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Abstract 

In this paper, we propose a new dimension reduction (DR) algorithm called ensemble graph-

based locality preserving projections (EGLPP); to overcome the neighbourhood size k sensitivity 

in locally preserving projections (LPP).  EGLPP constructs a homogeneous ensemble of 

adjacency graphs by varying neighborhood size k and finally uses the integrated embedded graph 

to optimize the low-dimensional projections. Furthermore, to appropriately handle the intrinsic 

geometrical structure of the multi-view data and overcome the dimensionality curse, we propose 

a generalized multi-manifold graph ensemble embedding framework (MLGEE). MLGEE aims to 

utilize multi-manifold graphs for the adjacency estimation with automatically weight each 

manifold to derive the integrated heterogeneous graph. Experimental results on various computer 

vision databases verify the effectiveness of proposed EGLPP and MLGEE over existing 

comparative DR methods.  

Keywords: manifold learning, multi-view dimension reduction, graph embedding, pattern 

recognition 
 

1. INTRODUCTION 

Researchers in various fields such as deep learning and 

machine learning, meets with a variety of data, such as 

texts, images, audios, and videos in very high 

dimensions. However, the recognition performance of 

many learning tasks for example face recognition, text 

categorization and signal processing, is seriously 

degrades when directly using this high dimensional data 

as input. To diminish the “curse of dimensionality”[1] 

and improve the computational efficiency, 

dimensionality reduction (DR) techniques have been 

projected to preprocess these high dimensional data.  

 

 

According to a general framework [2] these DR 

methods can be placed into two categories: linear and 

non-linear, where most of them are seen as an 

alternatives of graph embedding (GE). This GE scheme  

 

 



 

 

has been generalized by evolving an integrated 

revolving uniform DR framework [3], and the extensive 

growth of GE has been presented in [4].  

 

Among the linear algorithms, principal component 

analysis (PCA) [5, 6] and linear discriminant analysis 

(LDA) [7, 8] have been the two most recognized 

because of their comparative efficiency and 

accessibility. PCA, an unsupervised method preserves 

the global geometry whereas LDA, a supervised method 

detects the global discriminative information of the 

high-dimensional data. Further, by applying kernel 

tricks [9], the nonlinear ones of PCA and LDA are 

introduced to realize the intrinsic non-linear geometry 

of high-dimensional data. Recently many extensions of 

PCA [10-12] and LDA [13-15] have been developed in 

machine learning applications, yet PCA often seem like 

incapable to well detect the discrimination whereas 

LDA can often unable to resolve the small sample size 

problem and both fails to process nonlinear data. 

 

Moreover, enormous manifold-based methods have 

been proposed to explicitly discover the nonlinear 

structure hidden in the data [16]. It is based on the idea 

that data usually denotes from a low-dimensional 

manifold that is embedded in a high-dimensional space. 

These methods include isomap [17], local linear 

embedding (LLE) [18], multidimensional scaling 

(MDS) [19], and laplacian eigenmaps (LE) [20]. Most 

of them attempt to implant the original high-dimension 

data into sub-local manifold based on the assumption 

that; a nearest-neighbor graph can modeled the 

manifold for preserving actual neighborhood properties 

of the data. Nevertheless, these non-linear manifold 

methods have some issues to be resolved with reference 

to machine learning applications. Such as their 

classification is not directly linked while preserving 

locality of data [21]. Also these techniques have out-of-

sample problem, as the embedding realized from 

training data cannot be directly applied to a fresh data 

point [22]. 

 

In order to solve above problems, various improved 

linear manifold GE methods have been presented to 

reveal the local manifold structure of the data. The most 

representative linear ones are locality preserving 

projections (LPP) [23], neighborhood preserving 

embedding (NPE) [24] and locality sensitive 

discriminant analysis (LSDA)[25]. LPP and NPE are 

the linear versions of the non-linear LE and LLE. In 

many recent researches, LPP has been investigated for 

DR with new modifications [26-33]. Such as in [34], a 

recent supervised form of LPP called double adjacency 

graphs-based discriminant neighborhood embedding 

(DDNE) is presented. Xu et al. projected the LPP 

solution schemes for face recognition [28] and Cai et al. 

proposed orthogonal locality preserving projection 

(OLPP) algorithm [35]. Although these approaches 

have shown improved performances than LPP, still 

these are very sensitive to neighborhood parameter k, 

because the KNN rule is employed for constructing the 

adjacent graphs. 

  

In this article, being inspired from our weighted 

neighborhood preserving ensemble embedding 

(WNPEE) [36] framework, a new DR algorithm called 

ensemble graph-based locality preserving projections 

(EGLPP) is proposed. In EGLPP, we consider an 

ensemble of adjacent graphs by varying neighborhood 

size parameter unlike LPP which considers only one 

adjacent graph. EGLPP aims to improve recognition 

performance of LPP by preserving more local 

neighborhood information that best determines the 

essential manifold structure of high dimensional data 

while making LPP less sensitive to neighborhood size k.  

