
ABSTRACT

Title of dissertation: ENABLING GRAPH ANALYSIS
OVER RELATIONAL DATABASES

Konstantinos Xirogiannopoulos
Doctor of Philosophy, 2019

Dissertation directed by: Professor Amol Deshpande
Department of Computer Science

Complex interactions and systems can be modeled by analyzing the connec-

tions between underlying entities or objects described by a dataset. These rela-

tionships form networks (graphs), the analysis of which has been shown to provide

tremendous value in areas ranging from retail to many scientific domains. This value

is obtained by using various methodologies from network science– a field which fo-

cuses on studying network representations in the real world. In particular “graph

algorithms”, which iteratively traverse a graph’s connections, are often leveraged to

gain insights. To take advantage of the opportunity presented by graph algorithms,

there have been a variety of specialized graph data management systems, and anal-

ysis frameworks, proposed in recent years, which have made significant advances

in efficiently storing and analyzing graph-structured data. Most datasets however

currently do not reside in these specialized systems but rather in general-purpose

relational database management systems (RDBMS). A relational or similarly struc-

tured system is typically governed by a schema of varying strictness that implements

constraints and is meticulously designed for the specific enterprise. Such structured

datasets contain many relationships between the entities therein, that can be seen

as latent or “hidden” graphs that exist inherently inside the datasets. However,

these relationships can only typically be traversed via conducting expensive JOINs

using SQL or similar languages. Thus, in order for users to efficiently traverse these

latent graphs to conduct analysis, data needs to be transformed and migrated to

specialized systems. This creates barriers that hinder and discourage graph analysis;

our vision is to break these barriers.

In this dissertation we investigate the opportunities and challenges involved in

efficiently leveraging relationships within data stored in structured databases. First,

we present GraphGen, a lightweight software layer that is independent from the

underlying database, and provides interfaces for graph analysis of data in RDBMSs.

GraphGen is the first such system that introduces an intuitive high-level language

for specifying graphs of interest, and utilizes in-memory graph representations to

tackle the problems associated with analyzing graphs that are hidden inside struc-

tured datasets. We show GraphGen can analyze such graphs in orders of magni-

tude less memory, and often computation time, while eliminating manual Extract-

Transform-Load (ETL) effort.

Second, we examine how in-memory graph representations of RDBMS data

can be used to enhance relational query processing. We present a novel, general

framework for executing GROUP BY aggregation over conjunctive queries which

avoids materialization of intermediate JOIN results, and wrap this framework inside

a multi-way relational operator called Join-Agg. We show that Join-Agg can

compute aggregates over a class of relational and graph queries using orders of

magnitude less memory and computation time.

ENABLING GRAPH ANALYSIS
OVER RELATIONAL DATABASES

by

Konstantinos Xirogiannopoulos

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2019

Advisory Committee:
Professor Amol Deshpande, Chair/Advisor
Professor Louiqa Raschid, Dean’s Representative
Professor Daniel Abadi
Professor Peter Keleher
Professor Leilani Battle

c© Copyright by
Konstantinos Xirogiannopoulos

2019

Dedication

To my family

ii

Acknowledgments

I would like to acknowledge my advisor, Amol Deshpande for his guidance

ever since my arrival at UMD and for believing in my ability to publish in the top

databases venues and get our paper submissions out on time. I’d also like to thank

my committee members: Pete Keleher, Daniel Abadi, Louiqa Raschid and Leilani

Battle for all their help and constructive feedback.

This has without a doubt been the most intellectually challenging and complex

journey I’ve ever been on. My family and friends were by my side throughout the

whole thing even though they were physically thousands of miles away. Thank you

dad, mom and Peggy for talking me through and supporting me all the times I’ve

been discouraged. Thank you Katie for being there for me– it’s hard to imagine just

how much more difficult the final stretch of this journey would have been without

you.

Thank you Ben for all of the opportunities you presented me with, for our

stress-relieving strolls through our beautiful campus and the delicious food we shared

and/or made albeit sometimes requiring a (very) early rise. Thank you Allen for our

intriguing in-depth discussions about academia, research, and obscure topics we’re

both fascinated by. Thank you Rebecca for the heartfelt and cathartic conversations

and your unwavering support along the way. Thank you guys for all your help and

feedback you provided on my work.

I would like to thank the Hellenic Graduate Student Association at UMD, who

have been an integral part of my support group from the start. Thank you Ioannis

iii

Demertzis, Leda Apergi and Sofia Nikolakaki for the great company and awesome

parties we threw and attended together–keeping Greek traditions alive in College

Park! I’d also like to thank Kostas Zampogiannis, Moschoula Pternea, Antonis

Kyprianidis and the rest of “the Greeks” as well as Adi Hajj-Ahmad, always a part

of our Greek shenanigans.

Last but not least, I’d like to thank the Computer Science Department staff:

Tom Hurst, Jennifer Story, Stephanie Peters, Sharon McElroy. You all do an in-

credible job and every single one of us would be constantly anxious and lost without

your help.

iv

Table of Contents

Dedication ii

Acknowledgements iii

Table of Contents v

List of Tables ix

List of Figures xi

List of Abbreviations xiv

1 Introduction 1
1.1 Graph vs Relational Analytics . 5

1.1.1 Complementary Nature of Relational and Graph Analytics . . 8
1.1.2 Relevant Historical Data Models 10
1.1.3 XML . 11
1.1.4 RDF . 12

1.2 Specialized Graph Systems . 13
1.2.1 Graph Frontend, Graph Backend 13
1.2.2 Bolt-on Solutions: Graph Frontend, RDBMS Backend 14
1.2.3 Graph Analytics Frameworks 15
1.2.4 From Relational to Graph Backend 16

1.3 The Gap Between RDBMSs and Graph Analytics 16
1.3.1 Hidden Graphs in Relational Schemas 17
1.3.2 Large Output Joins in Relational Query Processing 21

1.4 Contributions . 24
1.5 Outline and Previously Published Work 27

2 GraphGen System Overview 28
2.1 Architecture . 28
2.2 GraphGenDL . 32

2.2.1 Syntax: Single Graphs . 33
2.2.2 Syntax: Graph Collections . 36

2.3 Internal Data Structures & Interfaces 38
2.3.1 Java APIs . 41
2.3.2 Vertex-centric API . 43

v

2.3.3 External Libraries . 44
2.4 Web Based Graph Exploration Interface 45

3 Extracting and Analyzing Graphs in RDBMSs 48
3.1 Overview . 49

3.1.1 Review: Hidden Graphs and Challenges 49
3.1.2 Analyzing Hidden Graphs with GraphGen 50
3.1.3 Condensed In-memory Representations and Duplication 52

3.2 In-Memory Representation and Task Execution 55
3.2.1 Condensed Representation & Duplication 55
3.2.2 Extracting a Condensed Graph 58
3.2.3 In-Memory Representations 61

3.3 Preprocessing & Deduplication . 65
3.3.1 Preprocessing for BITMAP 66

3.3.1.1 BITMAP-1 Algorithm 67
3.3.1.2 Formal Analysis . 68
3.3.1.3 BITMAP-2 Algorithm 68

3.3.2 Deduplication for DEDUP-1 70
3.3.2.1 Single-layer Condensed Graphs 71
3.3.2.2 Multi-layer Condensed Graphs 76

3.3.3 DEDUP-2 Greedy Algorithm 77
3.4 Experimental Study . 81

3.4.1 Small Datasets . 81
3.4.1.1 Compression Performance 82
3.4.1.2 Graph Algorithms Performance 84
3.4.1.3 Comparing Deduplication Algorithms 86

3.4.2 Large Datasets . 87
3.4.3 Microbenchmarks . 88
3.4.4 Integration with Apache Giraph 90

3.5 Experimental Setup . 94
3.5.1 Generation of Small Synthetic Datasets 94
3.5.2 Generation of Large Datasets 96
3.5.3 Database Schemas and Generated SQL 96
3.5.4 Discussion: Choosing a Representation 97

3.6 Summary . 99

4 Analyzing Collections of Graphs in RDBMSs 104
4.1 Graph Collections . 104
4.2 What-if Analysis . 106
4.3 Extracting Graph Collections . 109
4.4 Tagging Framework . 110

4.4.1 Rule 1 (Tagging) . 110
4.4.2 Rule 2 (Tag Propagation) . 112

4.5 Preliminary Experiments . 114
4.6 Summary . 115

vi

5 Leveraging Graphs for Aggregate Query Processing 117
5.1 Overview . 118

5.1.1 Re-thinking Aggregate Query Processing 118
5.1.2 The Join-Agg Operator . 120
5.1.3 Summary of Contributions . 123

5.2 Data Graph Representation and Construction 125
5.2.1 Query Decomposition . 125
5.2.2 Splitting Attributes . 126
5.2.3 Data Graph Representation 129
5.2.4 Mapping Relations to a Data-Graph 131
5.2.5 Join-Agg Stage 1: Loading Data Graph 133

5.3 Traversing The Data Graph . 133
5.3.1 Definitions & Axioms . 134
5.3.2 Join-Agg Stage 2: Traversal and Multiplicities 136
5.3.3 Join-Agg Stage 3: Result Generation 138
5.3.4 Other Aggregation Functions 141

5.4 Complexity Analysis . 142
5.5 Implementation Details . 148

5.5.1 Pre-aggregation Implementation 151
5.6 Experimental Evaluation . 152

5.6.1 Synthetic Datasets . 155
5.6.2 Tuning PostgreSQL . 156
5.6.3 Join-Agg Performance Analysis 158
5.6.4 Pre-aggregation Performance Analysis 160

5.7 Summary . 161

6 Related Work 164
6.1 Graph Data Management Systems . 164
6.2 Graph Analytics Frameworks . 166
6.3 RDBMS & Graph Analytics . 167
6.4 Graph Compression . 170
6.5 Multi-Query Optimization . 171
6.6 Analysis Frameworks for Overlapping Graph Collections 172

6.6.1 Representing Graph Collections 173
6.7 Factorized Representation of Query Results 174
6.8 Join and Aggregate Query Processing 177

6.8.1 Worst-case Optimal Joins . 177
6.8.2 Iceberg Queries . 178
6.8.3 Similarity Joins . 180
6.8.4 Data Reduction Operators . 180

7 Conclusions 183
7.1 Leveraging Graph Representations of Relational Data 183
7.2 Limitations . 186
7.3 Closing Thoughts . 188

vii

8 Algorithm Pseudocodes 190

Bibliography 194

viii

List of Tables

3.1 Extracting graphs in GraphGen using our condensed representation
(C-DUP) vs extracting the full graph (EXP). GraphGen enables
scalable extraction and analysis on graphs that may not fit in memory.
IMDB: Co-actors graph (on a subset of data), DBLP: Co-authors
graph, TPCH: Connect customers who buy the same product, UNIV:
Connect students who have taken the same course (synthetic, from
http://db-book.com. 53

3.2 Small Datasets: avg size refers to the average number of real nodes
contained in a virtual node . 82

3.3 Comparing the performance (running times in seconds, and memory
consumption in GB) of C-DUP, BITMAP, and EXP on large datasets;
the table also shows the time required for bitmap de-duplication
(DNF → did not finish in reasonable time). 101

3.4 Experiments on Giraph showing the running time(s) / memory(MB)
for different representations and algorithms. 102

3.5 Descriptions of the datasets used for experiments with Giraph. 102
3.6 Selectivities of synthetically generated multi-layer and single layer

datasets. The nodes and edges sizes shown here are of the C-DUP
representation of these graphs. 103

4.1 Query times are in ms. MQO refers to Multi-Query Optimization as
it aims to mimic the approaches in past work which look for common
sub-queries across queries, materialize those sub-queries and re-use
them. 114

5.1 Characteristics about all synthetic and real datasets used in the ex-
periments. JoinR shows the size of the join result before aggregation
in Million (M) or Billion (B) tuples. Groups shows the number of
groups output for each query in each dataset. Load is the total time
required (in seconds) to load the data from PostreSQL to the in-
memory data graph. 154

ix

5.2 Samples from the B2 dataset, the max memory consumption (max
heap used in GB) when running Join-Agg or pre-aggregation re-
spectively, as well as the size of the max intermediate result (in rows)
that needed to be processed when using pre-agg. 154

5.3 Experiment for the Self-join example. 156
5.4 Experiment for the Chain example. 156
5.5 Experiment for the Branching example. 156
5.6 Experiment for queries over real datasets. 156

x

List of Figures

1.1 A graph where the dark nodes represent users, and the light nodes
represent content. Three types of edges are depicted in this example
(likes, friends, and posts). User u3 is connected to user u1 via user u2. 1

1.2 An example of a dataset stored under the relational model using two
different approaches, and how each one can translate to a graph. In
approach (a), in order to obtain the graph on the left, a JOIN between
SentMessage and ReceivedMessage must be computed. The relation
Messaged, shown in approach (b), is equivalent to the result of the
aforementioned JOIN (after we choose a certain set of attributes to
project as the result). The reader may assume that the attribute
“year” is contained in MessageInfo. 8

1.3 Extraction of a “hidden” graph of customers, connected if they’ve
bought a common item from the TPCH dataset. 19

1.4 Query plan for query [Q1]. Aggregate queries can have very large
intermediate results even though the number of output groups could
be small . 23

2.1 The high-level architecture of GraphGen, a bolt-on analysis layer
on top of RDBMSs that enables efficient extraction and analysis of
“hidden” graphs that exist within RDBMS schemas. 29

2.2 The GraphGen explorer web application can connect to a database,
load in the schema (left-hand side), and allow users to write extraction
queries in GraphGenDL. They can then visualize 1-hop neighbor-
hood samples of the graphs, or conduct standard analysis over them. 47

3.1 GraphGen Overview for analyzing a single graph. 51
3.2 Key concepts of GraphGen. For C-DUP and DEDUP-1, the author

nodes are shown twice (with subscripts s and t) to avoid clutter (by
separating the in-edges and out-edges); physically they are not stored
separately. 52

3.3 Extraction examples: (a) Multi-layered condensed representation, (b)
extracting a heterogeneous bipartite graph (we only list the schemas
for some of the tables, and omit tuples for clarity). 57

xi

3.4 Graph Extraction Query Examples (see Figure 3.2 for [Q1]). 57
3.5 The resulting graph after the addition of virtual node V . (c) shows

the resulting graph for if we added edges between virtual nodes (we
omit s and t subscripts since they are clear from the context). . . . 66

3.6 Using BITMAPs to handle duplication; the dotted edges (correspond-
ing to columns or edges with all 0s) are removed. 70

3.7 Deduplicating u1 using the “real-nodes first” algorithm, resulting to
an equivalent graph with a smaller number of edges. 75

3.8 Deduplication using Greedy Virtual Nodes First. 76
3.9 Comparing the in-memory graph sizes for different datasets; the bot-

tom (lighter) bars show the number of nodes. 83
3.10 Performance of Graph Algorithms on Each Representation for the

DBLP dataset (left) and for the Synthetic 1 dataset. The vertical
red line represents EXP. 86

3.11 Deduplication Performance Results (a) Deduplication time compari-
son between algorithms. Random (RAND) vertex ordering was used
where applicable, (b) Small variations caused by node ordering in
deduplication. 86

3.12 Microbenchmarks for the real datasets (a) DBLP and (b) IMDB. . . . 90
3.13 Microbenchmarks for synthetic datasets (a) Synthetic 1 and (b) Syn-

thetic 2. 90
3.14 Porting GraphGen Representations to Apache Giraph. 92
3.15 Database Schemas: If not explicitly shown, foreign key constraints

for each attribute (if any) refer to the the primary key attribute in a
different table with the same name. 98

3.16 The SQL generated from the system for a few of the graphs we used
in our experiments. 99

4.1 The query is parsed, rewritten by altering the logical query plan, and
then executed against the database, aiming to push as much of the
computation required for the extraction, to the database. 111

4.2 Data sample for query Q1 in Listing 4.2 (a) The state of Rnodes after
Rule 1 has been applied. (b) The state of Redges after rewrite rule
2 has been applied. (c) Visual representation of each graph in the
collection. 112

5.1 The inner workings of the Join-Agg operator. 121
5.2 Derivation of a Query Decomposition tree from a Query Hypergraph. 126
5.3 A data graph created by a set of joining relations (after projections

have been applied). Relation B has multiple attributes as part of xr,
which merge into the multi-node (jc1,jd1). In the relations involved
in the join, we have four different group attributes gi, one of which
is a source attribute (g1). Node 1a is a source node, 2a, 2b, 3a,

3b, 4a, 4b are all group nodes, and (jc1,jd1) and je1 are both
branching nodes. The rest are all intermediate nodes. 127

xii

5.4 A rooted tree in the data graph corresponds to at least one tuple in
R that contain the values at the root and the leaves of the rooted
tree (the source node and the group node values). 140

5.5 Hypergraphs of example queries . 149
5.6 Hypergraphs of real world queries in the experiments. 149
5.7 Maximum memory consumption (max heap used), at any point dur-

ing execution. Each value in the y-axis represents the largest interme-
diate result we needed to store when using pre-aggregation at every
stage of the join. 161

5.8 Total computation time spent when using pre-aggregation per sam-
ple, showing the portion of the computation time spent on garbage
collection (GC). 162

5.9 Total computation time spent when using join-agg per sample, show-
ing the portion of the computation time spent on garbage collection
(GC). 162

5.10 Only computation time (excluding GC time) for every sample dataset.163

6.1 GraphGen (right) has fundamentally different goals than recent
work on using RDBMSs for graph analytics (left). 170

6.2 T1 results in factorization F1 (equivalent to C-DUP). T2 results in
factorization F2 which is equivalent to the (expanded) graph. 176

xiii

List of Abbreviations

API Application Program Interface
RDBMS Relational Database Management System
ETL Extract-Transform-Load
BI Business Intelligence
SQL Standard Query Language
DSL Domain Specific Language
AST Abstract Syntax Tree
CSR Compressed Sparse Row
OLTP OnLine Transactional Processing
OLAP OnLine Analytical Processing
GAS Gather–Apply-Scatter
BFS Breadth-First Search
ER Entity-Relationship
DAG Directed Acyclic Graph
XML eXtensible Markup Language
RDF Resource Description Framework
HTML HyperText Markup Language
QO Query Optimizer

xiv

Chapter 1: Introduction

Real-world datasets often contain distinct entities (nodes) that are connected

to each other via evident relationships (edges) that together form networks, also

called graphs. For example, two users in a social network may be connected to

each other either directly (if they are friends), or indirectly (if they have a friend in

common), an example of which is shown below:

u2

u1

u3
friends

p

c

p
o
s
t
s

g

fo
ll
ow
s

member_of

friends

likes

Figure 1.1: A graph where the dark nodes represent users, and the light nodes
represent content. Three types of edges are depicted in this example (likes, friends,
and posts). User u3 is connected to user u1 via user u2.

Graph analytics encompasses any algorithm that aims to compute certain in-

formation about the graph or its components through the traversal of its nodes and

edges. Graph algorithms (e.g., shortest paths, centrality analysis, influence propa-

1

gation, community detection, network evolution, etc.) have been shown to provide

substantial value in many application domains including finance, social media, ed-

ucation, sciences, and others. In fact, graph-powered applications are reportedly

being used today by more than 75% of the Fortune 500 companies, ranging from

banks and top retailers, to the majority of top automakers and aircraft manufactur-

ers [1].

Even though the database community has often argued that traditional rela-

tional databases are up to the task [2–4], there has been a lot of work on specialized

graph analytics frameworks and graph databases to facilitate data management and

analytics for graphs. Nevertheless, enterprises continue to organize their data in

partially or fully structured databases under some sort of schema, queryable us-

ing some flavor of SQL. According to db-engines.com [5], the top 4 most popular

databases used for data management today are relational databases, and 7 out of

the 10 most popular systems support an SQL-like declarative language, SQL being

the most ubiquitous way of interfacing with the relational data model. Such struc-

tured or partially structured databases can nevertheless contain a wide variety of

graphs. These graphs exist either explicitly (by having the relation(s) that consti-

tute the edges in the graph materialized in the database), or implicitly (if joins are

required in order to first compute the edges).

In order to analyze these graphs, organizations often have to move their data to

specialized systems. This can be extremely time-consuming and cumbersome since

it requires a potentially complex Extract-Transform-Load (ETL) process that has to

be done manually. In many situations, the ETL required consists of expensive joins

2

with large outputs (i.e., joins that exhibit low selectivity because of the cardinalities

of the join condition attributes involved); often these outputs may not fit in memory

even if the initial datasets do. This ETL overhead is one of the many barriers that

stand between the RDBMS users and their ability to get from a data analysis idea

to actual results using graph analytics algorithms.

3

Thesis statement: Graph algorithms are being used to derive value from graphs

in many different application domains. Most data however is stored in the form

of structured datasets, i.e., under a schema of varying strictness. These datasets

typically contain many relationships between data tuples that can be thought of

as edges in a graph. These relationships can however only be traversed via the

computation of expensive joins. Database indexes can be used to make these joins

efficient, however graphs hidden within structured datasets can be very dense, and

often do not fit in memory.

By building an independent graph analysis layer on top of an RDBMS, accom-

panied by a high-level language for describing graphs of interest within RDBMSs,

we can (a) eliminate the need for setting up manual ETL processes when extract-

ing such graphs, and (b) reduce memory and time requirements when storing and

analyzing these graphs. Custom in-memory representations can be used to con-

nect RDBMS tuples that relate to each other. Such representations can mitigate

problems of traversing duplicate edges from one node to its neighbors in a graph

of interest (this duplication is inherent within structured datasets). Lastly, sim-

ilar graph representations of RDBMS data can provide memory-efficient ways of

computing relational aggregation queries over large-output 1 joins.

1We use this term throughout the dissertation from this point instead of “low selectivity” to

avoid confusion.

4

We begin by putting the graph data model into context with current and past

data models starting with the relational model in particular. Then we briefly outline

the work that has been done in building specialized graph systems. We next discuss

the barriers that still exist in conducting graph analysis over RDBMSs, as well as

how our work fits into the broader graph analytics landscape.

1.1 Graph vs Relational Analytics

Graph analytics have established their place in many analytics workloads due

to their ability to provide insights about a set of entities inside a network that may

be interconnected in very complex ways. While graph theory problems and graph

algorithms to solve them have been around for hundreds of years, the relatively

recent surge of “big data” has provided many new real-world use cases for these

algorithms and has also inspired new ones. One such example is the PageRank

algorithm [6], that the founders of Google devised to rank webpages in search results.

Graph algorithms are indispensable for many problems that span from optimizing

routing processes (in computer networks, road networks, etc.), to understanding the

physiology of cells (in biological networks) [7].

Graph Data Model: This data model can be used to store and operate on data

in the form of a graph. In this dissertation we will deal with two different types of

(directed) graphs: simple graphs, and multigraphs.

We define a simple directed graph2 as a pair Gs = (V,E) where V denotes a

2Referred to as a “simple graph” in the rest of the dissertation.

5

set of vertices (also referred to as nodes), and E ⊆ {(x, y)|(x, y) ∈ V 2} denotes a

set of ordered pairs that represent directed edges between those nodes. Note that

loops are allowed (i.e., the edge (x, x) is allowed to exist). In particular, loops are

edges in which the source and destination node is the same. They can represent a

relationship that may exist between an entity n, and itself.

Each graph element (every node v ∈ V and edge e ∈ E) is unique, and can

contain a set of key-value pairs that represent a set of properties. A graph whose

elements contain properties is also referred to as a property graph.

Example 1.1.1. In a social network context, we may have a simple graph where

nodes represent users of the network. Two such nodes v1, v2 are users connected

by a (directed) edge v1 → v2, if v1 sent a message to v2. Node properties here can

include the profile id and name of each user, and edge properties can include the

time at which the message was sent, and the content of the message.

Another type of graph we will discuss in this dissertation is a (directed) multi-

graph, defined similarly as a pair Gm = (V,E) where V denotes a set of nodes,

and E ⊆ {(x, y)|(x, y) ∈ V 2} this time denotes a multi-set of ordered pairs that

represent directed edges between those nodes. In other words, unlike simple graphs,

a vertex can have more than one outgoing edge to the same neighboring vertex.

We discuss how users can interact with simple graphs and multigraphs from a

systems perspective in Section 2.3.1.

Relational Data Model: The most popular way users organize their data today is

by using some iteration of the relational model [8], which views data as a collection

6

of logical tables (relations), that users can query using some flavor of SQL. The main

driver behind the design of this model was to provide better data independence so

that layout or design changes in the underlying storage would not cause issues in

the application layer and vice versa. The relational model only describes the logical

layout of data and is completely independent of the physical layout, which aided

the easy implementation of different physical storage models that all implemented

the relational model (e.g., row stores, column stores, key-value stores, etc.). This

flexibility of the model is part of the reason for its popularity since it has the power

to represent almost anything–including graphs.

A relation is associated with a set of attributes that describe the data be-

ing stored within. For example, to capture information about the messages being

sent between users in a social network, one might create a Users(uid, name) rela-

tion, a MessageInfo(mid, content) relation and a Messaged(sender, receiver,

mid) relation. The flexibility of the model allows for various valid ways to model

the data; e.g., instead of the single Messaged relation, we could have two rela-

tions: SentMessage(uid, mid) and ReceivedMessage(uid, mid) (see Figure 1.2).

Therefore, relations often contain attributes that reference other attributes in differ-

ent relations–these associations are how data is connected to each other in relational

databases. In this regard, the relational model is evidently more flexible than the

graph data model. Since a relation R is associated with another relation S, each

tuple in R can be associated to one or more tuples in S. Using these associations, re-

lations are combined by computing joins, with new relations being output as results

of these joins.

7

SentMessage ReceivedMessage

b

c

a

d

MessageInfo

...

Messaged

Figure 1.2: An example of a dataset stored under the relational model using two
different approaches, and how each one can translate to a graph. In approach
(a), in order to obtain the graph on the left, a JOIN between SentMessage and
ReceivedMessage must be computed. The relation Messaged, shown in approach
(b), is equivalent to the result of the aforementioned JOIN (after we choose a certain
set of attributes to project as the result). The reader may assume that the attribute
“year” is contained in MessageInfo.

1.1.1 Complementary Nature of Relational and Graph Analytics

Analysis of relational data is usually done by using SQL to filter, join and

aggregate these relations to form standard “business intelligence” (BI) reports.

8

Example 1.1.2. Given the previous scenario of the social network, an example of

a BI analytics query in this context is: “What are the total messages received per

user per week for the year 2018?”. Say we had the relation Messaged(sender,

receiver, mid, year) where sender is the id for the user that sent the message,

and receiver is that of the user that received it (see Figure 1.2b). This query

written in SQL would scan the Messaged relation, select only the messages from

2018, and then aggregate the tuples grouping them first by receiver, and then by

week. Not only are such queries natural to express in SQL, but RDBMSs are also

typically designed to excel in executing such queries with as few passes over the data

as possible.

Now, in the same application as discussed in Example 1.1.2, say we wanted to

find the most “popular” or “influential” users that year. This would be a task for the

PageRank algorithm, which traverses the graph’s edges, and computes a score that

is based on the score of the neighboring nodes (in a recursive fashion). PageRank

takes a holistic view of the network e.g., it considers connections from more popular

users as being more important. This type of analysis requires multiple passes over

the data and also takes into account the context of where the nodes exist in the

network compared to its neighbors.

We observe therefore that while both graph and relational analytics can have

a very important role to play in analyzing data, their roles are very different. While

an RDBMS could theoretically be used for the aforementioned graph task, there are

various issues that arise:

9

• Depending on how intensive the algorithm is, this may require ETL in order

to materialize the Nodes and Edges relations. Based on how the schema

is normalized Messaged may not be stored explicitly in a single relation–we

could instead store relations SentMessage and ReceivedMessage as seen in

Figure 1.2a.

• SQL is not as intuitive for expressing these iterative graph algorithms. The

computation must be thought of as the combination of Edge relations rather

than the traversal of a graph in order to be expressed in SQL.

Moving forward, it’s important to also look at other models that showcase

properties similar to the graph data model in order to provide the appropriate

context for our work.

1.1.2 Relevant Historical Data Models

In the late 1970’s and 1980’s, researchers proposed a large variety of different

data models [9]. Several of those models are somewhat reminiscent of the graph

data model as their physical representations directly connect data tuples to other

tuples they are associated with. This is in contrast to the relational model where

tuples are grouped into largely independent tables, where relationships between

data elements that do not coexist in the same relation, are explored by combining

relations through join operations. Some examples include the “Network Model”

(also known as CODASYL), as well as the Object-Oriented model. For the most

part these did not see much commercial use except for very particular applications.

10

The reason for this was likely their high complexity, combined with the fact that

the relational model seemed to be the most viable choice in practice–a trend which

continues to this day.

1.1.3 XML

Developed in the late 1990’s, eXtensible Markup Language (XML) is a data

model that was very widely used and studied at the time. XML is an iteration

of the hierarchical data model where the schema for the data forms a hierarchy

structured as a tree, with the data values stored at the leaves. It is considered

a “self-describing” data model, where the schema for the data is essentially part

of the data itself. It is also “semi-structured” as the schema does not need to be

defined apriori, which allows for objects of the same type to contain different sets

of attributes. An example of a simple XML document is:

<Message >

<sender >Kostas </sender >

<receiver >Kate </receiver >

<content >Hey </content >

</Message >

This describes a tree where the root node is Message, it has three children

sender, receiver, content and those in turn have value leaf nodes Kostas,

Kate, Hey respectively which can be seen below:

11

Message

content

Hey

receiver

Kate

sender

Kostas

XML supports high-level query languages such as XQuery and XPath, serving

the same purpose as SQL for the relational model. These resemble graph query

languages in some ways as they traverse this tree structure to find and return a

queried subset of data. Their declarative nature however makes it difficult to use

for the purposes of expressing iterative graph traversal algorithms, and there are

not many other interfaces for accessing XML data.

This tree structure that XML captures is a type of graph, therefore work

in the area of efficiently storing and querying XML is at least partially relevant for

attempting the same for general graphs. Even though it models interconnected data,

the limitation of hierarchical models is that they cannot model an arbitrary graph,

only a tree. XML also suffers from a lot of data repetition, as the schema labels

must be repeatedly specified essentially for every distinct object in the database.

1.1.4 RDF

Resource Description Framework (RDF) is another relevant data model that

came into the scene to accommodate the vision of the Semantic Web, enabling data

to be shared and re-used across the web. In this vision, data would only be stored

somewhere on the web once, and referenced everywhere else. The RDF format is

essentially a network format i.e., it can represent arbitrary graphs. An RDF dataset

12

consists of a set of “triples”, which can be thought of as rows in a table, that consist

of three attributes: Subject, Predicate, Object. Each such triple can be thought

of as an edge in the graph; e.g., in an RDF graph of users connected if one sent

a message to the other, an RDF triple would look like this: {Kostas, messaged,

Kate}. A high-level language called SPARQL is used to query RDF data. While

RDF is logically a graph data model, it is not great at storing property graphs since

each triple can only contain a single property (Predicate) about the Subject and/or

the Object entities. In order to associate an entity with multiple properties one

would need to create a separate triple for each property. Apart from SPARQL there

are not many interfaces to RDF graphs, and a lot of iterative graph algorithms are

difficult to express in a high-level language like SPARQL.

1.2 Specialized Graph Systems

Given the above background on relevant data models, we next briefly discuss

past work that has been done to handle graph analytics workloads (see Chapter 6

for a more detailed discussion). The work discussed here focuses both on building

specialized systems to handle graph workloads, as well as on leveraging existing

systems for those workloads.

1.2.1 Graph Frontend, Graph Backend

Systems in this category include XML and RDF databases, as well as native

property graph databases such as Neo4j [10], AWS Neptune [11], and OrientDB [12]

13

to name a few. These systems are built from the ground up to revolve around the

graph data model, and use specialized graph representations in their underlying stor-

age. They support SQL-like high-level query languages such as SPARQL, Cypher

or PGQL, and also provide graph APIs like Gremlin or even direct access to the un-

derlying graph, which is a necessity for expressing certain graph algorithms. Some

systems (e.g., Neo4j) also offer a library of popular graph analytics algorithms to be

used as black boxes. Most also provide support for ACID transactions. Migrating

to this type of a system requires a complete buy-in into the graph data model which,

as discussed in Section 1.1, is usually not ideal since relational analytics still play a

big role in most enterprises. Moreover, these systems are not as mature or scalable

as most RDBMSs, which have been studied for many more decades.

1.2.2 Bolt-on Solutions: Graph Frontend, RDBMS Backend

A common design for graph processing systems is to use a thin layer on top of

an RDBMS that “shreds” graph data into a set of relational tables. It also converts

graph queries from a graph query language or direct graph API into SQL queries to

be executed against the RDBMS. These systems load graph data inside relational

tables using a variety of different strategies. The early work on this was done in

the context of using RDBMSs for XML data management [13], and there has also

been work on building RDF databases that function in this fashion [14–18]. More

recently there has been work on supporting graph APIs over RDBMSs using this

design. Systems like SQLGraph [19] support graph queries on top of graphs stored

14

in RDBMSs, while systems like Vertexica [20] and Grail [2] use the same design but

focus on batch graph analytics. The Titan [21] distributed graph database provides

a graph interface over a variety of different multiple distributed back-ends3. A major

challenge for these systems is designing good schemas and appropriate indexes for

storing the data in the underlying RDBMS, since that will dictate the performance

to a large degree.

1.2.3 Graph Analytics Frameworks

There is a variety of systems developed in recent years with two main goals

in mind: simplifying the process of writing graph analysis programs, and executing

these programs efficiently on very large graphs. These graph analytics frameworks

are not concerned with transactional graph queries and expect a very particular

graph format as their input. Most of the computation models for these systems are

inspired by the Bulk Synchronous Parallel model [22]. Google’s Pregel [23] is one

of the systems that paved the way for multiple such “big graph” frameworks [24],

later implemented in a variety of open-source and proprietary systems, one example

of which is Apache Giraph [25]. Other systems in this space include GraphLab [26]

and PowerGraph [27], that use a similar Gather-Apply-Scatter model with small

variations in comparison to Pregel.

In order to use these frameworks, users need to manually conduct the appro-

priate ETL in order to extract their graph of interest from an existing database,

3The databases supported by Titan are mostly classified by “key-value stores” instead of rela-

tional databases but support SQL-like declarative languages.

15

transform it into the appropriate input format, and write their graph algorithm

which will then be executed by the framework. These computation models are also

very particular and they do not provide direct access to the graph for arbitrary

traversal– all traversals need to be tailored to fit the computation model.

1.2.4 From Relational to Graph Backend

Lastly, there has also been work on transitioning an entire database from a

relational model to a graph data model [28], which is another possible solution.

Table2Graph [29] works by exploring the relational schema, in order to translate

it into a graph schema i.e., make suggestions for the nodes and edges types and

attributes. Systems like GraphBuilder [30] require a mapping from the relational

data to the graph elements and attempt to efficiently extract and store the full

graph. As discussed in Section 1.1 relational BI analytics are still a big part of

analyses required and users have generally not bought into the graph data model

entirely.

1.3 The Gap Between RDBMSs and Graph Analytics

As discussed above, each solution in the current landscape of options for deal-

ing with graph workloads comes with a variety of different challenges that form a

chasm between data stored in RDBMSs, and the ability to conduct graph analytics

on this data. In this section we explain these challenges in detail.

16

1.3.1 Hidden Graphs in Relational Schemas

We first introduce the notion of “hidden” graphs inside normalized schemas.

These are graphs that are not explicitly materialized in the database (i.e., the list

of Edges for the graph is not explicitly stored). However, by joining various tables

in the database, we can connect certain objects to form interesting graphs.

Here we discuss a few examples of such hidden graphs that exist inside rela-

tional schemas, and how extracting and analyzing them is important, and challeng-

ing:

Example 1.3.1. On the DBLP dataset [31], which stores journals, conferences, au-

thors and publications, there are approximately 1.6 million authors, 3 million pub-

lications, and 8.6 million author-publication relationships. There is a variety of

potential graphs of interest here:

• A co-authors graph, where there is a node for every author and two authors

are connected by an undirected edge if they have published a paper together

– analysis of such a graph can help understand which sets of authors are true

collaborators and suggest potential collaborations between authors.

• A co-attendance graph, where an edge between two authors indicates that they

attended a conference together – analysis of such a graph may help understand

dissemination of ideas across a research community.

• A co-published graph where there is a node for every publication, and two

publications are connected if they were presented at the same conference.

17

Such a graph might help with creating a prediction model that classifies a

future publication to an appropriate venue using machine learning techniques.

The co-authors graph which, in this dataset, contained 86 million edges re-

quired more than 30 minutes to extract and load on a laptop since this required an

expensive non-key4 join– a self-join on the AuthorPublication table (that stores

the association between authors and their publications). As we can see here, the

graph is an order of magnitude larger than the underlying AuthorPublication ta-

ble.

