of representation
k. The weights τk are determined as in Section III. The
regularization framework (34) is similar to the regularization
framework proposed in [22] with the difference that, in the
proposed method, the weights τk have been pre-computed
during the data dimensionality reduction. (34) is convex with
respect to F. Therefore, the global optimum can be found by
setting the partial derivative of Q(F) equal to zero:

∂Q(F)
∂F

=
∑
k

τk (LkF) + µ(F−Y) = 0. (35)

The global optimum is then given by:

F = (1− a)

(
I− a

∑
k

τkSk

)−1
Y, (36)

where we set Lk = I − Sk, Sk = D−1/2WkD
−1/2 and

a = 1
1+µ .
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Fig. 1. MLPP algorithm flowchart (the numbers in parentheses refer to equations in the text).

C. Iterative Label Propagation Initialization

It was observed that label propagation performance depends
highly on the initialization of the propagation algorithm,
i.e., on the selection of the initial data samples that will
be manually assigned a label. Therefore, a more structured
procedure for selecting the initial labeled data set should be
followed. Such a structured procedure is introduced in this
paper.

The proposed label propagation method exploits the prior
information obtained from the data structure, by applying a
clustering algorithm, e.g., k-means clustering, or n-cut [23].
First, the data X′ (33) are divided into clusters and, then the
data graph weight matrix W (or Wk for the case of late
fusion) is calculated according to (1). In order to increase label
propagation between samples in the same cluster and punish
propagation between samples in different clusters, the entries
of the weight matrix (1) are modified as follows:

Wij =

{
Wij , if nodes i, j belong to the same cluster
ηWij , if nodes i, j belong to different clusters,

(37)
where 0 ≤ η ≤ 1 is a penalizing parameter. By setting η = 0,
label propagation between different clusters is prohibited. On
the other hand, if we set η = 1, then we get the standard
label propagation algorithm (18)-(21). The influence of the
parameter η selection and of the selected cluster number is
examined in Section V.

Instead of using the same penalizing parameter for propaga-
tion between clusters that are close to each other and clusters
that are further away, we introduce a second method for re-
calculating the weight matrix, which takes into account the
distance between the cluster centers. More specifically, we
define a new weight matrix W′ with entries:

W ′
ij =

{
Wij , if nodes i, j belong to the same cluster

ζ(ci, cj)Wij , if nodes i, j belong to different clusters,
(38)

where Wij is given by (1), ci, cj are the clusters of nodes i
and j, respectively, and:

ζ(ci, cj) = e−
‖xci−xcj

‖2

σ , (39)

where xci , xcj are the centers of clusters ci, cj , respectively
and σ is defined as in (1). Then, from each cluster, the
node with the highest within-cluster degree centrality [24]
is selected to be in the set XL of initially labeled samples.
The within-cluster degree centrality for a node i that belongs
to cluster c is measured by summing the edge weights that
connect the node i with all other nodes of cluster c di =∑
j∈NcWij , where Nc the cardinality of cluster c. Intuitively,

the node with the highest within-cluster degree centrality is the
most representative cluster node, i.e., the node with the highest
similarity to all other cluster nodes, according to heat kernel
similarity (1). Then, the initial state matrix Y is constructed
and label propagation is performed according to (18)-(22).

The values in F (22) are an indication on the ”certainty”
with which the node is assigned a label, i.e., nodes in which
the highest Fij value is much larger to the second highest
Fij value are more probable to be assigned the correct label,
while nodes in which the two highest Fij values are very
close to each other, most probably lie in a ’border’ region
between two visual data classes. Label assignment to such
nodes is more uncertain. The nodes which were assigned a
label with the least certainty form the next set of nodes that
will be manually labeled and inserted in the set XL of labeled
nodes. More specifically, for each node i we compute the
difference between the two largest values in the i-th row of
F. The q nodes with the smallest difference value are inserted
in the set XL and, the initial state matrix Y is updated, in
order to include the newly manually labeled nodes and label
propagation is performed again, according to (18)-(22) (or (36)
for the case of late fusion). The procedure is repeated and
the labeled set XL is enriched with q nodes at the time with
the smallest pi value, until the cardinality of the set XL is a
determined percentage (e.g., 5%) of the overall data number.
The steps for the iterative label propagation initialization
method are summarized in Figure 2.
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Fig. 2. Iterative label propagation initialization flowchart (the numbers in parentheses refer to equations in the text).