 

Furthermore, these days several real-world databases 

are composed from numerous bases or characterized by 

multi-views and each single view refers to diverse 

perception of data. For example, images from various 

view-points of the identical object can be characterized 

as multi-views, one text could also be taken into various 

languages, and therefore the interpretation in every 

language will be measured as a view. We generally 

cannot train all multi-views into one specific view for 

pattern recognition, as every single view has its 

individual statistical assets. Recently, several multi-

view DR approaches have been developed. For 

instance, Bilinear Models (BLM) [37], Partial Least 

Squares (PLS) [38] and the canonical correlation 

analysis (CCA) [39] are capable to realize mutual 

features from multi-view databases. RCCA [40] and 

LPCCA [41] are two extensions of CCA. Also 

numerous multi-view DR methods based on graph-

embedding are known as multi-graph based algorithms. 

Similar to graph-based learning, the structure of these 

approaches also comprises of the smoothness constraint 

and the fitting constraint. Additionally, some of these 

DR rules are projected to assign suitable weights to 

distinct graphs. Although the current DR approaches 

have certain promising contributions in recognizing 

patterns, the following issues further need to be 

explored: 

• The restriction of most of current DR approaches 

is that they are ineffective to evaluate the essential 

spatial structure of the original data. 

• Most of the persisting DR approaches use only 

one adjacent graph for manifold embedding, 

which is unable to preserve complete 

discrimination and makes them inefficient for 

multi-view databases. 



 

 

Therefore in this study, inspired from our ensemble 

graph framework, we propose a generalized multi-view 

DR framework called multi-manifold graph ensemble 

embedding (MLGEE) as in Fig. 1. MLGEE uses an 

ensemble regularization term to consider the multi-

manifolds statistics for multi-views. Specifically, we 

use different manifolds to construct adjacent 

heterogeneous graphs to present the essential manifold 

structure for different views. This makes MLGEE to 

fuse the essential manifold learning through these 

heterogeneous graphs. Finally the objective function is 

derived by unification of the ensemble regularization 

term with linear embedding analysis.  

The contributions of our proposed ensemble framework 

are summarized as: 

• In first contribution, the proposed EGLPP unlike 

LPP constructs an ensemble of homogeneous 

adjacent graphs with an efficient weighting 

scheme. It makes EGLPP much less sensitive to 

neighborhood size k while obtaining projections 

with an optimum embedded graph pursuing in a 

joint optimization way. LPP can be seen as a 

special case of the EGLPP for a fixed 

neighborhood size, as rationale behind proposed 

EGLPP and LPP is same. 

• In second contribution, a generalized multi-

manifold graph ensemble embedding for multi-

view DR (MLGEE). Multiple local manifold 

embeddings are effectively utilized in MLGEE to 

obtain local structures from multi-view databases. 

MLGEE regularization framework is employed to 

scale the local heterogeneous graphs of multi-

views to estimate the essential manifold structure.  

 

The experiments on four face databases demonstrate the 

supremacy of our EGLPP when compared to LPP and 

other related DR approaches. Also, experiments on four 

multi-view databases for handwritten numerals 

recognition, object recognition and face recognition 

show the superiority of MLGEE over that of proposed 

EGLPP, WNPEE, canonical correlation analysis 

(CCA), discriminant neighborhood embedding 

(DDNE), sparsity preserving projections (SPP), LPP, 

and NPE approaches. 

 

We assemble the rest of the article, following to 

introduction in Section I as: in Section II, we present a 

brief review of related GE and multi-view DR 

approaches. In Section III, we frame the proposed 

ensemble-based DR approaches and finally the 

experimental results are expressed in Section IV. In 

Section V, we draw our conclusions and the future 

directions. 

 

2. RELATED WORK 
     

In this section, we briefly review the related 

representative DR approach; LPP and then discuss the 

recent growth on multi-view DR approaches. 

 

A.  Locality Preserving Projections 
 

In recent times, a number of DR approaches have been 

developed using different manifold ideas and 

methodology. However; the goal of these numerous 

approaches is same, that is, to obtain a reduced 

dimensional data on which further machine learning 

tasks can be easily performed with improved 

computational complexity. LPP is an unsupervised 

graph based embedding method [23]. LPP is designed 

with different objective principle from classical linear 

DR techniques. Due to locality preserving quality of 

LPP, it has been used in many information retrieval 

applications [35, 42, 43]. LPP can be simply functional 

everywhere unlike non-linear DR techniques. LPP 

could be carry out in the inventive extent or in the 

replicating kernel Hilbert extent into which data points 

are plotted. 

 

For notational convenience, let us denote 𝑋 = {𝑥𝑖 ∈
 ℝ𝐷}𝑖=1

𝑁  a high 𝐷-dimensional data with 𝑁 number of 

samples. Linear DR mapping is to assign the original 

high dimensional data to a low 𝑑-dimensional data i.e. 