Example 1.3.2. The TPC-H dataset [32], is an artificially generated supply chain

dataset that maintains customers, orders, items, suppliers, etc. An interesting graph

to analyze here would be a graph of customers that have bought a common

item. This dataset (for scale factor SF=1) contains about 150, 000 customers, that

made 1.5 million orders containing 200, 000 distinct items, and 6 million different

order-item pairs. In contrast with DBLP, the TPCH schema is more normalized. As can

be seen in Figure 1.3, extracting this graph first requires a join over the LineItem

and Orders table to figure out which customer bought which item. Afterwards, a

self-join over the result gives us the final set of edges in the graph. Due to the fact

that there is a small number of parts but a large number of customers and orders,

this graph is especially dense, at over 186 million edges. From a quick look at the

schema in Figure 1.3, one can point out many more graphs “hidden” within this

dataset like (i) a graph of suppliers connected if they sell a common item, (ii) a

4A join where the relationship between the joining attributes is not a key-foreign key relationship

18

graph of parts sold by a common supplier, etc.

Orders

order_key part_key

LineItem

o1 p1

o1 p2

o2 p1

o2 p3

o3 p1

o3 p2

o3 p2

c_key name

Customer

c_key p_key

c1 p1

c1 p2

c3 p2

c4 p1

c6 p1

Orders LineItem

On order_key

1. Which customer bought
which product?

On p_key

2. Which customers bought
the same item?

c1 c4

cust1 cust2

c1 c6

c1 c3

c1

c4 c6

c4

c3 c6

c1 John

c2 Jane

s_key name

Supplier

s1 A Corp

s2 B Corp

part_key supp_key

Part_supp

p1 s1

p2 s1

order_ke
y

c_key

o1 c1

o2 c2

o3 c3

Figure 1.3: Extraction of a “hidden” graph of customers, connected if they’ve bought
a common item from the TPCH dataset.

The above examples are not atypical – data is usually at least loosely struc-

tured and stored under some sort of schema where graphs exist implicitly and require

expensive joins to extract. The first challenge we attempt to tackle in this disserta-

tion is: how do we enable users to extract and analyze such graphs efficiently, and

intuitively? We view the goals of providing intuitive interfaces and efficient execu-

tion as interconnected. There is a variety of sub-challenges and concerns in tackling

these goals and being able to analyze graphs in situations like the above examples:

1. ETL (Extract, Transform, Load): The user would be required to manu-

ally formulate the appropriate SQL queries in order to extract the nodes and

edges from the underlying database. Moreover they would need to parse and

transform the tuples returned by the database into the appropriate in-memory

19

data structures or serialization formats, to load the graph into a specialized

graph processing system. In the case of a specialized system they would need

to have that system set-up in an appropriate environment (single-machine or

cluster), and be sufficiently familiar with the system’s interfaces for loading

the data.

2. Expressing Graph Analytics: The user needs to somehow access/operate

over the graph in order to conduct their analysis. Depending on the system

they have access to, they would be required to have sufficient understanding

of the underlying execution framework. Usually users or organizations only

have a small set of specialized systems for graph analysis (if any) set up in

their workflows, which often might not cover the spectrum of different types

of graph analytics that could arise (as discussed in more detail in Chapter 6).

Users may then need to figure out unorthodox ways of using the frameworks

at their disposal to complete their analysis. This is a cumbersome and highly

inefficient process that slows down end-to-end analysis significantly.

3. Large-Output Joins: Typically, there is a one-to-one relationship between

graph nodes and tables in a database, e.g., for an “author” node, there will

exist some sort of an author table. In many cases, normalized schemas maintain

various different attributes about each entity in separate relations to avoid

data duplication. Such attributes can be fetched with “key-foreign key” joins

which are easy for the database and do not “blow up” in terms of the result

size. Joins that connect entities together however could be non-key joins. A

20

non-key join between multiple relations can (in the worst case) yield a result

exponentially larger than the input relations. We refer to such joins that “blow

up” as large-output joins. The main scalability challenge in extracting graphs

from relational tables is that: the graph that the user is interested in

analyzing may be too large to extract and represent in memory,

even if the underlying relational data is small.

1.3.2 Large Output Joins in Relational Query Processing

Large-output joins are at the forefront of challenges that we face when trying to

efficiently interface users with graphs within databases. They constitute a barrier

very difficult to break, since such joins entirely block the analysis until they are

completed. Users often want to compute aggregations over such large-output joins,

where the results can be orders of magnitude smaller than the size of the join. These

aggregations can happen in the context of a graph (in the form of aggregating

edges), or can simply be viewed from the lens of generalized select-project-join

query processing. Data pipelining can be used in some situations during query

execution, which will avoid materializing intermediate join results. Pipelining works

by conducting the entire join one tuple at-a-time. The main limitations to pipelining

are twofold: (a) the entire join result will still need to be enumerated, and (b) if

hash-aggregation is used, the memory required to store the hash-table is difficult

to predict. If sort-aggregation is used, the final join result prior to aggregation will

need to be materialized.

21

The second challenge we therefore contend with in this dissertation is: how

do we efficiently compute these aggregations without having to store the

full intermediate join result?

Example 1.3.3. Consider a query like [Q1] in Listing 1.1 over the standard TPC-H

dataset. The LineItem table includes all orders of parts that were supplied, the in-

dividual parts each order contains, as well as which supplier each part was purchased

from. The goal of [Q1] is to compute the count of (order,customer,item) records

we are storing for each supplier for every zip code in which that supplier satisfied

orders, given the transaction data that we already have. Note that c zipcode isn’t

a distinct field in the customer table, but is typically extracted from the c address

attribute. This type of complex decision-support query requires a non-key join that

could yield very large intermediate results that will be fed as input to the aggrega-

tion operator. As shown in Figure 1.4, running [Q1] over TPC-H (using scale factor

SF=1), the intermediate join result for this query contains over 24 million tuples.

The size of the result post-aggregation would be bounded by the number of distinct

zip codes times the number of suppliers, and therefore is highly likely to be orders

of magnitude smaller than the join result.

SELECT ps_suppkey , c_zipcode , COUNT (*)

FROM partsupp , lineitem , orders , customer

WHERE ps_partkey = l_partkey AND

o_orderkey = l_orderkey AND

o_custkey = c_custkey

GROUP BY ps_suppkey , c_zipcode;

Listing 1.1: [Q1] Query for finding the total count of (order,customer,item)

records we have for each supplier per zip code in which that supplier satisfied orders
(TPC-H dataset)

22

Merge Join

Hash Join

Hash
Aggregate

orders ⋈
customer
(1,500,000)

lineitem
(6,000,000)

partsupp
(800,000)

?

24,004,860

SELECT ps_suppkey, c_zipcode, COUNT(*)
FROM partsupp, lineitem, orders, customer
WHERE ps_partkey = l_partkey
AND o_orderkey = l_orderkey
AND o_custkey = c_custkey
GROUP BY ps_suppkey, c_zipcode;

(b) [Q1] Query for finding the number
of customers each supplier could reach/
supply parts to per zipcode (TPC-H
dataset)

(c) [Q2] Generic graph pattern
counting query

SELECT n1.label, n2.label, COUNT(*)
FROM Nodes n1, Edges e1, Edges e2, Nodes n2
WHERE n1.id = e1.src
AND e1.dst = e2.src
AND n2.id = e2.dst
GROUP BY n1.label, n2.label;

(a) Query plan for query [Q1]

Figure 1.4: Query plan for query [Q1]. Aggregate queries can have very large
intermediate results even though the number of output groups could be small

Example 1.3.4. Another example of queries that require large-output joins include

path aggregation queries in graphs. Any graph stored inside a relational database

in the form of a Nodes and Edges table, is conducive to queries that count the

number of paths that follow a certain pattern in terms of the nodes. If we had an

edge table Edges(src,dst), and a Nodes(id,label), a query like [Q2] shown in

Listing 1.2, counts the paths between nodes with certain labels. Such queries end

up outputting a huge number of intermediate results corresponding to the sub-paths

for each intermediate stage of the graph traversal.

SELECT n1.label , n2.label , COUNT (*)

FROM Nodes n1, Edges e1,

Edges e2 , Nodes n2

WHERE n1.id = e1.src AND

e1.dst = e2.src AND

n2.id = e2.dst

GROUP BY n1.label , n2.label;

Listing 1.2: [Q2] Generic graph pattern counting query

23

1.4 Contributions

In this dissertation, we tackle the challenges associated with closing the gap

between the current way most data is stored, and the ability to conduct graph

analytics on them efficiently. Our overall contributions are three-fold:

GraphGen System: We built a system called GraphGen, that acts as a “bolt-

on” layer on top of RDBMSs, and provides a full-featured set of graph analysis

interfaces, enabling the user to express their analysis on a per-case basis, using a

single lightweight system. From this viewpoint, our contributions are the following:

• A Graph Definition Language: We propose a high-level declarative Do-

main Specific Language (DSL) for graph definition called GraphGenDL

based on Datalog for specifying graph extraction queries. This language is

an intuitive, declarative way of combining underlying RDBMS tables to pop-

ulate graph elements (nodes and edges) and their properties. This level of

language abstraction allowed us to also include extensions for describing col-

lections of graphs. We show how such language constructs can also unlock the

ability to conduct what-if analysis over graphs.

• Extraction of Graph Collections: We develop a novel technique called

tagging, which employs a set of query rewrite rules for efficiently extract-

ing a collection of graphs from RDBMSs. Our preliminary experiments show

that tagging enables orders of magnitude speedups in extracting collections of

graphs when compared to executing multiple queries over the database.

24

Condensed Graph Representations: We introduce the idea of a condensed graph,

a physical graph representation that we leverage this novel representation in order

to efficiently analyze hidden graphs in structured datasets. It represents a set of

source nodes indirectly connected to another set of destination nodes. We call the

source and destination nodes real nodes, and they are connected via a series of

intermediate virtual nodes. The only difference between real and virtual nodes is

that the latter are not accessible by users and are leveraged to reduce the memory

required to maintain all the connections (edges) between the real nodes. Therefore,

real nodes can be connected to the same neighbor through one or more virtual nodes

(or combination of such virtual nodes)–we refer to this property of condensed graphs

as duplication. It’s important to note that a condensed graph describes a physical

data representation, and can be interfaced as either a simple graph or a multigraph.

Condensed graphs exist inherently within RDBMSs. We describe a general

framework for extracting a condensed representation for acyclic5, aggregation-free

extraction queries over arbitrary RDBMS schemas. Condensed graph representa-

tions enable the analysis of very dense graphs, using orders of magnitude less mem-

ory. They also allow for more time-efficient analysis of such graphs for a certain class

of graph algorithms. We propose a suite of novel pre-processing and de-duplication

techniques we have developed over condensed graphs allow for the execution of ar-

bitrary graph algorithms over condensed graphs. Each class of these de-duplication

5A conjunctive (join) query is intuitively defined as acyclic if the hypergraph associated with the

query has no cycles. More formally, a query is acyclic if it is reduced down to an empty hyperedge

after the GYO reduction algorithm [33,34] has been applied to it.

25

techniques yields a distinct physical graph representation. We systematically analyze

the benefits and trade-offs offered by extracting and operating on these represen-

tations, we provide extensive microbenchmarks of each representation, and discuss

how GraphGen decides which representation to use each time.

Memory-Efficient Aggregation Processing using Graph Representations:

We propose a new multi-way database operator called Join-Agg, which enables the

efficient computation of aggregation queries, without materializing any intermediate

join results, by computing the join and aggregation simultaneously. We describe a

novel general framework for executing aggregation over conjunctive queries involv-

ing arbitrary numbers of relations, and an arbitrary set of group-by attributes that

may be derived from any participating relation, by leveraging a graph representation

of the underlying data (restricted to acyclic queries). We implement a prototype

of the Join-Agg operator outside of the RDBMS and experimentally showcase the

benefits of our operator over synthetic and real datasets. We also provide a com-

prehensive complexity analysis of common categories of queries that benefit from

our Join-Agg operator. We compare our technique against the classical RDBMS

model, or other less general techniques such as pre-aggregation [35] which only

looks at reducing intermediate data size at the level of each individual join instead

of looking at the join as a whole. We show that in terms of computational com-

plexity, Join-Agg is comparable or asymptotically better than those techniques,

particularly in the general case of complex acyclic branching join queries. We also

show that Join-Agg is overall better than those techniques in terms of memory

26

complexity.

1.5 Outline and Previously Published Work

The remainder of this dissertation is organized as follows. We begin by describ-

ing the inner workings and system implementation details of GraphGen, as well

as our graph specification language GraphGenDL in Chapter 2. Chapter 3 dis-

cusses our work on enabling graph analysis over hidden graphs inside RDBMSs using

GraphGen, including condensed graph representations and techniques for conduct-

ing de-duplication over them. Chapter 4 continues the discussion on GraphGen by

describing various extensions to our GraphGenDL language towards supporting

the extraction of complexly defined collections of graphs. Chapter 5 presents our

proposed Join-Agg multi-way database operator, that leverages graph represen-

tations for the efficient processing of aggregation queries over large-output joins.

Chapter 6 discusses related work, and Chapter 7 concludes with a discussion on

what we have learned from this investigation.

Chapter 1, Chapter 2, Chapter 3, and Chapter 6 contain material from our

published work [36–38]. Chapter 5 contains material from one of our arxiv preprints [39].

27

Chapter 2: GraphGen System Overview

In this chapter we delve into the inner workings of GraphGen. We introduce

the implementation details of the underlying system and all of its moving parts, and

discuss the design decisions we made. We also enumerate the different ways users

can interface with graphs inside their RDBMSs using GraphGen.

As discussed in the previous chapter, the major focus of the GraphGen

system is to: (a) enable analysis on very large graphs that are hidden in structured

datasets and would typically not fit in memory, as well as (b) enable analysis on

graph collections that would normally take a substantial amount of manual ETL.

We begin with a brief description of the key components of GraphGen, and

how data flows through them. We then describe our Datalog-based DSL (Domain-

specific Language) that we have designed for specifying extraction jobs (called

GraphGenDL), and APIs provided to the users after a graph has been loaded

into memory.

2.1 Architecture

The inner workings of GraphGen and the components that orchestrate its

functionality are demonstrated in Figure 2.1.

28

Vertex-Centric Framework Graph/Multigraph API Python API/ Graph
Serialization

Query Parser Query Optimizer/
Rewriter

Graph
Representation

Loader
SQL Translator

Additional
Statistics View

Definitions
Relational

Tables

RDBMS

RDBMS

Graph Exploration
Web App

NetworkX / Other Graph
Algorithms Libraries

Java
Program

Analysis Layer

GraphGen Core

GraphgenDL (Datalog)
Queries

SQL Queries

Simple
Graph

Condensed
Graph Multigraph In-Memory

Representation

Figure 2.1: The high-level architecture of GraphGen, a bolt-on analysis layer on
top of RDBMSs that enables efficient extraction and analysis of “hidden” graphs
that exist within RDBMS schemas.

The system is composed of two main layers: The GraphGen Core, and the

Analysis layer. The core layer is where most computation happens– this includes

parsing user-specified graph extraction tasks, translating those into SQL, and han-

dling the responses from the RDBMS. The extracted graphs are maintained in one

of a variety of in-memory representations depending on the nature of the extracted

graph and possibly the nature of the analysis being performed. It is important to

note that in-memory representation in Figure 2.1 shows the physical representation

of the graph data, which is de-coupled from the way the user interfaces with the

graph. The analysis layer contains this set of interfaces that communicate with the

in-memory representation and access the physical graph in different ways.

At a higher level, GraphGen accepts a graph extraction task, and constructs

29

the queried graph(s) in memory, which can then be analyzed by a user program. The

graph extraction task is expressed using a Datalog-like DSL called GraphGenDL,

where the user specifies how to construct the nodes and the edges of the graph (in

essence, as views over the underlying tables).

We have built a custom parser for GraphGenDL described above using the

ANTLR [40] parser generator. The parser creates the Abstract Syntax Tree (AST)

of the query which is in turn used for translation into SQL. The translation itself

requires a full walk of the AST, during which the system gathers information about

the statement, loads the appropriate statistics, and attribute information for each

involved relation from the database, and creates an intermediate representation of

the query as a GraphQuery object, which then passes through the custom Query

Optimizer (QO). The QO then makes the appropriate decision as follows:

• If the graph extraction task specifies a single graph, then the system ana-

lyzes the selectivities of the joins required to construct the graph by using the

statistics in the system catalog. This analysis is used to estimate the result

sizes of the joins required to extract the requested graph output, and to de-

cide whether to hand over the partial or complete edge creation task to the

database, or to skip some of the joins and load the implicit edges in memory

in a condensed representation (see Section 3.2.2). Note that a single graph

could either be a simple graph or a multigraph.

• On the other hand, if the graph extraction task specifies a collection of graphs

(a set of distinct graphs), the QO applies our query rewrite rules to the input

30

GraphQuery object, and sets the appropriate tags to the elements of the base

graph (see Chapter 4 for more details on tagging). Again, note that a collection

of graphs could again consist of simple graphs or multigraphs (or a combination

of both).

The QO uses the Query Translator (which automatically translates GraphQuery

objects into SQL) to generate the appropriate set of the final SQL queries to pull

the graph data from the RDBMS. The mechanism by which we load the graph into

memory assumes that the total size of the graph(s) described by a single extraction

task is smaller than the total amount of memory available so that graphs can be

analyzed without requiring disk I/O. As graph algorithms typically require random

access to the entire graph, GraphGen (like most other high performance graph

analysis libraries) assumes that there is sufficient memory to load at least a con-

densed representation of the graph (as we will see, the condensed representation is

often orders of magnitude smaller than the actual graph, enabling GraphGen to

analyze very large hidden graphs).

The SQL queries are executed in sequence, and the output graph object is

handed to the user program. After extraction, users have the following options:

• Operate directly upon any portion of the graph using the Java Graph API

(discussed in Section 2.3.1)

• Define and execute vertex-centric programs on it (which can take advantage

of multiple CPU threads) – the “vertex-centric” framework is a widely used

framework for expressing and executing graph analysis algorithms [41].

31

• Visually explore the graph through our front-end web application.

• Serialize the graph onto disk (in its expanded or condensed form) in a stan-

dardized file format, so that it can be further analyzed using any specialized

graph processing framework or graph library (e.g., NetworkX, GraphFrames,

Neo4j, etc.)

2.2 GraphGenDL

Datalog has been increasingly used for expressing data analytics workflows,

and especially graph analysis tasks [42–44]. The main reason for its emergence

lies in its elegance for naturally expressing recursive queries, but also in its over-

all intuitive and simple syntax choices. GraphGenDL is a declarative language

that enables users to map nodes and edges in graphs of interest to combinations

of RDBMS relations. It is based on a limited non-recursive subset of Datalog,

augmented with range and aggregation constructs; in essence, it allows users to in-

tuitively and succinctly specify nodes and edges of the target graph as views over

the underlying database tables. We note that our goal is not to specify a graph

algorithm itself using Datalog (like Socialite [43]); however we do plan to explore

this avenue in future work, enabling users to specify graph queries or analysis tasks

using Datalog together with the graph extraction query.

GraphGenDL naturally generates directed graphs, and undirected graphs are

represented using bidirectional edges. The typical workflow for a user when writing

an extraction query would be to initially inspect the database schema, figure out

32

which relations are relevant to the graph they are interested in exploring, and then

choose which attributes in those relations would connect the defined entities in the

desired way.

The syntax of GraphGenDL is quite simple– there are technically only two

parts to every query. The first part is the graph view type definition, followed by

the element definitions (definitions of the nodes/edges) for the specific graph view.

GraphGenDL can be used to specify extraction tasks for a single graph (which

could either be a simple graph or a multigraph), or a collection of graphs. At a

high level, users specify the type of graph(s) of interest and then express a set of

mappings from RDBMS views to Nodes/Edges.

2.2.1 Syntax: Single Graphs

Type Definition: A generic example of a single graph extraction task can be seen

in Listing 2.1. For simple graph views, the syntax for the type definition is: CREATE

GRAPHVIEW α, where “α” is the alias we want to use to refer to the graph view. SQ1

in Listing 2.2 is one example of a simple graph view.

CREATE GRAPHVIEW α
Nodes(ID, p) :- S(ID, p).
Edges(ID1 , ID2) :- R1(ID1, a1), R2(a1, a2), ..., Rn(an−1, ID2)

Listing 2.1: A generic GraphGenDL query expressing a single graph extraction
task.

Any query that follows the template shown in Listing 2.1, could also be rep-

resenting a multigraph. This can happen if there are multiple instances of the same

edge in the resulting Edges view. By simply using CREATE MULTIGRAPH VIEW in

33

[SQ1]

CREATE GRAPHVIEW co -authors

Nodes(ID, Name):- Author(ID, Name).

Edges(ID1 , ID2):- AuthorPub(ID1 , PubID), AuthorPub(ID2 ,

PubID).

[SQ2]

CREATE MULTIGRAPHVIEW cust_common_item

Nodes(ID, Name) :- Customer(ID , Name).

Edges(ID1 , ID2) :- Orders(order_key1 , ID1), LineItem(

order_key1 , part_key),

Orders(order_key2 , ID2), LineItem(order_key2 , part_key).

[SQ3]

CREATE GRAPHVIEW instructors_students

Nodes(ID, Name) :- Instructor (ID, Name).

Nodes(ID, Name) :- Student (ID, Name).

Edges(ID1 , ID2) :- TaughtCourse (ID1 , courseId),

TookCourse(ID2 , courseId).

Listing 2.2: SQ1 extracts a simple graph of authors that are connected if they have
published at least one paper together. SQ2 extracts a multigraph of customers
connected to each other once for every item they have bought in common. SQ3

extracts a graph with two types of nodes: instructors, and students. There is an
edge between an instructor and a student if the student was in at least one of the
instructor’s classes.

the graph definition statement, the returned graph is treated as a multigraph and

its edges are therefore not deduplicated (see Chapter 3 for more on deduplication).

This means that any call to getNeigbors() may return the same neighbor more

than once (see SQ2 in Listing 2.2).

Element Definitions: This is the part of the query that defines what underlying

relations need to be combined (and how) in order to form the nodes/edges elements

of the simple graph or graph collection (as shown in Listing 2.1). Each Nodes/

Edges statement in a query specifies a set of nodes/edges that will be part of the

graph. We use the datalog-like syntax of GraphGenDL in our examples for the

34

sake of simplicity, but the user can choose to express their queries in SQL as well,

and leverage all the capabilities of modern SQL. This does not change the way the

system works as the input datalog is translated to SQL regardless. SQL is the only

way GraphGen communicates with the underlying RDBMS as seen in Figure 2.1.

The left hand side of each statement specifies the schema (id, and properties)

of the node/edges specified by that statement. The user writes Nodes(ID, p) for

nodes statements, and Edges(ID1,ID2, p) for edges statements, where p is a set

of properties. Note that the identifier for each node element is ID and is always

going to appear first in the schema. The same applies for ID1, ID2 in the case of

edges statements; ID1 is the ID of the source node for this edge, while ID2 is the

destination.

Multiple Nodes/Edges Definitions: To make the process more intuitive, we

allow for multiple Nodes and/or Edges statements within a query (e.g., SQ3 in List-

ing 2.2). This serves two purposes: first, it enables users to separate the definition of

one type of node/edge from another, especially in the case of heterogeneous graphs

with multiple types of nodes or edges that typically reside in different relations.

Second, if attributes for one element are stored in different relations, the user can

pull each attribute from its individual relation with a separate statement.

Moreover, entities might contain a certain property in their schema but lack a

value for another property in the database. A graph where elements have null values

for some of their properties does not pose a problem as long as the interconnection

structure is accurate. By providing two separate statements the user communicates

35

to the system that they require all nodes that have one property and all nodes that

contain the other. If values for both nodes appear for the same element id, a single

node that contains a value for both properties is loaded. Our system translates these

sets of queries into full outer joins, which load a union of all specified node entities.

User Defined Views: Users may also define other views that can be used as

auxiliary views within Nodes and Edges statements.

2.2.2 Syntax: Graph Collections

GraphGenDL can also express the mapping for complex graph collections

that exist in RDBMSs. Under the hood, GraphGen extracts collections of graphs

efficiently by viewing them as a single multigraph, and optimizing the extraction

SQL queries accordingly, which in a sense groups each of the vertex and edge in

their respective distinct graphs. An alternate implementation where each graph

in the collection is extracted independently is also possible, but would not be able

to exploit the overlaps typically seen in such graph collections (see Chapter 4).

Four primary arguments are required to define a graph collection over a database:

a) nodes statements, and b) edges statements, which define the base graph, and a

parameterization, defined using a c) tagging predicate, and d) the range of values

over which this extraction task should be parameterized.

Type Definition: Using CREATE GRAPHVIEW COLLECTION yields a graph collection

as seen in Listing 2.3. An additional WHERE X IN RANGE (FROM, TO, STEP) state-

ment is expected to follow after the name of the graph collection. This statement

36

returns a set of graphs (each of which could be a simple graph or multigraph).

Element Definitions: Users can specify graph collections in GraphGenDL by

expressing the as a parameterization over a single base graph. The element defi-

nitions for this base graph are made in exactly the same way as for single graphs

discussed in Section 2.2.1. The same exact details apply for graph collections when

it comes to multiple node/edge definitions and user defined views.

CREATE GRAPHVIEW COLLECTION m

WHERE X IN RANGE (FROM , TO, STEP)

Nodes(ID,p1 ,...,C) :- R(ID,p1 ,...,C), f (C,X).
Edges(ID1 ,ID2 ,p1 ,...) :- S(ID1 ,ID2 ,p1 ,...).

Listing 2.3: Generic graph collection query.

Parameterization: The WHERE clause (seen in Listing 2.3) in association with the

tagging predicate f specifies the way in which the graph to be extracted will be

split into a collection of graphs. Every value for X in the RANGE specified by the

query will correspond to a different graph in the collection. The variable C refers to

the appropriate attribute in the element definitions that will associate each element

with a set of distinct graphs based on the tagging predicate function f(C, X). Either

the nodes or the edges definitions (or both) will contain one or more references to

C, which is the property of the (vertex or edge) element whose value dictates which

subgraph said element will be a part of. It’s important to note that because a

C variable must be properly defined, the “ID” attribute might not appear in the

left hand side of a statement for graph collection queries (e.g., Nodes(C,name) in

Listing 2.4)), we know that C references the node ID because it appears as the first

property in the schema.

37

CREATE GRAPHVIEW COLLECTION ego -graphs

WHERE X IN RANGE (Author(C))

Nodes(C,name):- Author(C,name), C = X.

Nodes(ID,name):- Authorpub(C,p), Authorpub(ID ,p),

Author(ID,name).

Edges(ID1 ,ID2):- AuthorPub(ID1 ,p),Authorpub(ID2 ,p).

Listing 2.4: Extracting a set of ego-graphs over a graph of co-authors. Note that
SQL can be used for any Nodes/Edges statement instead of our Datalog syntax.

In Q1 shown in Listing 2.5, C refers to the date of of birth of an author (year(C)

extracts the year of birth). Our tagging predicate here is f(C,X) = (year(C)=X OR

year(C)=X-1 OR year(C)=X+1), we are running this over a range of values defined

by the range expression X IN RANGE (1900,2000,1).

Range Definition: The generic syntax for specifying a range of values for a pa-

rameter variable X is “X IN RANGE (r)”, where r can take three different forms.

Users can state the range of possible values for variable X in a START, END, STEP

format, which would yield all values from START, to END inclusive, incrementing by

STEP (see Listing 2.5). A query that returns a list of values can also be provided

instead–e.g., querying a graph for every author id could be done by: X IN RANGE

(Author(ID)). Any generic SQL query can be specified as long as it only projects

a single column of distinct values. Lastly, users may also specify an ad-hoc list of

values like X IN RANGE ({a, b, c, d}).

2.3 Internal Data Structures & Interfaces

The most efficient means to utilize GraphGen is to directly operate on the

graph either using our native Java API, or through a vertex-centric API that we

38

CREATE GRAPHVIEW COLLECTION co-author -peers

WHERE X IN RANGE (1900, 2000, 1)

Nodes(ID, name , C) :- Author(ID, name , C), year(C)=X

OR year(C)=X-1 OR year(C)=X+1.

Edges(ID1 , ID2) :- AuthorPub(ID1 ,pub), AuthorPub(ID2 ,

pub).

Listing 2.5: A graph collection extraction task that queries a co-author graph for
every year X, which contains only authors that were born a within a year of X.

provide. Both of these have been implemented to operate on all the in-memory

(condensed or otherwise) representations that we present in Chapter 3.

Simple Graphs and Multigraphs: The basic data structure that we use for stor-

ing the graphs is a variant of traditional Compressed Sparse Row (CSR) representa-

tion [45]. We store all node data in a HashMap index where each node id is associated

with that node’s data properties. Briefly, for each node, we maintain two mutable

ArrayLists– one InNeighbors for its in-coming edges and one OutNeighbors for

its out-going edges. We use Java ArrayLists instead of linked lists for space ef-

ficiency. The trade-off we make is that, it makes vertex deletions more expensive

because those require rebuilding of the entire index of vertices. We implement a

lazy deletion mechanism where vertices are initially only removed from the index,

thus logically removing them from the graph, and are then physically removed from

InNeighbors and outNeighbors, in batch, at a later point in time. This way only

a single re-building of the vertices index is required after a batch removal. This

representation is used to represent simple graphs as well as multigraphs. We are not

storing any properties for every distinct edge, but this representation can easily be

tweaked in order to do so.

39

Graph collections: We use a variation of the CSR representation for storing graph

collections as well. Graph collections can often portray large overlaps in their node

and edge sets. Say we had a graph that is not prone to changes very often, e.g., a

co-authors graph. If we were to extract snapshots of that graph every year, each

snapshot would contain a lot of the same nodes and edges apart from any new

connections that may have been formed by folks who were first time co-authors.

For this reason, our physical storage representation of a graph collection uses a CSR

representation, which now contains sets of multi-vertices, and multi-edges instead of

simple vertices and edges. We also refer to multi-vertex and multi-edge elements as

multi-elements.

A MultiEdge or MultiVertex is a single vertex or edge object that contains

multiple different property sets e.g., if a single edge (v1, v2) exists both in graph g0

and graph g1, it can have different attribute values in each graph. Similarly, vertex

v1 can exist in both of the aforementioned graphs in the collection, but contain

different attribute values in each one. Each Multi-element has a unique identifier,

but contains a list of attribute sets called properties set which stores the different

sets of possible properties for the particular vertex/edge, as well as an array of

BitSets called exists. Intuitively, a specific set of properties properties set[i]

contains the property values for the element, and exists[i] contains the BitSet that

dictates in which graphs the particular element (a) exists, and (b) has properties

properties set[i]. Each BitSet in exists is the same size as the number of

graphs in the collection. Note that the BitSets in exists don’t overlap i.e., we

only store a specific version of each multi-element once. In other words, if the same

40

vertex/edge with the same attribute values appears in both graph g0 and graph g1,

we are only storing it once. Lastly, we store all multi-vertices in a single vertices

list, and all multi-edges inside a single edges list which only contains the out-going

edge mappings.

2.3.1 Java APIs

All of our in-memory representations implement the following API.

Simple Graphs and Multigraphs: The API supports of the following 7 opera-

tions:

• getVertices(): This function returns an iterator over all the vertices in the

graph.

• getNeighbors(v): For a vertex v, this function returns an iterator over the

neighbors of v, which itself supports the standard hasNext() and next()

functions. If a list of neighbors is desired (rather than an iterator), it can be

retrieved using getNeighbors(v).toList().

• existsEdge(v, u): Returns true if there is an edge between the two vertices.

• addEdge(v, u), deleteEdge(v, u), addVertex(v), deleteVertex(v): These

allow for manipulating the graphs by adding or removing edges or vertices.

The Vertex class also supports setting or retrieving properties associated with

a vertex.

Graph Collections: A graph collection is a set of graphs, each one distinguished

by a unique identifier– we call that identifier a versionId. The set of versionIds

41

is stored in the system as a Java BitSet, where the index of each set bit represents

the versionId. We also store a mapping from versionId to a tag that represents

the identifier for each unique graph in the collection. Graph collections are stored

in a special GraphCollection class.

There are three main classes important to understanding the structure of

Graph Collection in GraphGen: GraphCollection, MultiVertex, MultiEdge,

SingleEdge.

The main GraphCollection API supports the following operations:

• getVertexList(versionId): Returns a list of vertices that appear in the

graph with identifier versionId.

• getNeighbors(v): This will return all neighboring vertices to v, from all

graphs in the collection. It returns a list of MultiEdge objects.

• getNeighbors(v, versionId): Returns a list of SingleEdge objects, which

are the distinct edges that exist only in the graph with identifier versionId.

Multi-Elements: The main MultiVertex/MultiEdge API allows the following op-

erations:

• getId(): Returns the unique identifier for a vertex, which may exist (with

the same or different attribute values) across multiple versionIds in the graph

collection.

• getVersions(): Returns the set of versions this vertex/edge appears in. This

version set is stored as a Java BitSet.

• getAttributeSets(): Returns the list of Attribute[], each array in the list

42

contains the set of attribute values for the particular vertex/edge across all

versionIds in the graph collection.

2.3.2 Vertex-centric API

The vertex-centric conceptual model has been extensively used in the past to

express complex graph algorithms by following the “think-like-a-vertex” methodol-

ogy in designing these algorithms. We have implemented a simple, multi-threaded

variant of the vertex-centric framework in GraphGen that allows users to imple-

ment a compute function and then execute that against the extracted graph regard-

less of its in-memory representation. The framework is based on a VertexCentric

object which coordinates the multi-threaded execution of the compute() function

for each job. The coordinator object splits the graph’s nodes into chunks depend-

ing on the number of cores in the machine, and distributes the load evenly across

all cores. It also keeps track of the current superstep, monitors the execution and

triggers a termination event when all vertices have voted to a halt. Users simply

need to implement the Executor interface which contains a single method defini-

tion for compute(), instantiate their executor and call the run() method of the

VertexCentric coordinator object with the Executor object as input. The imple-

mentation of message passing we’ve adopted is similar to the Gather-Apply-Scatter

(GAS) model used in GraphLab [26] in which nodes communicate by directly access-

ing their neighbors’ data, thus avoiding the overhead of explicitly storing messages

in some intermediary data structure.

43

2.3.3 External Libraries

GraphGen can also be used through a library called graphgenpy1, a Python

wrapper over GraphGen allowing users to run queries in GraphGenDL through

simple Python scripts and serialize the resulting graphs in a standard graph format,

thus opening up analysis to any graph computation framework or library (Sec-

tion 3.4.4). A similar workflow was used in the implementation of our front-end

web application [36] through which users can visually explore the graphs that exist

within their relational schema.

The library provides a static generateGraph() method, that takes as input a

graph extraction query in our DSL, and either returns a single Graph object, or a

MultiGraph object.

Simple Graphs also implement the widely used Blueprints API [46]. Blueprints

is a generic graph Java API, that provides graph access methods like getVertices(),

getEdges(), etc., and is used by several graph processing and programming frame-

works (including Gremlin [47], a popular graph traversal framework). By supporting

the Blueprints API, we immediately enable use of many of these already existing

toolkits over extracted graphs (whether they are one of our condensed representa-

tions or not).

In our current implementation, a returned Graph object may be a TinkerGraph,

or a subclass that supports a condensed representation (see Section 3.2.3). TinkerGraph

is an in-memory implementation of the property graph model, and is part of the

1http://konstantinosx.github.io/graphgen-project/

44

http://konstantinosx.github.io/graphgen-project/

open-source TinkerPop stack (http://www.tinkerpop.com/).

2.4 Web Based Graph Exploration Interface

GraphGen also features a graph discovery and exploration component that

provides two main functionalities. First, it allows a user to specify a graph extraction

query and to interactively explore the returned graphs. Second, given a relational

schema, it enumerates a collection of different graphs that could be created over a

set of entities in that schema and allows the user to explore those in an interactive

fashion. The latter is work done primarily by Udayan Khurana and more details

about that portion of the web application can be found in the related co-authored

paper [36].

The front-end allows a user to: (a) connect to an existing relational database

and view its schema, (b) write queries in GraphGenDL to extract different graphs,

(c) explore the graphs through node-link visualizations and various global and node-

level metrics, and (d) compare graphs extracted using different queries. Figure 2.2

shows one such snapshot where the user connects to the DBLP database. On the top

left, the database name and other connection details can be specified. Load Schema

displays the list of tables, attribute information, and constraints such as primary

and foreign keys. The New Query option creates a new pane on the right. Here, the

user would write a graph extraction query using the schema details displayed on the

left.

Extract Graph initiates the graph generation task at the back-end, along with

45

http://www.tinkerpop.com/

the computation of several global and node-level metrics. Upon its completion, a

small subset of the extracted graph is displayed using a force-directed layout. It

also displays graph statistics such as node count, density, diameter, etc., and a

plot of the node degree distribution. The user can visualize specific portions of the

graph through the Another Sample option by specifying a keyword in the text-box

besides it. The system uses a keyword search on nodes’ attributes and returns a

subgraph around the node with the first occurrence. In case of a missing keyword

or the hint being unusable, a random subgraph is presented instead. Using the

Node Analysis option, a user can view and sort by different metrics for nodes,

such as degree, betweenness centrality, PageRank, clustering coefficient, and others.