V. EXPERIMENTS

A. Stereo Facial Image Database Description

Experimental results were conducted on three stereo movies.
The task was to perform person identity (label) propagation on
the facial images that appear in these movies with a procedure
that emulates the annotation procedure followed in television
archives by archivists upon new content ingestion. All these
movies have full high definition video frame size (1080×1920
pixels), total duration 6 hours, 4 minutes and 16 seconds and
528,348 frames in total.

First, the movies were processed with a shot cut detection
algorithm and the shot boundaries were detected. Then, the
facial images were automatically extracted by performing
automatic face detection and tracking. The face detector used
was the Viola-Jones face detector [25], modified to incorporate
color information [26] that eliminates a large amount of false
detections. Face detection was performed separately on the
left and right video channels, retaining only the facial images
that were detected in both channels. When a facial image
was detected in both channels, it was tracked for the next 20
frames or until a shot cut was detected, using a single channel
appearance-based object tracker [27]. The tracker results in
a so called facial image trajectory consisting of facial image
ROIs. The procedure was repeated for the remaining video
frames. Sequential facial image trajectories that belonged to
the same person were concatenated into a single trajectory. In
total, 171,649 facial images were detected forming 4,845 facial
image trajectories and belonging to 129 different actors plus
some false detections. More details about the characteristics
of each movie can be found in Table I. Since the number
of the extracted facial images is very large, the resulting
graph weight matrix of the facial images would be very
large and too expensive to compute. In order to decrease the
computational complexity and increase annotation speed, we
make the following assumptions for the data:

1) facial images that belong to the same facial image

trajectory belong to the same actor,
2) facial images appearing in the same video frame belong

to different actors.

According to the first assumption, only one image from each
trajectory, e.g. the first one, is required for the actor identity
annotation process. The remaining images in the facial image
trajectory simply adopt the label of the first image. However,
by selecting only one image from each trajectory, we discard
information about the trajectory length during the propagation
procedure. In order to retain this information, we select more
images from the longer trajectories and less from the shorter
ones. More precisely, if the facial image trajectory contains
less than 20 facial images then only the first facial image of the
trajectory was selected. If the facial image trajectory contains
more than 20 facial images, then every 10 facial images of the
trajectory one facial image was selected for annotation (i.e.,
the 1st, 10th, 20th, etc.). In total, 13,850 images were selected
from the three movies, which represent 5.85% of the extracted
facial images. The facial images were considered to belong to
131 classes, one class for each actor that appears in any of the
three movies and three more that represent the false detections
in each movie.

The two previously mentioned assumptions on facial image
ROIs form automatically extracted prior knowledge that is
exploited in the label propagation procedure in the form of
pairwise similarity and dissimilarity constraints, discussed in
Section II-B. More specifically, the similarity and dissimilarity
weight matrices (7) - (8) are constructed as:

Ws,ij =

{
1, if images i, j are in the same trajectory
0, otherwise,

(40)

Wd,ij =

{
1, if images i, j are in the same frame
0, otherwise. (41)

In total 9,003 pairwise similarity and 2,034 pairwise dis-
similarity constraints were automatically extracted. A more
detailed description on the constructed data set can be found
in Table II. Finally, the facial images are aligned with the
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TABLE I
SUMMARIZATION OF MOVIE AND FACIAL IMAGE PROPERTIES