𝑌 = {𝑦𝑖 ∈  ℝ𝑑}𝑖=1
𝑁  (𝑑 ≪ 𝐷). If 𝐴 is a transformation 

matrix, then linear DR is defined as 

 

𝑦𝑖 = 𝐴𝑇𝑥𝑖    𝑓𝑜𝑟  𝑖 = 1, … , 𝑁.  (1) 

  

The functioning of the LPP consists of three steps. 

Firstly it constructs adjacent graph, then giving the 

weights to edges and finally obtains the projections by 

solving eigenvalue problem. The adjacent graph is 

usually constructed by ε-neighborhood or 𝑘-

neighborhood. In ε-neighborhood: two nodes 𝑖 and 𝑗 are 

linked by an edge if ‖𝑥𝑖 − 𝑥𝑗‖
2

<  𝜀. In 𝑘-

neighborhood: nodes 𝑖 and 𝑗 are linked by a verge if 

either of it presents in their 𝑘 nearest neighbor. 

Weights 𝑊𝑖𝑗  are given to edges between nodes 𝑖 and 𝑗 

by a symmetric weight matrix 𝑊, computed by uniform 

weight or Gaussian weight of Euclidean distance. 𝑊 is 

often defined as 

 

𝑊𝑖𝑗

= {
𝑒𝑥𝑝‖𝑥𝑖 − 𝑥𝑗‖

2

𝑡
,        𝑥𝑗 ∈ KNN of 𝑥𝑖  𝑜𝑟 𝑥𝑖 ∈ KNN of 𝑥𝑗

0,                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

, 

  

(2

) 

 

where parameter 𝑡 is a positive constant. Finally 

computing the eigenvectors and eigenvalues for the 

below eigenvector problem: 



 

 

 

                        𝑋𝐿𝑋𝑇𝐚 = 𝜆𝑋𝐷𝑋𝑇𝐚. (3) 

 

where 𝐷 is a diagonal matrix whose entities are column 

(or row) sum of 𝑊, 𝐷𝑖𝑖 = ∑ 𝑊𝑖𝑗𝑗 , 𝐿 = 𝐷 − 𝑊 is the 

Laplacian matrix and 𝐚 is a transformation vector. 

 

B.  Multi-View DR 
 

Multi-view DR aims to learn one function to represent 

each view and collectively optimizes all the functions to 

recover the generalization performance. One of the 

most common approach for multi-view DR is to 

consider sequence of all multiple views into one single 

view and applies single view learning algorithms 

directly. Such as graph based multi-view learning in 

which each view is represented by a similarity graph, 

and then different graphs are fused into an integrated 

one to optimally preserve the similarities of data. 

Finally the results are obtained by assembling 

(generally using k-means) on the integrated graph. 

Recently various graph-based multi-view DR 

approaches have been developed.  Wang et al. proposed 

a general graph-based multi-view clustering (GMC) 

method by sufficiently considering weights of different 

views[44]. Hou et al. proposed a multi-view 

unsupervised feature selection with adaptive similarity 

and view weight (ASVW) by acknowledging the 

underlying common structures across different 

views[45]. Also a multi-view maximum entropy 

discriminant (MVMED+) model for learning with 

different numbers of views is proposed by Sun et 

al.[46]. Furthermore Wang et al. proposed a general 

graph-based system (GBS) for multi-view clustering by 

discussing and evaluating the impact of different graph 

metrics on the multi-view clustering performance[44]. 

 

Moreover, nonlinear relationships usually exist in real-

world datasets, which have not been considered by most 

existing methods. In order to address these challenges, a 

novel model which simultaneously performs multi-view 

clustering task and learns similarity relationships in 

kernel spaces is proposed by Huang et al. [47]. Li et al. 

propose a generative bayesian model to not only jointly 

take the features and views into account, but also learn 

a discriminant representation across distinctive 

categories [48]. Geng et al. an ensemble manifold 

regularization (EMR) framework to approximate the 

intrinsic manifold by combining several initial 

guesses[49]. 

 

On the other hand, CCA is the most commonly used 

multi-view DR approach [50]. CCA tends to extract the 

couple of estimates with maximal connection within 

two sets of multi-view data [51]. A couple of estimates 

a𝑥 and a𝑦 is expressed by CCA which can be initiate in 

following objective function in order to exploit the 

connections between a𝑥
𝑇𝑥 and a𝑦

𝑇𝑦 [52, 53].  

 

maxa𝑥,a𝑦
a𝑥

𝑇𝑋 𝑌𝑇a𝑦        

𝑠. 𝑡.     a𝑥
𝑇𝑋𝑋𝑇a𝑥 = 1,     a𝑦

𝑇𝑌𝑌𝑇a𝑦 = 1  

 

(4) 

3. PROPOSED METHODS 

In has been proven that ensemble graph building in 

WNPEE [36], can best determines the essential local 

manifold assemble of high-dimensional data in NPE 

while keeping the projections less sensitive to 

neighborhood size k.  