Multiple query panes, launched through the New Query option, are aligned such that

different queries and graphs are vertically juxtaposed for comparison. Moreover, by

selecting Export Graph, the entire generated graph can be serialized to disk into one

of the standard formats in the drop-down list. This gives the user the ability to load

the graph into any graph library that supports these formats, and execute graph

algorithms against it. We currently support exporting graphs in GSON or GraphSON

formats. Finally, if the user is unfamiliar with the dataset and wants to explore,

they can use the Auto-generate Graphs option. Based upon the database schema,

it automatically populates a few panes with valid extraction queries and resultant

graphs.

46

Figure 2.2: The GraphGen explorer web application can connect to a database,
load in the schema (left-hand side), and allow users to write extraction queries in
GraphGenDL. They can then visualize 1-hop neighborhood samples of the graphs,
or conduct standard analysis over them.

47

Chapter 3: Extracting and Analyzing Graphs in RDBMSs

In this chapter we discuss the ways we tackle the challenges we encountered

while building GraphGen, focusing on the extraction and analysis of a single graph

at a time (we discuss collections of graphs in Chapter 4). Specifically we discuss how

we can efficiently extract and analyze graphs that are “hidden” within structured

databases when these graphs are not explicitly materialized in the RDBMS. Note

that these hidden graphs can either be simple graphs or multigraphs.

In Section 3.1, we review the problem of analyzing hidden graphs and how we

tackle that problem with GraphGen. In Section 3.2, we discuss a novel condensed

representation that we use for storing hidden graphs and discuss how to extract

it, and why it is ideally suited for this purpose. We also discuss the duplication

issues that come with this representation. In Section 3.3 we propose a series of in-

memory variations of the basic condensed representation that handle the duplication

issue through uniquely characterized approaches, each of which results in one of the

condensed representations we have developed. These representations are products

of a single-run preprocessing phase on top of the condensed representation using an

array of algorithms that are also discussed in detail in Section 3.3. Lastly, we study

the potential of these representations, as well as the benefits and trade-offs that are

48

associated with them in Section 3.4 and delve into the details of our experimental

setup in Section 3.5.

3.1 Overview

This section provides a quick overview of the challenges in analyzing hidden

graphs within RDBMSs, in order to set up the work that is presented in the rest of

the chapter towards tackling those challenges.

3.1.1 Review: Hidden Graphs and Challenges

We define the term “hidden” graphs as graphs for which the Edges table

is not explicitly materialized in the RDBMS, but rather needs to be computed

by combining various other tables through joins. There can be a large variety of

hidden graphs inside RDBMSs that users might be interested in analyzing. Some of

these graphs might be too sparse or too disconnected to yield useful insights, while

others may exhibit high density or noise; however, many of these graphs may result

in different types of interesting insights. It is also often interesting to juxtapose

and compare graphs constructed over different time periods (i.e., temporal graph

analytics) (we discuss how GraphGen enables these analysis tasks in Chapter 4).

To reiterate a few earlier examples, in a DBLP dataset of authors, publications

and conferences, one of the many interesting graphs hidden within is (a) a co-authors

graph, where there is a node for every author and two authors are connected by

an undirected edge if they have published a paper together, or (b) a co-attendance

49

graph, where an edge between two authors indicates that they attended a conference

together (detailed examples can be seen in Example 1.3.1 and Example 1.3.2).

Currently a user who wants to explore such structures in an existing database

is forced to: (a) manually formulate the right SQL queries to extract relevant data

(queries which may have trouble completing their execution because of the space

explosion discussed below), (b) write scripts to convert the results into the format

required by some graph database system or computation framework, (c) load the

data into it, and then (d) write and execute the graph algorithms on the loaded

graphs. This is a costly, labor-intensive, and cumbersome process, and poses a high

barrier to leveraging graph analytics on these datasets. This is especially a problem

given the large numbers of entity types present in most real-world datasets and a

myriad of potential graphs that could be defined over those.

3.1.2 Analyzing Hidden Graphs with GraphGen

As previously discussed in Chapters 1 and 2, our GraphGen system aims

to make it easy for users to extract a variety of different types of graphs from

an RDBMS, and execute graph analysis tasks or algorithms over them in mem-

ory. As depicted in Figure 3.1, GraphGen is a lightweight software layer on top

of RDBMSs which provides users efficient access to hidden graphs within those

RDBMSs, through a variety of different interfaces.

GraphGen supports a DSL called GraphGenDL based on Datalog [48],

allowing users to specify a single graph or a collection of graphs to be extracted from

50

the RDBMS (in essence, as views on the database tables). GraphGenDL works by

allowing the user to map sets of nodes and edges to views of the underlying database.

GraphGen uses a translation layer to generate the appropriate SQL queries to be

issued to the database, and creates an efficient in-memory representation of the

graph that is handed off to the user program or analytics task.

GraphGen supports a general-purpose Java Graph API as well as the stan-

dard vertex-centric API for specifying analysis tasks like PageRank. Figure 3.2

shows a toy DBLP-like dataset, and the query that specifies a co-authors graph

to be constructed. Figure 3.2c shows the requested co-authors graph (GraphGen

naturally extracts directed graphs, and undirected graphs are represented using bidi-

rectional edges).

Additional
Statistics View

Definitions
Relational

Tables

RDBMS

Graph
Data

Extraction
Queries

Analysis
Queries

Cardinalities

Vertex-Centric Framework Graph API Python API/ Graph
Serialization

Query Parser Query Optimizer/
Rewriter

Graph
Representation

Loader
SQL Translator

RDBMS

Graph Exploration
Web App

NetworkX / Other Graph
Algorithms Libraries

Java
Program

Analysis Layer

GraphGen Core

GraphgenDL (Datalog)
Queries

Single
Graph

In-Memory
Representation

Condensed
Graph

Figure 3.1: GraphGen Overview for analyzing a single graph.

51

Nodes(ID, Name):-Author(ID, Name).
Edges(ID1, ID2):-AuthorPub(ID1,
PubID), AuthorPub(ID2, PubID).

(a) Relational Tables

p1

p2

p3

(d) C-DUP (28 Edges) (e) DEDUP1 (32 Edges)

(c) Expanded Graph (48 Edges)

p3

(b) Extraction Query [Q1]

Figure 3.2: Key concepts of GraphGen. For C-DUP and DEDUP-1, the author
nodes are shown twice (with subscripts s and t) to avoid clutter (by separating the
in-edges and out-edges); physically they are not stored separately.

3.1.3 Condensed In-memory Representations and Duplication

The key efficiency challenge with extracting graphs from relational databases

is that: in most cases, because of the normalized nature of relational schemas,

queries for extracting explicit relationships (i.e., edges) between entities from rela-

tional datasets (i.e., nodes) requires expensive non-key (large-output) joins. Because

of this, the extracted graph may be much larger than the input size itself. Instead,

we propose maintaining and operating upon the extracted graph in a condensed

52

fashion. Table 3.1 shows several examples of this phenomenon for different types of

graphs hidden in different datasets.

The co-author graph (from the DBLP dataset) described in an earlier examples

is, in some sense, a best-case scenario since the average number of authors per

publication is relatively small. Constructing a co-actors graph from the IMDB

dataset results in a similar space explosion. Likewise, a graph connecting pairs of

customers who bought the same item in a small sample of the TPCH dataset results

in a graph much larger than the input dataset. Even on the DBLP dataset, a graph

that connects authors who have papers at the same conference contains 1.8B edges,

compared to 15M edges in the condensed representation.

Graph Representation Edges Extraction Time (s)
DBLP
10M rows

Condensed 17,147,302 105.552
Full Graph 86,190,578 > 1200.000

IMDB
4.7M rows

Condensed 8,437,792 108.647
Full Graph 33,066,098 687.223

TPCH
765K rows

Condensed 52,850 15.52
Full Graph 99,990,000 > 1200.000

UNIV
32K rows

Condensed 60,000 0.033
Full Graph 3,592,176 82.042

Table 3.1: Extracting graphs in GraphGen using our condensed representation (C-
DUP) vs extracting the full graph (EXP). GraphGen enables scalable extraction
and analysis on graphs that may not fit in memory. IMDB: Co-actors graph (on a
subset of data), DBLP: Co-authors graph, TPCH: Connect customers who buy the
same product, UNIV: Connect students who have taken the same course (synthetic,
from http://db-book.com.

We show how to analyze such large graphs by storing and operating upon them

using a novel condensed representation, for extraction queries that are equivalent to

unions of acyclic conjunctive queries without aggregations.

The relational model provides a natural such condensed representation for

53

queries like this, that we call C-DUP, obtained (essentially for free) by omitting

some of the large-output joins from the query required for graph extraction. Figure

3.2d shows an example of C-DUP for the co-authors graph, where we create explicit

nodes for the pubs, in addition to the nodes for the authors; for two authors, u and

v, there is an edge u → v, iff there is a directed path from us to vt in C-DUP.

This representation generalizes the idea of using cliques and bicliques for graph

compression [49, 50]; however, the key challenge for us is not generating the repre-

sentation, but rather dealing with duplicate paths between two nodes.

In Figure 3.2, we can see such a duplication for the edge a1 → a4 since

they are connected through both p1 and p2 . This duplication problem prevents

us from operating on this condensed representation directly. We develop a suite

of different in-memory representations for this condensed graph that paired with

a series of “deduplication” algorithms, leverage a variety of techniques for dealing

with the problem of duplicate edges and ensure only a single edge between any pair

of vertices (one of which, called DEDUP-1, is shown in Figure 3.2e).

The rest of this chapter focuses on queries in which each of the Edges state-

ments corresponds to an acyclic, aggregation-free query. In that case, we may load

a condensed representation of the graph into memory (Section 3.2.2). This corre-

sponds to the edges being constructed using a union of acyclic conjunctive queries,

and covers many natural graph extraction tasks, including all the examples discussed

so far. Even for this class of queries, extracting and operating upon the graph in a

condensed form is computationally challenging.

54

3.2 In-Memory Representation and Task Execution

This section describes the algorithm by which the condensed representation is

extracted, delves into the duplication problem inherent in the condensed represen-

tation, and introduces a series of in-memory representations that are designed to

deal with the duplication problem.

3.2.1 Condensed Representation & Duplication

The idea of compressing graphs through identifying specific types of structures

has been around for a long time [49, 51]. Those prior techniques (see Chapter 6)

are not directly applicable here since they require the input graph to exist in an

expanded form before compression can take place. Instead, we propose a novel

condensed representation, called C-DUP, that is effectively free to construct from

the database and requires less memory to maintain. Given a graph extraction query,

let G(V,E) denote the output expanded graph; for clarity of exposition, we assume

that G is a directed graph. Since in the C-DUP representation there are only edges

between real nodes and virtual nodes, we denote vertices with subscript s(source)

to describe the vertices that have out-edges to virtual nodes, and vertices with

subscript t(target) for vertices that have in-edges from virtual nodes (for now we

assume there is only a single large-output join in the query). We say GC(V ′, E ′) is

an equivalent C-DUP representation if and only if:

(1) For every node u ∈ V , there are two nodes us, ut ∈ V ′ – the remaining nodes in

V ′ are called virtual nodes;

55

(2) GC is a directed acylic graph, i.e., it has no directed cycle;

(3) In GC , there are no incoming edges to us∀u ∈ V and no outgoing edges from

ut∀u ∈ V ;

(4) For every edge 〈u→ v〉 ∈ E, there is at least one directed path from us to vt in

GC .

Figure 3.3 shows two examples of such condensed graphs, the extraction queries

for which can be seen in Listing 3.4. In the second case, where a heterogeneous

bipartite graph is being extracted, there are no outgoing edges from s1s, s2s, s3s or

incoming edges to i1t, i2t, since the output graph itself only has edges from i nodes

to s nodes. Although we assume there are two copies of each real node in GC here,

the physical representation of GC only requires one copy (with special-case code

to handle incoming and outgoing edges). There may be self-edges in the extracted

graph (e.g., c1s → c1t in Figure 3.3a); however, since our extraction queries are

acyclic, GC itself is always a directed acyclic graph (DAG).

Duplication Problem: Although the C-DUP representation is easy to construct,

it allows for multiple paths between us and vt, since that’s the natural output of the

extraction process below. Any graph algorithm whose correctness depends solely

on the connectivity structure of the graph (i.e., “duplicate-insensitive” algorithms),

can be executed directly on top of this representation, with a potential for speedup

(e.g., connected components or breadth-first search); the notion of representation-

independent graph analytics from recent work could be used to further increase the

applicability of the C-DUP representation [52,53]. However, this duplication causes

56

Nodes(ID, Name):-Customer(ID, Name).
Edges(ID1, ID2):-Orders(orderkey1,
ID1), LineItem(orderId1, part_key),
Orders(orderId2, ID2),
LineItem(orderId2, part_key).

Nodes(ID, Name):-Instructor(ID, Name).
Nodes(ID, Name):-Student(ID, Name).
Edges(ID1, ID2):-TaughtCourse(ID1,
courseId), TookCourse(ID2, courseId). c1

c2

c3

(a) Execution of [Q2] (b) Execution of [Q3]

p1

p2

p3

o1

o2

o3

o1

o2

o3

Figure 3.3: Extraction examples: (a) Multi-layered condensed representation, (b)
extracting a heterogeneous bipartite graph (we only list the schemas for some of the
tables, and omit tuples for clarity).

[Q2]

CREATE GRAPHVIEW customers_items

Nodes(ID, Name) :- Customer(ID, Name).

Edges(ID1 , ID2) :- Orders(order_key1 , ID1),LineItem(order_key1 , part_key),

Orders(order_key2 , ID2),LineItem(order_key2 ,part_key).

[Q3]

CREATE GRAPHVIEW instructors_students

Nodes(ID, Name) :- Instructor(ID, Name).

Nodes(ID, Name) :- Student(ID , Name).

Edges(ID1 , ID2) :- TaughtCourse(ID1 , courseId), TookCourse(ID2 , courseId).

Figure 3.4: Graph Extraction Query Examples (see Figure 3.2 for [Q1]).

57

correctness issues on all non duplicate-insensitive graph algorithms. The duplication

problem entails that programmatically, when each real node tries to iterate over its

neighbors, passing through its obligatory virtual neighbors, it may encounter the

same neighbor more than once; this indicates a duplicate edge. The set of algorithms

we propose in Section 3.3 are geared towards dealing with this duplication problem.

Single-layer vs Multi-layer Condensed Graphs: A condensed

graph may have one or more layers of virtual nodes (formally, a condensed graph is

called multi-layer if it contains a directed path of length > 2). Each layer of virtual

nodes represents a large-output join in the graph extraction query. In the majority

of cases, most of the joins involved in extracting these graphs will be simple key-

foreign key joins, and large-output joins (which require use of virtual nodes) occur

relatively rarely. Although our system can handle arbitrary multi-layer graphs,

we also develop special algorithms for the common case of single-layer condensed

graphs.

3.2.2 Extracting a Condensed Graph

The key idea behind constructing a condensed graph is to postpone certain

joins. Here we briefly sketch our algorithm for making those decisions, extracting

the graph, and then putting it through a pre-processing phase to reduce its size.

Step 1: First, we translate the Nodes statements into SQL queries, and execute

those against the database to load the nodes in memory. In the following discussion,

we assume that for every node u, we have two copies us (source) and ut (target);

58

physically we only store one copy.

Step 2: We consider each Edges statement in turn. Recall that the output of each

such statement is a set of 2-tuples (corresponding to a set of edges between real

nodes), and further that we assume the statement is acyclic and aggregation-free.

Without loss of generality, we can represent the statement as:

Edges(ID1, ID2) : −R1(ID1, a1), R2(a1, a2), ..., Rn(an−1, ID2)

(two different relations, Ri and Rj, may correspond to the same database table).

Generalizations to allow multi-attribute joins and selection predicates are straight-

forward.

For each join Ri(ai−1, ai) 1ai Ri+1(ai, ai+1), we retrieve the number of distinct

values, d, for ai (the join attribute) from the system catalog (e.g., n distinct

attribute in the pg stats table in PostgreSQL). If |Ri||Ri+1|/d > 2(|Ri| + |Ri+1|),

then we consider this a large-output join and mark it so (this formula assumes that

the join attribute is uniformly distributed and may miss a large-output join and

could be easily substituted with a more sophisticated selectivity estimator).

Step 3: We then consider each subsequence of the relations without a large-

output join, construct an SQL query corresponding to it, and execute it against

the database. Let al, am, ..., au denote the join attributes which are marked as large-

output. Then, the queries we execute correspond to:

res1(ID1, al) : −R1(ID1, a1), ..., Rl(al−1, al),

res2(al, am) : −Rl+1(al, al+1), ..., Rm(am−1, am), ..., and

resk(au, ID2) : −Ru+1(au, au+1), ..., Rn(an−1, ID2).

59

Step 4: For each join attribute attr ∈ {al, am, ..., au}, we create a set of virtual

nodes corresponding to all possible values attr takes.

Step 5: For (x, y) ∈ res1, we add a directed edge from a real node to a virtual

node: xs → y. For (x, y) ∈ resk, we add a directed edge x→ yt. For all other resi,

for (x, y) ∈ resi, we add an edge between two virtual nodes: x→ y.

Step 6 (Preprocessing): For a virtual node, let in and out denote the number of

incoming and outgoing edges respectively; if in× out ≤ (in+ out+ 1), we “expand”

this node, i.e., we remove it and add directed edges from its in-neighbors to its

out-neighbors. This preprocessing step can have a significant impact on memory

consumption. We have implemented a multi-threaded version of this to exploit

multi-core machines, which resulted in several non-trivial concurrency issues. We

omit a detailed discussion for lack of space. Finally, the system also computes the

number of edges in the expanded graph (this can be computed for free as a side-

effect of all of our deduplication algorithms), and expands the graph if the increase

in size is small.

If the query contains multiple Edges statements, the final constructed graph

would be the union of the graphs constructed for each of them. It is easy to show

that the constructed graph satisfies all the required properties listed above, that it

is equivalent to the output graph, and it occupies no more memory than loading all

the input tables into memory.

In the example shown in Figure 3.3a, the graph specified in query [Q2] that

is extracted assumes that all three of the joins involved are large-output joins, so

60

we choose not to hand any of them to the database, but extract the condensed

representation by instead projecting the tables in memory and creating intermediate

virtual nodes for each unique value of each join condition.

Example 3.2.1. Figure 3.4 demonstrates several extraction queries. In each one

of these queries, a set of common attributes represents an equi-join between their

respective relations. An extraction task can contain any number of joins; e.g.,[Q1]

in Figure 3.2, only requires a single join (in this case a self-join on the AuthorPub

table), while [Q2] as shown in Figure 3.3a would require a total of 3 joins, some of

which (in this case Orders(order key1, ID1) 1 LineItem(order key1, part key),

and Orders(order key2, ID2) 1 LineItem(order key2, part key)) will be handed

off to the database since they are small-output key-foreign key joins.

The extraction query [Q3] extracts a bi-partite (heterogeneous) directed graph

between instructors and students who took their courses (Figure 3.3b).

3.2.3 In-Memory Representations

Next, we propose a series of in-memory graph representations that can be

utilized to store the condensed representation mentioned above, in its deduplicated

state. Here we discuss the representation formats and their key properties, and

with a specific focus on the implementation of the getNeighbors() iterator, which

underlies most graph algorithms. We note that, in some cases, we use the same

term to both denote an in-memory representation, as well as the algorithm for

constructing that representation; e.g., we discuss the DEDUP-1 representation below

61

and outline its key properties (e.g., it does not suffer from edge duplication), and

we discuss several algorithms for constructing the DEDUP-1 representation in the

next section. We note that our representations primarily explore different ways to

do structural compression, and could be combined with other graph compression

approaches [54] to further reduce the memory footprint.

C-DUP: Condensed Duplicated Representation: This is the representation

that we initially extract from the relational database, which suffers from the edge

duplication problem. We can utilize this representation as-is by employing a naive

solution to deduplication, i.e., by doing deduplication on the fly as algorithms are

being executed. Specifically, when we call getNeighbors(u), it starts a depth-first

traversal from us and returns all the real nodes (t nodes) reachable from us; it also

keeps track of which neighbors have already been seen (using a hashset) and skips

over them if the neighbor is seen again.

This is typically the most storage-efficient representation, does not require any

preprocessing overhead, and is a good option for graph algorithms that access a small

fraction of the graph (e.g., if we were looking for information about a small number

of specific nodes). On the other hand, due to the required hash computations

at every call, the execution penalty for this representation is high, especially for

multi-layer graphs; it also suffers from memory and garbage collection bottlenecks

for algorithms that require processing all the nodes in the graph. Operations like

deleteEdge() are also quite involved in this representation, as deletion of a logical

edge may require non-trivial modifications to the virtual nodes.

62

EXP: Fully Expanded Graph: On the other end of the spectrum, we can choose

to expand the graph in memory, i.e., create all direct edges between all the real nodes

in the graph and remove the virtual nodes. The expanded graph typically has a much

larger memory footprint than the other representations due to the large number of

edges. It is nevertheless, naturally, the most efficient representation for operating

on, since iteration only requires a sequential scan over one’s direct neighbors. The

expanded graph is the baseline that we use to compare the performance of all other

representations in terms of trading off memory with operational complexity.

DEDUP-1: Condensed Deduplicated Representation: This representation for-

mat is identical to C-DUP in its use of virtual nodes, with the major difference being

that it does not suffer from duplicate paths, and thus does not require the on-the-

fly deduplication used in C-DUP (i.e., getNeighbors() does not need to use the

hashset). This representation typically sits in the middle of the spectrum between

EXP and C-DUP in terms of both memory efficiency and iteration performance; it

usually results in a larger number of edges than C-DUP, but has reduced overhead

of neighbor iteration. The trade-offs here also include the one-time cost of removing

duplication; deduplicating a graph while minimizing the number of edges added can

be shown to be NP-Hard. Unlike the other representations discussed below, this

representation maintains the simplicity of C-DUP and can easily be serialized and

used by other systems which need to simply implement the appropriate iterator.

BITMAP: Deduplication using Bitmaps: This representation results from ap-

plying a different kind of preprocessing based on maintaining bitmaps, for filtering

63

out duplicate paths between nodes. Specifically, a virtual node V may be associated

with a set of bitmaps, indexed by the IDs of the real nodes; the size of each bitmap

is equal to the number of outgoing edges from V . Consider a depth-first traversal

starting at us that reaches V . We check to see if there is a bitmap corresponding to

us; if not, we traverse each of the outgoing edges in sequence. However, if there is

indeed a bitmap corresponding to us, then we consult the bitmap to decide which

of the outgoing edges to skip (i.e., for every bit that is set to 1, we traverse the cor-

responding edge). In other words, the bitmaps are used to eliminate the possibility

of reaching the same neighbor twice.

The main drawback of this representation is the memory overhead and com-

plexity of storing these bitmaps, which also makes this representation less portable

to systems outside GraphGen. The preprocessing required to set these bitmaps

can also be quite involved as we discuss in the next section.

DEDUP-2: Optimization for Single-layer Symmetric Graphs:

This optimized representation can significantly reduce the memory requirements for

dense graphs, for the special case of a single-layer, symmetric condensed graph (i.e.,

〈us → vt〉 =⇒ 〈vs → ut〉); many graphs satisfy these conditions. In such a case,

for a virtual node V , if us → V , then V → ut, and we can omit the t nodes

and associated edges. Figure 3.5 illustrates an example of the same graph if we

were to use all three deduplication representations. In C-DUP, we have two virtual

nodes V1 and V2, that are both connected to a large number of real nodes. The

optimal DEDUP-1 representation (Figure 3.5b) results in a substantial increase in

64

the number of edges, because of the large number of duplicate paths. The DEDUP-2

representation (Figure 3.5c) uses special undirected edges between virtual nodes to

handle such a scenario. A real node u is considered to be connected to all real nodes

that it can reach through each of its direct neighboring virtual nodes v, as well as

the virtual nodes directly connected to v (i.e., 1 hop away); e.g., node a is connected

to b and c through W2, and to u1, u2, u3 through W1 (which is connected to W2), but

not to d, e, f (since W3 is not connected to W2). This representation is required to

be duplicate-free, i.e., there can be at most one such path between a pair of nodes.

The DEDUP-2 representation here requires 11 undirected edges, which is just below

the space requirements for C-DUP. However, for dense graphs, the benefits can be

substantial (Section 3.4).

Generating a good DEDUP-2 representation for a given C-DUP graph is much

more intricate than generating a DEDUP-1 representation. We discuss a sketch of

the algorithm for generating a DEDUP-2 representation in Section 3.3.3.

3.3 Preprocessing & Deduplication

In this section, we discuss a series of preprocessing and deduplication algo-

rithms we have developed for constructing the different in-memory representations

for a given query. The input to all of these algorithms is the C-DUP represen-

tation, that has been extracted and instantiated in memory. We first present a

general preprocessing algorithm for the BITMAP representation for multi-layer con-

densed graphs. We then discuss a series of optimizations for single-layer condensed

65

V

V
1

u
1

u
3

u
2

d

f

e

a

c

b

u
1

u
3

u
2

d

f

e

a

c

b

V

V
1

u
1

u
3

u
2

d

f

e

a

c

b

u
1

u
3

u
2

d

f

e

a

c

b

u
1

u
3

u
2

d

f

e

a

c

b
W
2

W
1

W
3

(a) C-DUP (24 Edges) (b) DEDUP1 (32 Edges) (c) DEDUP2 (22 Edges)

Figure 3.5: The resulting graph after the addition of virtual node V . (c) shows
the resulting graph for if we added edges between virtual nodes (we omit s and t

subscripts since they are clear from the context).

graphs, including structural deduplication algorithms that eliminate duplication

(i.e., achieve DEDUP-1 representation). In contrast with Section 3.2.3, here we

focus on describing algorithms for how to generate the representations that we de-

scribed there. We also describe the runtime complexity for each algorithm in which

we refer to nr as the number of real nodes, nv as the number of virtual nodes, k as

the number of layers of virtual nodes, and d as the maximum degree of any node

(i.e., the maximum number of outgoing edges).

3.3.1 Preprocessing for BITMAP

Recall that the goal of the preprocessing phase here is to associate and initialize

bitmaps with the virtual nodes to avoid visiting the same real node twice when

iterating over the out-neighbors of a given real node. We begin with presenting a

66

simple, naive algorithm for setting the bitmaps; we then analyze the complexity of

doing so optimally and present a set cover-based greedy algorithm.

3.3.1.1 BITMAP-1 Algorithm

This algorithm only associates bitmaps with the virtual nodes in the penul-

timate layer, i.e., with the virtual nodes that have outgoing edges to t nodes. We

iterate over all the real nodes in turn. For each such node u, we initiate a depth-first

traversal from us, keeping track of all the real nodes visited during the process using

a hashset, Hu. For each virtual node V visited, we check if it is in the penultimate

layer; if yes, we add a bitmap to V that is of size equal to the number of outgoing

edges from V . Then, for each outgoing edge V → vt, we check if vt ∈ Hu. If so, we

set the corresponding bit to 0; else, we set it to 1 and add vt to Hu.

This is the least computationally complex of all the algorithms, and in prac-

tice the fastest algorithm. It maintains the same number of edges as C-DUP, while

adding the overhead of maintaining the bitmaps and the appropriate indexes asso-

ciated with them for each virtual node. The traversal order in which we process

each real node does not matter here since the end result will always have the same

number of edges as C-DUP. Changing the processing order only changes the way

the set bits are distributed among the bitmaps.

Complexity: The worst-case runtime complexity of this algorithm is O(nr ∗ dk+1).

Although this might seem high, we note that this is always lower than the cost of

expanding the graph. The pseudo-code for BITMAP-1 can be found in Algorithm 1.

67

3.3.1.2 Formal Analysis

The above algorithm, while simple, tends to initialize and maintain a large

number of bitmaps. This leads us to ask the question: how can we achieve the re-

quired deduplication while using the minimum number of bitmaps (or minimum total

number of bits)? This seemingly simple problem unfortunately turns out to be NP-

Hard, even for single-layer graphs. In a single-layer condensed graph, let u denote a

real node, with edges to virtual nodes V1, ..., Vn, and let Out(V1) denote the set of real

nodes to which V1 has outgoing edges. Then, the problem of identifying a minimum

set of bitmaps to maintain is equivalent to finding a set cover where our goal is to

find a subset of Out(V1), ..., Out(Vn) that covers their union. Unfortunately, the set

cover problem is not only NP-Hard, but is also known to be hard to approximate.

3.3.1.3 BITMAP-2 Algorithm

This algorithm is based on the standard greedy algorithm for set cover, which

is known to achieve the best approximation ratio (O(log n)) for the problem. We

describe it using the terminology above for single-layer condensed graphs. The

algorithm starts by picking the virtual node Vi with the largest |Out(Vi)|. It adds

a bitmap for u to Vi, and sets all of its bits to 1; all nodes in Out(Vi) are now

considered to be covered. It then identifies the virtual node Vj with the largest

|Out(Vj)−Out(Vi)|, i.e., the virtual node that connects to largest number of nodes

that remain to be covered. It adds a bitmap for us to Vj and sets it appropriately. It

repeats the process until all the nodes that are reachable from us have been covered.

68

For the remaining virtual nodes (if any), the edges from us to those nodes are simply

deleted since there is no reason to traverse those.

We generalize this basic algorithm to multi-layer condensed graphs by applying

the same principle at each layer. Let V 1
1 , ..., V

1
n denote the set of virtual nodes

pointed to by us (which are part of the first layer of virtual nodes). Let N(us)

denote all the real t nodes reachable from us. For each V 1
i , we count how many

of the nodes in N(us) are reachable from V 1
i , and explore the virtual node with

the highest such count first. At the penultimate layer, the algorithm reduces to

the single-layer algorithm described above and appropriately sets the bitmaps. We

consistently keep track of how many of the nodes in N(us) have been covered so far,

and use that for making the decisions about which bits to set. So after bitmaps have

been set for all virtual nodes reachable from V 1
1 , if there are still nodes in N(us) that

need to be covered, we pick the virtual node V 1
i that reaches the largest number of

uncovered nodes, and so on.

It’s important to note that here we never delete an outgoing edge from a

virtual node, since it may be needed for another real node. Instead, we use bitmaps

to stop traversing down those paths (e.g., edge x2 → y2 in Figure 3.6 is unreachable

by every us).

Our implementation exploits multi-core parallelism, by creating equal-sized

chunks of the set of real nodes, and processing the nodes in each chunk in parallel.

Complexity: The runtime complexity of this algorithm is significantly higher than

BITMAP-1 because of the need to re-compute the number of reachable nodes after

69

each choice, and the worst-case complexity could be as high as: O(nr ∗ d2
k
). In

practice, k is usually 1 or 2, and the algorithm finishes reasonably quickly, especially

given our parallel implementation. The pseudo-code for BITMAP-2 can be found

in Algorithm 2.

x1

x2

y1

y2

a1

a2

a3

a1

a2

a3

x1

x2

a1 1
y1

a2 1
y1

a3 1

a1 1 1
x1

a2
a3

x2

1 1
1 1

a1 1
a1

a2
a3

1
1

a1 1 1
a2
a3

a2 a3

1 1
1 1 V1

V2

A

B

C

A

B

C

A
B
C

0 1 0
1 0 1
0 1 0

A B C D
1
1
1

D 1 1 1 0

A
B
C

0 0 1
0 0 0
1 0 0

A B C

D D

(a) Multi-layer Graph (b) Single-layer Graph

0
y2

0

Figure 3.6: Using BITMAPs to handle duplication; the dotted edges (corresponding
to columns or edges with all 0s) are removed.

3.3.2 Deduplication for DEDUP-1

The goal with deduplication is to modify the initial C-DUP graph to reach

a state where there is at most one unique path between any two real nodes in the

graph. We describe a series of novel algorithms for achieving this for single-layer

condensed graphs, and discuss the pros and cons of using each one as well as their

effectiveness in terms of the size of the resulting graph. We briefly sketch how these

algorithms can be extended to multi-layer condensed graphs; however, we leave a

detailed study of deduplication for multi-layer graphs to future work.

70

3.3.2.1 Single-layer Condensed Graphs

The theoretical complexity of this problem for single-layer condensed graphs

is the same as the original problem considered by Feder and Motwani [51], which

focuses on the reverse problem of compressing cliques that exist in the expanded

graph, by finding cliques and connecting all vertices in the same clique to a virtual

node and removing the edges among them. Although the expanded graph is usually

very large, it is still only O(n2), so the NP-Hardness of the deduplication problem

is the same. However, those algorithms presented in [51] are not applicable here

because the input representation is different, and expansion is not an option. We

present four algorithms for dealing with this problem.

In the description below, for a virtual node V , we use In(V) to denote the set

of real nodes that point to V , and Out(V) to denote the real nodes that V points

to.

Naive Virtual Nodes First: This algorithm deduplicates the graph one virtual

node at a time. We start with a graph containing only the real nodes and no virtual

nodes, which is trivially duplication-free. We then add the virtual nodes one at a

time, always ensuring that the partial graph remains free of any duplication.

When adding a virtual node V : we first collect all of the virtual nodes Ri such

that In(V)∩In(Ri) 6= φ; these are the virtual nodes that all the real nodes in In(V)

point to (other than V). Let this set be R. A processed set is also maintained which

keeps track of the virtual nodes that have been added to the current partial graph.

For every virtual node Ri ∈ R ∩ processed, if |Out(V) ∩ Out(Ri)| > 1, we modify

71

the virtual nodes to handle the duplication before adding V to the partial graph

(if there is no such Ri, we are done). We select a real node r ∈ Out(V) ∩ Out(Ri)

at random, and choose to either remove the edge (V → r) or (Ri → r), depending

on the in-degrees of the two virtual nodes. The intuition here is that, by removing

the edge from the lower-degree virtual node, we have to add fewer direct edges to

compensate for removal of the edge. Suppose we remove the former (V → r) edge.

We then add direct edges to r from all the real nodes in In(V), while checking

to make sure that r is not already connected to those nodes through other virtual

nodes. Virtual node V is then added to a processed set and we consider the next

virtual node.

Complexity: The runtime complexity is O(nv ∗ d4).

Naive Real Nodes First: In this approach, we consider each real node in the

graph at a time, and handle duplication between the virtual nodes it is connected

to, in the order in which they appear in its neighborhood. This algorithm handles

deduplication between two virtual nodes that overlap in exactly the same way as

the one described above. It differs however in that it entirely handles all duplication

between a single real node’s virtual neighbors before moving on to processing the

next real node. As each real node is handled, its virtual nodes are added to a

processed set, and every new virtual node that comes in is checked for duplication

against the rest of the virtual nodes in this processed set. This processed set is

however limited to the virtual neighborhood of the real node that is currently being

deduplicated, and is cleared when we move on to the next real node.

72

Complexity: The runtime complexity is O(nr ∗ d4).

Greedy Real Nodes First Algorithm: In this less naive but still greedy ap-

proach, we consider each real node in sequence, and deduplicate it individually.

Figure 3.7 shows an example, that we will use to illustrate the algorithm. The

figure shows a real node u1 that is connected to 5 virtual nodes, with significant

duplication, and a deduplication of that node. Our goal here is to ensure that there

are no duplicate edges involving u1 – we do not try to eliminate all duplication

among all of u1’s virtual nodes like in the naive approach. The core idea of this

algorithm is that we consult a heuristic to decide whether to remove an edge to a

virtual node and add the missing direct edges, or to keep the edge to the virtual

node.

Let V ′ denote the set of virtual nodes to which us remains connected after

deduplication, and V ′′ denote the set of virtual nodes from which us is disconnected;

also, let E denote the direct edges that we needed to add from us during this process.

Our goal is to minimize the total number of edges in the resulting structure. This

problem can be shown to be NP-Hard using a reduction from the exact set cover

problem.

We present a heuristic inspired by the standard greedy set cover heuristic which

works as follows. We initialize V ′ = ∅, and V ′′ = V ; we also logically add direct edges

from us to all its neighbors in N(us), and thus E = {(us, x)|x ∈ ∪V ∈VOut(V)}. We

then move virtual nodes from V ′′ to V ′ one at a time. Specifically, for each virtual

node V ∈ V ′′, we consider moving it to V ′. Let X = ∪Out(V ′) denote the set of

73

real nodes that u is connected to through V ′. In order to move V to V ′, we must

disconnect V from all nodes in Out(V) ∩ X – otherwise there would be duplicate

edges between u and those nodes. Then, for any a, b ∈ Out(V) ∩ X, we check if

any other virtual node in V ′′ is connected to both a and b – if not, we must add the

direct edge (a, b). Finally, for ri ∈ Out(V)−Out(V)∩X, we remove all direct edges

(u, ri).

The benefit of moving the virtual node V from V ′′ to V ′ is computed as the

reduction in the total number of edges in every scenario. We select the virtual node

with the highest benefit (> 0) to move to V ′. If no virtual node in V ′′ has benefit > 0,

we move on to the next real node and leave u connected to its neighbors through

direct edges.

Complexity: The runtime complexity here is roughly O(nr ∗d5). The pseudo-code

for the Greedy Real-Nodes-First algorithm can be found in Algorithm 4.