Duration video No. of facial No. of facial No. of actors Facial image
frame number image ROIs image trajectories dataset size

Movie 1 02 : 06 : 21 hours 181,763 64,717 1,532 26 5,398
Movie 2 01 : 44 : 31 hours 150,361 44,625 1,435 44 3,498
Movie 3 02 : 16 : 24 hours 196,224 62,307 1,878 58 4,954

Total 06 : 04 : 16 hours 528,348 171,649 4,845 128 13,850

TABLE II
FACIAL IMAGE DATA SET INFORMATION

Actor classes dataset size Number of Number of
similarity dissimilarity

constraints constraints
movie 1 27 5,398 3,866 857
movie 2 45 3,498 2,063 260
movie 3 59 4,954 3,074 917

total 131 13,850 9,003 2,034

funnel algorithm [28], which was also used in the Labeled
Faces in the Wild [29] data set.

B. Effect of parameters η and ζ to MLPP-CLP

In this section, the effect of the prior information im-
posed on the projected data weight matrix obtained through
clustering in the classification performance of the proposed
MLPP-CLP algorithm is examined. More specifically, the
classification performance was tested for parameter η values 0
(i.e., label propagation between clusters is prohibited), 0.2, 0.4,
0.6, 0.8 and 1 (i.e., no clustering information is exploited in the
weight matrix). The number of clusters used in the experiments
was 150, 50 and 100, for the Movies 1-3, respectively and the
left and right channel representations were fused with the early
fusion method. In all experiments, the data dimensionality is
reduced to 75. The experimental results are shown in the first
six rows of Table III, where it is evident that the optimal
classification accuracy for each movie is achieved for η = 0.6
or η = 0.8. Table III shows that the classification accuracy
of the algorithm is sensitive to the selection of η. More
specifically, we notice that the classification accuracy increases
for values of η between 0.4 and 0.8, with respect to the
case in which no clustering information is taken into account
(η = 1.0). On the contrary, when η takes values less than
0.4, i.e., there is a strong prohibition for label propagation
between clusters, the classification accuracy decreases with
respect to the case where η = 1.0. The decrease is maximum
for η = 0, i.e., when label propagation is restricted within the
clusters. Finally, we examine the classification performance
when the exponential parameter ζ in (39), that takes into
account the distance between the cluster centers, is exploited
in label propagation. We notice that, even though the use of
ζ does not lead to the best classification accuracy for any of
the three movies, it still increases the classification accuracy
with respect to the state of the art (η = 1.0) in two out
of three movies. In the rest of the experiments, clustering
information will be imposed to the weight matrix with the
adaptive parameter ζ.

TABLE III
SIGNIFICANCE OF PARAMETERS η AND ζ TO THE CLASSIFICATION

ACCURACY OF MLPP-CLP

Movie 1 Movie 2 Movie 3 Average
η = 0.0 73.69% 55.33% 60.08% 64.20%
η = 0.2 76.37% 65.53% 67.97% 70.64%
η = 0.4 77.67% 65.66% 68.34% 71.31%
η = 0.6 78.12% 67.96% 68.48% 72.11%
η = 0.8 79.08% 66.43% 67.44% 71.73%
η = 1.0 77.51% 65.42% 67.06% 70.73%
ζ 76.63% 66.54% 67.46% 70.81%

TABLE IV
SIGNIFICANCE OF DATA INITIALIZATION TO THE CLASSIFICATION

ACCURACY OF MLPP-CLP

Random initialization Proposed initialization
Early Fusion Late Fusion Early Fusion Late Fusion

Movie 1 75.69% 75.98% 79.26% 80.52%
Movie 2 59.09% 58.12% 67.10% 67.10%
Movie 3 57.22% 62.00% 68.38% 68.39%
Average 64.11% 65.70% 71.76% 72.20%

C. Effect of labeling initialization to MLPP-CLP

In this section, we examine the effect of the proposed
method for selecting the initially labeled data set in the
classification accuracy. First, the facial images of the movies
1-3 were divided into 170, 100 and 150 clusters, respectively
and the facial images that correspond to the cluster centers
were manually labeled. In each iteration of the algorithm
described in Subsection IV-C 33, 25 and 33 images in the
border between clusters (that have the smallest ”certainty”)
were assigned labels manually. The procedure was repeated 3
times. In all experiments, the initial manually labeled data set
consists 5% of the facial images, i.e., for the movies 1-3 the
manually labeled data set consists of 270, 175 and 250 facial
images, respectively.