Figure 1: The proposed MLGEE DR method. 
 

In this article, we proposed an extension of this 

ensemble graph building to LPP, to achieve better 

recognition rates with less sensitivity to neighborhood 

size k. A new DR technique termed as ensemble graph-

based locality preserving projections (EGLPP) is 

introduced. EGLPP constructs an ensemble of adjacent 

homogeneous graphs with different weights while 

varying neighborhood size k. The cost function of the 

proposed EGLPP is given as: 

arg min
𝐴

∑ α𝑡

𝑇

𝑡=1

∑(𝑦𝑖 − 𝑦𝑗)2

𝑖𝑗

𝑊𝑡,𝑖𝑗 
 

 

(5) 

𝑠. 𝑡.    ∑ 𝛼𝑡

𝑇

𝑡=1

= 1 

 

where 𝑋 = {𝑥𝑖 ∈ ℝ𝑄}𝑖=1
𝑁  given data and A is a 

conversion matrix that plots these N points to 𝑌 = {𝑦𝑖 ∈
ℝ𝑞}𝑖=1

𝑁 , (𝑞 ≪ 𝑄) such that 𝑦𝑖  represents 𝑥𝑖 , where 𝑦𝑖 =
𝐴𝑇𝑥𝑖 in which locality of 𝑥𝑖 is persevered by linear 

dimensionality reduction. 𝑊𝑔,𝑖𝑗   represent the weights 

on the edges, α𝑡 is the weight coefficient for the 

adjacent homogeneous graphs and 𝐷 is a diagonal 

matrix whose entities are column (or row) sum of 𝑊,  

𝐷𝑖𝑖 = ∑ 𝑊𝑡,𝑖𝑗𝑗 . Considering Laplacian matrix 𝐿 = 𝐷 −

𝑊𝑡, where matrix 𝐷 provides a normal measure on the 

data points. The importance of 𝑦𝑖  directly depends on 

how greater the value of 𝐷𝑖𝑖  (corresponding to 𝑦𝑖). 

Consequently, we enforce a constraint as   𝑦𝑇𝐷𝑦 = 1 ⇒



 

 

a𝑇𝑋𝐷𝑋𝑇a = 1. Finally the minimization problem 

reduces to 

arg min
𝐴

a𝑇𝑋𝐷𝑋𝑇a=1

a𝑇𝑋 ∑ 𝛼𝑡

𝑇

𝑡=1

𝐿𝑋𝑇a (6) 

 

Therefore, EGLPP using different k values to make 𝑇 

multiple adjacent graphs and integrated them by giving 

α𝑡 weights to obtain an optimal embedded graph. 

Finally the low dimensional projections are pursued in a 

joint optimization way by preserving more local 

neighborhood information. 

 

Moreover, with additional approach of merging 

different local manifold embeddings; we propose a new 

generalized multi-manifold graph ensemble embedding 

framework (MLGEE). MLGEE preserves the similarity 

information of data sample in different views using 

different manifolds to construct the heterogeneous 

adjacent graphs. Then these heterogeneous adjacent 

graphs are weighted to build a unified representation for 

multi-view manifold learning. The objective function of 

MLGEE is give as follows: 

arg min
𝑤

 𝑤𝑇𝑋 ∑ 𝛽𝑔 𝑀𝑔𝑋𝑇𝑤

𝐿

𝑔=1

 (7) 

𝑠. 𝑡.    𝑤𝑇𝑋𝑋𝑇𝑤 = 1 and ∑ 𝛽𝑔

𝐿

𝑔=1

= 1 

 

where 𝑤 is the transformation vector, 𝛽 =
[𝛽1, 𝛽2, … , 𝛽𝐿]  symbolizes weight coefficient for the 

multi-manifolds  normalization. Also 𝛽 sentences the 

data points in the gth local manifold assembly. Also,  𝑀𝑔 

is the gth local manifold which is assembled from the 

local manifold embeddings such as LPP, NPE, SPP, LE 

or LSDA. Therefore, in MLGEE superiorities of 

different manifolds are combined to preserve more local 

representation of the multi-view high dimension data.  

 

The transformation vector 𝑤 that reduces the objective 

function is given by the minimum eigenvalue solution 

to the following generalized eigenvector problem while 

considering 𝑤𝑇𝑋𝑋𝑇𝑤 = 1: 

 

𝑋 ∑ 𝛽𝑔

𝐿

𝑔=1

 𝑀𝑔𝑋𝑇𝑤 = 𝜆𝑋𝑋𝑇𝑤 (8) 

 

A. Obtaining parameter 𝜶𝒕 and 𝜷𝒈 in proposed 

methods 
 

In this segment, we explore how to find the values of 

the considerations α and 𝛽, that are weight coefficient 

vector for the several homogeneous graphs in EGLPP 

and weight coefficient vector for the multiple 

heterogeneous local manifolds in MLGEE, respectively.  