Greedy Virtual Nodes First Algorithm: Exactly like the naive version above,

this algorithm deduplicates the graph one virtual node at a time, maintaining a

deduplicated partial graph at every step. We start with a graph containing only

the real nodes and no virtual nodes, which is trivially deduplicated. We then add

the virtual nodes one at a time, always ensuring that the partial graph does not

have any duplication. Let V denote the virtual node under consideration. Let

V = {V1, ..., Vn} denote all the virtual nodes that share at least 2 real nodes with V

(i.e., |Out(V) ∩ Out(Vi)| ≥ 2). Let Ci = Out(V) ∩ Out(Vi), denote the real nodes

to which both V and Vi are connected. At least |Ci| − 1 of those edges must be

74

N N

N N
N

N

N

N
N

(a) 44 Edges (b) 34 Edges

N

Figure 3.7: Deduplicating u1 using the “real-nodes first” algorithm, resulting to an
equivalent graph with a smaller number of edges.

removed from Out(V) and Out(Vi) combined to ensure that there is no duplication.

The special case of this problem where |Ci| = 2,∀i, can be shown to be equiva-

lent to finding a vertex cover in a graph (we omit the proof due to space constraints).

We again adopt a heuristic inspired by the greedy approximation algorithm for ver-

tex cover. Specifically, for each node in Ci, we compute the cost and the benefit of

removing it from any Out(Vi) versus from Out(V). The cost of removing the node

is computed as the number of direct edges that need to be added if we remove the

edge to that virtual node, whereas the benefit is computed as the reduction in the

total number of nodes in the intersection with Vi (Σ|Ci|) (removing the node from

Out(Vi) always yields a benefit of 1, whereas removing it from Out(V) may have a

higher benefit). We then make a more informed decision and choose to remove an

75

edge from a real node rn that leads to the overall highest benefit/cost ratio.

Complexity: The runtime complexity here is: O(nvd(nvd
2 +d)). The pseudo-code

for the Greedy Virtual-Nodes-First algorithm can be found in Algorithm 3.

We note that, these complexity bounds listed here make worst-case assumptions and

in practice, most algorithms run much faster.

N(V)∩N(V
1
)={u

1
,u

2
}

V
1

V
2

V
3

14 edges

u
1

u
4

u
5

u
3

u
2

u
6

u
7

V

N(V)∩N(V
2
)={u

1
,u

4
,u

5
}

N(V)∩N(V
3
)={u

2
,u

5
}

u
1

u
4

u
5

u
3

u
2

u
6

u
7

V

V
1

V
2

V
3

12 edges

N(V
1
)={u

1
,u

2
,u

3
}

,
N(V

2
)={u

1
,u

4
,u

5
,u

6
}

N(V
3
)={u

2
,u

5
,u

7
}

,
N(V)={u

1
,u

2
,u

4
,u

5
}

N(V
1
)={u

1
,u

2
,u

3
},N(V2)={u1,u4,u5,u6}

N(V
3
)={u

2
,u

5
,u

7
},N(V)={u1,u2,u4,u5}

u
1

u
4

u
5

u
3

u
2

u
6

u
7

V
1

V
2

V
3

V

u
1

u
4

u
5

u
3

u
2

u
6

u
7

u
1

u
4

u
5

u
3

u
2

u
6

u
7

V
1

V
2

V
3

V

u
1

u
4

u
5

u
3

u
2

u
6

u
7

(a) 28 Edges (b) 24 Edges

Figure 3.8: Deduplication using Greedy Virtual Nodes First.

3.3.2.2 Multi-layer Condensed Graphs

Deduplicating multi-layer condensed graphs turns out to be significantly trick-

ier and computationally more expensive than single-layer graphs. In single layer

graphs, identifying duplication is relatively straightforward; for two virtual nodes

76

V1 and V2, if Out(V1) ∩ Out(V2) 6= φ and In(V1) ∩ In(V2) 6= φ, then there is dupli-

cation. We keep the neighbor lists in sorted order, thus making these checks very

fast. However, for multi-layer condensed graphs, we need to do expensive depth-first

traversals to simply identify duplication.

We can adapt the Naive Virtual Nodes First algorithm described above to the

multi-layer case as follows. We (conceptually) add a dummy node s to the condensed

graph and add directed edges from s to the s copies of all the real nodes. We then

traverse the graph in a depth-first fashion, and add the virtual nodes encountered to

an initially empty graph one-by-one, while ensuring no duplication. However, this

algorithm turned out to be infeasible to run even on small multi-layer graphs, and

we do not report any experimental results for that algorithm. Instead, we propose

using either the BITMAP-2 approach for multi-layer graphs, or first converting it

into a single-layer graph if possible (through expansion of all virtual nodes in all

but one layer) and then using one of the algorithms developed above; note that the

latter approach should only be considered if the expansion does not result in a space

explosion.

3.3.3 DEDUP-2 Greedy Algorithm

Conducting deduplication for outputting the DEDUP-2 representation turns

out to be significantly more challenging than DEDUP-1 and we only present one

algorithm for doing so (a few other variants that we tried turned out to be too

complex and inefficient, without any performance benefits). Because the Virtual

77

Nodes First algorithm reasons about a virtual node at a time, it turns out to be most

amenable to adding such edges between virtual nodes. Figure 3.5 shows an example

of the different outcomes after incrementally introducing a new virtual node V to a

condensed graph containing only a single virtual node currently (V1). Figure 3.5c

shows the resulting graph after one applies our DEDUP-2 greedy algorithm to the

condensed duplicated graph shown in Figure 3.5a. This graph now includes edges

between virtual nodes. The addition of this new type of edge to the mix immediately

makes deduplication substantially more complex, as more invariants need to now

be checked in attempting to add the new virtual node into the deduplicated partial

graph in order to maintain correctness.

Below we present an algorithm for adding a new virtual node V into a partially

constructed, deduplicated graph. This algorithm does not add direct edges between

real nodes; instead we introduce the notion of a singleton virtual node both for the

purpose of implicitly adding direct edges as well as to deal with correctness issues.

A singleton virtual node is one with only a single real node attached to it.

Step 1: Identifying Violations: We first identify the set of virtual nodes that

overlap with V and may potentially lead to a violation. Let V = {V1, ..., Vn} denote

all the virtual nodes in the partial condensed graph constructed so far, that share

at least 1 real node with V ; these are all the virtual nodes that we need to check for

violations when adding V . There are two types of violations that could potentially

arise: (1) there exists a virtual node V1 such that |V ∩ V1| > 1, (same as in all

of the other representations and algorithms) as well as (2) there exists two other

78

virtual nodes V1 and V2 that are connected to at least one common virtual node

C where |V1 ∩ V2| > 0. More intuitively, violation (1) says there should be no

overlap of more than 1 between any two virtual nodes, while (2) says that at any

point in the graph, the virtual neighbors of any one virtual node should have zero

overlap with each other. The reason (2) constitutes a violation comes up in iteration

(getNeighbors()) in this representation, where that scenario would lead to the

same real node being returned as a neighbor multiple times.

Step 2: Edges Between Virtual Nodes: Let V1 ∈ V denote the virtual node

with the highest overlap with V .

If V has a high overlap with V1, then removing this violation by adding direct

edges (as above) could result in the addition of many direct edges between the real

nodes (as seen in the example in Figure 3.5b). Hence, if |V ∩V1| ≥ 1 we split both V

and V1 and create 4 different virtual nodes so as to correctly incorporate V ’s nodes

into the partially deduplicated graph. These virtual nodes are: (1) W1 = V1 ∩ V ,

(2) W2 = V1 −W1, (3) W3 = V −W1 − ∪N(V1), (4) W4 = V −W1 −W3, where

∪N(V1) is the union of real nodes in V1’s virtual neighborhood (some of these might

be empty and would not be created).

To explain the intuition behind the above splits, we must explain how the

algorithm works. The basic idea is to observe the current state of the deduplicated

graph and see which virtual nodes need to be split in order to make way for correctly

adding V ; this results into W1 and W2. After that we need to keep track of which

edges need to be maintained, while recursively adding in the portions of V that

79

could potentially cause violations (W3 and W4). The most important part in the

implementation of this algorithm is to not actually add any edges between virtual

nodes unless we are certain that these edges will not lead to any violations of the

aforementioned invariants. To achieve this, we maintain a data structure m that

includes all the edges that need to be added at any point in the execution, and after

all the appropriate checks are made, only then are those edges physically added.

Processing each new virtual node V can be described in smaller sub-steps:

1. Substep 1: Since W1 = V ∩ V1, it will need to be a separate virtual node

that both V and V1 will need to haves edges to. The intention of the first split

is replacing V1 with W1 and W2 where W1 ↔ W2. After this split, W1 and

W2 also need to be connected to all the previous neighbors of V1. This split

can be applied immediately in the deduplicated graph as it does not alter the

properties of the graph in any way. We keep track of the fact that W1 and

V −W1 need to be connected after all checks are done by adding this potential

edge in m.

2. Substep 2: For simplicity, let virtual node W ′
3 = V −W1 which includes the

rest of the real nodes that are not included in the initial split. We check if

there are are any neighbors of V1 that have any overlap with W ′
3, and if so,

these nodes will constitute W4, and the rest of the nodes will constitute W3.

If W4 is not empty, we add the edge W3 ↔ W4 to m as well as W3 ↔ W1.

If however there is a previous constraint in m for the virtual edge W ′
3 ↔ W1,

then that also needs to be split into two constraints inside m.

3. Substep 3: Recursively call the above on V = W3 and then on V = W4,

80

passing the same m into every call.

4. Substep 4: Physically add in all the edges that are described in m and clean

up any virtual nodes that need to be deleted.

Complexity: The runtime complexity of this algorithm is hard to calculate pre-

cisely, but is upper bounded by O(nr ∗ d8). Please refer to Algorithm 5 for the

pseudo-code.x

3.4 Experimental Study

In this section, we provide a comprehensive experimental evaluation of Graph-

Gen using several real-world and synthetic datasets. We first present a detailed

study using 4 small datasets. We then compare the performance of the different

deduplication algorithms, and present an analysis using much larger datasets, but

for a smaller set of representations. All the experiments were run on a single machine

with 24 cores running at 2.20GHz, and with 64GB RAM.

3.4.1 Small Datasets

First we present a detailed study using 4 relatively-small datasets. We use

representative samples of the DBLP and IMDB datasets in our study (Table 3.2),

extracting co-author and co-actor graphs respectively. We also generated a series

of synthetic graphs so that we can better understand the differences between the

representations and algorithms on a wide range of possible datasets, with varying

numbers of real nodes and virtual nodes, and varying degree distributions and den-

81

Dataset Real Nodes Virt Nodes Avg Size EXP Edges
DBLP 523,525 410,000 2 1,493,526
IMDB 439,639 100,000 10 10,118,354

Synthetic 1 20,000 200,000 7 2,032,523
Synthetic 2 200,000 1000 94 4,135,768

Table 3.2: Small Datasets: avg size refers to the average number of real nodes
contained in a virtual node

sities. Since we need the graphs in a condensed representation, we cannot use any of

the existing random graph generators for this purpose. Instead, we built a synthetic

graph generator, which we sketch in Section 3.5.1.

3.4.1.1 Compression Performance

We begin with comparing the graph sizes for the different representations for

each dataset. In addition to the in-memory representations presented in this chapter,

we also implemented and compared against a prior graph compression algorithm,

called VMiner (Virtual Node Miner) [49]. VMiner uses frequent pattern mining

to identify bi-cliques in the graph, i.e., groups of nodes A and B, such that for

u ∈ A, v ∈ B, there is an edge u → v. It then repeatedly replaces such bicliques

with virtual nodes; i.e., it adds a new virtual node C to the graph, adds an edge

u → C, ∀u ∈ A and C → v,∀v ∈ B, and deletes all edges from A to B. It

makes multiple passes through the graph, iteratively reducing its size. The final

representation thus looks very similar to DEDUP-1, and is also duplication-free.

VMiner has several parameters which we exhaustively tried out combinations of, for

each of our datasets, (following the guidance in the paper) and picked the best. Note

that using VMiner requires us to first expand the graph, which makes it infeasible

82

for several of the large datasets discussed in Section 6.2.

Figure 3.9: Comparing the in-memory graph sizes for different datasets; the bottom
(lighter) bars show the number of nodes.

Figure 3.9 shows how the different algorithms fare against each other. For

each algorithm and each dataset, we report the total number of nodes and edges,

and also show the breakdown between them; the algorithm used for DEDUP-1 was

Greedy Virtual Nodes First, described in Section 3.3.2.1. When the average degree

of virtual nodes is small and there is a large number of virtual nodes (as is the case

with DBLP and Synthetic 1), we observe that there is a relatively small difference

in the size of the condensed and expanded graphs, and deduplication (DEDUP-1

and DEDUP-2) actually results in an even smaller footprint graph.

83

On the other hand, the IMDB dataset shows a 8-fold difference in size be-

tween EXP and C-DUP and over a 5-fold difference with all other representations.

Synthetic 2 portrays the amount of compression possible in graphs with very large,

overlapping cliques. The BITMAP representations prevail here as well; however

this dataset also shows how the DEDUP-2 representation can be significantly more

compact than DEDUP-1, while maintaining its natural, more portable structure

compared to the BITMAP representations. As we can see, VMiner not only requires

expanding the graph first, but also generally finds a much worse representation than

DEDUP-1. This corroborates our hypothesis that working directly with the implicit

representation of the graph results in better compression.

We also measured actual memory footprints for the same datasets, which

largely track the relative performance shown here, with one major difference be-

ing that BITMAP representations perform a little worse because of the extra space

required for storing the bitmaps. We report memory footprints for larger datasets

in Section 3.4.2.

3.4.1.2 Graph Algorithms Performance

Figure 3.10 shows the results of running 3 different graph algorithms on the

different in-memory representations. We compared the performance of Degree calcu-

lation, Breadth First Search (BFS) starting from a single node, as well as PageRank

on the entire graph. Again, the results shown are normalized to the values for the

full EXP representation. Degree and PageRank were implemented and run on our

84

custom vertex-centric framework described in Section 2.3.1, while BFS was run in

a single threaded manner starting from a single random node in the graph, using

our Graph API to operate directly on top of each of the representations. Again,

the BFS results are the mean of runs on a specific set of 50 randomly selected real

nodes on all of the representations, while the PageRank are an average of 10 runs.

We also ran a comprehensive set of microbenchmarks comparing the perfor-

mance of the basic graph operations against the different representations. Those

results can be found in Section 3.4.3, and as can be seen there, BFS and PageR-

ank both follow the trends of the micro-benchmarks in terms of differences between

representations.

For IMDB and Synthetic 2, both of which yield very large expanded graphs,

we observed little to no overhead in real world performance compared to EXP when

actually running algorithms on top of these representations, especially when it comes

to the BITMAP and DEDUP-1 representations (we omit these graphs). DBLP and

Synthetic 1 datasets portray a large gap in performance compared to EXP; this

is because these datasets consist of a large number of small virtual nodes, thus

increasing the average number of virtual nodes that need to be iterated over for a

single calculation. This is also the reason why DEDUP-1 and BITMAP-2 typically

perform better; they feature a smaller number of virtual neighbors per real node than

representations like C-DUP and BITMAP-1, and sometimes DEDUP-2 as well.

85

Figure 3.10: Performance of Graph Algorithms on Each Representation for the
DBLP dataset (left) and for the Synthetic 1 dataset. The vertical red line represents
EXP.

Figure 3.11: Deduplication Performance Results (a) Deduplication time comparison
between algorithms. Random (RAND) vertex ordering was used where applicable,
(b) Small variations caused by node ordering in deduplication.

3.4.1.3 Comparing Deduplication Algorithms

Figure 3.11a shows the running times for the different deduplication algorithms

(on a log-scale). As expected, BITMAP-1 is the fastest of the algorithms, whereas

the DEDUP-1 and DEDUP-2 algorithms take significantly more time. We note

however that deduplication is a one-time cost, and the overhead of doing so may

86

be acceptable in many cases, especially if the extracted graph is serialized and

repeatedly analyzed over a period of time. Finally, Figure 3.11b shows how the

performance of the various algorithms varies depending on the processing order.

We did not observe any noticeable differences or patterns in this performance across

various datasets, and recommend using the random ordering for robustness.

3.4.2 Large Datasets

To reason about the practicality and scalability of GraphGen, we evaluated

its performance on a series of datasets that yielded larger and denser graphs (Table

3.3). Datasets Layered 1 and Layered 2 are synthetically generated multi-layer con-

densed graphs, while Single 1, Single 2 are standard single-layer condensed graphs

(see Section 3.5.2 for details on how these datasets were generated). At this scale,

only the C-DUP, BITMAP-2, and EXP are typically feasible options, since none of

the deduplication algorithms (targeting DEDUP-1 or DEDUP-2) run in a reasonable

time.

Comparing the memory consumption, we can see that we were not able to

expand the graph in 2 of the cases, since it consumed more memory than available (>

64GB); in the remaining cases, we see that EXP consumes more than 1 or 2 orders of

magnitude more memory. In one case, EXP was actually smaller than C-DUP; our

preprocessing phase (Section 3.2.2), which was not used for these experiments, would

typically expand the graph in such cases. Runtimes of the graph algorithms show

the patterns we expect, with EXP typically performing the best (if feasible), and

87

BITMAP somewhere in between EXP and C-DUP (in some cases, with an order of

magnitude improvement). Note that: we only show the base memory consumption

for C-DUP – the memory consumption can be significantly higher when executing

a graph algorithm because of on-the-fly deduplication that we need to perform. In

particular, C-DUP was not able to complete PageRank for Single 2, running out of

memory.

As these experiments show, datasets don’t necessarily have to be large in order

to hide some very dense graphs, which would normally be extremely expensive to

extract and analyze. This is shown in the TPCH dataset where we extracted a

graph of customers who have bought the same item. With GraphGen, we are able

to load them into memory and with a small deduplication cost, are able to achieve

comparable iteration performance that allows users to explore, and analyze them in

a fraction of the time, and using a fraction of the machine’s memory that would be

initially required.

3.4.3 Microbenchmarks

We conducted a complete set of micro-benchmarks to evaluate the performance

of various graph manipulation operations. Figure 3.12 and Figure 3.13 show the

results for some of the more interesting graph operations. The results shown are

normalized using the values for the full EXP representation, which typically is the

fastest and is used as the baseline. Since most of these operations take micro-seconds

to complete, to ensure validity in the results, the metrics shown are the result of

88

the mean of 3, 000 repetitions for each operation, on a specific set of the same 3000

randomly selected nodes for each dataset.

Iteration through each real node’s neighbors via the getNeighbors() method

is naturally more expensive on all other representations compared to the expanded

graph. This portrays the natural tradeoff of extraction latency and memory foot-

print versus performance that is offered by these representations. DEDUP-2 is

usually least performant here because of the extra layer of indirection that this rep-

resentation introduces. DEDUP-1 is typically more performant than the BITMAP

representations in datasets where there is a large number of small cliques.

In terms of the existsEdge() operation, we have included auxiliary indices

in both virtual and real vertices, which allow for rapid checks on whether a log-

ical edge exists between two real nodes. Latency in this operation is relative to

the total number of virtual nodes, the indexes of which need to be checked. The

removeVertex() operation is actually more efficient on the C-DUP, DEDUP-1 and

DEDUP-2 representations than EXP. In order for a vertex to be removed from

the graph, explicit removal of all of its edges is required. In representations like

DEDUP-1 and DEDUP-2, that employ virtual nodes, we need to remove a smaller

number of edges on average in the removal process. DEDUP-2 is most interesting

here because a real node is always connected to only 1 virtual node, therefore the

removal cost is constant.

89

Figure 3.12: Microbenchmarks for the real datasets (a) DBLP and (b) IMDB.

Figure 3.13: Microbenchmarks for synthetic datasets (a) Synthetic 1 and (b) Syn-
thetic 2.

3.4.4 Integration with Apache Giraph

The wide array of representations we propose are significantly more memory-

efficient than storing the entire graph (i.e., EXP representation). Further, the C-

DUP representation is the easiest and fastest to obtain from the relational database

(Table 3.1) and is usually the most memory-efficient. Past work on graph compres-

sion aims to compress the expanded graph into one with a smaller memory footprint.

These techniques require the initial storage of the entire expanded graph, which is

90

then processed and compressed, potentially requiring memory even larger than the

expanded graph itself. This would however defeat the purpose of our system since

its aim is to efficiently extract and operate on top of graphs in relational datasets

without requiring extraction and storage of the expanded graph. Our representa-

tions are quite generic and can be ported to other graph processing systems with

varying degrees of difficulty. In Table 3.4, we showcase the results of running De-

gree, PageRank and Connected Components on three representations on a prototype

port to Apache Giraph [25], for a diverse set of synthetic datasets created using our

generator (see Section 3.5.1). The datasets S1-2 were created by maintaining the

number of real and virtual nodes static, and incrementally increasing the average

size of each virtual node. For datasets N1-2 we maintained the average size of each

virtual node static, but increased the number of real and virtual nodes. We also

ran these experiments over the co-actor graph extracted from portion of the IMDB

graph. (Table 3.1).

The setup can be seen in Figure 3.14, which showcases the steps we took in

order to leverage our representations using Giraph. The porting process was very

straightforward–only a single BMPWritable datatype needed to be implemented in

order to efficiently store a BitSet (used in the BITMAP representations) into HDFS.

We implemented these three algorithms as efficiently as possible for each repre-

sentation. As seen in Table 3.4, our BITMAP representation almost always outper-

forms EXP and DEDUP-1, while requiring up to an order of magnitude less memory.

Specifically, when using BITMAP, Connected Components received a speedup due

to the fact that it is duplicate-insensitive and can be run directly over C-DUP.

91

Vertex compute()
implementation

Custom Java Program

GraphgenDL
Queries

GraphGen

RDBMS

Apache Giraph

HDFS

SQL Queries

Serialized
Graph

Figure 3.14: Porting GraphGen Representations to Apache Giraph.

Running PageRank and Degree requires a deduplicated graph, and further, correct

execution over DEDUP-1 and BITMAP requires twice the number of supersteps.

By implementing message aggregation at each virtual node, we were able to decrease

the number of messages that need to be passed per superstep to only 2 ∗ e, where

e the total number of edges. This resulted in a speedup over EXP for the larger

datasets. Even though DEDUP-1 was not able to achieve a significant compression

over EXP for these datasets, it still outperformed EXP on the larger datasets.

It’s interesting to observe the different performance trends seen in the IMDB

graph. Here we can see that DEDUP-1 ends up being the best alternative in terms

of both memory consumption and running times while BITMAP often ends up being

second or third in comparison. This skew in the results comes from the difference

between the number of nodes in these datasets. The BITMAP representation ends

92

up having nearly twice the number of nodes than EXP, and also shows a substantial

difference from DEDUP-1; this difference is due to the virtual nodes we need to store

for both DEDUP-1 and BITMAP. Also, the fact that we see memory consumption

for BITMAP being close to or surpassing EXP in many situations is due to the fact

that storing more nodes (and in the case of BITMAP, several bitmaps associated

with each node), incurs a larger overhead than storing more edges. Also, in com-

parison with the other datasets, the difference in the number of edges between the

representations is significantly smaller, which also plays into the fact that BITMAP

does not provide as big of an advantage as for the previous datasets. Nevertheless,

in situations where a lot of messages need to be sent and received (like when running

PageRank), the benefits of BITMAP already start showing up, with BITMAP being

on par with DEDUP-1, and better than EXP.

One of the fundamental issues that have to be dealt with regarding ports

like this is the fact that, some vertex centric algorithms assume direct access to a

node’s immediate neighbors and therefore assume that calculating the degree for

each node is trivial and fast. In the case of our representations, while calculating

the degree is trivial, there is no direct access to the immediate neighbors at each

node, and therefore the degree cannot be computed on the fly when the vertex-

centric framework is used. When the degree needs to be used continuously in a

vertex-centric program (e.g., PageRank), it needs to be pre-computed and stored

as a vertex property once before the computation begins, otherwise an entire extra

superstep would be needed every time only to compute the degree before continuing

with the next iteration of the program.

93

3.5 Experimental Setup

In this section we describe the experimental setup in terms of the way the

datasets that we used were generated. We also include details on the database

schema used for some of the real datasets which we experimented on, as well as pro-

vide examples of the query extraction SQL generated by our system which efficiently

extracted the C-DUP representation of these graphs.

3.5.1 Generation of Small Synthetic Datasets

We briefly describe our algorithm for generating small synthetic datasets for

the detailed experiments. We needed the ability to generate a series of synthetic

graphs so that we can better understand the differences between the representations

and algorithms on a wide range of possible datasets, with varying numbers of real

nodes and virtual nodes, and varying degree distributions and densities. However,

we could not use any of the existing random graph generators for this purpose; this

is because we need the graphs in a condensed representation. Instead, we built

a synthetic graph generator based on the Barabàsi–Albert model [55] (also called

the preferential attachment model). that takes as input: the number of real nodes

(n1), the number of virtual nodes (n2), as well as the mean m and the standard

deviation sd that define the normal distribution from which we draw the random

sizes (degrees) of the virtual nodes.

We sketch the algorithm here:

1. Add all real nodes into the graph at once and generate all virtual nodes and

94

their sizes by sampling the (m, sd) normal distribution.

2. Initial Splits: For every virtual node vn, split vn into s1, s2 with probability

relative to its size.

3. Initial Batch Random Assignment: Add 15% of the virtual nodes to the

graph, and attach real nodes to them at random.

4. Random or Preferential Attachment: For each vi with size x in the

remaining virtual nodes, if vi was derived from a split, then with probability

35%, randomly assign real nodes to vi. Otherwise, randomly select a real

node r in the graph that currently has a degree of d(r) ≥ x. Let s the

set of r’s neighbors. Assign probabilities to each neighbor si as such: Pi =

d(si)
2/

∑
d(si)

2. Until d(r) = x, remove a real node si from s with probability

counter-proportional to Pi. Real nodes with a high degree, and therefore high

Pi value, are more likely to remain in s and thus be attached to vi.

5. Cleanup: Merge the virtual nodes that derived from splitting in step 3, back

into their one original virtual node.

This algorithm can be used to generate a graph with similar degree distributions

as those generated by the commonly-used preferential attachment model [55], while

also preserving the local densities typically seen in real-world networks (which the

naive preferential attachment model does not preserve [56]).

95

3.5.2 Generation of Large Datasets

The Layered 1, Layered 2, Single 1, Single 2, datasets are synthetically gener-

ated multi-layer and single-layer datasets. Both Layered 1 and Layered 2 have the

same layer structure as the TPCH example, as shown in Figure 3.3. The way these

were generated was by generating database tables while adjusting the cardinality of

the join condition attributes for those tables.The tables were created by randomly

generating values in a range of integers (uniformly distributed). More information

about the generated datasets can be seen in Table 3.6. The numbers in column

joinSelectivities show the selectivity of each join that would be required for creating

the full graph. In Layered 1 for instance (since the join structure is the same as

TPCH), there are 3 joins that are required across 2 generated tables. Let those ta-

bles be A,B; the joins required here were A 1 B which had selectivity 0.05, B 1 B

with a selectivity of 0.1 and again B 1 A with selectivity 0.05. The definition of

selectivity that we use here for a particular join on an attribute a of a table A is

selectivity = distinct a/|A|, where distinct a the distinct number of unique values

of a.

3.5.3 Database Schemas and Generated SQL

We experimented on various real world datasets, some of which include DBLP,

IMDB, and TPCH. The DBLP database includes authors and their publications

to conferences, the IMDB database includes information about movies, the actors

that acted in them as well as directors, crew, etc. The TPCH database includes

96

information about Customers and Orders they have placed, as well as information

about said orders, suppliers, etc. Figure 3.15 shows subsets of the schemas for these

databases. It’s important to note that looking at these schemas, users can intuitively

come up with various types of graphs that could be extracted and analyzed from

these datasets; e.g.,looking at the TPCH Schema (Figure 3.15c), one can see that

LineItem has an attribute for the supplier (LineItem.suppkey), and therefore, since

there also exists a Supplier relation, a graph of suppliers could also be extracted.

For the purposes of our experiments, we have extracted the graphs described in

Section 3.4 (the IMDB and DBLP graphs in Section 3.4.1 and the TPCH graph in

Section 3.4.2).The extraction queries in our Datalog DSL and the resulting SQL

queries for these graphs can be seen in Figure 3.16

3.5.4 Discussion: Choosing a Representation

Our experimental evaluation illustrates the pros and cons of the different rep-

resentations, which leaves us with the question of which representation should we

choose given a particular setting?. Note that, in several of the experiments, we did

not use the preprocessing step (Step 6 in Section 3.2.2) to allow us to more properly

compare the different representations. In practice, however, our system always uses

the one-time preprocessing step, and we further suggest that the graph be expanded

if the memory increase is not substantial, e.g., less than 20% (the size of the ex-

panded graph can be calculated relatively quickly from the C-DUP representation).

If expanding the graph is not an option (i.e., it doesn’t fit in memory), then the

97

Author

id integer

name varchar(1024)

AuthorPub

aid integer

pid integer

Publication

pid integer

title varchar(2048)

cid varchar(2048)

cast_info
id integer

person_id varchar(2048)

movie_id varchar(2048)

person_role_id varchar(2048)

role_id varchar(2048)

name

id integer

person_id varchar(2048)

movie_id varchar(2048)

Customer

custkey numeric(9,0)

name varchar(25)

address varchar(40)

LineItem

orderkey numeric(12,0)

partkey numeric(10,0)

suppkey numeric(8,0)

Orders

orderkey numeric(12,0)

custkey numeric(9,0)

orderstatus character(1)

Part

partkey numeric(10,0)

name varchar(55)

mfgr character(25)

Supplier

s_suppkey numeric(8,0)

s_name varchar(55)

s_address character(25)

brand character(10)

movie_info

id integer

movie_id integer

info_type_id integer

title

id integer

title text

imdb_index varchar(12)

(a) DBLP Schema

(b) IMDB Schema
(c) TPCH Schema

Figure 3.15: Database Schemas: If not explicitly shown, foreign key constraints for
each attribute (if any) refer to the the primary key attribute in a different table
with the same name.

system needs to choose between C-DUP, BITMAP-2, DEDUP-1, DEDUP-2. These

representations are better in different settings, and thus the choice comes down to

the use-case. For graph algorithms that don’t touch a large portion of the graph,

C-DUP is the best option (e.g., breadth-first search). BITMAP-2 is preferred for

more complex graph algorithms that might make multiple passes on the graph (e.g.,

PageRank). On the other hand, DEDUP-1 and DEDUP-2 should be used if mul-

tiple graph algorithms need to be run over a period of time, to amortize the cost

of constructing those; in those cases, it might even be a good idea to store the

deduplicated graphs back into the database, with the caveat that changes to the

98

Nodes(ID, Name):-Author(ID, Name). →
select A.id as ID, A.name as Name from
Author;

Edges(ID1, ID2):- AuthorPub(ID1, PubID),
AuthorPub(ID2, PubID).

Query 1 (edges _s → virtual nodes)
select distinct A.aid as X1,A.pid as pubID
from AuthorPub A
Query 2 (edges virtual nodes → _t)
select distinct B.aid as X2,B.pid as pubID
from AuthorPub B;

Nodes(ID, name) :- Customer(ID, name).
 → select distinct A.id as ID,A.name as name from name A;

Edges(ID1, ID2) :- Orders(orderId1, ID1),Lineitem(orderId1,part),Orders(orderId2,
ID2),Lineitem(orderId2,part)

Query 1 (edges _s → virtual nodes, assign join to the database)
select distinct A.custkey as ID1,B.partkey as part from Orders A,Lineitem B where
A.orderkey=B.orderkey;

Query 2 (edges virtual nodes → _t, assign join to the database)
select distinct C.custkey as ID2,D.partkey as part from Orders C,Lineitem D where
C.orderkey=D.orderkey ;

Nodes(ID,name):- name(ID,name).
 → select distinct A.id as ID,A.name as name from
name A;

Edges(ID1,ID2):-
cast_info(_,ID1,movie_id),cast_info(_,ID2,movie_id).

Query 1 (edges _s → virtual nodes)
select distinct A.person_id as ID1,A.movie_id as
movie_id from cast_info A;

Query 2 (edges virtual nodes → _t)
select distinct B.person_id as ID2,B.movie_id as
movie_id from cast_info B;

(a) DBLP [Q1] (b) IMDB

(c) TPCH [Q3]

Figure 3.16: The SQL generated from the system for a few of the graphs we used
in our experiments.

underlying relations would require updating the graph. Our system allows making

these choices easily and on a per-algorithm basis.

3.6 Summary

In this chapter, we presented GraphGen, a system that enables users to ana-

lyze the implicit interconnection structures between entities in normalized relational

databases, without the need to extract the graph structure and load it into special-

ized graph engines. GraphGen can interoperate with a variety of graph analysis

libraries and supports a standard graph API, breaking down the barriers to employ-

ing graph analytics. However, these implicitly defined graphs can often be orders

99

of magnitude larger than the original relational datasets, and it is often infeasible

to extract or operate upon them. We presented a series of in-memory condensed

representations and deduplication algorithms to mitigate this problem, and showed

how we can efficiently run graph algorithms on such graphs while requiring much

smaller amounts of memory. The choice of which representation to use depends on

the specific application scenario, and can be made at a per dataset or per analy-

sis level. The deduplication algorithms that we have developed are of independent

interest, since they result in a compressed representation of the extracted graph.

100

D
a
ta

se
t

C
D
U
P

B
M

P
-D

E
D
U
P

E
X
P

D
eg

re
e

P
R

B
F

S
M

e
m

(G
B
)

D
eg

re
e

P
R

B
F

S
M

e
m

(G
B
)

D
ed

u
p

T
im

e
D

eg
re

e
P

R
B

F
S

M
e
m

(G
B
)

L
a
y
e
re

d
1

4
0

12
1
1

38
2

1
.4
2
1

30
10

25
28

4
2
.7
3
7

17
14

D
N

F
D

N
F

D
N

F
¿
6
4

L
a
y
e
re

d
2

1
2

39
7

12
9

1
.6
1
3

10
33

9
11

1
2
.2
5
8

55
3

11
83

85
1
9
.7
9
8

S
in
g
le

1
2

30
0.

01
1
.2
7
6

1.
8

25
0.

02
1
.4
9
3

10
.4

1.
6

14
.7

0.
01

1
.2

S
in
g
le

2
2
0
2

D
N

F
1.

3
9
.9
0
1

81
36

82
.1

2
1
3
.0
4
2

58
71

D
N

F
D

N
F

D
N

F
¿
6
5

T
P
C
H

3
.5

58
86

.0
2
3

0.
4

6
8.

6
.0
4
9

12
07

1.
47

0
8

16
7
.3
9
8

T
ab

le
3.

3:
C

om
p
ar

in
g

th
e

p
er

fo
rm

an
ce

(r
u
n
n
in

g
ti

m
es

in
se

co
n
d
s,

an
d

m
em

or
y

co
n
su

m
p
ti

on
in

G
B

)
of

C
-D

U
P

,
B

IT
M

A
P

,
an

d
E

X
P

on
la

rg
e

d
at

as
et

s;
th

e
ta

b
le

al
so

sh
ow

s
th

e
ti

m
e

re
q
u
ir

ed
fo

r
b
it

m
ap

d
e-

d
u
p
li
ca

ti
on

(D
N

F
→

di
d

n
ot

fi
n

is
h

in
re

as
on

ab
le

ti
m

e)
.

101

Data Repr Degree ConComp PageRank
Set time mem time mem time mem
S1 EXP 61 237 90 202 245 526

DEDUP1 54 227 81 171 311 484
BMP 50 134 82 72 256 156

S2 EXP 294 2,879 498 2,869 3,287 9,164
DEDUP1 335 2,582 460 2,573 3,049 8,126

BMP 311 186 335 163 812 293
N1 EXP 142 1,109 241 1,088 1,456 3,389

DEDUP1 141 926 483 901 1,317 2,874
BMP 131 219 149 150 469 377

N2 EXP 268 2,710 593 2,690 4,493 8,432
DEDUP1 312 2,216 495 2,194 3,726 6,892

BMP 257 479 280 347 824 691
IMDB EXP 78 586 193 749 861 1178

DEDUP1 85 553 194 594 802 764
BMP 146 952 291 1038 807 1185

Table 3.4: Experiments on Giraph showing the running time(s) / memory(MB) for
different representations and algorithms.

Dataset Repr All Nodes Virt Nodes Edges
S1 EXP 50,000 0 19,921,854
S1 DEDUP1 50,100 100 14,959,692
S1 BMP 50,100 100 96,066
S2 EXP 50,000 0 373,092,320
S2 DEDUP1 50,100 100 334,148,178
S2 BMP 50,100 100 463,692
N1 EXP 80,000 0 138,689,052
N1 DEDUP1 84,000 4000 114,007,180
N1 BMP 84,000 4000 1,585,536
N2 EXP 140,000 0 346,369,202
N2 DEDUP1 150,000 10,000 281,084,734
N2 BMP 150,000 10,000 3,972,972

IMDB EXP 503,483 0 33,066,098
IMDB BMP 925,846 422,363 6,824,494
IMDB DEDUP1 620,222 116,739 18,088,768

Table 3.5: Descriptions of the datasets used for experiments with Giraph.