First, we compare the classification performance, when the
initially labeled data set is selected randomly, without taking
into account any prior information, as typically proposed in the
literature. Experimental results are shown in the first and third
rows of Table IV for the random and the proposed initialization
method, respectively. We notice that the proposed initialization
method causes a high increase in the classification accuracy
in all three videos, that results in an increase of the average
classification accuracy by 5.37%. Moreover, by comparing the
classification accuracy of the proposed method using early and
late fusion of the left and right channels data representation we
notice that, the late fusion of the data representations achieves
slightly better classification accuracy.
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Next, we test how the classification accuracy changes in
each iteration of the initialization procedure described in
Subsection IV-C. The change in the classification accuracy
with every iteration for the three movies is shown in Figure
3a-c. We notice that, as expected, the classification accuracy
increases as more data are inserted into the initially labeled
data set up to 5% of the overall facial image data set. However,
the increase in accuracy is not constant in each iteration, but
depends on the set of data that enter the initially labeled set.
For example, when early fusion is used, in Movie 1 (Figure
3a) there is a greater increase in the third algorithm iteration
than in the first two, in Movie 2 (Figure 3b) the maximum
increase in accuracy is observed in he second iteration and in
Movie 3 (Figure 3c) an almost constant increase in accuracy
is observed in all three iterations. Similar conclusions can be
drawn when late fusion is used. In overall, for the first movie
(Figure 3a) the classification accuracy between the first and
final iteration increases by approximately 3%, in the second
movie (Figure 3b) by 4.5% and in the third movie (Figure 3c)
by 3.5%.

D. Comparison of MLPP to other subspace methods

The performance of the proposed Locality Preserving Pro-
jections on multiple graphs (MLPP) with early (MLPP-E)
and late (MLPP-L) fusion of the stereo information, with
the parameters used in Subsection V-C, is compared to the
performance of similar state of the art subspace techniques,
namely the standard Locality Preserving Projections (LPP)
[3], Orthogonal Locality Preserving Projections (OLPP) [9],
Locality Preserving Projections with Pairwise Constraints
(PCLPP) [17], Graph-Optimized Locality Preserving Projec-
tions (GoLPP) [4] and Neighborhood Preserving Embedding
(NPE) [30], with the standard (random) initialization. In order
to test the significance of the stereo information to the classifi-
cation accuracy, we compared the performance of the proposed
algorithm to the performance of LPP, OLPP, PCLPP, GoLPP
and NPE when they operate on one luminance channel of the
stereo video. The experimental results are shown in Table V.
We notice that in all three videos the classification accuracy
of the proposed MLPP-E and MLPP-L algorithms achieve a
much better classification accuracy. The average increase in
accuracy with MLPP with respect to the best single-channel
subspace method PCLPP is 8.15%.

Next, we test the performance of the single-channel sub-
space methods, when they operate separately on the left
and right channels of the stereo videos and the late fusion
method described in [22] is employed for performing label
propagation on the stereo facial images. The experimental
results are shown in Table VII. We notice that, when the
existing dimensionality reduction techniques are combined
with the label propagation approach and a late fusion approach
they increase the classification performance with respect to
single channel label propagation, yet the performance is worse
than the performance of the proposed MLPP-E and MLPP-L
algorithms. More specifically, the average increase in accuracy

with MLPP with respect to the best state of the art stereo
method is 5.7%.