 

Considering having 𝑇 adjacent homogeneous 

graphs: 𝐺1, 𝐺2, … , 𝐺𝑇, in EGLPP similar to [36]. We 

wish to obtain the value of α𝑡  which regulates the 

influence of tth adjacent graph in EGLPP DR approach. 

Therefore, by adding Lagrange multiplier in regard to α 

in (6), we obtain the following regularization 

framework: 

a𝑇𝑋 ∑ α𝑡

𝑇

𝑡=1

𝐿 𝑋𝑇a + 𝜆 (1 − ∑ α𝑡

𝑇

𝑡=1

) (9) 

 

Although, from (9) it can be seen that cost function is 

linear in regard to α and it achieves the optimal result at 

extreme ends, that is either  α𝑡 = 0 or  α𝑡 = 1. Or we 

can say that it selects only one adjacent graph which is 

different from our idea of discovering the balanced 

multi-manifolds. Therefore, we consider α𝑡 as α𝑡
𝑟, 

where r is used to represent the weights variable for the 

multiple adjacent graphs. Further, if 𝑟 >  1, the result 

will be built on a balance among multiple adjacent 

graphs [54]. Consequently the value of parameter 𝛼𝑡 

can be calculated by pursuing partial derivative of (9) 

by using Leibniz’s notation and simultaneously when 

projections are fixed and by considering the constrain 

∑ α𝑡
𝑇
𝑡=1 = 1, we can further derive that: 

 

𝛼𝑡 =
(1/𝑇𝑟(a𝑇𝑋𝐿 𝑋𝑇a))

1
𝑟−1

∑ (1/𝑇𝑟(a𝑇𝑋𝐿 𝑋𝑇a))
1

𝑟−1𝑇
𝑡=1

 (10) 

 

Similarly for MLGEE, considering 𝐿 local 

manifolds: 𝑀1, 𝑀2, … , 𝑀𝐿 , we can obtain the value of 𝛽  

that is to regulate the impact of gth local manifold. Thus, 

by adding Lagrange multiplier in (3) in regard to 𝛽 and 

derive the below cost function: 

 𝑤𝑇𝑋 ∑ 𝛽𝑔  𝑀𝑔𝑋𝑇𝑤

𝐿

𝑔=1

 + 𝜆 (1 − ∑ 𝛽𝑔

𝐿

𝑔=1

) (11) 

 

Furthermore, by taking into account 𝛽𝑔  as 𝛽𝑔
𝑟 and 

considering the partial derivatives while using the 

constraint  ∑ 𝛽𝑔
𝐿
𝑔=1 = 1, we can obtain   

 

𝛽𝑔 =
(1/𝑇𝑟( 𝑤𝑇𝑋 𝑀𝑔𝑋𝑇𝑤))

1
𝑟−1

∑ (1/𝑇𝑟( 𝑤𝑇𝑋 𝑀𝑔𝑋𝑇𝑤))
1

𝑟−1𝐿
𝑔=1

 (12) 

 

Therefore, by solving iteratively the value of weight 

parameters α and  𝛽, the projection vectors 𝐚 and 𝒘 can 

be derived from Algorithms 1 and 2 respectively. The 

whole EGLPP procedure is given in Algorithm 1 

whereas the MLGEE is detailed in Algorithm 2.  



 

 

 

Algorithm 1. The proposed EGLPP DR method. 

Input: High dimensional data 𝑋 

Output: projection vector 𝐚 

Parameter: αt 

Initialize:  

- Construct the T adjacent homogeneous graphs using 

𝐾𝑁𝑁 with each α = 1/T weights.  

while loss not converged do 

1. Computing the weights on edges with fix α𝑡  acc. to 

(5) 

2. Obtain projection vector 𝐚 acc. to (6) 

3. Fix 𝐚 and update αk acc.to (10)  

4. Compute current loss  

End while 

 

Algorithm 2. The proposed MLGEE DR method. 

Input: Multi-view data-sample X, L no. of multi-

manifolds.  

Output: Low-dimensional projection vector 𝒘 

Parameter: 𝛽𝑔 

Initialize:  

- set = (
1

𝐿
,

1

𝐿
, … ,

1

𝐿
)𝑇 , 

-Construct the L local heterogeneous 

manifolds  (𝑀𝑔)𝑔=1
𝐿 .  

while loss not converged do 

1. Find projection vector 𝒘 acc. to (8) 

2. Fix 𝒘 and update 𝛽𝑔 acc.to (12)  

3. Compute current loss  

End while 

4. EXPERIMENTS 

In this section, four computer vision databases are used 

in our experiments. Firstly, two image databases 

Olivetti Research Laboratory (ORL) [55] and Georgia 

Tech (GT) [56] are used to compare recognition results 

of EGLPP variants to LPP. Then experiments are 

carried out on object recognition using Coil-100 [57], 

handwritten numeral recognition using Multi-Feature 

digit (MFD) [58] and face recognition using ORL 

databases are exploited to verify the recognition 

performance of MLGEE in comparison to WNPEE, 

EGLPP, LPP, NPE, SPP [16], DNPE and CCA 

methods. 