102

Dataset Nodes Edges Join Selectivities
Layered 1 1,299,990 3,999,884 0.05 → 0.1 → 0.05
Layered 2 1,498,692 3,999,908 0.2 → 0.1 → 0.2
Single 1 1,245,532 2,000,000 0.25
Single 2 10,010,000 20,000,000 0.01

S1 50,100 96,066 0.002
S2 50,100 463,692 0.0004
N1 84,000 1,585,536 0.00025
N2 150,000 3,972,972 0.0001

Table 3.6: Selectivities of synthetically generated multi-layer and single layer
datasets. The nodes and edges sizes shown here are of the C-DUP representation of
these graphs.

103

Chapter 4: Analyzing Collections of Graphs in RDBMSs

In this chapter we showcase how GraphGen can enable users to express and

efficiently extract well-defined collections of graphs. We discuss the interesting sce-

narios where graph collections are useful, and focus on the multi-query optimization

problem that comes up when attempting to efficiently extract a graph collection from

an RDBMS. We study how GraphGenDL’s graph collection features in combina-

tion with a query rewriting technique can enable efficient extraction of collections

of graphs from RDBMSs.

4.1 Graph Collections

Leveraging datasets comprised of collections of graphs is an increasingly com-

mon trend, seen in various complex analyses. Some examples include: jointly ana-

lyzing different types of relationships in social networks [57, 58], analyzing evolving

networks over time [56, 59, 60], or conducting data mining and machine learning

tasks over graphs [61–63]. “Routing tables” [1] over a set of graphs have also been

used in graph databases to guide certain queries to the “most appropriate” graph.

The common thread in many of these works is the need for independent access to

distinct graphs within a set.

104

Another interesting scenario is what-if analysis– the process of changing a

value(s) in a dataset to see how the outcome is affected as a result. In the context

of graphs, this examines the different forms a graph could take if a specific change

(within a range) is made to the graph. Any simple change, e.g., a certain vertex

being removed, could result in a new graph with entirely different characteristics.

A set of such changes based on some parameter would therefore yield a collection

of graphs.

There has been much work on efficiently storing and analyzing a set of graph

snapshots [64–67]. Unfortunately, it is rarely the case that graphs in a collection

of interest are explicitly stored as such inside a database, especially if the original

data is structured differently in the form of a relational schema. Therefore, gaining

access to these graphs often requires a daunting ETL process, as well as a lot of

back-and-forth between the user and the database. Given a base graph G, there are

two ways to currently delineate distinct graphs within G: (a) load all database tables

that contain the data required to extract the graphs, and write scripts to manually

separate each tuple into its appropriate graph, or (b) conduct a set of queries to

the database, one for every graph in the collection. Option (a) re-invents the wheel,

by creating an in-memory query processing engine from scratch to connect tuples

together, sort and aggregate them into nodes and edges. Option (b) requires a large

number of queries to the database, expensive data transfers through the network

and much repeated work.

The example below illustrates the specification of a set of ego-graphs, one for

every author from a co-authorship graph. The co-author graph in the example below

105

(in Listing 4.1) is an example of what we have been calling a hidden graph since an

expensive join is required in order to compute it. Note that an ego-graph in this

case consists of the author and all of their direct neighbors.

CREATE GRAPHVIEW COLLECTION ego -graphs

WHERE X IN RANGE (Author(C))

Nodes(C,name):- Author(C,name), C = X.

Nodes(ID,name):- Authorpub(C,p), Authorpub(ID ,p),

Author(ID,name).

Edges(ID1 ,ID2):- AuthorPub(ID1 ,p),Authorpub(ID2 ,p).

Listing 4.1: Extracting a set of ego-graphs over a graph of co-authors. Note that
SQL can be used for any Nodes/Edges statement instead of our Datalog syntax.
Please see Section 2.2.2 for more on the syntax and language structures for graph
collections

In this chapter, we extended the GraphGen language (GraphGenDL) with

simple constructs for specifying a variety of graph collections like the aforementioned

example (see Section 2.2.2 for details on the syntax). Next, we discuss how these

constructs can unlock the ability to conduct what-if analysis over hidden graphs

without requiring manual ETL.

4.2 What-if Analysis

As previously mentioned what-if analysis, in the context of graphs, is the pro-

cess of changing a graph structure through additions and/or deletions of nodes/edges

in the graph. Each separate graph that is output after making a change (or set of

changes) in the original base graph, contributes to the collection of graphs. Our

language enables users to do this with MINUS or PLUS keywords.

The user can write: “W S, f(C,X) WHERE X IN RANGE (r)”, where W =

{MINUS,ADD}, and S ∈ {Nodes(), Edges()} is a nodes/edges schema. These con-

106

[Q1]

CREATE GRAPHVIEW COLLECTION co-author -peers

WHERE X IN RANGE (1989, 1991, 1)

Nodes(ID, name , C) :- Author(ID, name , C), year(C)=X OR

year(C)=X-1 OR year(C)=X+1.

Edges(ID1 , ID2) :- AuthorPub(ID1 ,pub), AuthorPub(ID2 ,

pub).

[Q2]

CREATE GRAPHVIEW COLLECTION customers -order -snapshots

WHERE orderDate IN RANGE (Lineitem(_,_,_,orderDate))

Nodes(ID,name) :- Customer(ID, name).

Nodes(ID,price) :- Part(ID,_,_,_,_,_,_,price).

Edges(ID1 ,ID2 ,C) :- Lineitem(oId ,ID2), Orders(oId ,ID1 ,C

), C=orderDate.

[Q3]

CREATE GRAPHVIEW COLLECTION ego -graph -two -hop

WHERE X IN RANGE (Author(C))

CoAuthors(A,B):- AuthorPub(A,p),Authorpub(B,p).

Nodes(C):- Author(C), C=X.

Nodes(ID):- CoAuthors(C,ID), Author(ID), C=X.

Nodes(ID):- CoAuthors(C,a), CoAuthors(a,ID), Author(ID)

, C=X.

Edges(ID1 ,ID2) :- CoAuthors(ID1 ,ID2);

Listing 4.2: Q1 queries a co-author graph for every year X, which contains only
authors that were born a within a year of X, Q2 specifies one bipartite graph
of customers, connected to parts that they bought, for each date that customers
ordered parts. Q3 Extracts the full set of two-hop ego-graphs over the co-authors
graph (direct neighbors, and their neighbors)

structs specify a set of changes based on a range of values and therefore output a

graph for each such change. The tagging predicate f associates the change with

certain nodes/edges.

The resulting graphs from MINUS queries represent the state of a base graph if

a set of nodes/edges were removed. The result of the query shown below contains

graphs xi that represent the state of a network of servers if node with ID = xi

107

were to be removed. Having access to these graphs independently would allow us to

analyze them individually and predict to what degree the system is susceptible to

network partition failures.

CREATE GRAPHVIEW COLLECTION network -partitions

Nodes(ID, p) :- Servers(ID,p).

Edges(ID1 ,ID2) :- MessageSent(ID1 ,ID2).

MINUS Nodes(C), C = X WHERE X IN RANGE(Servers(C))

Queries that include a PLUS statement represent a set of graphs that have a

set of additional nodes and/or edges. An extra set of Nodes or Edges statements

must be specified after a PLUS statement. We assume that each graph is valid after

the addition of the new nodes/edges. If we therefore want to study the collection

of graphs that result from adding new edges to the base graph, the source and

destination nodes for each edge are assumed to exist (either inherently in the base

graph or added explicitly by the PLUS operation). The example below returns a set

of friendship graphs, each with an extra set of friendships between users that went

to the same school.

CREATE GRAPHVIEW COLLECTION social -networking

Nodes(ID, p) :- Users(ID,p).

Edges(ID1 ,ID2) :- Friends(ID1 ,ID2).

PLUS Edges(_,_,schoolId) WHERE X IN RANGE(Users(_,_,

schoolId)).

Edges(ID1 ,ID2 , schoolId) :- Users(ID1 ,_,schoolId),

Users(ID2 ,_,schoolId), schoolId = X.

Having access to these graphs allows users to analyze which graph satisfies

their connectivity criteria best and choose to recommend friends to the users in a

personalized manner.

Please refer back to Chapter 2 where we have discussed details on the syntax

108

and the way users can interface with the extracted graph collection.

4.3 Extracting Graph Collections

As previously mentioned, the baseline approach for extracting a collection of

graphs is to execute a separate query for every value x in the range of values r, thus

generating a separate query for each graph.

The approach we take in GraphGen is to have the user specify one base

graph G which contains all graphs within collection, and use a single SQL query

to extract it. Given this approach, we tackle the following question: given G that

contains a collection of graphs of interest, how can we group the nodes/edges in G

into their appropriate, distinct graphs? We instead use a set of query rewrite rules

which add tags (one tag for every value in the range r) to the nodes and edges in

G, dividing them into their respective graphs in the collection specified. If e.g., a

vertex is tagged with tags {1, 2 ,3}, that signifies this particular vertex exists in

all three graphs 1,2,3 (each graph is identified by its tag value). Figure 4.1 shows

the interactions with the database that are required for this process. The Nodes

and Edges statements are first parsed (and translated to SQL if necessary). Next,

we create a logical query plan tree for each statement. The query rewriting process

changes the query plan tree accordingly, and outputs a new SQL query.

It’s important to note that our tagging approach assumes the underlying

database has some sort of array agg implementation, and supports one of the SQL

flavors that GraphGen can generate queries in.

109

4.4 Tagging Framework

We now formally describe the aforementioned rewrite rules. In terms of the

relational algebra symbols used below, π is projection, ρ is rename, ./θ is theta-join,

./ is full-outer join, and γ is aggregation.

Let SN = {N1, N2, ..., Nn} and SE = {E1, E2, ..., En} be the set of nodes and

edges statements respectively specified by the user. LetRnodes = N1 ./ N2 .// Nn,

and Redges = E1 ./ E2 .// En. Also, let f(c, x) be the tagging predicate, where

c references the value of a column C in the result of any tuple s ∈ SN ∪ SE that

contains column C, and x ∈ r, where r is the user specified value range. Let

RS, RS′ ∈ {Redges, Rnodes} and RS′ 6= RS. We denote the ID attribute(s) in each

case as i ∈ {ID, (ID1,ID2)}.

4.4.1 Rule 1 (Tagging)

Given a logical query plan tree of RS, let RC denote the relation that contains

the attribute C. This is the relation that we are going to initially add tags to, using

f . We first generate a temporary table T , that simply includes the list of values in

range r, as a single column T.X. We then traverse the logical query plan tree and

apply the transformation:

RC → (RC ./f(R.C,T.X) T)

We essentially join the relation that includes C with T , using f as the join

condition (this is a cross product filtered by predicate f). This sets a tag at every

joining tuple in RC . Afterwards, we recursively return up to the root of the tree

110

Vertex-Centric Framework Multigraph API Python API/ Graph
Serialization

Query Parser Query Optimizer/
Rewriter

Graph
Representation

Loader
SQL Translator

Additional
Statistics View

Definitions
Relational

Tables

RDBMS

RDBMS

Graph Exploration
Web App

NetworkX / Other Graph
Algorithms Libraries

Java
Program

Analysis Layer

GraphGen Core

GraphgenDL (Datalog)
Queries

Multigraph In-Memory
Representation

Temporary
Tags Table

Query

Extraction
Queries

Tagged
Nodes/Edges

Data

Figure 4.1: The query is parsed, rewritten by altering the logical query plan, and
then executed against the database, aiming to push as much of the computation
required for the extraction, to the database.

to find the appropriate projection node, and we apply the following rule: πi,p →

γi,array agg(X)(πi,p,T.X)

In other words, we include the tag in the projection, and aggregate all tags

into a single array associated with each element that was tagged. An example of

the result of Rnodes after applying this rule can be seen in Figure 4.2a, where each

node contains a list of tags that indicate which graphs in the collection that node

is a part of. In this particular example, we have a graph for each year, so because

author with ID=1 was born in 1991, it is part of graphs for years {1991, 1990}

111

ID year(dob)

1 1991

2 1990

3 1988

4 1991

1989

1990

1991

Tags

Authors

ID year(dob)

1 1991

2 1990

3 1988

4 1991

{1990,1991}

{1989,1990,1991}

{1989}

{1990,1991}

X
aid pid

1 b

2 b

2 c

3 c

Authorpublication

3 d

4 d

ID1 ID2

1 2

2 1

2 3

3 2

3 4

4 3

{1990,1991}

{1990,1991}

{1989}

{1989}

X

{1989}

{1989}

1 2

1990

1 2

1991

2 3

41989

(a) Rnodes

(b) Redges

(c)

Figure 4.2: Data sample for query Q1 in Listing 4.2 (a) The state of Rnodes after
Rule 1 has been applied. (b) The state of Redges after rewrite rule 2 has been applied.
(c) Visual representation of each graph in the collection.

4.4.2 Rule 2 (Tag Propagation)

After executing Rule 1, if only one of Rnodes, Redges is tagged, we need to

appropriately propagate that tags to the rest of the elements. As we discuss in

detail later, we combine tags in one of two ways κ ∈ {∪,∩} depending on whether

they are being propagated from nodes to edges, or vice versa. Tags are combined in

the end of the query in order to maintain correctness when propagating them from

one element to the next. Vertices need to exist in the union of graphs that all of

their incident edges exist in, where as edges should only exist in the intersection

of graphs their incident vertices exist (since an edge cannot exist without both its

112

source and destination nodes).

If Rnodes is tagged and Redges is not, for every edge ei = (ns, nd) ∈ Redges

we will have tags(ei) = tags(ns) ∩ tags(nd). The intuition behind this is that an

edge only exists in the graphs that both the source and destination nodes are a part

of. When both Rnodes and Redges are tagged, no tag propagation is necessary. An

example of the result of Redges after applying Rule 2 can be seen in Figure 4.2b.

More generally, we rewrite the query as follows:

πi,p(RS)→ πi,p,(F1.X κ F2.X)(ρF1(RS′) ./ID1=ID RS ./ID=ID2 ρF2(RS′)) (4.1)

Let Rtagged represent the tagged relation. Using Equation 4.1, if Rtagged =

Rnodes, we rewrite:
πID1,ID2,p →

Redges

πID1,ID2,p,(N1.X∩N2.X)

./ID=ID2

ρN2(Rtagged)./ID=ID1

ρN1(Rtagged)Redges

The rewrite works exactly the same way if Rtagged = Redges except κ = ∪ in

Equation 4.1. Intuitively, this is because nodes will exist in all graphs that their

incident edges are a part of.

Tagging MINUS Queries: In the case of MINUS queries, the above rewriting rules

would work the exact same way. A key difference here however is the meaning of

these tags changes– the tags would now mean that the element exists in all graphs

except the graphs with ids listed in the tag list.

Tagging PLUS Queries: On the other hand, PLUS queries work the same way

as regular tagging queries (e.g.,[Q1, Q2, Q3]). Due to the assumption that all

113

required vertices are already part of the base graph, adding new sets of edges for

every value in the range simply tags them with the id they exist in. All nodes/edges

in the base graph definition are assumed to exist in all graphs, and therefore are

logically tagged with all of the versions beforehand. The final edges relation will be:

Redges = Rtagged ∪Redges. Note that PLUS queries are always going to add new edges

since adding vertices (without any edges) is not interesting.

Query # Tags Single Query Query-at-a-time MQO
Q1 101 434 3,967 864
Q1’ 101 523 9,444 6,526
Q2 126 2,898 134,832 13,825
Q3 2,577 1,171 345,103 256,445

Table 4.1: Query times are in ms. MQO refers to Multi-Query Optimization as
it aims to mimic the approaches in past work which look for common sub-queries
across queries, materialize those sub-queries and re-use them.

4.5 Preliminary Experiments

We ran four different types of graph collection queries over small subsets of the

TPCH [32] and DBLP [31] datasets on a commodity laptop. For these preliminary

experiments, the query rewrite rules were applied manually to each of those queries.

We compare our approach (which generates a single query for the nodes and a

single query for the edges), with the baseline query-at-a-time approach of posing a

query for every distinct value in the range specified in the graph extraction task. We

also attempted to simulate the multi-query optimization (MQO) approach proposed

in recent work [68] which looks for common sub-expressions shared across a set of

queries, and materializes and re-use them. We did this by manually materializing

114

portions of the query that are not parameterized, and referencing them in every gen-

erated query. In particular, the query-at-a-time approach the query in Listing 4.1,

would have to compute the Edges table for every single graph. However since that

join does not contain any parameterized filter conditions, we materialized it once

and re-used it at every generated query.

In Table 4.1, Q1’ is the MINUS version of Q1 and extracts graphs xi, each of

which contains the full co-author graph, except all authors that were born within

a year of xi. Q2 queries snapshots over a bipartite graph of customers and parts

they have ordered, and Q3 queries two-hop ego-graphs over the co-author graph.

All queries in the experiments are shown in Listing 4.2. We found that both the

number and size of the graphs in the collection affect performance outcomes. Our

technique is an order of magnitude faster in the MINUS query (Q1’) because it ended

up querying substantially less data. The graphs in set Q1’ are significantly larger

than those in Q1. Tagging is over 100x faster for Q3, which queries 2577 graphs.

While MQO can provide benefits, it only does so when there is a portion of the

query that can be shared. Even for those queries however (e.g., Q3), the benefits of

MQO start becoming irrelevant when the number of graphs is large.

4.6 Summary

In this chapter we presented our preliminary work on enabling analysis of

collections of graphs over RDBMSs. We proposed novel declarative language struc-

tures to GraphGenDL that allow users to specify a set of independently accessible

115

graphs. The intuition behind these language structures is that they enable users

to specify a single base graph in normal GraphGenDL fashion, and then specify

a parameterization which maps each element of that base graph into their appro-

priate, distinct, graph within a well-defined collection, based on a range of values

and a mapping predicate function the query is parameterized over. We proposed

a set of simple query rewriting rules which tag elements of the base graph appro-

priately, distributing them to the graph(s) they should be a part of. Our tagging

query rewrite rules which output a single SQL query show promise as they signif-

icantly outperformed naively executing a separate query for each distinct graph,

and also outperformed past multi-query optimization techniques by over an order

of magnitude in a preliminary evaluation.

116

Chapter 5: Leveraging Graphs for Aggregate Query Processing

In this chapter we discuss how we can use graph representations of RDBMS

data in order to execute multi-way join-aggregation queries, in a memory-efficient

fashion. This work was inspired from the observation that the condensed repre-

sentations presented in Chapter 3, essentially represent the join result in a latent

representation, which can be used to enumerate the join result by simply traversing

it. Another observation we made (as mentioned in Section 1.3.2) was that, while

large-output joins result in an explosion in memory requirements, the results of

aggregate queries can be orders of magnitude smaller than the join result. Many

mission-critical, decision-support queries in standard BI analytics fit this descrip-

tion. We therefore asked the question: Could we devise a general algorithm that

is able to compute aggregations over arbitrary acyclic joins, where the result is

grouped by an arbitrary number of attributes from any combination of the relations

involved in the join? This would enable the execution of join-aggregation queries by

essentially only using memory bounded by the input RDBMS relations.

117

5.1 Overview

This section provides the reader with a more detailed overview of the problem

we tackle, our techniques, and the contributions in this chapter.

5.1.1 Re-thinking Aggregate Query Processing

Traditionally, aggregate processing over conjunctive queries in RDBMSs has

been done through the use of simple binary operators for executing joins, followed

by a (typically separate) unary aggregation operator. The simplicity of these opera-

tors has proven invaluable throughout the development of modern RDBMSs. Each

simple operator enables the optimization of a very specific operation with a concise

set of parameters, inputs and outputs. This enabled simpler query optimization,

since it is easier to create good cost models for simple operators than for complex

ones.

Simplicity however often comes at the cost of performance. It is known that

binary operators can lead to sub-optimal performance regardless of the query plan

used [69,70]. The main drawback with binary join operators in RDBMSs specifically,

is the generation of intermediate join results, potentially with materialization at the

granularity of every join. Each individual join within a query plan may output an

increasingly larger number of tuples, making the latter intermediate results unwieldy,

especially as they start becoming larger than memory. Pipelining operators help in

some cases, but enumeration of the full intermediate result set though joining every

single tuple is necessary and cannot be easily avoided (e.g., bloom filters can help in

118

some cases to filter out results, but break the classical model as well). These issues

become significantly more pronounced in analytics settings where the joins are often

done on non-key attributes to derive higher-level insights (see examples below).

This has led to an increasing interest in the idea of multi-way database op-

erators. Eddies was one example of such an operator [69], where the benefits of

combining multiple operators into one came from the ability to choose different ex-

ecution paths for different tuples. More recently, breakthroughs in worst-case opti-

mal join algorithms [71] have shown that one can put tight bounds on the maximum

possible number of tuples generated by a query, and then develop algorithms whose

runtime guarantees match those worst-case bounds. These breakthroughs have led

to a variety of different query operators that take a multi-way join approach over

the traditional binary operator. The benefits seen by many of these proposed op-

erators typically come from the fact that the operator takes multiple relations that

are part of a large conjunctive query into account simultaneously. This allows for

avoiding the materialization of large intermediate results [72], enables pruning out

various portions of the computation based on complex conditions [73], or allows for

exploiting more parallelism and fast set intersections toward the join result [74].

In this chapter, we focus on another very common combination of operators,

namely a series of joins followed by a group-by aggregate. Our approach focuses

on any query in which the join result is large, but the final post-aggregation result

is small. To re-iterate Example 1.3.3 at a high level, we can look at the TPCH

supply-chain dataset of items, orders, customers and suppliers. If we wanted to fig-

ure out the sum of (order,customer,item) records we are storing for each supplier

119

per zipcode in which that supplier satisfied orders, the result size post-aggregation

would be bounded by the number of zipcodes times the number of unique suppli-

ers. The size of the join result before we apply aggregation however can be very

large. Another example is computing the aggregation of a set of paths between all

pairs of nodes in a graph since the number of paths could be huge depending on

the characteristics of the graph, whereas there is a limited number of node pairs.

Example 1.3.3 and Example 1.3.4 showcase these cases in more detail.

At a high level, our operator works by loading in a compact representation

of the underlying data in the form of a graph that we call a “data graph”. This

graph can then be traversed to yield the final aggregation result thus avoiding the

materialization of intermediate join results.

5.1.2 The Join-Agg Operator

In this section we formally describe the general framework for efficiently an-

swering queries like the one shown in Listing 5.1. Our framework views the join

between a series of relations in the form of a graph structure of interconnected tu-

ples that we call the data graph. For the sake of simplicity, we use the COUNT(*)

aggregation function in our explanations and examples. We provide a discussion on

how more standard aggregation functions can be supported using the same frame-

work in Section 5.3.4.

Let Q(R,G) be an aggregate query over a join between a set of relations R,

where G = {g1, g2, ..., gn} is the set of group-by attributes of this query. For now,

120

Join-Agg Algorithm

Data Graph
Representation

R0 R1 R2 ... Rn

Aggregated group tuples

Query
Hypergraph

Query
Decomposition

Tree

R
0 ... R

n

Query
Decomposition

Tree

Q(R,G)
Query

Data Graph

Query
Hypergraph

R
0 ... R

n

Query
Decomposition

Tree

Q(R,G)
Query

Data Graph

Join-Agg traversal

Output
group tuples

Query
Hypergraph

Join-Agg
traversal

Output
group tuples

Figure 5.1: The inner workings of the Join-Agg operator.

SELECT A.a,B.b,C.c, COUNT (*)

FROM R1 A, R2 J ,R3 B,R4 C
WHERE A.j1=J.j1 AND J.j2=B.j2 AND J.j3=C.j3
GROUP BY A.a,B.b,C.c;

Listing 5.1: Generic group-by query with three group-by attributes.

assume that we only need to count the number of tuples in each group (COUNT(*)).

We assume without loss of generality that a group by attribute gi ∈ G corresponds

to a single attribute in relation Ri, and that none of the gi participate in a join

condition. We also assume that all joins are natural joins. All of these can be

relaxed easily through standard tuple-level transformations (e.g., if a group-by at-

tribute participates in a join, we can (implicitly) create a copy of that column). As

121

mentioned earlier, we restrict our attention to acyclic joins in this dissertation.

We represent the overall join-aggregation query as a hyper graph H(X∪G,EH)

where X is the set of all attributes that take part in the join conditions between

the relations in R and EH represents hyperedges, containing one hyperedge eRi
per

relation Ri, i.e., eRi
= Ri ∩ (X ∪G). Note that the only attributes that are relevant

here are either join condition attributes, or group attributes– the result is a set of

tuples that represent groups (grouped by G). Let Ri.x denote attribute (or set of

attributes) x from relation Ri.

For every eRi
∈ EH , we partition the attributes of eRi

into two disjoint groups

(xl, xr). We describe the specifics in Section 5.2.2, but intuitively this is done in

order to reduce the size of the data graph that we load into memory, while also

capturing enough information to execute the query.

We propose a new database operator called Join-Agg that receives a set of

input relations R and outputs a single set of result tuples, i.e., after the appropriate

grouping and aggregation, as the output. The decision of whether to use the operator

is made by the query optimizer in a cost-based manner; in essence, if at least one of

the joins in the query is a non-key join or a join that may result in a large output

compared to the input relations, then this new opeartor should be considered. When

the operator is chosen, instead of conducting a series of binary joins as traditional

RDBMSs do, we would instead go through each relation, and load each one into

an in-memory data graph which is then traversed to output the resulting grouped

tuples and their aggregate value.

Prior to the instantiation phase, the operator creates a query hypergraph

122

H that captures the joins in Q(R,G). This query hypergraph is then turned into a

query decomposition tree, which is traversed in order to transform each individ-

ual relation into a set of edges in the data graph. Based on the final decomposition,

during the execution phase, the operator constructs the edges that correspond to

each relation as the data graph. Finally, this in-memory data graph structure is

used (and potentially re-used) to directly compute and output the grouped tuples.

The data graph paradigm proposed here is reminiscent of factorized repre-

sentation of conjunctive query results, by Olteanu et al. [75], and the idea of a

tuple hypergraph that can cover all tuples in a query result [76]. All of these pro-

vide compact representations of the underlying join result, especially in presence

of large-output joins, with minor differences because of the specific goals behind

their genesis. Our key contribution here is a novel way to use such a structure for

computing group by aggregates efficiently over complex acyclic joins, by using an

alternative approach to computing aggregates over a “factorized” representation.

More information regarding the juxtaposition between our system with the related

work can be found in Chapter 6.

5.1.3 Summary of Contributions

Our main contributions presented in this chapter are twofold; first, we pro-

pose a new multi-way database operator called Join-Agg, which enables the ef-

ficient computation of aggregation queries, without materializing any intermediate

join results, by computing the join and aggregation simultaneously. We describe

123

a novel general framework for executing aggregation over conjunctive queries of

arbitrary numbers of relations, and numbers of group by attributes that may be

derived from any participating relation, by leveraging a graph representation of the

underlying data. We restrict our formal development to acyclic queries – although

our algorithms can be adapted to handle cyclic queries, systematically combining

our data-level optimizations with the recent work on cyclic joins raises complex is-

sues that are beyond the scope of this dissertation. We implement a prototype of

the Join-Agg operator outside of the RDBMS and experimentally showcase the

benefits of our operator over synthetic and real datasets.

Second, we provide a comprehensive complexity analysis of common example

queries that benefit from our Join-Agg operator in comparison to executing them

using the classical RDBMS model, or other less general techniques such as pre-

aggregation [35] which only looks at reducing intermediate data size at the level

of each individual join instead of looking at the join as a whole. We show that

in terms of computational complexity Join-Agg is comparable or asymptotically

better than those techniques, particularly in the general case of complex acyclic

branching join queries. We also show that Join-Agg is overall better than those

techniques in terms of memory complexity.

Section 5.2 describes the construction of the data graph representation, while

Section 5.3 goes in-depth regarding the details of our algorithm which traverses that

representation and finally yields the query results. Section 5.4 provides an in-depth

complexity analysis of our technique, we expand on the details of our implementation

in Section 5.5 and provide an extensive experimental evaluation in Section 5.6.

124

5.2 Data Graph Representation and Construction

In this section, we begin with describing how a query decomposition tree is

constructed and how it is used to split the attributes of each relation into two groups

that form the edges of the data graph. We then describe the basic representation

of a data graph and explain how it is constructed by loading in relations from the

underlying database.

5.2.1 Query Decomposition

A query decomposition of a hypergraph H is defined as a tree where each

node corresponds to a hyperedge eH ∈ H. We create a pure query decomposition of

H where each node in the decomposition directly corresponds to a single relation.

In this work, we focus on acyclic queries, i.e., queries for which there exists a tree

decomposition [77]; in future work, we are planning to extend our approach to

handle cyclic queries by combining it with recently proposed techniques for optimal

worst-case join algorithms.

We construct the query decomposition tree using the standard elimination

algorithm [78]. First, we note that, all of the relations that contain at least one

attribute not present in any other relation must contain a group attribute; we’ll call

these group relations. We start with one of those as the root of the tree, and tra-

verse the hypergraph in a breadth-first manner to construct a query decomposition

tree. An example of such a decomposition can be seen in Figure 5.3d. Given H, to

build the query decomposition tree, we can start from any group relation; here we

125

picked A. The hypergraph is then traversed in a breadth-first manner starting from

A using a standard queue. We start by creating a root node in the decomposition

tree for A – let that be the current node. Then, for every neighbor relation of A, if

it has not been visited, we add it to the queue. We then pop the queue and add the

popped relation as a child to the current node in the decomposition tree. Thereafter

we continue with neighbor B which becomes the current node, it is added as a child

node to A and so on until the queue is empty.

 j g1

A B

 jc

C

D

g2 g3

E

 je

g4

F

A(g1,j)

B(j,jc,jd)

C(jc,g2) D(jd,je)

E(g3,je) F(g4,je)

 j g1

A

B

 jc

C

D

g2

g3

E

 je

g4
F

 jd

R1(g1, j0), R2(j0, g2, j1), R3(j1, g3)

 j0 g1
R1 R2

g2 j1

g3
R3

R1(g1,j0)

R2(j0,j1,g2)

R3(j1,g3)

g1 j0 j0,j1

g2

j1
g3

Figure 5.2: Derivation of a Query Decomposition tree from a Query Hypergraph.

5.2.2 Splitting Attributes

As previously mentioned, the attributes of each relation are partitioned into a

pair of attribute sets (xl, xr). This is done in order to properly view every relation as

a set of edges for the data graph–an edge has two entities it connects, here it connects

xl and xr. To do this, we simply traverse the query decomposition tree starting from

the root. As we discuss in further detail later on, this splitting mechanism is a data

reduction mechanism (similar to pre-aggregation [35]) for reducing the input data as

much as possible before the query is executed.

To construct these pairs, we traverse the decomposition tree in order to par-

126

A(g1,j)

B(j,jc,jd)

C(jc,g2) D(jd,je)

E(g3,je) F(g4,je)

Figure 5.3: A data graph created by a set of joining relations (after projections
have been applied). Relation B has multiple attributes as part of xr, which merge
into the multi-node (jc1,jd1). In the relations involved in the join, we have four
different group attributes gi, one of which is a source attribute (g1). Node 1a is
a source node, 2a, 2b, 3a, 3b, 4a, 4b are all group nodes, and (jc1,jd1) and
je1 are both branching nodes. The rest are all intermediate nodes.

127

tition the set of attributes for each relation into a (xl, xr) pair. In a slight abuse of

notation, let Ri also represent the set of attributes relevant to the query from relation

Ri. We start the traversal at the root; let that be RS(g0, a1, ..., an), for which we set

RS.xl = {g0}. Afterwards, we set RS.xr =
⋂
CS where CS = RS.children() ∪ {RS}

is the set of attributes in the children relations of RS in the decomposition tree, plus

(union) RS itself. Next, for every relation Ri ∈ RS.children(), if Ri is not a group

relation, we set Ri.xl = parent(Ri).xr, and again Ri.xr =
⋂
Ci. If Ri is a group

relation, we set Ri.xl = Ri \ {gi} and Ri.xr = {gi}. As we will later describe, nodes

created from group attributes need to be sinks in the DAG structure that we will be

building. This same process is recursively executed on all relations in Ri.children().

Below we provide a few standard examples of how the aforementioned algo-

rithm is used to split the attribute sets.

Example 5.2.1. Looking at the decomposition tree in Figure 5.3c, a simple and

common case is that of D. Because D’s parent relation is B, we have xl = B ∩D =

{jd}. Also, the children of D are E,F, therefore xr = D∩E ∩F = {je}. In the data

graph constructed later, a single node will be created for each value in πjc(D) and

for each πje(D).

Example 5.2.2. Again regarding the tree in Figure 5.3c, for relation B, its xl value

will be B ∩ A = {j}, and xr = B ∩ C ∩ D = {jc, jd}. This multi-valued xr value

means that a multi-node will be created for each value in πjc,jd(D).

Example 5.2.3. Looking at the decomposition tree in Figure 5.2, for relation R2,

since it’s a group relation (one that contains at least one group attribute), we always

128

split its attributes by setting the group attribute as xr = {g2} ,and xl = R2\{g2} =

{j0, j1}.

5.2.3 Data Graph Representation

Next, we formally define the data graph representation for a join-aggregate

query. For a given query Q, a data graph GQ(V,E) captures the underlying data in

the relations and the interconnections between those data elements. Let n ∈ V , and

e = (nl, nr) ∈ E the nodes and (directed) edges respectively that make up graph

GQ.

Relation & Node Types: At a high level, we partition the relations R in

four (overlapping) groups: RS, RB, RJ , RG, which dictates how the corresponding

nodes are handled during execution of the Join-Agg algorith:

1. RG = {G0, G1, ...Gn} denotes the group relations in R, each containing a group

by attribute gi.

2. RS is the source relation RS ∈ RG, which we choose to start the computation

from. The algorithm we develop is based on a traversal of the data graph. As

we describe in Section 5.3, nodes originating from the source relation are the

anchors of the traversal and therefore do not get visited multiple times.

As a result, no additional data needs to be maintained for them.

3. RB = {B0, B1, ..., Bn} a set of branching relations in R. A relation is marked as

a branching relation if its corresponding node in the query decomposition tree:

(a) has more than one child and therefore branches out the join execution, or

129

(b) is not a leaf node or the root node, and is also a group relation. In other

words, either the tuples in these relations need to sequentially be joined with

multiple tables, one at a time in the context of the overall conjunctive query,

or there is a grouping attribute in the relation that needs to be separated

out so that we can exploit caching effects (as discussed later). An example of

a type (a) branching relation is D in Figure 5.3d, and a type (b) would be

relation R2 in Figure 5.2.

4. RJ = {J0, J1, ..., Jn} a set of intermediate relations in R. These are relations

that only have exactly one child and one parent in the query decomposition

tree, and are not group relations.

Consequently, there are four types of nodes in the data graph, each originating

from its adjacent relation type: source nodes (ns), group nodes (ng), intermediate

nodes (nj), and branching nodes (nb). Each of the aforementioned relations all

portray a pair of attributes (xl, xr) that are relevant to the query. As discussed in

Section 5.2.5, source nodes are always loaded from the xl attribute in the source

relation, while group and branching nodes from the xr attribute in their respective

relations. Group nodes are always sinks in the data graph, while we made the

choice to always set branching nodes on the right hand side of the split for the sake

of simplicity. All remaining nodes in the data graph are intermediate nodes.

Note that a relation can have multiple types (e.g., RS is both a source relation

and a group relation). Similarly, based on the specific query, a branching relation

can also be a group relation if it satisfies the criteria for both relation types simul-

130

taneously. This would occur for instance if a relation includes a group attribute gi,

but also joins with more than two relations in the query described by a hypergraph

H. The nodes derived from relations with multiple types naturally also inherit the

same set of node types.

Attribute splitting (Section 5.2.2) enables us to conduct a pre-aggragation step

in which we group tuples with the same values (after projection) into a single edge

with a multiplicity value. For example, in regards to relation C in Figure 5.3,

splitting attributes this way not only allows us to pre-aggregate (2a, jc1), but to

also only load in a single node for jc1.

5.2.4 Mapping Relations to a Data-Graph

We now formally describe how we map rows in the underlying relations to

nodes and edges in the data graph. Let π∗x1,x2,..,xn(Ri) denote the set of values

of attributes x1, x2, .., xn in relation Ri, where π∗ indicates bag semantics for the

projection. Also, let πxj(Ri) denote the set of unique values of the attribute xj in

relation Ri, and let Xi denote the set of attributes in relation Ri that take part in a

join condition. We create the nodes in the data graph in two simple steps; for every

relation Ri ∈ R:

1. We create a hyperedge for every (xl, xr) tuple in relation Ri, as is seen in

Figure 5.3 (hyperedges with only 2 nodes are shown as regular directed edges).

Every hyperedge describes a set of values from attribute sets xl∪xr. A unique

value in attribute set xi corresponds to a single node in such a hyperedge.