E. Algorithm performance on data with more modalities

The proposed method has been tested in the UCF11 data
set [31], that consists of 1,600 Youtube videos depicting 11
action classes. Each video is represented with the state of the
art action description exploiting the BoF-based video represen-
tation [32] evaluated on 5 descriptor types, each description
type consisting one data modality (K = 5): Histograms
of Oriented Gradients (HOG), Histograms of Optical Flow
(HOF), Motion Boundary Histograms projected on the x-
and y-axis (MBHx/y) and Normalized Trajectories. In the
experiments, 10% of the action videos were manually assigned
labels. The dimension of the data is reduced from 1000 to
75. Since no prior information is available for the data set in
the form of pairwise constraints, the matrices Ls, Ld are set
equal to 0. The experimental results for the proposed method
and the state of the art method LPP, which achieved the
best performance, are shown in Table VII. We notice that,
the performance of MLPP-CLP with late fusion is 15.32%
better than the performance of the best single-modality LPP
and 6.48% better than the multi-channel LPP. By comparing
the results for K = 2 and K = 5, we notice that, when the
proposed algorithm is employed on data with more modalities,
we obtain a greater increase in the classification accuracy with
respect to the single-modality methods. This is because the
different types of information obtained from more modalities
complement one another and thus, increase the classification
accuracy. Moreover, by comparing the performance of the
proposed early and late fusion methods we notice that, when
the data modality is small (K = 2), then the late fusion method
is marginally better than the early fusion. The supremacy of
late fusion is more evident when the data modality number
increases.

F. Parameter Selection

As mentioned in Section III, the parameters β and γ are
chosen in such a way, so that the matrix Lc = βLs − γLd is
positive semi-definite. The positive semi-definiteness of Lc is
required, so that the objective function is convex with respect
to the projection matrix A, i.e., the optimization framework
converges to a global minimum. In practice, this is achieved
by selecting the value of β to be larger that the value of γ
by several orders of magnitude. In our experiments we set
β = 100 and γ = 0.01, i.e., β is larger than γ by 4 orders
of magnitude. The parameter ε regulates the values of the
coefficients vector τ . When ε takes small values, i.e., when
the value of the first term (double sum) in (26) is larger than
the value of the second term (the norm of the coefficient vector
τ ), then τ takes the value 1 for one data representation and
0 for all others, i.e., only one data representation method is
taken into account during dimensionality reduction. This is
undesired, since the purpose is to exploit information from
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(a) (b)

(c)

Fig. 3. Classification accuracy of MLPP-PCLP with respect to the number of images that enter the initially labeled data set for (a) Movie 1 (b) Movie 2
and (c) Movie 3.

TABLE V
CLASSIFICATION ACCURACY OF MLPP-CLP WITH EARLY (MLPP-E) AND LATE (MLPP-L) FUSION AND SINGLE-CHANNEL LPP, OLPP, PCLPP,

GOLPP AND NPE FOR THREE STEREO MOVIES

MLPP-E MLPP-L LPP OLPP PCLPP GoLPP NPE
Movie 1 79.26% 80.52% 71.39% 66.47% 73.21% 66.34% 72.75%
Movie 2 67.10% 67.10% 53.01% 46.23% 57.17% 53.15% 54.19%
Movie 3 68.38% 68.39% 59.30% 57.74% 60.25% 56.00% 59.48%
Average 71.76% 72.20% 61.67% 57.46% 63.83% 59.32% 62.54%

TABLE VI
CLASSIFICATION ACCURACY OF MLPP-CLP WITH EARLY (MLPP-E) AND LATE (MLPP-L) FUSION AND STEREO LPP, OLPP, PCLPP, GOLPP AND