The Georgia Tech (GT) face dataset has 750 frontal 

and/or tilted facial image samples from 50 persons, and 

each person has 15 samples. The Olivetti Research 

Laboratory (ORL) dataset comprises of 40 different 

persons of each taking ten distinct images giving a total 

of 400 instances. The Multi-Feature digit (MFD) dataset 

is built of features of handwritten numerals from 0 to 9. 

These features are taken from a Dutch utility maps 

collection and we regrouped the distinct features into a 

set of 4-views (features 1, 2, 3, 4) shown in Table 1 

similar to [59]. The  COIL-100  database  consists  of  

hundred  

 
Table 1. Six groups of features in MFD database. 

1. fou : 76 Fourier coefficients of the character shapes 

feats.  

2. fac : 216 profile correlations feature 

3. kar : 64 Karhunen-Love coefficients feature 

4. pix : 240 pixel averages in 2 x 3 windows feature 

5. zer : 47 Zernike moments  

6. mor : 6 morphological features 
 

         
      (a) GT                                        (b) ORL      

 

     
        (c) MFD      (d) COIL 

Figure 2:  Sample images of databases. 

color images of distinct objects contributed by the Columbia 

University Image Library. Fig. 2(a-d) shows some sample 

images of the aforementioned databases. 

 

The parameters of the state-of-the-art methods used in 

experiments are set in the following manner. CCA is set 

in conformity to the literature provided by Sharma et al. 

[60]. For the WNPEE and EGLPP, we have taken 7 

adjacent graphs with k ranges from 1 to 13 with a step 

1.  In LPP and NPE, we set the neighborhood size to 5. 

Also in LPP, we measure the distance by heat kernel 

with the parameter t set to 0.5. The control parameter 

for the weights of the multiple adjacent graphs in 

EGLPP and multiple manifolds in MLGEE, r is chosen 

from (2, 4, 6, 8, 10 and 12). Three manifolds: LPP, 

LSDA and NPE are used in experiments such that L=3. 

To select the parameter values and optimal results, we 

use three-fold cross-validation technique for all training 

samples. The values of k are fixed as k=9 in GT, ORL, 

k=11 in MFD and k=7 in Coil-100 databases, 

respectively. Also, number of training samples l was 

randomly preset to 7 on GT, 9 on ORL, 15 on MFD, 

and 7 on Coil-100, respectively. 

A. Comparison between EGLPP and LPP 
 

Firstly, we compare our proposed EGLPP with the 

traditional LPP. In our experiments, we use EGLPP-1, 

EGLPP-2, and EGLPP-3 by constructing 7, 9 and 11 

adjacent homogeneous graphs respectively. In each 



 

 

variant, the value of neighborhood size is 𝑘 = 1, 3, 5, … 

upto number of graphs. 

 

We conceded out two cases of experiments, in first we 

took 60% of the data as training samples and rest 40% 

referred to testing samples in each dataset. In second 

case, we took 80% as the training data of complete 

database with balance 20% referred as testing data. The 

outcomes for EGLPP-1, EGLPP-2, EGLPP-3, and LPP 

are recorded in Table 2.  

 

The experimental results in Table 2 illustrates that our 

proposed EGLPP variants attain substantial margins of 

progresses in classification accuracies as well as lowest 

DRs as compared to the traditional LPP in all the 

databases. 

 
Table 2.  Mean classification accuracies ± standard 

deviations (%) and reduced dimensions. 

Meth

od 

GT ORL 

60% 80% 60% 80% 

LPP 81.20±1. 84.73±1. 95.56±0. 96.12±1.

94 (32) 40 (32) 80 (43) 24 (45) 

EGL

PP-1 

92.63±0.

67 (23) 

93.07±0.

60 (22) 

97.02±0.

43 (35) 

97.18±0.

09 (32) 

EGL

PP-2 

92.02±0.

37 (24) 

93.22±0.

94 (43) 

96.59±1.

12 (30) 

97.29±0.

57 (28) 

EGL

PP-3 

88.75±0.

94 (44) 

91.31±0.

42 (29) 

96.31±0.

13 (55) 

97.01±0.

38 (48) 

 

Moreover, to validate their constancies in 

classification performance, we present the deviations 

through 18 random runs on the two image databases in 

Fig. 3. It can be observed from the figure that our 

EGLPP DR method sustain the least standard deviations 

for its all variants in most of the databases, while LPP 

shows comparatively higher. Particularly in the AR 

database, our EGLPP approaches attain a huge 

expansion in standard deviations as compared to LPP.  