131

2. For every set of nodes that appear in the same xl or xr, create a multi-node that

includes all values in the intersection (also shown in Figure 5.3 for relation B).

The result is a set of regular directed edges between nodes and/or multi-nodes.

For all purposes moving forward, multi-nodes function exactly the same way

as regular nodes in the data graph. In general, the node created from an

attribute set xi is simply ni, and its set of values are denoted as vi.

We now define the edges in GQ. Let me denote the multiplicity of an edge

e ∈ E. The multiplicity of an edge is a numeric value associated with each edge and

is defined as the number of times the tuple that edge corresponds to exists in the

relation. GQ contains a directed edge (nl, nr) ∈ E iff one of the following applies:

1. There exists a tuple (vl, vr) ∈ πxl,xr(Ri). If A = {(a, b) ∈ π∗xl,xr(Ri) : a =

vl ∧ b = vr}, the set of tuples in Ri with values (vl, vr) in Ri, the multiplicity

m(nl,nr) = |A|.

2. A tuple in Ri joins with one in Rj on attribute xjoin = Xi ∩ Xj, such that

vjoin = vr = vl. In this case, the multiplicity of the edge is always m(nl,nr) = 1.

An example of such an edge is (nA.j1, nB.j1) in Figure 5.3a.

For the sake of simplicity, and without loss of generality we can assume that

any xi, corresponds to a single attribute, i.e., relations only join with one another

through single attribute join conditions. In practice, xi can be a set of attributes,

in which case vi (the value for node ni) would constitute of a bag of values and be

described as a multi-node in the data graph. Formally, in that case we simply have

that (nl, nr) ∈ E : xl ∩ xr 6= ∅ where xl = Xi and xr = Xj and vl ∩ vr 6= ∅.

132

5.2.5 Join-Agg Stage 1: Loading Data Graph

To summarize, the input to the overall load process is the hypergraph H. We

initially need to partition all sets of relation attributes to (xl, xr) pairs, by first

creating a query decomposition of H, and then using that decomposition to do the

partitioning.

The data graph is then loaded into memory by simply scanning the input

relations, sorting them, and creating nodes as described above. If there are any

attributes in the input relations that don’t participate in the query, we push down

appropriate projections (without duplicate elimination) to the underlying database

to minimize the amount of data transferred over the network.

5.3 Traversing The Data Graph

In this section, we describe our algorithm that computes the aggregated groups

of such a query Q, by traversing a data graph GQ. For the sake of simplicity we will

focus on the query that counts the number of tuples in each group and discuss how

it is generalized in Section 5.3.4.

The high level idea behind Join-Agg is it to traverse the data graph, which

represents the underlying data being joined, starting for one source node at a time

and maintain certain partial aggregate values (in this case, counts) at all reachable

group nodes in each iteration. We can later combine these values in order to obtain

the final aggregate value of each group, instead of materializing the join at any

point. The way this happens at a high level is by propagating the counts along

133

the data graph, starting from each unique source node, to the group nodes, while

keeping track of certain path information (which we refer to as path-ids) along the

way. These path-ids allow us to figure out which counts are derived from which

paths in the data-graph and enable us to properly combine them to compute the

correct count for each group.

5.3.1 Definitions & Axioms

Before we formally describe our general algorithm for executing these queries

over a data graph G, we enumerate a few core definitions and axioms for concepts

that we be regularly reference in the algorithm description. The execution algorithm

we propose revolves around traversing the data graph and maintaining certain in-

formation along the way in order to directly output the groups in the result.

Definition 5.3.1. A rooted tree (also formally known in the context of directed

graphs as an arborescence), is defined as a directed subgraph that consists of a tree,

with a single root node, therefore containing exactly one path between that root

node and every leaf node.

Definition 5.3.2. Let C(n1, n2) denote a count between nodes n1, n2. We concep-

tualize the traversal of the data graph as equivalent to conducting joins between

the tuple that each element of the data graph represents, thus generating new tu-

ples which we want to avoid materializing. A count represents the number of tuples

generated along all paths between node n1 to n2. Any such path cannot include a

branching node (n1, n2 may themselves be branching nodes, but there cannot exist

134

a branching node in any path between them). More formally, using Axiom 5.3.1 we

have C(n1, n2) =
∑k

i=0(|n1 → Nji → n2|), where Nji the set of intermediate nodes

in one of the k unique paths between n1 and n2.

Definition 5.3.3. Let p = [vb0 , vb1 , .., vbn] denote a path-id. A path-id is a list of

branching nodes found in a unique path from a source node s to a group node gi. We

maintain path-ids in order to logically re-construct all possible rooted trees which

have s as their root, and include all group nodes ng1 , ng2 , .., ngi in their leaves in

order to compute the number of tuples within each group (vs, vg1 , vg2 , .., vgi). Path-

ids are unique identifiers for unique paths in the data graph, and are always paired

with a path-id count described below.

Definition 5.3.4. A path-id count denoted by Cpi , is defined as the count be-

tween two branching nodes nbi , nbj and is equal to C(nbi , nbj), where path-id pi =

[vb0 , ...vbi , vbj]. The path-id maintains information about the rooted trees this cer-

tain path is part of. The path-id count itself however represents the count between

the last two branching nodes in the path-id (even though the path-id might include

more than two branching nodes). In the case where |pi| = 1 then Cpi = C(s, nbj)

where s a source node. The intuition here, thinking about this from a query pro-

cessing perspective, is that we need to keep track of how many tuples were generated

at the point where a relation joins with more than one other relation. Once we join

with one of the relations, we need to go back and join with the rest one at a time. In

order to do that properly (without actually materializing the join result) we need to

know how many tuples were generated at that time in the query before it branches

135

off to multiple joins.

Definition 5.3.5. A group-node count denoted ci = C(nb, ng) is the count between

the last branching node nb of a path, and a group node ng. Intuitively, a group-

node count c represents the number of tuples generated by joining the tuples in the

underlying relation that contain value vb, with all intermediate tuples, and then also

joining them with all tuples that contain vg.

Definition 5.3.6. A c-pair denoted by P = (p, c), is a pair consisting of a path-id

and a group-node count. These pairs are recorded at every group node during the

traversal of the data graph described in the algorithm in Section 5.3.2.

Axiom 5.3.1. Let |n1 → Nj → n2|, denote the number of tuples generated when

there exists a path from n1 to n2 which includes a set of in-between (either branching

or intermediate) nodes Nj = {nj1 , nj2 , ..., njn}. By definition of the data graph

(Section 5.2.3), there must exist tuples t1 = (v1, vj1), t2 = (vj1 , vj2), ..., tn = (vjn , v2),

(where a tuple ti appears m(nl,nr) times in its corresponding relation), such that

{(n1, nj1), (nj1 , nj2), .., (njn , n2)} ∈ E. The number of tuples generated is |t1 1

t2... 1 tn| = m(n1,nj1
) ∗m(nj1

,nj2
) ∗ .. ∗m(njn ,n2) = |n1 → Nj → n2|, and is derived by

taking the product of all edge multiplicities along the path.

5.3.2 Join-Agg Stage 2: Traversal and Multiplicities

Stage two of this algorithm traverses GQ in a depth first fashion starting from

each source node, properly keeping track of the cumulative edge multiplicity along

the way, and finally setting the appropriate c-pairs at all reachable group nodes.

136

A depth first traversal starting from source node ns to the rest of the group

nodes consists of multiple different rooted trees, each of which ends up at a po-

tentially different set of leaf nodes (group nodes). Every rooted tree that reaches

exactly one of each type of group node, corresponds to a tuple (or set of identical

tuples) in the result of the join R. The purpose of this algorithm is to count the

number of such rooted trees that each combination of group nodes has in common.

The result of the traversal step is a set of lists L, containing one list of c-pairs

associated with each group node ng reachable from ns – let lng denote each such list.

Again, (p, c) denotes a c-pair, comprising of a path-id p, and a group-node count c.

There is also a path-id count Cp associated with each unique path-id (we define the

terms path-id, path-id count and group-node count in Section 5.3.1).

We now outline the process that traverses the data graph and sets the ap-

propriate c-pair lists at every group node ngi . We start at a source node ns, and

conduct a DFS traversal. Let pc denote the current path-id, cc denote the current

count, and nc the current node being visited. Also let nci denote the i’th neighbor

of nc, and m(nc,nci)
denote the multiplicity of the edge between them.

We now define a recursive visit(nc) function: if nc is a group node, record

(pc, cc)→ lnc , and return. This is the base case of the recursion. If nc is not a group

node, for each nci ∈ out(nc), if nci is a branching node, update cc = cc ∗m(nc,nci)

with the current neighbor’s multiplicity, append nci to the path-id pc, and reset

cc = 1. The reason we reset the current count is because we now need to keep track

of the count along the new path since we encountered a branching node. If nci

has already been visited by this traversal (the traversal starting from ns), simply

137

update that path-id count to Cpc = Cpc +cc and return. Next, recursively visit every

nci ∈ out(nc). This can be seen as a form of computation caching. If we’ve been

through a path in a current traversal, we don’t need to go through it again, whereas

in traditional execution, this path would be computed multiple times (in the form

of joining tuples).

5.3.3 Join-Agg Stage 3: Result Generation

Finally, we end up with a list lng for every ng reachable from ns – let Nns =

[ng0 , ng1 , ..., ngk] denote this set of group nodes. We utilize these lists in order to

generate the final result groups. The intuition behind this process is that a group

(vs, vg0 , vg1 , ..., vgk) in the final result will only have a non-zero count value iff there

is at least one rooted-tree in the data graph with ns as the root, and Nns as leaves.

Every c-pair set during the traversal stage of the algorithm will contain a path-id

that is part of such a rooted-tree. There is a count computed for every such rooted-

tree. The goal of this stage of the algorithm is to use these c-pairs set at every ng in

order to re-construct all of the rooted-trees that contribute to the result, and finally

compute the sum of all of their counts. That sum is equal to the size of the output

group.

First, we separate the group nodes reached by the traversal into a set of buckets.

The combination of all c-pairs found in all nodes in Nns , will result in the final count

for the group (vs, vg0 , vg1 , ..., vgk); if this count is non-zero, the group is output to

the final result. We will now properly explain how this combination of c-pairs is

138

conducted.

We partition ng ∈ Nns nodes into |RG| buckets, one for each group relation

Gi ∈ RG, by adding a node into a bucket Bi if it was derived from group relation

Gi. Let B denote this set of group node buckets. Next, for each bucket Bi ∈ B,

we output a list of tuples Fi that we will combine in order to generate the final

result. The way we output these tuples is the following: For each node ni ∈ Bi, for

every c-pair Pi = (pi, ci) ∈ lni
, we output a tuple (ni, (pi, ci))→ Fi, so that we keep

track of which group node each c-pair in Fi came from. Let F denote the set of lists

output from all buckets in this step.

Lastly, in order to construct and aggregate all distinct groups that are in the

final output and their associated counts, we conduct a prefix-join (denoted as 1∼)

of the lists Fi ∈ F on the path-id in a pair-wise fashion. In this prefix-join, two

tuples match if their path-ids share a common prefix.

More specifically, let ∼ define a binary relationship between path-ids, that

indicates they share a common path prefix. Let p1, p2 path-ids where l1, l2 are their

respective lengths, and l1 ≤ l2. We say that p1 ∼ p2 iff p1[0..l1] = p2[0..l1].

Therefore, for every tuple in F0 1∼ F1 1∼ ... 1∼ Fi, we compute a value that

will contribute to a group in the final result. Say we’re computing F1 1∼ F2; Let

a tuple f1 = (n1, (p1, c1)) ∈ F1 and f2 = (n2, (p2, c2)) ∈ F2. If p1 ∼ p2 we output

f3 = ({n1, n2}, (pi, c3)) where c3 = Cp1 ∗ Cp2 ∗ c1 ∗ c2) and pi = p1 iff |p1| < |p2| or

pi = p2 iff |p1| > |p2| i.e., the path-id with the smallest length. We only multiply

the result with the path-id count of each unique path-id, once – if e.g.,we joined

f3 = (n3, (pi, c3)) 1∼ f4 = (n4, (pi, c4)) (a tuple with the exact same path-id), the

139

output tuple would be f5 = ({n3, n4}, (pi, c5)) where c5 = c3 ∗ c4 ∗ Cpi .

For every iteration of the algorithm, we start from a source node ns, we end

up getting an F set of c-pairs, out of which we output all fi tuples resulting from

the prefix-join described above iff they have non-zero counts. After the end of step

3, we will have output all groups, that have any combination of values where every

value comes from a different group relation.

A B

g2 j

2a j0

2b j0

g3 j

3a j0

3a j0

g1 j

1a j0

1b j1

C

1a 2a

1a 2a

1a 2b

1a 2b1b j1 2a j1 3b j1

3a

3a

3a

3a

1b 2a 3b

1b 2a 3b

A ⨝ B ⨝ C

1a j0

j1

j0

j1

2a

2b

j0

j1

3a

3b

2

2

1b
 j g1

A

B

g2

g3
C

[j1]: 1

[j1]: 1Path-id counts:
C[j1] = 2

Figure 5.4: A rooted tree in the data graph corresponds to at least one tuple in
R that contain the values at the root and the leaves of the rooted tree (the source
node and the group node values).

Example 5.3.1. Consider the example on Figure 5.4, showing the data graph and

the join resultR for this query. The red arrows showcase an example of a rooted tree,

with source node 1a as its root. Every possible rooted tree in GQ which includes one

140

of each type of group node in its leaves directly corresponds to a tuple in the join

result R. Since the idea is to avoid materializing R, we instead traverse this graph,

and set a c-pair at every group node every time it is visited, identifying the path

that reached a given node by its unique path-id. Here we can see that for group node

2a, its c-pair list is l2a = {([j1], 1)}, and for 3b we have l3b = {([j1], 1)} accordingly.

We will transform these lists into sets of tuples {F1, F2} where F1 = {(2a, ([j1], 1))}

and F2 = {(3b, ([j1], 1))}. We compute the prefix-join F1 1∼ F2, which outputs the

tuple f3 with the value (2a, 3b) and the count 1 ∗ 1 ∗ 2 (the count of f1 times the

count of f2 times the path-id count for the path-id [j1]). Finally, (1b, 2a, 3b), 2 is

output. There is such a tuple computed for every rooted-tree in the data graph that

has 1b as its root, and 2a, 3b as its leaves. The sum of the counts for every unique

group is equal to the size of the group in the final result.

5.3.4 Other Aggregation Functions

The list of basic aggregation functions supported by most SQL execution en-

gines includes COUNT,SUM, MIN,MAX and AVG. We argue that our ability to execute

COUNT without outputting individual intermediate results generalizes directly to the

rest of these basic aggregation functions.

SUM: Firstly, COUNT can be thought of as a special case of SUM, if we assume that

every single tuple in the group includes an attribute for which the value is always 1.

If the value of such an attribute is not 1, while executing the query , we can simply

keep track of the running sum of tuples, that include the attribute values being

141

summed over, instead of just the running multiplicity of generated tuples. The sum

would then need to be multiplied by the count for a specific group, which would

then output the correct result.

MIN, MAX: These two functions would only require keeping track of a single value

and do not require maintaining counts at all.

AVG: This requires keeping track of the sum of the certain combination of attribute

values that need to be averaged over, as well as the count that the current version

of our algorithm is maintaining.

5.4 Complexity Analysis

Here, we provide a high-level analysis of the computational complexity of

executing a join-aggregate query, with the goal of showing the asymptotic benefits

of our approach. We make several simplifying assumptions for clarity. For any

relation Ri that we use in the examples below, we make a uniformity assumption

about all join condition attributes. Moreover, any join between relations in the

below examples are natural joins. Again, let πg(Ri) denote the domain of values for

attribute g in relation Ri. We assume that all relations Ri in any example are of a

constant size |Ri| = n. Also, let |πgi(R)| = a denote the number of unique values

of a group attribute gi and |πp(R)| = b the unique values of a join attribute. We

assume they are uniform i.e. all group attributes have a domain of size a and all

join condition attributes have a domain of size b.

We contrast the time and space complexity of the algorithm traditional RDBMSs

142

would use to compute join-aggregate queries, our Join-Agg operator, and an ide-

alized pre-aggregation approach. We do this by choosing three simplified example

queries. For the traditional RDBMS execution we assume that a sort-merge join

operator is used to compute the join between any two joining relations and that

neither of the joining relations have indexes on the join condition attribute. In

most modern database systems, a hash-join operator of some sort would be chosen

by the query optimizer, but only if the optimizer accurately estimates the amount

of memory required for storing the hash-table given the amount of memory avail-

able. We discuss our relevant findings in regards to how PostgreSQL chooses a join

algorithm in practice in Section 5.6.2. In terms of how aggregation is performed in

the RDBMS, we assume again that a sort-aggregate operator is used instead of a

hash-aggregate operator.

It’s also important to note that we are loading in a node in the data graph for

every unique value in each distinct relation. For the sake of simplicity we assume set

semantics for any relation, i.e., we assume that every tuple in a relation is unique.

Note that there are various optimizations possible for the first two examples below,

which nonetheless don’t change the asymptotic complexity of the algorithm.

Self-Join: Here, for a single relation R(g,, p), the join-aggregate query is equivalent

to doing a self-join on p, and a group-by on the two copies of the attribute g (shown

in Figure 5.5a). More specifically, let the two copies of R = {R1(g1,, p), R2(g2,, p)},

and let G = {g1, g2}, giving us the Join-Agg query Q({R1, R2}, G).

Traditional RDBMS: A traditional RDBMS would compute the join and then

143

aggregate the results. Let πg1(R1) = πg2(R2) = a and πp(R1) = πp(R2) = b. The

join computation requires us to first sort both of the relations (O(2nlogn)), then

compute the join between them and output all result tuples. The complexity of

computing the join will be equal to the number of output tuples in the result of

the join, which is n2

b
. Overall, the join process takes O(2nlogn + n2

b
) steps. The

aggregation process that follows the join requires a sorting of the join result, giving

us a total time of O(n
2

b
log(n

2

b
)).

Join-Agg Operator: The number of vertices in the data graph |V | = 2a+2b.

The number of edges in the data graph |E| is at most 2ab. At the traversal stage

of the algorithm, we need to conduct a full dfs traversal of the graph for every source

node, of which we have a here. A single dfs requires O(|V |+ |E|), therefore overall,

we will have: O(a ∗ (|V | + |E|)) = O(a ∗ (2a + 2b + 2ab)) = O(a2b). Since there

is no merging step for this query, the result generation requires a pass over the

reachable group nodes, and there may be at most a2 different results. Overall we

have a time complexity of O(a2 + a2b) = O(a2b).

Pre-aggregation: For this query, we can do pre-aggregation on R by aggre-

gating on {g, p}, thus reducing its size to at most ab. The total execution time

then reduces to O(a2b log(a2b)), and is thus comparable to the Join-Agg operator

runtime. However, the maximum memory consumed by this approach at any point

is O(a2b), whereas the Join-Agg operator consumes at most O(ab) memory (i.e.,

memory equal to the size of the data graph).

Comparison: It is easy to see that, the Join-Agg operator performs better

asymptotically than the traditional approach if ab < n log(n), i.e., if the number of

144

unique values of g and/or the number of unique values of p is small relative to the

relation.

Chain Join: Next we consider a simple chain join between four relations, Q =

R1(g1, , p0) 1 R2(p0, , p1) 1 R3(p1, , p2) 1 R4(p2, , g2) (shown in Figure 5.5b), still

maintaining 2 group attributes in total.

Traditional RDBMS: Computation of the join result is again dominated by

the generation of the result tuples, and requires n4

b3
steps. For aggregation, we

again would sort the join result and scan it to output the result groups, overall

requiring O(n
4

b3
log(n

4

b3
)).

Join-Agg Operator: The number of vertices in the data graph |V | = 2a+6b.

The number of edges in the data graph |E| is at most 4ab. Similarly as the above

case, the traversal stage will take O(a ∗ (|V | + |E|)) = O(a ∗ (2a + 6b + 4ab)).

Overall, we again have the total time complexity of O(a2b).

Pre-aggregation: With aggressive pre-aggregation over the input relations and

all intermediate results after they are generated, the time complexity of the join-

at-a-time approach can be reduced to O(a2b log(a2b) + ab2 log(ab2)). However, the

memory consumption of this approach reaches O(max(a2b, ab2)) at various points

during execution as intermediate results are materialized.

Comparison: As our experimental results also validate, the benefits of a single

operator are clearly apparent here, with potentially very large gains coming from

more careful and combined evaluation.

Chain Join w/ 4 Grouping Attributes: Next we consider a chain join between

145

four relations, Q = R1(g1, , p0) 1 R2(p0, , g2, p1) 1 R3(p1, , g3, p2) 1 R4(p2, , g4),

but with a total of 4 grouping attributes.

Traditional RDBMS: Since we assume the relation sizes and selectivities are

unchanged, the total time complexity here remains O(n
4

b3
log(n

4

b3
)).

Join-Agg Operator: The number of vertices in the data graph |V | is O(n)

here because there will be two sets of multi-nodes here, one for R2 and R3 each. The

number of edges in the data graph |E| is at most O(max(ab, n)). Similarly as the

above case, the traversal stage will take O(a∗(|V |+|E|)) = O(max(an, a2b)) time.

However, the result generation stage is more complex here as we have to maintain

“paths” at the reachable group nodes and merge them at the end. Both the space

and time complexity here is dominated by the number of different paths to the gi

nodes. In the worst case, there may be O(n
2

b
) such paths per gi node, giving us a

total time complexity of O(n
2

b
log(n

2

b
)) per source node. The overall complexity then

is O(an
2

b
log(n

2

b
)), and the space complexity is O(an

2

b
).

Pre-aggregation: The pre-aggregation possibilities are somewhat limited here

since the intermediate results contain a larger number of attributes, and thus have

limited duplicity. If we assume there is no reduction due to pre-aggregration,

then the time complexity here is similar to the traditional approach, giving us

O(n
4

b3
log(n

4

b3
)) time complexity. However, another lower bound can be calculated us-

ing the similar worst-case assumption as above for the Join-Agg operator, where

we assume all possible combinations of values exists in at least one join result, giving

us a time complexity of O(a4b log(a4b)), with a space complexity of O(a4b).

Comparison: The complexities of Join-Agg and pre-aggregation approaches

146

are very different in this case. The pre-aggregation approach may perform somewhat

better if the number of unique values for the group attributes is small relative to the

join attributes; however in that scenario, we expect the number of different paths to

a g4 node to be significantly smaller than b3 (which assumes a worst-case situation

that won’t occur in practice). As above, we see that the Join-Agg space complexity

is lower by a factor.

Branching Join: Next we consider a 5-relation branching query Q = R1(g1, , j1) 1

B(j1, j2, j3, j4) 1 R2(j2, , g2) 1 R3(j3, , g3) 1 R4(j4, , g4), with a group by aggre-

gate on four attributes from four different relations.

Traditional RDBMS: As above, the join computation time is dominated by

the generation of the result tuples, giving us a total time of O(n
5

b4
log(n

5

b4
)).

Join-Agg Operator: The number of vertices in the data graph |V | = 4a +

4b + n (since every tuple from B will be a different node). The number of edges

in the data graph |E| is at most O(max(n, ab)). The traversal stage would again

take O(a∗(|V |+ |E|)) = O(max(an, a2b)) in total. The result generation however

requires merging the lists of paths at each of the reachable grouping attribute nodes

(g2, g3, g4). It is easy to see that maximum number of different paths from a given

source node to any of the destination grouping nodes (say a g2 node) is n 1, thus

giving us a result generation time of O(n log(n)) per source node. Since this has

to be done for each of the g1 nodes, the total time for result generation is bounded

by O(an log(n)). Thus the overall complexity is O(max(a2b, an log(n))), with a

1Note that this is because we have a single branching point in the data graph for this type of

query. If we had x recursive branching points, this upper bound increases exponentially.

147

space complexity of O(max(n, ab)). Unlike the bounds so far, we don’t attempt to

substitute n with a and b as the bounds become very loose in that case.

Pre-aggregation: The pre-aggregation possibilities are somewhat limited here

(outside of the input relations) since the intermediate results contain a larger number

of attributes, and thus have limited duplicity. The largest intermediate result we

may generate here is I(g1, g2, g3, j3, j4), assuming we join R1 with B followed by

R2, R3, R4 in that order (with aggressive pre-aggregation at every step). The size of

R1 1 B 1 R2 1 R3 can be estimated at O(n
4

b3
), and I is the result of projecting out

j1 and j2 from that join result (and any other attributes from those relations that

did not participate in the join). However, it is difficult to estimate the reduction

in size from that projection. If b is sufficiently large compared to n (i.e., b >
√
n),

then under uniformity assumptions, we expect minimal reduction in the size. Thus,

in general, we expect the total time and space complexity of the pre-aggregation

approach to be very high compared to the Join-Agg operator.

Comparison: Join queries with branching really illustrate the benefits of a holis-

tic approach to executing such queries. The benefits over the traditional approach,

even with aggressive pre-aggregation, come from the ability to avoid generating large

intermediate results, and exploit “caching effects”.

5.5 Implementation Details

The data graph we load into memory is stored in a data structure resembling

a Compressed Sparse Row (CSR) graph representation. We store a list of all Edge

148

j b

R1

g2

g1

g3
R2

R3

R4

R1

g1 p0 p1 p2 g2

R2

R3

R4

(b) Chain

g1

R2

 p g2

R1

(a) Self-Join/ DBLP/ ORDS

(c) Branching

Figure 5.5: Hypergraphs of example queries

g1

 j g1

A

B

 jc

C

D

g2

g3

E

 je

g4
F

 jd

(c) Single-layer (SD) Synthetic Datasets

SELECT a.actor_id, b.actor_id,
COUNT(*)
FROM roles_no_mult a,
roles_no_mult b
WHERE a.movie_id = b.movie_id
GROUP BY a.actor_id, b.actor_id;

SELECT a.medium_a, b.medium_b
FROM medium_a_no_mult a,
medium_b_no_mult b
WHERE a.j0=b.j0
GROUP BY a.medium_a,
b.medium_b;

SD10

SELECT large_a.large_a,
large_b.large_b
FROM large_a, large_b
WHERE large_a.j0=large_b.j0
GROUP BY large_a.large_a,
large_b.large_b;

R2

 j g2

R1

aid1

Roles

movie_id aid2

Roles

aid1

Rm_a

j aid2

Rm_b

aid1

Rm_a

j aid2

Rm_b

(a) TPCH

c_name

Customer

custkey

Orders

orderkey

Lineitem

partkey

Part
supp

suppkey

Supplier

s_name

Part

p_name

actors

midaidlast_name

roles

m_genres

genre

directors

did last_name

movies_directors

actors(last_name,aid)

roles(aid,mid)

m_genres
(mid,genre)

movies_directors
(mid,did)

directors
(did,last_name)

(b) IMDB

A

j0
g1

J

C

D

jc jd

g2

g3

(d) Multi-layer (MD) Syntethic Datasets

customer(c_name,custkey)

orders(custkey,orderkey)

lineitem
(orderkey,partkey)

partsupp
(partkey,suppkey)

part
(partkey,p_name)

supplier
(suppkey,s_name)

Roles

actor_id movie_id actor_id movie_id
genre

Roles Roles movies_genres

Figure 5.6: Hypergraphs of real world queries in the experiments.

objects in the graph called outNeighbors, and a list of Node objects. Each Node

object contains the List of attribute values the node is comprised of (note that a

Node can have values from multiple attributes in its relation if it is a multi-node).

Nodes also include one Integer for the offset value, and one Integer that stores the

number of neighbors that particular node has. The offset value points to the outgoing

edges that correspond to the particular Node; i.e., the outgoing edges of a node

n would start at outNeighbors[n.offset] and end at outNeighbors[n.offset+

n.numNeighbors]. Nodes also include an Integer value representing the type of

node (source, branching, group, etc.). Group nodes in particular, are assigned a

unique Integer that references the relation they came from in this field. Edge

objects store a reference to their outgoing neighbor Node, and a single Integer

149

value for their multiplicity. Path-ids are an integral part of the algorithm and are

also stored as explicit objects, containing a List of branching node values, as well

as an Integer for the path-id count.

Stage 1: Data Graph Loading: During the loading for the data graph, each re-

lation is sorted by PostgreSQL, read in using a JDBC connector as a List of tuples,

and each tuple is partitioned into its two (xl, xr) subsets. Duplicate tuples (after

projection) in each relation are also pre-aggregated by PostgreSQL itself before be-

ing loaded into the data graph. A HashMap index is used to keep track of Node

objects already loaded and access them in order to incrementally add each addi-

tional Edge to the data graph. For each relation being loaded, all children relations

in the decomposition tree are subsequently loaded, as well as Edges between Nodes

with overlapping values; these Nodes intuitively map to joining tuples between the

original relations. The CSR representation we use for our graph data structure is

generally immutable, we therefore make sure to properly load in each Node and all

of its Edges entirely before moving on to the next one so as to never require to shift

anything in the outNeighbors list.

Stage 2: Traversal: During the second step of the algorithm, the data graph is

traversed in a dfs fashion starting from each source node. The visit() method is

recursively called over the neighbors of the current source node, properly propagating

the multiplicity as well as the path-id along the way. We keep track of the path-ids

in each iteration inside of a HashMap, therefore a single hash-lookup is required to

check if the current path-id has already been visited by this current traversal. If

150

so, we simply need to update its path-id count and continue with the next neighbor

without continuing the traversal beyond that path since it has already been explored

(for the current source node). This caching effect is one of the crucial optimizations

that sets Join-Agg apart from other approaches such as pre-aggregation [35].

Stage 3: Result Generation: After a full traversal of the graph starting from

a single source node concludes, we now have enough information to output all the

groups that contain that source node as a value. First we separate the set of reached

nodes into buckets, based on their type. If and only if at least one node from every

relation in G was touched, do we take any further action in this stage.

Next we merge every c-pair in every node in each bucket into a single list

of tuples ordered by path-id. We use a k-way merge algorithm to do this since c-

pairs are all naturally sorted by path-id at the end of Stage 2. Next, for every list

Fi generated by the previous step, we conduct a sort-merge join starting from the

smallest list that contains path-ids of the longest size. We therefore sort the Fi lists

first by path-id length (in a decreasing order), and then sort them by list size (in

an increasing order). After the sort-merge join is completed, the result is sorted by

the value of each output group lexicographically.

5.5.1 Pre-aggregation Implementation

In order to experimentally support our hypothesis described in Section 5.4, we

implemented a simple in-memory database in Java which allowed us to manually

describe query plans. We stored in-memory rows as Java LinkedLists, and stored

151

all values as String objects, as we did in the Join-Agg implementation, for the

sake of consistency. We implemented a hash-join over two sets of tuples, project

over a set of tuples, as well as a hash-aggregate group by operation over a set of

tuples. We use the standard algorithms for hash-join. In particular, we create a

HashMap on the join condition value for every tuple si in the smallest of the two sets

of tuples, and probe that HashMap for every tuple l in the larger set, to generate all

combinations l,si.

Optimizations: We included a few optimizations in order for our code to be as

comparable as possible to a real in-database implementation. Firstly, we combined

the project and hash-aggregate operators so that tuples are only read once, unnec-

essary columns are projected out, and the column is then hashed for aggregation in

the same step. Moreover, due to the fact that each tuple’s values are static (before

it is joined), we compute the hashCode() of every tuple only once, upon its creation

so that it doesn’t need to be computed again when hashing the tuple (either at the

join or aggregation step). At the hash-join stage, we allocate new memory for the

output tuples only when outputting the join result. We store the pre-aggregated

count at every stage in a separate field for each tuple.

5.6 Experimental Evaluation

We present an experimental evaluation over a series of synthetic and real

datasets that showcase the benefits and trade-offs of the Join-Agg operator. We’ve

generated 3 synthetic datasets for three types of queries described in Section 5.4,

152

the hypergraphs for which can be seen in Figure 5.5. We also present experiments

on queries over TPCH [32] (using scale factor SF=1), DBLP [31], ORDS [79] and

IMDB [80]. Each dataset is associated with a specific query, query hypergraphs

for which are shown in Figure 5.6. Datasets DBLP and ORDS are both simple

self-joins. Additional information about these datasets is shown in Table 5.1.

We implemented a prototype of the Join-Agg operator entirely in Java. We

load the data directly from PostgreSQL into the JVM by using the JDBC connec-

tor. Our aim with this prototype is to showcase that the execution of aggregate

queries over large-output joins can, in many situations, be evaluated more efficiently

even outside of the RDBMS including the often substantial overhead of loading the

data from PostgreSQL into the JVM. We advocate that a native version of Join-

Agg implemented natively within an RDBMS itself in a lower level language would

demonstrate an even wider performance gap in favor of Join-Agg. The main rea-

son is that loading the data graph would naturally be significantly faster, because

reading the data tuple-at-a-time using JDBC is a significant portion of the loading

time overhead.

These experiments were all done on a single machine running Red Hat Enter-

prise Linux Server 6.9, with 64GB of RAM, and an Intel(R) Xeon(R) CPU E5-2430

0 @ 2.20GHz, using PostgreSQL version 9.4.18 and Java 8.

153

Query Dataset Selectivity JoinR Groups Load(s)
Self-Join S1 0.001 500 M 6.25 M 11.263

S2 0.003 167 M 6.25 M 12.729
S3 0.1 5.5 M 3.43 M 29.182

Chain C1 0.1 837 M 5.04 M 15.203
C2 0.3 64 M 1.71 M 20.198
C3 0.5 23 M 1.04 M 22.048

Branch B1 0.001/0.8 1.4 B 0.12 M 35.935
B2 0.1/0.1 549 M 0.12 M 44.781
B3 0.3/0.5 9.9 M 9.76 M 32.804

Real TPCH 24 M 23.9 M 161.197
Queries DBLP 105 M 87.8 M 253.536

ORDS 59 M 7.50 M 20.881
IMDB 4.4 B 13.1 M 138.956

Table 5.1: Characteristics about all synthetic and real datasets used in the exper-
iments. JoinR shows the size of the join result before aggregation in Million (M)
or Billion (B) tuples. Groups shows the number of groups output for each query
in each dataset. Load is the total time required (in seconds) to load the data from
PostreSQL to the in-memory data graph.

Dataset Max Intermediate Result JoinAgg Memory PreAgg Memory
P1 987,285 0.097 0.259
P2 3,755,151 0.233 1.19
P3 13,414,963 0.547 3.3
P4 27,952,709 0.976 6.6
P5 45,762,103 1.1 >9GB
P6 66,326,006 1.3 >9GB

Table 5.2: Samples from the B2 dataset, the max memory consumption (max heap
used in GB) when running Join-Agg or pre-aggregation respectively, as well as
the size of the max intermediate result (in rows) that needed to be processed when
using pre-agg.

154

5.6.1 Synthetic Datasets

The synthetic datasets that were used for studying the behavior on the example

queries showcased in Section 5.4, were generated by pulling from a uniform distri-

bution (using Java’s Random class) of a certain set of values, based on the selectivity

we wanted to emulate each time. We define the term selectivity as s = |πj(R)|/|R|,

where πj(R) the domain of unique values of attribute j in relation R. For each

S1,S2,S3 dataset, we generate a single relation R(g, j) for which the join selectivity

when joining with itself is roughly the one reported in Table 5.1. Similarly, for each

C1,C2,C3 dataset, we again generate a single relation with the specified join selec-

tivity and use copies of that relation for each part of the chain–therefore all joins

in the chain portray the same selectivity. For the B1,B2,B3 datasets, there are two

different selectivities specified, the first is for the join R1(g1, j) 1 R2(j, b) and the

second for the joins R2(j, b) 1 R3(b, g2) and R2(j, b) 1 R4(b, g3). Again, for each of

the join condition attributes in each table, we generated each tuple by drawing from

a uniform distribution of integers in the range [0, s ∗ |R|]. Group attributes were

generated the exact same way. The range that we used for generating the group

attribute in each of these relations is roughly reflected by the number of output

groups generated by the queries. For the sake of simplicity all generated relations

are of size |Ri| = 500, 000 tuples.

155

Dataset S1 S2 S3
(groups/size) (6.25 M/80) (6.25 M/26) (3.4 M/1)
PostgreSQL 499 s 181 s 11 s
JOIN-AGG 38 s 28 s 33 s

Table 5.3: Experiment for the Self-join example.

Dataset C1 C2 C3
(groups/size) (5 M/165) (1.7 M/37) (1 M/22)
PostgreSQL 512 s 65 s 18 s
JOIN-AGG 21 s 22 s 24 s

Table 5.4: Experiment for the Chain example.

Dataset B1 B2 B3
(groups/size) (125 K/11 K) (125 K/4 K) (976 K/1)
PostgreSQL 1104 s 393 s 18 s
JOIN-AGG 136 s 226 s 55 s

Table 5.5: Experiment for the Branching example.

Dataset TPCH DBLP ORDS IMDB
(groups/size) (23 M/1) (87 M/1) (7.5 M/7) (13 M/340)
PostgreSQL 71 s 172 s 95 s 3422 s
JOIN-AGG 248 s 384 s 31 s 1156 s

Table 5.6: Experiment for queries over real datasets.