NPE FOR THREE STEREO MOVIES

MLPP-E MLPP-L LPP OLPP PCLPP GoLPP NPE
Movie 1 79.26% 80.52% 74.26% 68.40% 75.71% 69.26% 75.64%
Movie 2 67.10% 67.10% 56.05% 48.68% 59.77% 59.52% 57.46%
Movie 3 68.38% 68.39% 61.50% 63.06% 62.54% 58.91% 63.14%
Average 71.76% 72.20% 64.33% 60.80% 66.28% 63.10% 65.82%

TABLE VII
CLASSIFICATION ACCURACY OF MLPP-CLP WITH EARLY (MLPP-E) AND LATE (MLPP-L) FUSION AND LPP FOR MODALITIES 1-5 AND MULTI-MODAL

LPP.

MLPP-E MLPP-L LPP-M1 LPP-M2 LPP-M3 LPP-M4 LPP-M5 LPP-Multi
UCF11 1 67.71% 73.01% 55.17% 50.56% 56.10% 57.69% 47.93% 66.53%
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all data representations. When the value of ε is large, i.e.,
the value of the second term in (26) is larger than the value
of the first term, then increased significance is given to the
minimization of the coefficient vector τ norm and, thus, τ
takes the values τk = 1

K , k = 1, . . . ,K. This means that, all
data representations participate equally in the dimensionality
reduction procedure. This result is also undesired, because it
does not lead to optimal fusion of the data representations.
Thus, the optimal values for ε that lead to comparable values
between the coefficients vector values are the ones that result
in comparable values for the two terms of equation (26). In
the conducted experiments, such performance was achieved
for ε = 1.

VI. CONCLUSIONS

In this paper, a novel method for propagating person identity
labels on facial images extracted from stereo videos was
introduced. The proposed method operates on data with mul-
tiple representations, by calculating a projection matrix that
projects the multiple data representation matrices to a reduced
dimensionality space that preserves the locality information in
the original representations and that satisfies a priori pairwise
information in the form of pairwise must-link and cannot-
link constraints. Moreover, a novel method was presented for
selecting the data set from which label propagation will begin.
The initialization method exploits information about the data
structure obtained from the application of a simple clustering
algorithm. Experimental results on a large data set consisting
of facial images extracted from three stereo movies showed
that both the subspace representation through MLPP and the
label propagation initialization result in an increase in the
classification accuracy compared to state of the art methods.

The proposed method finds application in semi-automatic
annotation of stereo video content in television broadcaster
archives, by enabling the archivists to put person identity labels
on the facial images that appear in the videos. Very good facial
image semi-automatic annotation results have been obtained
by manually labeling only very few facial images in a movie.
According to these experiments, we can obtain correct facial
identity labels up to 72% of the facial images that appear in
the three movies, when the annotator manually labels only 700
images, that consist only 5% of the facial image data set size
and only 0.42% of the total number of facial images in these
movies.
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[32] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu, “Dense trajectories
and motion boundary descriptors for action recognition,” International
Journal of Computer Vision, vol. 103, no. 1, pp. 60–79, 2013.

PLACE
PHOTO
HERE

Olga Zoidi received the B.Sc. in Mathematics in
2004 and the diploma in Electrical and Computer
Engineering in 2009, both from the Aristotle Uni-
versity of Thessaloniki. She is currently a researcher
and Ph.D. student in the Artificial Intelligence and
Information Analysis laboratory at the Department
of Informatics of Aristotle University of Thessa-
loniki. From 2010 to 2013 she was a Teaching
Assistant for the lessons Digital Signal Processing
and Digital Image processing at the Department of
Informatics at the Aristotle University of Thessa-

loniki. She has co-authored more than 15 papers in international journals
and conferences. Her current research interests include image and video
processing, computer vision and pattern recognition.