Further, in Fig. 4 we use different values of 

parameter k from 1 to 15 with a step size of one and 

plot the corresponding  

 

        

 

 
(a) GT    And (b) ORL 

 
Figure 3: Varying classification accuracies across 18 runs of EGLPP-1, EGLPP -2, EGLPP -3, and LPP on image databases. 

 

0.8

0.85

0.9

0.95

EGLPP1 EGLPP2 EGLPP3 LPP

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

0.955

0.96

0.965

0.97

EGLPP1 EGLPP2 EGLPP3 LPP

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y



 

 

 

 

average error rates to show the k value sensitivity. We 

can realize two important facts: first is that LPP 

accuracy continuously varies with k changes. On the 

other hand, EGLPP accuracy also changes w.r.t. k, but it 

becomes relatively stable after k reaches 7 and 9 in most 

of the databases. Another fact is that the proposed 

EGLPP has attained greater accuracy than LPP in both 

experiments. 

 

 

B. Experimental results for MLGEE 
 

Recently object recognition is considered as one of the 

most important task in machine learning especially 

when the data is in multi-views. Therefore, we 

determine the strength of our MLGEE DR algorithm in 

this trend by means of publically available database 

COIL-100.  

 

The best average recognition accuracies with 

corresponding standard deviations (%) and reduced 

dimensions over 18 runs of MLGEE, WNPEE, NPE, 

DNPE, EGLPP, LPP, SPP and CCA are presented in 

Table 3. It can be viewed from the table that our 

MLGEE DR method performs best among the 

comparative methods with an average accuracy of 

89.14% that is basically more than EGLPP by 0.94%, 

WNPEE by 4.08%, NPE by 5.36%, LPP by 6.4%, 

DNPE by 14.93%, SPP by 8.47% and CCA by 16.45%. 

In DR, MLGEE, EGLPP and WNPEE methods attain 

the superior accuracies over the other competitive 

approaches; on the other hand CCA shows the worst 

accuracies.  

Additionally, to better elaborate the recognition 

results, we presents the classification accuracies of 

various DR methods with respect to reduced 

dimensions in Fig. 5(a) for COIL-100 database. Fig. 

5(a) clearly shows that most of the DR approaches other 

than DDNE and CCA are firstly goes to a sharp 

upswing before attaining their highest accuracies at 

reduced dimensions 10 and 20 in case of DDNE and 

CCA. The proposed MLGEE can be seen with the 

highest accuracy almost every dimension that 

demonstrates its superiority over other competitive DR 

approaches.  

 

Handwritten numerals recognition is also a very 

challenging task in many real world machine learning 

applications. Therefore, we observe the handwritten 

numerals recognition performance of our MLGEE DR 

approach via  

           
                                     (a) GT                                                                   (b) ORL 

Figure 4:  Accuracy of LPP and proposed EGLPP corresponding to neighborhood size parameter k on (a) GT with l = 7 and (b) 

ORL with      l = 9, respectively. 
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Figure 5:  The classification accuracy rates of the comparative methods with varying dimensionality on (a) COIL-100 (b) MFD 

and (c) ORL and (d) GT databases. 

 

Multi-Feature digit (MFD) database. Table 3 comprises 

the average recognition accuracies (%) with standard 

deviations and reduced dimensions of all comparative 

DR approaches in MFD database. The proposed 

MLGEE attains the utmost mean 

 

Table 3. The average classification accuracy rates (%) of all competitive methods on each dataset with their corresponding 

standard deviations and dimensionalities in parentheses.

  CCA SPP DNPE LPP NPE WNPEE EGLPP MLGEE 

COIL

-100 

72.69±0.1

6 (41) 

80.67±0.1

3 (60) 

74.21±0.1

8 (35) 

82.74±0.1

4 (54) 

83.78±0.1

5 (34) 

85.06±0.1

6 (40) 

88.21±0.1

5 (33) 

89.14±0.1

5 (48) 

MFD 
51.13±0.1

0 (39) 

59.36±0.1

2 (48) 

66.04±0.1

7 (38) 

64.21±0.1

3 (47) 

78.14±0.1

4 (45) 

80.70±0.1

8 (33) 

73.33±0.1

3 (19) 

85.96±0.1

8 (33) 

ORL 
59.75±0.1

8 (27) 

72.92±0.2

0 (25) 

65.04±0.1

9 (19) 

78.08±0.2

1 (21) 

73.15±0.1

8 (21) 

77.00±0.2

1 (25) 

79.9±0.22   

(28) 

83.25±0.2

2 (30) 

GT 
36.85±0.0

9 (26) 

42.83±0.0

8 (18) 

33.83±0.0

9 (28) 

52.50±0.1

4 (25) 

46.44±0.0

6 (14) 

57.17±0.1

7 (12) 

59.61±0.1

0 (15) 