5.6.2 Tuning PostgreSQL

We evaluate the performance of Join-Agg by comparing it to running these

queries directly over a state of the art RDBMS; PostgreSQL. One of the database

parameters that proved crucial for these queries is work mem, which specifies the

amount of memory every distinct query operator can utilize within a single query.

In a data warehouse setting, given the specifications of the server machine we used,

work mem would normally be set to around 256MB. Setting work mem to a very high

value is generally not recommended because it increases the risk of the database

running out of usable memory very quickly as multiple user queries are executed

156

simultaneously. Join-Agg on the other hand only asymptotically needs as much

memory as is required to store the data graph, per query, thus enabling multiple

such queries to practically be run simultaneously and efficiently whereas PostreSQL

would need to use slow methods (e.g.,use SortMerge Joins and GroupAggregate for

aggregation).

Nevertheless, to showcase the best possible performance we could get out of

PostgreSQL on this specific machine, we set work mem to 10GB. This essentially al-

lowed the PostgreSQL query planner to mostly choose the HashAggregate operator

instead of GroupAggregate which can be orders of magnitude slower, depending

on whether the Sort phase happens in memory or on disk. The query plan gener-

ated by PostgreSQL when running these aggregate queries, showed that it always

chooses to use SortMerge Joins, and GroupAggregate, when it estimates the value

of work mem isn’t high enough to fit the hash-table based on the estimated number

of output groups.

We also observe that PostgreSQL is completely unable to estimate the number

of tuples in the result set, and uses the same cardinality estimate as the result of the

join, for estimating the number of groups in the result. Anecdotally, we estimate

this is as the primary reason PostgreSQL may choose to use GroupAggregate and

SortMerge joins, to ensure that the query will not run out of memory instead of

trying to use operators that require hashing, which are faster but require significantly

larger amounts of memory.

157

5.6.3 Join-Agg Performance Analysis

We studied the three basic types of queries that constitute the baseline for

most join-aggregation queries over a database. Our overall conclusion was that

Join-Agg can make a huge difference in query execution time for a query, as that

query outputs larger groups. The larger the size of the groups in the output, the

more there is to gain from Join-Agg. In cases where the output is comprised of

small groups (i.e., of size 1), Join-Agg portrays comparable performance to the

traditional approach when taking into account the fact that a large portion of the

execution time in Join-Agg is taken loading the data out of the database.

Table 5.3, showcases the performance of a join-aggregation query over a single

self-join. We can see that Join-Agg performs over to an order of magnitude better

than PostgreSQL when we have a relatively large group size and the gap between

the two systems closes as that average size leans towards 1. This makes sense since

outputting many groups of size 1 indicates the intermediate result is close in size

to the final result, thus materializing it is mostly inevitable. Similar behavior is

seen for the chain example shown in Table 5.4. Note that when we have multiple

non-key joins in a row as is the case with this example, the selectivities of those

joins don’t need to be absurdly low for Join-Agg to have a substantial difference

in performance. This is because the intermediate results keep expanding as non-key

joins progress resulting in the output of a very large set of tuples that then need to

be aggregated.

In Table 5.5 we can see that for datasets B1,B2,B3, where we have three

158

group attributes from different relations, showcase a similar performance trend as

the other examples. In the datasets that output large groups, Join-Agg performs

up to an order of magnitude better whereas the performance of B3 which outputs

groups of size 1 on average, is comparable to PostgreSQL. Particularly for dataset

B1, we have a very low selectivity (0.001) join for R1 1 R2 whereas the other joins

portray a high selectivity (0.8). We can see that even a single low-selectivity join

in this complex query, can result in a huge (1.4B tuples) intermediate output which

Join-Agg helps to avoid materializing.

In the real datasets we experimented with, showcased in Table 5.6, we observe

results consistent with the synthetic datasets. The DBLP (rf. Figure 5.5a) and TPCH

(rf. Figure 5.6a) queries output very small groups, causing the time for loading

the data graph to dominate the computation. The dataset ORDS [79] is a typical

market basket dataset of invoices that contain multiple items. We are querying all

item pairs and counting how many times they were bought together. IMDB, is graph

pattern counting query over the IMDB movie graph as seen in Figure 5.6b. This

query counts the number of paths between an actor and a genre, two hops away

from that actor, i.e., even genres of movies that co-actors of theirs played in. For

both of the latter queries the groups portray a higher average size and the benefits

of Join-Agg start becoming apparent.

159

5.6.4 Pre-aggregation Performance Analysis

To experimentally validate our hypothesis in regards to how using pre-aggregation

stacks up against our approach, we sampled the B2 dataset – incrementally taking

a larger sample. Information about the samples can be seen in Table 5.2.

Figure 5.7 showcases the difference in memory requirements between Join-

Agg and pre-aggregation. We can see that in the case of pre-aggregation, as the size

of the largest intermediate result required for the query after using aggressive pre-

aggregation at every stage of the join increases, the maximum amount of memory

required to complete the query increases rapidly. The memory required when it

comes to executing Join-Agg however increases slowly since it only has to do with

the size of the input data in combination with the largest amount of c-pairs that

need to be stored at a single iteration (after we process any one source node).

Figures 5.8 and 5.9 showcase the computation time required for the execu-

tion of the branching query shown in Figure 5.5c. Due to the fact that our pre-

aggregation implementation is relatively simple and done in Java (as discussed in

detail in Section 5.5), a large portion of the computation comes down to garbage

collection time. If however we only look at the amount of time spent doing actual

computation as shown in Figure 5.10, we can clearly see the gap in performance

between the two techniques, as was expected based on the complexity analysis in

Section 5.4.

160

Max Intermediate result size (rows)

M
em

or
y

C
on

su
m

pt
io

n
(G

B
)

0

2

4

6

8

10

0 10,000,000 20,000,000 30,000,000 40,000,000

Join-Agg (GB) Pre Aggregation (GB)

Figure 5.7: Maximum memory consumption (max heap used), at any point during
execution. Each value in the y-axis represents the largest intermediate result we
needed to store when using pre-aggregation at every stage of the join.

5.7 Summary

In this chapter, we proposed a multi-way database operator called Join-Agg

that enables the memory-efficient execution of aggregation queries over joins that

output large intermediate results, by executing the query over a graph representation

of the underlying data called the data graph. We presented a detailed complexity

analysis comparing our approach to the traditional binary joins-based approach as

well as an idealized pre-aggregation approach. Our experiments show that Join-

Agg operator can be over an order of magnitude more efficient than the tradi-

tional approach for a wide variety of queries, even when implemented outside of

the RDBMS. We advocate that multi-way database operators may be the answer

161

2.766 8 30
58

99
139

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
on

ds
)

0

100

200

300

400

500

P1 P2 P3 P4 P5 P6

GC Pre Agg

Figure 5.8: Total computation time spent when using pre-aggregation per sample,
showing the portion of the computation time spent on garbage collection (GC).

2.555 5.863 16.64 32.3 51 71

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
on

ds
)

0

100

200

300

400

500

P1 P2 P3 P4 P5 P6

GC Join Agg

Figure 5.9: Total computation time spent when using join-agg per sample, showing
the portion of the computation time spent on garbage collection (GC).

162

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

0

50

100

150

200

P1 P2 P3 P4 P5 P6 P7

Join Agg Pre Agg

Figure 5.10: Only computation time (excluding GC time) for every sample dataset.

to dealing with the “non-normalized” data of the real world, which often leads to

expensive non-key joins along with other aforementioned issues. They will enable

users to continue leveraging RDBMSs for their OLAP analyses, requiring smaller

amounts of resources.

163

Chapter 6: Related Work

In this chapter we discuss related work. We begin with enumerating the dif-

ferent types of graph storage systems, and graph analysis frameworks that have pre-

viously been considered, and how they approach the problem of conducting graph

analysis over data in RDBMSs. We delve deeper into the connections and differences

between our work on GraphGen and Join-Agg compared to past work on com-

pressed graph representations as well as factorized databases. We also discuss work

relevant to processing of graph collections as well as to processing of join-aggregate

queries over RDBMSs.

6.1 Graph Data Management Systems

There has been much work on graph data management over the years, both

on graph databases [81] and graph analytics systems [24]. This section focuses on

the former.

Systems in this category include XML and RDF databases, as well as native

property graph databases such as Neo4j [10], AWS Neptune [11], and OrientDB [12]

to name a few. These systems are built from the ground up to revolve around the

graph data model, and use specialized graph representations in their underlying stor-

164

age. They support SQL-like high-level query languages such as SPARQL, Cypher

or PGQL, and also provide graph APIs like Gremlin or even direct access to the un-

derlying graph, which is a necessity for expressing certain graph algorithms. Some

systems (e.g., Neo4j) also offer a library of popular graph analytics algorithms to be

used as black boxes. Most also provide support for ACID transactions. Migrating

to this type of a system requires a complete buy-in into the graph data model which,

as already discussed in Section 1.1, is usually not ideal since relational analytics still

play a big role in most enterprises. Moreover, these systems are not as mature or

scalable as most RDBMSs, which have been studied for many more decades. Users

are also typically not interested in completely migrating their data over to a graph

database if they aren’t strictly dealing with graph-centric workloads.

Unlike graph databases, our work targets the scenario where the data resides

in an RDBMS and migrating it to a graph database is not desirable. Nevertheless,

there have been several recent pieces of work have also considered how to efficiently

migrate a relational database to a graph database [28–30]. Table2Graph [29] is built

towards extracting large graphs from relational databases using MapReduce jobs,

while de-coupling the execution of the required join operations from the RDBMS.

In Table2Graph users need to provide a set of descriptive XML files that specify the

exact mappings for nodes, edges, properties and labels. Similarly, GraphBuilder [30]

is a MapReduce-based framework for extracting graphs from unstructured data

through user-defined Java functions for node and edge specifications. GLog [44]

is a declarative graph analysis language based on Datalog which is evaluated into

MapReduce code towards efficient graph analytics in a distributed setting. Prior

165

work on translating schemas from one data model to another has considered more

complex translation problems [82,83]; for us, the translation (from GraphGenDL

to SQL) itself is well-defined and straightforward, but the execution of the translated

query and avoiding the generation of the final result, are the main challenges. This

work typically focuses on creating the expanded graph most efficiently, and doesn’t

consider the possibility of generating a condensed representation like the ones we

propose in GraphGen.

Lastly, several distributed graph analytics systems have adopted high-level

declarative interfaces based on Datalog [43, 44, 84, 85]. Our use of Datalog is cur-

rently restricted to specifying which graphs to extract (in particular, we do not allow

recursion). Combining declarative graph extraction (with systems such as Graph-

Gen), and high-level graph analytics frameworks proposed in that prior work, is a

rich area for future work. It’s important to note that none of the mentioned works

are concerned with providing an intuitive interface or language for the mapping and

extraction of hidden graphs from the relational schema. Their use of declarative

languages is aimed towards the specification of the graph traversal or algorithm to

be executed over a given graph.

6.2 Graph Analytics Frameworks

There is a variety of systems developed in recent years with two main goals

in mind: simplifying the process of writing graph analysis programs, and executing

these programs efficiently on very large graphs. These graph analytics frameworks

166

are not concerned with transactional graph queries and expect a very particular

graph format as their input. Most of the computation models for these systems are

inspired by the Bulk Synchronous Parallel model [22]. Google’s Pregel [23] is one

of the systems that paved the way for multiple such “big graph” frameworks [24],

later implemented in a variety of open-source and proprietary systems, one example

of which is Apache Giraph [25]. Other systems in this space include GraphLab [26]

and PowerGraph [27], that use a similar Gather-Apply-Scatter model with small

variations in comparison to Pregel.

In order to benefit from these frameworks, users need to manually conduct the

appropriate ETL in order to extract their graph of interest from an existing database,

transform it into the appropriate input format, and write their graph algorithm

which will then be executed by the framework. These computation models are also

very particular and they do not provide direct access to the graph for arbitrary

traversal– all traversals need to be altered in order to fit the computation model.

The work on graph analytics systems is largely orthogonal and complementary,

as our techniques can be used for efficient extraction and in-memory representation

in these systems (as we discussed in Section 3.4.4–implementing our condensed rep-

resentations inside Apache Giraph).

6.3 RDBMS & Graph Analytics

Superficially, the most closely related branch of work to GraphGen is the

recent work on leveraging relational databases for graph analytics, whose aim is

167

to show that specialized graph databases or analytics engines may be unnecessary.

Vertexica [4, 20], GRAIL [2], and SQLGraph [19], as even GraphFrames [86] show

how to normalize and store a graph dataset as a collection of tables in an RDBMS

(i.e., how to “shred” graph data), and how to map a subset of graph analysis tasks

or queries to relational operations on those tables (see Figure 6.1). This is similar

in spirit to the earlier work on storing semi-structured or XML documents in an

RDBMS [13, 83]. EmptyHeaded [74] shows how worst-case optimal join algorithms

may be used for efficient graph querying. On the other hand, G-SQL [87] and GQ-

Fast [88] explore using graph processing engines to execute SQL queries efficiently,

which is more closely related to our work on Join-Agg (see Chapter 5). GRFu-

sion [89] materializes graph views in an in-memory graph data structure and uses

it to conduct path queries, then combining it with relational operators to associate

node and edge attributes to it. There has even been recent work in the programming

languages community attempting to extend a relational query compiler in order to

compile graph queries posed in Datalog into more efficient machine code that utilizes

graph data structures [90].

However, those systems do not consider the problem of extracting different im-

plicit graphs from existing relational datasets, and rather choose a relational schema

for storing a given graph dataset. Further, those systems can typically only execute

tasks (graph or XML queries) that can be mapped to SQL; while GraphGen pushes

some computation to the relational engine, most of the complex graph algorithms

are executed on a graph representation of the data in memory through a full-fledged

native graph API. This makes GraphGen suitable for complex analysis tasks like

168

community detection, dense subgraph detection/matching, etc., which require ran-

dom access to the graph, and cannot be efficiently, if at all, executed using basic

SQL.

Aster Graph Analytics [91] and SAP HANA Graph Engine [92], also support

specifying graphs within an SQL query, or using a custom definition language or

script and applying graph algorithms on those graphs. However, the interface for

specifying which graphs to extract is not very intuitive and limits the types of graphs

that can be extracted. Aster only supports the vertex-centric API for writing graph

algorithms. Our techniques could be used to reduce the graph memory footprints

in those systems as well. IBM Db2 Graph [93] enable Gremlin queries over the Db2

RDBMS, by translating them into SQL. This only exposes the Gremlin language

as an interface, and requires the user to provide a graph specification mapping (for

which the syntax is not described).

Ringo [94] has somewhat similar goals to GraphGen and provides operators

for converting from an in-memory relational table representation to a graph repre-

sentation. It however does not consider expensive large-output joins that are often

necessary for graph extraction, or the alternate in-memory representation optimiza-

tions that we discuss here; it instead assumes a powerful large-memory machine to

deal with both issues. Ringo does include an extensive library of built-in graph

algorithms in SNAP [95], and we do plan to support Ringo as a front-end analytics

engine for GraphGen.

169

a1

a2

a3
a4

a5

a6

a7 a8

Ingest/Shredding

Nodes Edges Props,..

SQL Translation
Layer

Graph Analytics/query

A relational database

Graph Definition
+

Graph
Analytics/query

In-memory Graph
Execution Engine

A relational database
(i) (ii)

Results

Graph Object
+

Execution
Results

Results

Extraction
Queries

Figure 6.1: GraphGen (right) has fundamentally different goals than recent work
on using RDBMSs for graph analytics (left).

6.4 Graph Compression

There has been a lot of work on graph, RDF, and XML compression, which

can be roughly classified into [54]: (a) succinct representations, where the goal is to

encode the graph with as few bits as possible [96–99]; (b) structural compression,

where the graph structure is analyzed and changed to reduce the size of the graph [49,

51,100–102]; and (c) lossy compression, which aim to keep only sufficient information

to answer specific classes of queries [103]. Our approach is complementary to the

work on succinct representations and lossy compression, and can be seen as a form

170

of structural compression. Perhaps the most closely related work is VMiner [49],

which identifies and exploits bi-cliques in the input graph to compress it losslessly

(see Chapter 3.4.1.1 for more details). In a recent paper, Maneth and Peternek [104]

present a technique to compress a graph through detecting repeating substructures;

however, as with many of the graph or XML compression techniques, only certain

types of queries can be executed against the compressed representation. The key

difference between any of that work and our work on GraphGen is that: those

techniques require us to first expand the graph before compressing it, i.e., they

cannot operate on the implicit representation of the graph in the relational database;

our approach aims to avoid the expansion step itself. We are therefore able to

better utilize the structure in the data, which the expansion will remove (as our

experimental results comparing to VMiner show). Further, we also support arbi-

trary graph operations on the compressed representations; a necessity for a general-

purpose graph engine.

6.5 Multi-Query Optimization

Our contributions presented in Chapter 4 are mostly related to multi-query

optimization (MQO), which is the attempt to generate an optimal combined eval-

uation plan by computing common subexpressions once, and then reusing them.

Our goal however is to optimize a set of queries that are mostly identical (except

for a single predicate). Recent work on multi-query optimization [68, 105, 106] has

explored ways of optimizing query processing at a “global level” by attempting to

171

identify common sub-expressions across a set of queries and optimizing them in or-

der to maximize re-use of portions of the computation across those queries, instead

of attempting to find the local optimal way of executing each individual query. This

technique however cannot be applied to our problem since there is no way to know

what portions of the computation may overlap between each query that pertains to

each seperate graph. Even if there was a portion of the query that was computed

once and reused, the join condition dictated by the predicate f would be different

for each query, and that join would need to be executed for each version separately.

6.6 Analysis Frameworks for Overlapping Graph Collections

There has been a lot of work on analysis frameworks for graph collections

(e.g., graph snapshots over time) that aim at optimizing analysis of such collec-

tions mostly through exploiting overlaps between these graphs. Recent work on

efficient multi-snapshot analytics [64] (SAMS) tackles the problem of automatically

translating a graph algorithm in order for it to be run over a set of snapshots of

a graph, while overlapping computation on portions of the graph that appear in

multiple snapshots. Chronos [65] is a similar system, that portrays similar speedups

for pull-based algorithms like PageRank, as PageRank matches the GAS (Gather-

Apply-Scatter) model very well. For BFS (Breadth-First-Search) based algorithms,

Chronos’ vertex centric message passing slows it down in comparison to SAMS [64].

PED [66] looks at analyzing graph snapshots within a certain time window. Natu-

rally, snapshots in the same time window tend to portray high overlap. PED takes

172

an edge sampling approach to computation instead. There has also been work on

managing historical data for large evolving graphs [67], where a set of graph snap-

shots is stored in a distributed manner, with the goal of efficiently retrieving sets of

snapshots of the graph and also leverage the fact that there may be large overlaps

between them. Moreover, work on temporal databases [107], towards doing com-

putations on certain time-based snapshots of datasets, discusses a simple language

extension that enables specific types of queries to be easily computed over multiple

snapshots of a dataset.

Our work in graph collections for GraphGen is orthogonal to this as we are

concerned with properly obtaining each snapshot in the first place and efficiently

loading them into an in-memory overlapping representation. Our work does not

deal with how the user will later analyze the graphs.

6.6.1 Representing Graph Collections

Many of the aforementioned graph collection analysis frameworks use different

in-memory representations for storing their graph collections. SAMS [64] uses a

vertex stack which focuses on data locality, they also store multiple properties within

every vertex, and a set of values for every graph instance/snapshot. In contrast, our

approach aims mostly at minimizing memory required to store the graphs instead of

optimizing for more time-efficient analysis. PED [66] stores graph collections as an

“aggregate graph”, where edges that belong to multiple different samples are simply

unioned, which means that information about which edge is part of which sample is

173

lost.

6.7 Factorized Representation of Query Results

The condensed representations we propose (see Chapter 3) are similar to the

notion of a “factorized representation of query results”, where the goal is also to

maintain the result of a query in a compressed form [75, 108]. This prior work

proposes “schema-level factorizations” where the decisions about how to factorize a

query result are based purely on the query, the relation schemas, and the functional

and multi-valued dependencies that hold on the query result. On the other hand, our

approach can be seen as exploring “data-dependent factorization”. That prior work

shows that the factorization of the result of an acyclic query without projections is

linear in the size of the input database; however, for queries with projections1, the

storage requirements can be significantly higher.

For example, for the query that generates the co-authors graph, shown below,

the schema-level approach entails expanding the graph and may require quadratic

storage in the worst case.

Example 6.7.1. Let’s examine the Edges definition (part of a graph extraction

task) shown below:

Edges(ID1 ,ID2) :- AuthorPublication(ID1 ,PubID),

AuthorPublication(ID2 ,PubID).

1Here we are referring to π projections in particular, where a DISTINCT is applied post-projection

to eliminate duplicate data

174

The final query result here (i.e., the list of edges) is equivalent to the expanded

graph, and our techniques in this paper are focused on avoiding the generation of

that result altogether. Although this is also the focus of the work on factorized

representations, their techniques work at the level of schemas and would not be

able to avoid generating the full result. To elaborate, consider the following Edges

definition that does not do the projection:

EdgesNP(ID1 , PubID , ID2) :- AuthorPublication(ID1 ,

PubID), AuthorPublication(ID2 ,PubID).

The query result for this query can be represented using the f-tree shown in

Figure 6.2 (T1), and the size of the factorization (F1) is linear in the size of the

joining relations, in this case, the size of the AuthorPublication relation. This

factorized representation is, in fact, equivalent to C-DUP; both of these use explicit

nodes to represent the different PubID elements. Another way to look at this is that,

the query result here has a multi-valued dependency: PubID →→ID1, which these

representations exploit.

However, both of these representations suffer from duplication since a pair of

authors may share multiple PubIDs. More specifically, although it is possible to

generate the results of the second query with “optimal delay tuple enumeration”

(Theorem 4.11 [108]), the same pair of authors may be generated multiple times

with different PubIDs. Projecting out the PubID attribute results in the f-tree shown

in Figure 6.2 (T2). This f-tree is, however, equivalent to doing the join, removing

the duplicates, and generating the full result, since for every author, we must list

175

out all of their co-authors (as shown in Figure 6.2 (F2)).

ID1

ID2ID1

PubID

ID2

ID PubID

a1 p1

a3 p1

a2 p1

a3 p2

a4 p2

<p1> x (<a1> U <a3> U <a2>) x (<a1> U <a3> U <a2>) U
<p2> x (<a3> U <a4>) x (<a3> U <a4>)

<a1> x (<a3> U <a1> U <a2>) U
<a2> x (<a3> U <43>) U
<a3> x ((<a3> U <a1> U <a2>) U

 (<a3> U <a4>)) U
<a4> x (<a3> U <a4>)

T1 T2

F1

F2

AuthorPublication

Figure 6.2: T1 results in factorization F1 (equivalent to C-DUP). T2 results in
factorization F2 which is equivalent to the (expanded) graph.

The data graph paradeigm that we propose in Chapter 5 is also reminiscent

of this factorized representation. Both representations aim at representing the un-

derlying join while reducing the amount of data stored in order to do so. The data

graph can also be connected to the idea of a tuple hypergraph which can cover all

tuples in a query result [76]; it however serves a very different purpose.

Our main objective with the Join-Agg operator is to be able to compute

aggregations over a representation like the data graph, especially in the case of com-

plex acyclic joins. Several different works have considered the problem of execut-

ing group by aggregate queries against a factorized representation of a conjunctive

query [109–113,113–115]. The key guarantees like constant-delay enumeration, how-

ever, do not extend to the kind of group by queries we focus on in this work, e.g.,

176

the “branching” query R1(g1, j), R2(j, b), R3(b, g3), R4(b, g2). Because all of g1, g2, g3

(group by attributes) need to be present in the output, either (a) one of the other

attributes needs to be eliminated (which requires generation of a large intermedi-

ate result), or (b) we have to iterate over all combinations of values for g1, g2, g3

and compute the aggregate value for each combination (which can be prohibitively

expensive if either the sizes or the number of group by attributes is large). In

conclusion, the factorized representation can be used to compute the results of join-

aggregate queries without materializing intermediate results, however it is not able

to do so in all cases i.e., there exist conjunctive queries (like the one described in the

example above) for which the factorized representation will need to at least partially

materialize the intermediate result. Our approach with Join-Agg does not have

that limitation.

6.8 Join and Aggregate Query Processing

Here we sketch some of the work in the general field of query processing that

is related to our work on the Join-Agg query operator discussed in Chapter 5.

6.8.1 Worst-case Optimal Joins

Recent work on worst-case optimal joins [71,116–118] shows how to avoid large

intermediate results during execution of multi-way join queries; we plan to integrate

those techniques into our system as we generalize our work to allow cyclic extraction

queries. However, for the class of queries considered in this paper (i.e., where the

177

edges are generated using a union of acyclic queries), those techniques do not provide

any benefits over the classic Yannakakis algorithm [119]. Our challenge is that the

final query result itself is too large.

In connection to our work on Join-Agg (discussed in Chapter 5), Joglekar

et al., [120, 121] discuss how to generalize the work on worst-case optimal joins to

aggregate queries. Their approach is largely complementary to [109] as well as our

work. Recent work on FAQ [122] proposed a generalized way of viewing a very

common type of aggregation query called a Functional Aggregate Query which they

see parallels in multiple scenarios other than databases e.g.,matrix multiplication,

probabilistic graphical models, and logic. The “InsideOut” algorithm proposed in

FAQ however is not focused on executing SQL queries, like our work as well as the

factorized databases work is aimed at doing. FAQ also assumes an optimal variable

order, while this paper does not explore the benefits of choosing the optimal variable

order (tree decomposition in our case).

6.8.2 Iceberg Queries

An iceberg query is a particular class of SQL queries, defined as an aggre-

gate query, counting occurrences of target group instances of the GROUP BY clause

columns, and filtering the results post-aggregation using a HAVING clause. These

queries typically return a small fraction of the overall (potentially large) join result,

(the tip of the iceberg). Iceberg queries are clearly a special case of the queries we’re

studying in this paper.

178

Fang et al. [123] propose a wide array of techniques for computing iceberg

queries which focus on minimizing the passes done over the data (Disk I/O), being

able to answer such queries in reasonable time, and doing so with a small amount of

memory. The authors focus on combining two techniques: coarse counting (proba-

bilistic counting), and sampling. These techniques may start causing issues as the

final result increases in size. In a similar setting there has been work on efficiently

computing the iceberg CUBE [124–126], which is largely orthogonal to ours, since this

paper focuses on the general case of outputting all groups. Developing techniques for

more efficient iceberg queries using our Join-Agg operator are delegated to future

work.

Walenz et al. [73], presented a series of optimizations applicable to certain

types of iceberg queries. The main focus of this work is to use formal methods

towards automatically identifying whether a general SQL query would benefit from

certain specialized optimizations for evaluating certain types of iceberg queries, as

well as towards automatically using such optimizations during evaluation. The

optimizations they consider involve pruning techniques based on memoization and

complex non-equality join conditions. Given a general SQL query, their methods

systematically identify if any optimization technique is applicable, and use it during

execution of the query. Similarly to us, the authors implement and wrap the above

optimizations into a custom database join operator. The work in this paper is

largely orthogonal to ours since it mainly deals with complex join conditions, it

does not focus on minimizing extra memory consumption during execution, and is

more aimed at providing formal methods for automatically identifying queries that

179

would benefit from these specialized optimizations.

6.8.3 Similarity Joins

Work on similarity joins [127–130] uses various techniques to prune join com-

putation. In a similarity join between two relations, (on a string join condition), a

pair of tuples join if their join attribute similarity surpasses a threshold. This can be

directly mapped onto the iceberg query problem where the aggregation function is

COUNT. From this perspective, iceberg queries aim at finding the tuples in the result

that have a certain number of join condition attributes in common, which surpasses a

threshold. Similarity join techniques are almost exclusively signature-based (strings

are collapsed into smaller signature sets). In a lot of these approaches, an “inverted

index” is built beforehand, which in a sense resembles our in-memory graph struc-

ture. These join algorithms are however only studied for binary operations, similar

to the self-join case.

6.8.4 Data Reduction Operators

There have been many early papers that observed this idea of being able

to push aggregation past joins to reduce the amount of data that needs to be

joined [131–134]. This type of work aims at re-arranging group-by operators in

the logical query plan tree, moving them after or before joins accordingly. These

techniques don’t deal with avoiding materialization of intermediate results in situ-

ations when group by operators cannot be pushed down. Aggregation can only be

180

pushed down if it can be partially applied to a single relation, thus reducing that

relation’s cardinality. In the general case however when the query contains a series

of group by attributes, each one coming from a different relation, there’s no way to

apply any complex aggregation to a single relation because the aggregation applies

to the result.

Larson et al., describe techniques for doing partial pre-aggregation [35]. They

describe a way to apply pre-aggregation to input relations when another aggregation

is conducted on their join result. A simple hash table is used to aggregate tuples

in the same relation, thus reducing the number of tuples joining with the next

relation. As groups are pre-aggregated sequentially, if the number of pre-aggregated

groups surpasses the memory capacity, partially pre-aggregated tuples are output

to make room for new groups; therefore the pre-aggregation can be incomplete.

Those same-group tuples will be aggregated later on at the final aggregation step.

They also describe techniques to combine this pre-aggregation process with a join

by pre-aggregating while reading the relation and joining the output partially pre-

aggregated tuples with the tuples from the inner relation. These techniques however

apply to a single binary join at a time, and as we show in Figure 5.7, Join-Agg

provides substantial memory benefits than partial pre-aggregation especially when

the two are combined and we use pre-aggregation before loading in the data graph.

As previously mentioned, the way we load the data graph into memory in our

Join-Agg operator (discussed in Chapter 5) is reminiscent of these data reduction

operators since we are pre-aggregating all relations to compute the multiplicity of

each edge in the data graph. The creation of multi-nodes in the data graph can also

181

be seen as an even more effective form of pre-aggregation. For example in Figure 5.3,

looking at relation B, we can see that any standard pre-aggregation operator would

reduce the relation to at least 2 tuples with jc1,jd1 appearing twice whereas we load

a single jc1,jd1 node. Our techniques are comparable with partial pre-aggregation

in the case where there are no branching relations. As branching relations and

multiple group by attributes are included in a complex join, our technique enables

computation caching at the level of path-ids which can reduce the number of paths

taken in the data graph during Stage 2 of the algorithm. The partial pre-aggregation

technique has no means of skipping these paths and may require computing all of

the joins associated with those paths potentially multiple times.

182

Chapter 7: Conclusions

In this chapter we summarize the things we learned from the work in this

dissertation. In closing, we briefly discuss the results presented in past chapters,

and reflect on the limitations of our approach on building an independent interface

layer over database systems for graph analytics.

7.1 Leveraging Graph Representations of Relational Data

Relational databases still remain among the most widely used data manage-

ment technologies. As their name suggests, RDBMSs contain various relationships

between entities within. The importance of graph algorithms (which leverage these

data relationships) is becoming increasingly apparent as these algorithms are used

more and more ubiquitously. Connections between data are also used to compute

joins that are crucial for traditional BI SQL reports, specifically for decision sup-

port queries, that often require aggregations over joins. Due to the iterative nature

of graph algorithms, leveraging these relationships effectively as in-memory graphs

requires time-consuming manual ETL and both types of ways to leverage data re-

lationships are bound by the bottleneck of large-output joins.

The work presented in this dissertation can be boiled down to attempting

183

to leverage various in-memory graph representations of data stored in RDBMSs in

order to:

• Allow the user efficient access to a certain set of interconnected entities in an

RDBMS without them having to worry about changing their data analysis

pipelines or storage layout/system choices.

• Efficiently execute aggregate queries over joins in RDBMSs without material-

izing intermediate results.

We enumerate a set of findings throughout this work, that could have only

been discovered by attempting to build a system like GraphGen and investigate

the power of similar graph representations.

Large-Output Joins: Combining various relations in an RDBMS via joins in order

to form a set of graph edges can result in a space explosion–we call these large-

output joins. In order to deal with these joins we store the graph in a condensed

representation, and delay their evaluation until the point where it is actually needed

(when the graph is traversed). This enables exploration of graphs that exist within

RDBMSs without (a) having to wait to materialize the entire graph from the start,

or (b) having to store the entire graph in memory at any one point in time. The

trade-off for this is a relatively small traversal overhead for this representation.

Moreover, current state of the art query planners are not very good at accurately

predicting the sizes of join results apriori. This can result in long-running queries

and manual investigation to figure out why the queries are taking so long.

Duplicates in Condensed Graph Representations: When one wants to as-

184

sociate two sets of entities in an RDBMS through joins, there are in many cases

duplicate associations of those entities inherent in the RDBMS– this duplication is

of course also inherent in the original condensed representation initially loaded from

the RDBMS. We have developed a suite of techniques for both structural dedu-

plication, and bitmap deduplication over the original condensed representation, for

dealing with these duplicates.

Graph Collections: One interesting way of analyzing graph data is by directly

comparing a variety of distinct graphs. We found that a simple declarative graph

definition language like GraphGenDL is expressive enough to allow users to specify

a variety of complex graph collections over their RDBMSs. Extracting these sep-

arate graphs in practice however requires executing multiple separate SQL queries

against the database. This does not turn out to always be a tenable solution due to

the amount of back-and-forth against the database as well as the amount of overlap

between the data returned by each query–as collections of co-related graphs often

overlap with each other. We found that by rewriting the query in order to tag each

element and classify it into its appropriate graph, we can extract such graph collec-

tions efficiently with a single SQL query to the RDBMS. Moreover, these language

constructs in GraphGenDL can open up users to what-if analytics over graphs,

enabling them to analyze the different versions of a graph based on the possible value

of a specific set of parameters. To the best of our knowledge, GraphGenDL is the

first language to tackle the problem of expressing what-if analytics over graphs.

Join-Aggregate Query Execution: Currently, RDBMSs are still using classic

185

query processing techniques that roughly conduct a series of binary joins, materialize

the intermediate results and then aggregate them. While pipelining joins might work

in some cases, the end join result still needs to be materialized in full before it can

be aggregated, otherwise hash-aggregation would need to be used, which is becomes

very memory and CPU-intensive as the hash table grows in size. We found that

by loading in a data-graph representation of the underlying join (similar to the

notion of a factorized query result [113, 115]), we can avoid materializing the full

join result while still being able to compute the aggregate result (which can be orders

of magnitude smaller).

7.2 Limitations

While we believe the results and algorithms presented in this dissertation ad-

vance our understanding of graph querying and graph analytics, they also exhibit

some limitations; we discuss a few of them here.

Loading In-Memory Representations: There is a cost to loading in-memory

representations, associated with copying over the RDBMS tables into memory and

creating edges between them. This process is the same as computing the join with-

out materializing it. In most situations this would not cause an issue, however in

cases where graphs are only as big as the underlying data, this process would be a

considerable overhead. Nevertheless, this overhead cannot be avoided in any system

unless the computation is pushed directly into the database, which is generally not

ideal for doing analysis that requires multiple iterative traversals of the graph (given

186

the data is in an RDBMS and not a native graph store).

Single Machine: On a similar note, our approach makes the assumption that the

graph to be analyzed fits in memory (in its condensed form). This assumption is

based on the idea that the vast majority of graphs not only can fit on a big memory

single machine [94], but it is also usually significantly more efficient to process them

on a single machine [135].

Acyclic Queries: For both GraphGen and Join-Agg, we restrict our discussion

to acyclic queries and do not delve into how these ideas would apply to cyclic queries.

Large Complex Schemas: While we have bet on Datalog and we believe its abil-

ity to express combinations of relations is the most intuitive and terse solution out

there, it is not great when one is dealing with wide relations. For example, if relation

AuthorPublication had 10 columns where we were only interested in the authorId

(which is the first column) and the publication id which was the seventh column,

the user would end up needing to write: AuthorPublication(ID, , , , , ,pid),

while being careful to count the number of underscores in-between. This can be

ameliorated by adding syntactic sugar to make the process easier, or simply cre-

ating easy-to-use Graphical User Interfaces (GUI), that enable the user to simply

point and click on their schema, generating the Datalog atom(s) automatically.

Moreover, identifying potentially interesting graphs itself may be difficult for large

schemas with 100s of tables. We make the assumption that the user that is in-

terested in conducting graph analysis is well versed in the schema, as well as the

Entity-Relationship (ER) diagram associated with it (i.e., the natural entities that

187

exist and how the can relate to each other inside the dataset).

Flavors of SQL: Even though SQL is a standard (as per its name), there are still

a variety of different (albeit small) differences in syntax across RDBMSs. We use

PostgreSQL as the underlying RDBMS in most of our work, and in some cases,

our implementation utilizes PostgreSQL-specific syntax. We believe however that

the differences between syntax choices are small enough that they can very easily

be integrated into the SQL translation process which can output the appropriate,

parseable SQL based on the input system.

7.3 Closing Thoughts

Graph analysis is still considered a relatively niche market as it does not

constitute a large portion of analytics done in most enterprises. Wherever it is used

however, it is irreplaceable. Moreover, there have been a slew of graph processing

and graph database systems that have been commercialized in the past few years,

as well as existing database systems that have added graph processing extensions

to their systems. There have also been efforts towards a standardized graph query

language [136]. Recent developments in artificial intelligence out of Google have

discussed how graph neural networks (that are essentially multigraphs) might be

the best way to model a real-world system [137].