PLACE
PHOTO
HERE

Anastasios Tefas (M04) received the B.Sc. in in-
formatics in 1997 and the Ph.D. degree in informat-
ics in 2002, both from the Aristotle University of
Thessaloniki, Greece. Since 2013 he has been an
Assistant Professor at the Department of Informatics,
Aristotle University of Thessaloniki. From 2008 to
2012, he was a Lecturer at the same University.
From 2006 to 2008, he was an Assistant Profes-
sor at the Department of Information Management,
Technological Institute of Kavala. From 2003 to
2004, he was a temporary lecturer in the Department

of Informatics, University of Thessaloniki. From 1997 to 2002, he was a
researcher and teaching assistant in the Department of Informatics, University
of Thessaloniki. Dr. Tefas participated in 12 research projects financed by
national and European funds. He has co-authored 39 journal papers, 113
papers in international conferences and contributed 7 chapters to edited books
in his area of expertise. Over 2150 citations have been recorded to his
publications and his H-index is 23 according to Google scholar. His current
research interests include computational intelligence, pattern recognition,
statistical machine learning, digital signal and image processing and computer
vision, biometrics and security.

PLACE
PHOTO
HERE

Nikos Nikolaidis (S92M05-SM09) received the
Diploma of Electrical Engineering and the Ph.D.
degree in Electrical Engineering from the Aristotle
University of Thessaloniki, Thessaloniki, Greece, in
1991 and 1997, respectively. From 1992 to 1996,
he was a Teaching Assistant at the Departments
of Electrical Engineering and Informatics at the
Aristotle University of Thessaloniki. From 1998
to 2002, he was a Postdoctoral Researcher and
Teaching Assistant at the Department of Informatics,
Aristotle University of Thessaloniki, where he is

currently an Assistant Professor. He has co-authored 1 book, 15 book
chapters, 40 journal papers and 136 conference papers and co-edited one
book and two special issues in journals. Moreover he has co-organized 6
special sessions in international conferences. The number of citations to
his work by third authors exceeds 3000 (h-index 24). He has participated
into 24 research projects funded by the EU and national funds. His areas
of interest/expertise include stereoscopic/multiview video processing/analysis,
anthropocentric video analysis (human detection and tracking, activity recog-
nition), computer vision, digital image/video processing, computer graphics
and visualization, multimedia copyright protection. Dr. Nikolaidis is currently
serving as associate editor for the EURASIP Journal on Image and Video
Processing, the International Journal of Innovative Computing Information and
Control, the Innovative Computing, Information and Control Express Letters
and the Journal of Information Hiding and Multimedia Signal Processing.
Furthermore, he is a member of the Editorial Board of the International Journal
of Multimedia Intelligence and Security. He served as Exhibits chair of IEEE
ICIP 2001, Technical Program chair of IEEE IVMSP 2013 workshop and is
currently serving as Publicity co-chair of EUSIPCO 2015. He is an IEEE
Senior Member.

PLACE
PHOTO
HERE

Ioannis Pitas (SM94-F07) Prof. Ioannis Pitas (IEEE
fellow, IEEE Distinguished Lecturer, EURASIP fel-
low) received the Diploma and PhD degree in Elec-
trical Engineering, both from the Aristotle University
of Thessaloniki, Greece. Since 1994, he has been a
Professor at the Department of Informatics of the
same University. He served as a Visiting Professor
at several Universities.

His current interests are in the areas of im-
age/video processing, intelligent digital media, ma-
chine learning, human centered interfaces, affective

computing, computer vision, 3D imaging and biomedical imaging. He has
published over 750 papers, contributed in 39 books in his areas of interest and
edited or (co-)authored another 9 books. He has also been an invited speaker
and/or member of the program committee of many scientific conferences and
workshops. In the past he served as Associate Editor or co-Editor of eight
international journals and General or Technical Chair of four international con-
ferences (including ICIP2001). He participated in 68 R&D projects, primarily
funded by the European Union and is/was principal investigator/researcher
in 40 such projects. He has 17900+ citations (Source Publish and Perish),
6250+ (Scopus) to his work and h-index 64+ (Source Publish and Perish),
38+ (Scopus).