60.28±0.1

6 (20) 

 

 

recognition accuracy of 85.96% that is more than 

EGLPP by 12.63%, WNPEE by 5.26%, NPE by 7.82%, 

LPP by 21.75%, SPP by 19.92%, DNPE by 26.6% and 

CCA-OM by 34.83%. Also, our MLGEE method 

obtains 33 reduced dimensions in DR, retaining 

following to EGLPP which gets the finest reduced 

dimensions of 19. As well, we show the accuracies with 

respect to dimensions in all DR methods for MFD 

dataset in Fig. 5(b). From the figure it can be realized 

that our MLGEE method obtains    the highest   

accuracies with WNPEE,   EGLPP and SPP succeeding 

from the lowermost to the uppermost dimensions as 

       
                                                      

(a) COIL-100                                                 (b) MFD 

       
 

(c) ORL                                                                                (d) GT 
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related to the competitive DR methods. Alternatively, 

CCA shows the lowest performance among related DR 

methods.  

 

Experiments were also performed on the GT and ORL 

databases for the face recognition task. The 

effectiveness of the proposed MLGEE is estimated by 

performing sets of experiments with changing the 

dimensions. The dimension varies from 1 to 30 with a 

gap 1 in both databases.  

 

Table 3 shows the maximum classification accuracies 

with the corresponding standard deviations (%) and 

reduced dimensions for all competitive DR approaches. 

The best result is displayed in bold-face. We can 

perceive from the outcomes that our introduced 

MLGEE, EGLPP and WNPEE methods mostly attain 

enhanced recognition performance as compared to 

DDNE, NPE, LPP, CCA and SPP. Especially, MLGEE 

attains the finest performance among the comparable 

methods. The proposed MLGEE has an average 

difference of 3.31% higher accuracy of both face 

databases. Additionally, in GT database, EGLPP 

considerably overtakes WNPEE, DDNE, LPP, NPE, 

SPP and CCA. Simultaneously, our presented method 

mostly attains superior recognition performance with 

much reduced dimensions as compared to other 

methods.  

 

Furthermore the recognition accuracies of all the 

comparable DR techniques are performed with respect 

to dimensions are demonstrated in Fig. 5(c-d). The 

classification accuracies of each DR model can be 

detected that it first increases rapidly upto the 

dimensionality is less than 10 and then it slowly turn 

out to be constant. Also it is explicit from the figure that 

MLGEE, ELGPP and WNPEE more or less constantly 

achieve enhanced outcomes than NPE, LPP, DDNE, 

SPP and CCA. MLGEE frequently exceeds proposed 

EGLPP and WNPEE; also EGLPP and WNPEE 

achieve the comparable fine execution then other state-

of-the-art approaches. In the meantime, the alterations 

of recognition accuracy are computably considerable 

between our proposed MLGEE and other DR 

approaches on all experimental databases. Therefore, 

from this face recognition experiment we can conclude 

that our method is an encouraging DR algorithm that 

can yield suitable recognition performances. 

 

C. Control parameter selection 

 
To consider the effect of the control parameters r on 

proposed MLGEE method, we investigate with 

different values from 2 to 12 with a step of 2, for the 

ORL database. The mean recognition accuracies over 

18 repetitive runs compared to different values of r are 

shown in Fig. 6. It is clearly seen from the figure that 

the recognition accuracies of MLGEE are considerably 

inferior at r = 2, 10, 12; while committing nearly 

comparable high accuracies at r = 4, 6, and 8. Besides, 

when r = 2, 4 and 12 the recognition accuracies have 

massive variances on the other hand minor variances 

are noted at r = 6, 8 and 10. Thus, for attaining the 

highest accuracy with maximum rate of constancy 

according to the recognition outcomes, we can choose 

the value of control parameter r = 6 in our experiments. 

 

 
Figure 6: Recognition accuracies of proposed MLGEE DR 

method over different values of r on ORL dataset. 

 

5. CONCLUSION 

In this study, we proposed two graph ensemble 

embedding frameworks EGLPP and MLGEE. EGLPP 

is to the improve recognition performance of LPP and 

make its projections less sensitive to neighborhood size 

k. On the other hand, we propose a generalized multi-

manifold graph ensemble embedding for multi-view DR 

(MLGEE). MLGEE integrates the multi-manifolds 

heterogeneous graphs to build an intrinsic unified 

representation for multi-view manifold learning. 

Therefore, local manifold embeddings are efficiently 

used in MLGEE to attain local structures from multi-

view databases. 

 

Further we employ the widely used MFD, COIL-100, 

ORL and GT databases as test data to evaluate the 

performance of all compared methods; experimental 

results show that EGLPP and MLGEE outperforms 

several representative state-of-the-art DR methods. In 

future, we can extend our proposed MLGEE framework 

using sparse representation as well as using kernel 

tricks to well imitate the intrinsic structure of high 

dimensional data. 
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