The main source of motivation for us was to open up this world of graph

algorithms to as many users as possible, and that is what we’ve attempted to do

with this work. Users and developers alike are still in the process of trying to figure

188

out where graphs fit in the overall data pipeline, and what is the best way to interface

with them. There is a plethora of opportunities on the horizon as the world comes

to a consensus about these technologies, and we deeply believe the ideas behind

GraphGen will have an important role to play in the way users conduct graph

analytics in the future.

189

Chapter 8: Algorithm Pseudocodes

Here, we sketch the pseudo-codes for some of the different algorithms presented

in various parts of the thesis:

Algorithm 1 BITMAP-1

1: procedure BMP1(graph)
2: seen← hashSet()
3: for each real node rn in graph.vertices() do
4: for each virtual node vn in rn.getOutNeighbors() do
5: for each index, real node rn2 in vn.getOutNeighbors() do
6: if rn2 /∈ seen then
7: set bit at index of bitmap vn.bitMaps.get(rn)
8: seen.add(rn2)
9: seen.clear()

190

Algorithm 2 BITMAP-2

1: procedure BMP2(graph,ordering)
2: srted← graph.vertices.sortByDuplication(ordering)
3: seen← hashSet()
4: for each real node rn in srted do
5: virtSet← greedySetCover(rn)
6: for each virtual node v ∈ virtSet do
7: for each index, real node rn2 in v.getOutNeighbors() do
8: if rn2 /∈ seen then
9: v.getBitmap(rn).setBitAt(index)

10: seen.add(rn2)
11: else
12: chosen← false
13: for each bitmap bmp in v.getBitmaps() do
14: if bmp.getBitFor(rn) == 1 then
15: chosen← true
16: break
17: if !chosen then
18: v.removeBitMapFor(rn)
19: removeEdge(rn,v)
20: v.rebuildBitmapIndex()
21: seen.clear()

Algorithm 3 Greedy Virtual Nodes First (DEDUP-1)

1: procedure virtNodesFirst1(graph,ordering)
2: processed← hashSet()
3: srtd← orderVirtualNodes(ordering)
4: for each virtual node v ∈ srtd do
5: relevant← getRelevantVNodes(v)
6: moreDedup←true
7: while moreDedup do
8: moreDedup←false
9: intersections← getIntersections(v,relevant)

10: for each s ∈ relevant do
11: Ci ← intersections.get(s)
12: if |Ci| > 1 then
13: moreDedup←true
14: for each real node rn ∈ Ci do
15: R, V,DirectEdges← maxBenefitRatio(rn)
16: if R 6=Null then
17: graph.removeEdge(R, V)
18: addDirectEdges(R, V,DirectEdges)
19: processed.add(v)

191

Algorithm 4 Greedy Real Nodes First

1: procedure RealNodesFirst(graph,ordering)
2: V ′ ← hashSet()
3: V ′′ ← hashSet()
4: X ← hashSet()
5: srtd← graph.sortRealNodesByDuplication(ordering)
6: for each real node rn ∈ srtd do
7: initialize(V ′′,rn)
8: while V ′′ 6= ∅ do
9: maxBenefitV Node← getMaxBenefitCostRatioVNode()

10: if maxBenefitV Node 6=Null then
11: V ← hashSet()
12: for real node rn2 ∈ maxBenefitV Node.getOutNeighbors() do
13: V .add(rn2)
14: graph.removeEdge(rn,rn2)
15: V ′.add(maxBenefitV Node)
16: V ′′.remove(maxBenefitV Node)
17: V CapX ← V ∩X
18: for each pair a, b of a ∈ V − V CapX and b in V CapX do
19: if !existsEdge(a, b) then
20: graph.addEdge(a, b)
21: for each real node s ∈ V do
22: if s.equals(rn) then
23: X.add(s)
24: for each real node s in V CapX do
25: graph.removeEdge(s,maxBV Node)
26: else
27: for real node vn in V ′′ do
28: removeEdge(rn,vn)
29: X.clear()

192

Algorithm 5 Greedy Virtual Nodes First (DEDUP-2)

1: procedure VirtNodesFirst2(graph,ordering)
2: srtd←orderVNodes(ordering)
3: for each virtual node vn in srtd do
4: constraints← hashMap()
5: ResolveVirtualNode(v,constraints)
6: procedure ResolveVirtualNode(v,constraints)
7: relevant←getRelevantVNodes(v)
8: HV ←highestOverlap(v, relevant)
9: W1 ←intersect(HV, v)

10: w1 ←createVirtNode(W1)
11: if W1 6= ∅ then
12: W2 ← HV −W1

13: if W2 6= ∅ then
14: w2 ←createVirtNode(W2)
15: addVirtualEdge(w1, w2)
16: for each virtual node vn ∈ HV.getVirtualNeighbors() do
17: addVirtualEdge(w1, vn)
18: addVirtualEdge(w2, vn)
19: W ′

3 ← v −W1

20: W3 ← W3′−NUnion(HV)
21: if W3 6= ∅ then
22: w3 ←createVirtNode(W3)
23: addConstraint(constraints, w3, w1)
24: W4 ← W3′ −W3
25: if W4 6= ∅ then
26: w4 ←createVirtNode(W4)
27: if W3 6= ∅ then
28: addConstraint(constraints, w4, w3)
29: if v exists in constraints then
30: splitConstraintsFor(constraints, v)
31: if w4 6=Null then
32: ResolveVirtualNode(w4, constraints)
33: if w3 6=Null then
34: ResolveVirtualNode(w3, constraints)
35: graph.removeVirtualNode(v)
36: if initialCall then
37: graph.addVirtualedgesIn(constraints)

193

Bibliography

[1] Amit Chaudhry. The graph technology buyer’s guide. https://neo4j.com/

whitepapers/graph-technology-buyers-guide/.

[2] Jing Fan, Adalbert Gerald Soosai Raj, and Jignesh M. Patel. The case against
specialized graph analytics engines. In Proceedings of the Conference on In-
novative Data Systems Research. ACM, 2015.

[3] Kangfei Zhao and Jeffrey Xu Yu. All-in-one: Graph processing in rdbmss
revisited. In Proceedings of the SIGMOD International Conference on Man-
agement of Data, pages 1165–1180. ACM, 2017.

[4] Alekh Jindal, Samuel Madden, Malu Castellanos, and Meichun Hsu. Graph
analytics using the Vertica relational database. In Proceedings of the Interna-
tional Conference on Big Data. IEEE, 2015.

[5] Knowledge base of relational and NoSQL database management systems.
https://db-engines.com/en/ranking.

[6] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. Technical report, Stan-
ford InfoLab, 1999.

[7] Pablo Porras Millan. Visualization and analysis of biological networks. In
Silico Systems Biology, pages 63–88. Springer, 2013.

[8] Edgar F. Codd. A relational model of data for large shared data banks.
Communications of the ACM, 13(6):377–387, 1970.

[9] Michael Stonebraker and Joseph Hellerstein. What goes around comes around.
Readings in Database Systems, 4:1724–1735, 2005.

[10] Neo4j: A scalable native graph database. https://neo4j.com/product/.

[11] Amazon. Amazon neptune fast, reliable graph database built for the cloud.
https://aws.amazon.com/neptune/.

194

https://neo4j.com/whitepapers/graph-technology-buyers-guide/
https://neo4j.com/whitepapers/graph-technology-buyers-guide/
https://db-engines.com/en/ranking
https://neo4j.com/product/
https://aws.amazon.com/neptune/

[12] OrientDB - the world’s first distributed multi-model NoSQL database with a
graph database engine. http://orientdb.com/orientdb/.

[13] Jayavel Shanmugasundaram Kristin Tufte Gang He and Chun Zhang David
DeWitt Jeffrey Naughton. Relational databases for querying XML documents:
Limitations and opportunities. In Proceedings of the International Conference
on Very Large Data Bases. VLDB Endowment, 1999.

[14] Mihaela A Bornea, Julian Dolby, Anastasios Kementsietsidis, Kavitha Srini-
vas, Patrick Dantressangle, Octavian Udrea, and Bishwaranjan Bhattacharjee.
Building an efficient RDF store over a relational database. In Proceedings of
the SIGMOD International Conference on Management of Data, pages 121–
132. ACM, 2013.

[15] Daniel J Abadi, Adam Marcus, Samuel R. Madden, and Kate Hollenbach.
Scalable semantic web data management using vertical partitioning. In Pro-
ceedings of the International Conference on Very Large Data Bases, pages
411–422. VLDB Endowment, 2007.

[16] Roshan Punnoose, Adina Crainiceanu, and David Rapp. Rya: a scalable RDF
triple store for the clouds. In Proceedings of the International Workshop on
Cloud Intelligence, page 4. ACM, 2012.

[17] AllegroGraph. A high-performance persistent RDF store. http://franz.

com/agraph/allegrograph/.

[18] Apache Jena. SDB - persistent triple stores using relational databases. https:
//jena.apache.org/documentation/sdb/index.html.

[19] Wen Sun, Achille Fokoue, Kavitha Srinivas, Anastasios Kementsietsidis, Gang
Hu, and Guotong Xie. SQLGraph: an efficient relational-based property graph
store. In Proceedings of the SIGMOD International Conference on Manage-
ment of Data. ACM, 2015.

[20] Alekh Jindal, Praynaa Rawlani, Eugene Wu, Samuel Madden, Amol Desh-
pande, and Michael Stonebraker. Vertexica: your relational friend for graph
analytics! Proceedings of the International Conference on Very Large Data
Bases, 7(13):1669–1672, 2014.

[21] Titan: A distributed graph database. http://titan.thinkaurelius.com/.

[22] Leslie G Valiant. A bridging model for parallel computation. Communications
of the ACM, 33(8):103–111, 1990.

[23] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale
graph processing. In Proceedings of the SIGMOD International Conference on
Management of Data, pages 135–146. ACM, 2010.

195

http://orientdb.com/orientdb/
http://franz.com/agraph/allegrograph/
http://franz.com/agraph/allegrograph/
https://jena.apache.org/documentation/sdb/index.html
https://jena.apache.org/documentation/sdb/index.html
http://titan.thinkaurelius.com/

[24] Da Yan, Yingyi Bu, Yuanyuan Tian, Amol Deshpande, and James Cheng. Big
graph analytics systems (tutorial). In Proceedings of the SIGMOD Interna-
tional Conference on Management of Data. ACM, 2016.

[25] Apache. Giraph. http://giraph.apache.org/.

[26] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Ky-
rola, and Joseph M. Hellerstein. Distributed graphlab: a framework for ma-
chine learning and data mining in the cloud. In Proceedings of the Interna-
tional Conference on Very Large Data Bases, volume 5, pages 716–727. VLDB
Endowment, 2012.

[27] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos
Guestrin. Powergraph: Distributed graph-parallel computation on natural
graphs. In Symposium on Operating Systems Design and Implementation,
volume 12, page 2. USENIX, 2012.

[28] Roberto De Virgilio, Antonio Maccioni, and Riccardo Torlone. Converting
relational to graph databases. In Proceedings of the International Workshop
on Graph Data Management Experiences and Systems, page 1. ACM, 2013.

[29] Sangkeun Lee, Byung H Park, Seung-Hwan Lim, and Mallikarjun Shankar.
Table2Graph: A scalable graph construction from relational tables using map-
reduce. In Proceedings of the International Conference on Big Data Computing
Service and Applications. IEEE, 2015.

[30] Nilesh Jain, Guangdeng Liao, and Theodore L Willke. Graphbuilder: scalable
graph etl framework. In Proceedings of the International Workshop on Graph
Data Management Experiences and Systems, page 4. ACM, 2013.

[31] DBLP dataset. https://dblp.uni-trier.de/faq/How+can+I+download+

the+whole+dblp+dataset.

[32] http://www.tpc.org/tpch/.

[33] University of Toronto. Computer Systems Research Group and MH Graham.
On the universal relation. 1980.

[34] Clement Tak Yu and Meral Z Ozsoyoglu. An algorithm for tree-query mem-
bership of a distributed query. In COMPSAC 79. Proceedings. Computer
Software and The IEEE Computer Society’s Third International Applications
Conference, 1979., pages 306–312. IEEE, 1979.

[35] Per-Åke Larson. Data reduction by partial preaggregation. In Proceedings of
the International Conference on Data Engineering. IEEE, 2002.

[36] Konstantinos Xirogiannopoulos, Udayan Khurana, and Amol Deshpande.
Graphgen: exploring interesting graphs in relational data. In Proceedings
of the International Conference on Very Large Data Bases, volume 8, pages
2032–2035. VLDB Endowment, 2015.

196

http://giraph.apache.org/
https://dblp.uni-trier.de/faq/How+can+I+download+the+whole+dblp+dataset
https://dblp.uni-trier.de/faq/How+can+I+download+the+whole+dblp+dataset
http://www.tpc.org/tpch/

[37] Konstantinos Xirogiannopoulos and Amol Deshpande. Extracting and analyz-
ing hidden graphs from relational databases. In Proceedings of the SIGMOD
International Conference on Management of Data, pages 897–912. ACM, 2017.

[38] Konstantinos Xirogiannopoulos, Virinchi Srinivas, and Amol Deshpande.
Graphgen: Adaptive graph processing using relational databases. In Proceed-
ings of the International Workshop on Graph Data-management Experiences
& Systems, page 9. ACM, 2017.

[39] Konstantinos Xirogiannopoulos and Amol Deshpande. Memory-efficient
group-by aggregates over multi-way joins. arXiv preprint arXiv:1906.05745,
2019.

[40] Terrence Parr. Another tool for language recognition (antlr). http://www.

antlr.org/.

[41] Robert Ryan McCune, Tim Weninger, and Greg Madey. Thinking like a
vertex: a survey of vertex-centric frameworks for large-scale distributed graph
processing. ACM Computing Surveys, 48(2):25, 2015.

[42] Todd J Green, Molham Aref, and Grigoris Karvounarakis. Logicblox, platform
and language: A tutorial. In Proceedings of the International Datalog 2.0
Workshop, pages 1–8. Springer, 2012.

[43] Jiwon Seo, Stephen Guo, and Monica S. Lam. SociaLite: Datalog extensions
for efficient social network analysis. In Proceedings of the International Con-
ference on Data Engineering. IEEE, 2013.

[44] Jun Gao, Jiashuai Zhou, Chang Zhou, and Jeffrey Xu Yu. GLog: a high level
graph analysis system using mapreduce. In Proceedings of the International
Conference on Data Engineering. IEEE, 2014.

[45] Yousef Saad. Iterative Methods for Sparse Linear Systems, volume 82. siam,
2003.

[46] Apache TinkerPop. Apache TinkerPop is a graph computing framework for
both graph databases (OLTP) and graph analytic systems (OLAP). http:

//tinkerpop.apache.org/.

[47] The Gremlin graph traversal machine and language. https://tinkerpop.

apache.org/gremlin.html.

[48] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases,
volume 8. Addison-Wesley Reading, 1995.

[49] Gregory Buehrer and Kumar Chellapilla. A scalable pattern mining approach
to web graph compression with communities. In Proceedings of the Inter-
national Conference on Web Search and Data Mining, pages 95–106. ACM,
2008.

197

http://www.antlr.org/
http://www.antlr.org/
http://tinkerpop.apache.org/
http://tinkerpop.apache.org/
https://tinkerpop.apache.org/gremlin.html
https://tinkerpop.apache.org/gremlin.html

[50] Chinmay Karande, Kumar Chellapilla, and Reid Andersen. Speeding up al-
gorithms on compressed web graphs. Internet Mathematics, 2009.

[51] Tom as Feder and Rajeev Motwani. Clique partitions, graph compression, and
speeding-up algorithms. In Proceedings of the Symposium on the Theory of
Computing, pages 123–133. ACM, 1991.

[52] Aidan Hogan, Marcelo Arenas, Alejandro Mallea, and Axel Polleres. Every-
thing you always wanted to know about blank nodes. Web Semantics: Science,
Services and Agents on the World Wide Web, 27:42–69, 2014.

[53] Yodsawalai Chodpathumwan, Amirhossein Aleyasen, Arash Termehchy, and
Yizhou Sun. Universal-DB: towards representation independent graph analyt-
ics. Proceedings of the International Conference on Very Large Data Bases,
8(12), 2015.

[54] Sebastian Maneth and Fabian Peternek. A survey on methods and systems
for graph compression. arXiv preprint arXiv:1504.00616, 2015.

[55] Réka Albert and Albert-László Barabási. Statistical mechanics of complex
networks. Reviews of modern physics, 74(1), 2002.

[56] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Den-
sification and shrinking diameters. Transactions on Knowledge Discovery from
Data, 2007.

[57] Termeh Shafie. A multigraph approach to social network analysis. Journal of
Social Structure, 16:0 1, 2015.

[58] Lars Backstrom and Jure Leskovec. Supervised random walks: predicting and
recommending links in social networks. In Proceedings of the international
conference on Web Search and Data Mining, pages 635–644. ACM, 2011.

[59] Jae-wook Ahn, Catherine Plaisant, and Ben Shneiderman. A task taxonomy
for network evolution analysis. Transactions on Visualization and Computer
Graphics, 20(3):365–376, 2013.

[60] Ravi Kumar, Jasmine Novak, and Andrew Tomkins. Structure and evolution
of online social networks. In Proceedings of the International Conference on
Knowledge Discovery and Data mining, pages 611–617. ACM, 2006.

[61] Rakshit Trivedi, Bunyamin Sisman, Jun Ma, Christos Faloutsos, Hongyuan
Zha, and Xin Luna Dong. Linknbed: Multi-graph representation learning with
entity linkage. arXiv preprint arXiv:1807.08447, 2018.

[62] Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. Regal: Rep-
resentation learning-based graph alignment. In Proceedings of the Interna-
tional Conference on Information and Knowledge Management, pages 117–
126. ACM, 2018.

198

[63] Meng Wang, Xian-Sheng Hua, Richang Hong, Jinhui Tang, Guo-Jun Qi, and
Yan Song. Unified video annotation via multigraph learning. Transactions on
Circuits and Systems for Video Technology, 19(5):733–746, 2009.

[64] Manuel Then, Timo Kersten, Stephan Günnemann, Alfons Kemper, and
Thomas Neumann. Automatic algorithm transformation for efficient multi-
snapshot analytics on temporal graphs. In Proceedings of the International
Conference on Very Large Data Bases, volume 10, pages 877–888. VLDB En-
dowment, 2017.

[65] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou,
Vijayan Prabhakaran, Wenguang Chen, and Enhong Chen. Chronos: a graph
engine for temporal graph analysis. In Proceedings of the European Conference
on Computer Systems, page 1. ACM, 2014.

[66] Wenlei Xie, Yuanyuan Tian, Yannis Sismanis, Andrey Balmin, and Peter J
Haas. Dynamic interaction graphs with probabilistic edge decay. In Proceed-
ings of the International Conference on Data Engineering, pages 1143–1154.
IEEE, 2015.

[67] Udayan Khurana and Amol Deshpande. Efficient snapshot retrieval over his-
torical graph data. In Proceedings of the International Conference on Data
Engineering, pages 997–1008. IEEE, 2013.

[68] Tarun Kathuria and S Sudarshan. Efficient and provable multi-query op-
timization. In Proceedings of the SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, pages 53–67. ACM, 2017.

[69] Ron Avnur and Joseph M Hellerstein. Eddies: Continuously adaptive query
processing. In Proceedings of the SIGMOD International Conference on Man-
agement of Data. ACM, 2000.

[70] Amol Deshpande. An initial study of overheads of eddies. SIGMOD Record,
33(1):44–49, 2004.

[71] Hung Q Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal
join algorithms:[extended abstract]. In Proceedings of the SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems. ACM, 2012.

[72] Todd L Veldhuizen. Leapfrog triejoin: A simple, worst-case optimal join al-
gorithm. Proceedings of the International Conference on Database Theory,
2014.

[73] Brett Walenz, Sudeepa Roy, and Jun Yang. Optimizing iceberg queries with
complex joins. In Proceedings of the SIGMOD International Conference on
Management of Data, pages 1243–1258. ACM, 2017.

199

[74] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher Ré.
Emptyheaded: A relational engine for graph processing. In Proceedings of the
SIGMOD International Conference on Management of Data. ACM, 2016.

[75] Dan Olteanu and Jakub Závodnỳ. Factorised representations of query results:
size bounds and readability. In Proceedings of the International Conference
on Database Theory, pages 285–298. ACM, 2012.

[76] Ahmet Kara and Dan Olteanu. Covers of query results. In Proceedings of the
International Conference on Database Theory, 2018.

[77] Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello.
Hypertree decompositions: Questions and answers. In Proceedings of the
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems.
ACM, 2016.

[78] Robert E Tarjan and Mihalis Yannakakis. Simple linear-time algorithms to
test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs. SIAM Journal on computing, 13(3):566–579, 1984.

[79] UCI Machine Learning Repository. Online retail data set. https://archive.
ics.uci.edu/ml/datasets/Online+Retail.

[80] Oliver Schulte Jan Motl. Relational dataset repository. https://relational.
fit.cvut.cz/.

[81] Renzo Angles and Claudio Gutierrez. Survey of graph database models. ACM
Computing Surveys, 40(1):1, 2008.

[82] Paolo Atzeni, Paolo Cappellari, Riccardo Torlone, Philip A Bernstein, and
Giorgio Gianforme. Model-independent schema translation. The International
Journal on Very Large Data Bases, 17(6):1347–1370, 2008.

[83] Alin Deutsch, Mary Fernandez, and Dan Suciu. Storing semist- ructured data
with STORED. In SIGMOD Record. ACM, 1999.

[84] Fan Yang, Jinfeng Li, and James Cheng. Husky: Towards a more efficient and
expressive distributed computing framework. Proceedings of the International
Conference on Very Large Data Bases, 9(5):420–431, 2016.

[85] Yingyi Bu, Vinayak Borkar, Jianfeng Jia, Michael J. Carey, and Tyson Condie.
Pregelix: Big(ger) graph analytics on a dataflow engine. In Proceedings of the
International Conference on Very Large Data Bases. VLDB Endowment, 2014.

[86] Ankur Dave, Alekh Jindal, Li Erran Li, Reynold Xin, Joseph Gonzalez, and
Matei Zaharia. Graphframes: an integrated api for mixing graph and rela-
tional queries. In Proceedings of the International Workshop on Graph Data
Management Experiences and Systems, page 2. ACM, 2016.

200

https://archive.ics.uci.edu/ml/datasets/Online+Retail
https://archive.ics.uci.edu/ml/datasets/Online+Retail
https://relational.fit.cvut.cz/
https://relational.fit.cvut.cz/

[87] Hongbin Ma, Bin Shao, Yanghua Xiao, Liang Jeff Chen, and Haixun Wang.
G-SQL: fast query processing via graph exploration. In Proceedings of the
International Conference on Very Large Data Bases, volume 9. VLDB En-
dowment, 2016.

[88] Chunbin Lin, Benjamin Mandel, Yannis Papakonstantinou, and Matthias
Springer. Fast in-memory SQL analytics on typed graphs. In Proceedings
of the International Conference on Very Large Data Bases, volume 10. VLDB
Endowment, 2016.

[89] Mohamed S Hassan, Tatiana Kuznetsova, Hyun Chai Jeong, Walid G Aref,
and Mohammad Sadoghi. Grfusion: Graphs as first-class citizens in main-
memory relational database systems. In Proceedings of the SIGMOD Interna-
tional Conference on Management of Data, pages 1789–1792. ACM, 2018.

[90] Ruby Y Tahboub, Xilun Wu, Grégory M Essertel, and Tiark Rompf. Towards
compiling graph queries in relational engines. In Proceedings of the SIGPLAN
International Symposium on Database Programming Languages, pages 30–41.
ACM, 2019.

[91] David Simmen, Karl Schnaitter, Jeff Davis, Yingjie He, Sangeet Lohariwala,
Ajay Mysore, Vinayak Shenoi, Mingfeng Tan, and Yu Xiao. Large-scale Graph
Analytics in Aster 6: Bringing Context to Big Data Discovery. In Proceedings
of the International Conference on Very Large Data Bases, volume 7. VLDB
Endowment, 2014.

[92] Michael Rudolf, Marcus Paradies, Christof Bornhövd, and Wolfgang Lehner.
The graph story of the SAP HANA database. In Volker Markl, Gunter Saake,
Kai-Uwe Sattler, Gregor Hackenbroich, Bernhard Mitschang, Theo Härder,
and Veit Köppen, editors, Datenbanksysteme für Business, Technologie und
Web (BTW) 2037, pages 403–420, Bonn, 2013. Gesellschaft für Informatik
e.V.

[93] Yuanyuan Tian, Sui Jun Tong, Mir Hamid Pirahesh, Wen Sun, En Liang
Xu, and Wei Zhao. Synergistic graph and SQL analytics inside IBM Db2.
In Proceedings of the International Conference on Very Large Data Bases,
volume 12. VLDB Endowment, 2019.

[94] Yonathan Perez, Rok Sosič, Arijit Banerjee, Rohan Puttagunta, Martin Rai-
son, Pararth Shah, and Jure Leskovec. Ringo: Interactive graph analytics on
big-memory machines. In Proceedings of the SIGMOD International Confer-
ence on Management of Data. ACM, 2015.

[95] Jure Leskovec and Rok Sosič. SNAP: A general purpose network analysis and
graph mining library in C++. http://snap.stanford.edu/snap, June 2014.

201

http://snap.stanford.edu/snap

[96] Paolo Boldi and Sebastiano Vigna. The webgraph framework compression
techniques. In Proceedings of the World Wide Web Conference, pages 595–
602, 2004.

[97] Alberto Apostolico and Guido Drovandi. Graph compression by BFS. Algo-
rithms, 2(3):1031–1044, 2009.

[98] Nieves R Brisaboa, Susana Ladra, and Gonzalo Navarro. k2-trees for com-
pact web graph representation. In Intl. Symposium on String Processing and
Information Retrieval, 2009.

[99] Julian Shun, Laxman Dhulipala, and Guy E Blelloch. Smaller and faster:
Parallel processing of compressed graphs with Ligra+. In Proceedings of the
Data Compression Conference, pages 403–412, 2015.

[100] Yasuhito Asano, Yuya Miyawaki, and Takao Nishizeki. Efficient compression
of web graphs. In International Computing and Combinatorics Conference,
pages 1–11, 2008.

[101] Peter Buneman, Martin Grohe, and Christoph Koch. Path queries on com-
pressed XML. In Proceedings of the International Conference on Very Large
Data Bases. VLDB Endowment, 2003.

[102] Christoph Koch. Processing queries on tree-structured data efficiently. In
Proceedings of the SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems. ACM, 2006.

[103] Wenfei Fan, Jianzhong Li, Xin Wang, and Yinghui Wu. Query preserving
graph compression. In Proceedings of the SIGMOD International Conference
on Management of Data, pages 157–168. ACM, 2012.

[104] Sebastian Maneth and Fabian Peternek. Compressing graphs by grammars.
In Proceedings of the International Conference on Data Engineering. IEEE,
2016.

[105] Darko Makreshanski, Georgios Giannikis, Gustavo Alonso, and Donald Koss-
mann. Many-query join: efficient shared execution of relational joins on mod-
ern hardware. pages 1–24. Springer, 2017.

[106] Prasan Roy, Srinivasan Seshadri, S Sudarshan, and Siddhesh Bhobe. Efficient
and extensible algorithms for multi query optimization. In SIGMOD Record,
volume 29, pages 249–260. ACM, 2000.

[107] Nikos Tsikoudis, Liuba Shrira, and Sara Cohen. Rql: Retrospective computa-
tions over snapshot sets. In International Conference on Extending Database
Technology, 2018.

[108] Dan Olteanu and Jakub Závodnỳ. Size bounds for factorised representations
of query results. Transactions on Database Systems, 40(1):2, 2015.

202

[109] Nurzhan Bakibayev, Tomáš Kočiskỳ, Dan Olteanu, and Jakub Závodnỳ. Ag-
gregation and ordering in factorised databases. Proceedings of the Interna-
tional Conference on Very Large Data Bases, 6(14):1990–2001, 2013.

[110] Mahmoud Abo Khamis, Hung Q Ngo, XuanLong Nguyen, Dan Olteanu, and
Maximilian Schleich. AC/DC: in-database learning thunderstruck. In Proceed-
ings of the Workshop on Data Management for End-To-End Machine Learn-
ing, page 8. ACM, 2018.

[111] Mahmoud Abo Khamis, Ryan R Curtin, Benjamin Moseley, Hung Q Ngo,
XuanLong Nguyen, Dan Olteanu, and Maximilian Schleich. On functional
aggregate queries with additive inequalities. arXiv preprint arXiv:1812.09526,
2018.

[112] Mahmoud Abo Khamis, Hung Q Ngo, Dan Olteanu, and Dan Suciu. Boolean
tensor decomposition for conjunctive queries with negation. In Proceedings of
the International Conference on Database Theory. IEEE, 2019.

[113] Maximilian Schleich, Dan Olteanu, and H Ngo. A layered aggregate engine
for analytics workloads. 2019.

[114] Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. Learning linear regres-
sion models over factorized joins. In Proceedings of the SIGMOD International
Conference on Management of Data, pages 3–18. ACM, 2016.

[115] Dan Olteanu and Maximilian Schleich. Factorized databases. SIGMOD
Record, 45(2), 2016.

[116] Todd L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm.
In Proceedings of the International Conference on Database Theory, pages
96–106, 2014.

[117] Paraschos Koutris, Paul Beame, and Dan Suciu. Worst-case optimal algo-
rithms for parallel query processing. In LIPIcs-Leibniz International Pro-
ceedings in Informatics, volume 48. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2016.

[118] Hung Q Ngo, Christopher Ré, and Atri Rudra. Skew strikes back: new de-
velopments in the theory of join algorithms. SIGMOD Record, 42(4):5–16,
2014.

[119] Mihalis Yannakakis. Algorithms for acyclic database schemes. In Proceed-
ings of the International Conference on Very Large Data Bases, pages 82–94.
VLDB Endowment, 1981.

[120] Manas Joglekar, Rohan Puttagunta, and Christopher Ré. Aggregations over
generalized hypertree decompositions. arXiv preprint arXiv:1508.07532, 2015.

203

[121] Manas R Joglekar, Rohan Puttagunta, and Christopher Ré. Ajar: Aggre-
gations and joins over annotated relations. In Proceedings of the SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems. ACM, 2016.

[122] Mahmoud Abo Khamis, Hung Q Ngo, and Atri Rudra. FAQ: questions asked
frequently. In Proceedings of the SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, pages 13–28. ACM, 2016.

[123] Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Motwani,
and Jeffrey D Ullman. Computing iceberg queries efficiently. In Proceedings
of the International Conference on Very Large Data Bases. Stanford InfoLab,
1999.

[124] Kevin Beyer and Raghu Ramakrishnan. Bottom-up computation of sparse
and iceberg cube. In SIGMOD Record, pages 359–370. ACM, 1999.

[125] Jiawei Han, Jian Pei, Guozhu Dong, and Ke Wang. Efficient computation of
iceberg cubes with complex measures. In SIGMOD Record. ACM, 2001.

[126] Dong Xin, Jiawei Han, Xiaolei Li, and Benjamin W Wah. Star-cubing: Com-
puting iceberg cubes by top-down and bottom-up integration. In The Inter-
national Journal on Very Large Data Bases, 2003.

[127] Yu Jiang, Guoliang Li, Jianhua Feng, and Wen-Syan Li. String similarity joins:
An experimental evaluation. Proceedings of the International Conference on
Very Large Data Bases, 7(8):625–636, 2014.

[128] Chuan Xiao, Wei Wang, Xuemin Lin, Jeffrey Xu Yu, and Guoren Wang. Ef-
ficient similarity joins for near-duplicate detection. Transactions on Database
Systems, 36(3):15, 2011.

[129] Jiannan Wang, Jianhua Feng, and Guoliang Li. Trie-join: Efficient trie-based
string similarity joins with edit-distance constraints. In Proceedings of the
International Conference on Very Large Data Bases, volume 3, pages 1219–
1230. VLDB Endowment, 2010.

[130] Guoliang Li, Dong Deng, Jiannan Wang, and Jianhua Feng. Pass-join: A
partition-based method for similarity joins. In Proceedings of the Interna-
tional Conference on Very Large Data Bases, volume 5, pages 253–264. VLDB
Endowment, 2011.

[131] W Yan and Per-Åke Larson. Interchanging the order of grouping and join.
Technical report, Technical Report CS 95-09, Dept. of Computer Science,
University of Waterloo, Canada, 1995.

[132] Weipeng P. Yan and Per-Åke Larson. Eager aggregation and lazy aggregation.
In Proceedings of the International Conference on Very Large Data Bases,
pages 345–357. Morgan Kaufmann Publishers Inc., 1995.

204

[133] Weipeng P Yan and Per-Åke Larson. Performing group-by before join. In
Proceedings of the International Conference on Data Engineering. IEEE, 1994.

[134] Surajit Chaudhuri and Kyuseok Shim. Including group-by in query optimiza-
tion. In Proceedings of the International Conference on Very Large Data Bases,
volume 94, pages 354–366, 1994.

[135] Frank McSherry, Michael Isard, and Derek G. Murray. Scalability! But at
what COST? In Proceedings of the Workshop on Hot Topics in Operating
Systems, 2015.

[136] Neo4j. New query language for graph databases to become
international standard. https://neo4j.com/press-releases/

query-language-graph-databases-international-standard/.

[137] Peter Battaglia, Jessica Blake Chandler Hamrick, Victor Bapst, Alvaro
Sanchez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David
Raposo, Adam Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andy
Ballard, Justin Gilmer, George E. Dahl, Ashish Vaswani, Kelsey Allen, Charles
Nash, Victoria Jayne Langston, Chris Dyer, Nicolas Heess, Daan Wierstra,
Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pas-
canu. Relational inductive biases, deep learning, and graph networks. arXiv
preprint arXiv:1806.01261, 2018.

205

https://neo4j.com/press-releases/query-language-graph-databases-international-standard/
https://neo4j.com/press-releases/query-language-graph-databases-international-standard/

	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Graph vs Relational Analytics
	Complementary Nature of Relational and Graph Analytics
	Relevant Historical Data Models
	XML
	RDF

	Specialized Graph Systems
	Graph Frontend, Graph Backend
	Bolt-on Solutions: Graph Frontend, RDBMS Backend
	Graph Analytics Frameworks
	From Relational to Graph Backend

	The Gap Between RDBMSs and Graph Analytics
	Hidden Graphs in Relational Schemas
	Large Output Joins in Relational Query Processing

	Contributions
	Outline and Previously Published Work

	GraphGen System Overview
	Architecture
	GraphGenDL
	Syntax: Single Graphs
	Syntax: Graph Collections

	Internal Data Structures & Interfaces
	Java APIs
	Vertex-centric API
	External Libraries

	Web Based Graph Exploration Interface

	Extracting and Analyzing Graphs in RDBMSs
	Overview
	Review: Hidden Graphs and Challenges
	Analyzing Hidden Graphs with GraphGen
	Condensed In-memory Representations and Duplication

	In-Memory Representation and Task Execution
	Condensed Representation & Duplication
	Extracting a Condensed Graph
	In-Memory Representations

	Preprocessing & Deduplication
	Preprocessing for BITMAP
	Deduplication for DEDUP-1
	DEDUP-2 Greedy Algorithm

	Experimental Study
	Small Datasets
	Large Datasets
	Microbenchmarks
	Integration with Apache Giraph

	Experimental Setup
	Generation of Small Synthetic Datasets
	Generation of Large Datasets
	Database Schemas and Generated SQL
	Discussion: Choosing a Representation

	Summary

	Analyzing Collections of Graphs in RDBMSs
	Graph Collections
	What-if Analysis
	Extracting Graph Collections
	Tagging Framework
	Rule 1 (Tagging)
	Rule 2 (Tag Propagation)

	Preliminary Experiments
	Summary

	Leveraging Graphs for Aggregate Query Processing
	Overview
	Re-thinking Aggregate Query Processing
	The Join-Agg Operator
	Summary of Contributions

	Data Graph Representation and Construction
	Query Decomposition
	Splitting Attributes
	Data Graph Representation
	Mapping Relations to a Data-Graph
	Join-Agg Stage 1: Loading Data Graph

	Traversing The Data Graph
	Definitions & Axioms
	Join-Agg Stage 2: Traversal and Multiplicities
	Join-Agg Stage 3: Result Generation
	Other Aggregation Functions

	Complexity Analysis
	Implementation Details
	Pre-aggregation Implementation

	Experimental Evaluation
	Synthetic Datasets
	Tuning PostgreSQL
	Join-Agg Performance Analysis
	Pre-aggregation Performance Analysis

	Summary

	Related Work
	Graph Data Management Systems
	Graph Analytics Frameworks
	RDBMS & Graph Analytics
	Graph Compression
	Multi-Query Optimization
	Analysis Frameworks for Overlapping Graph Collections
	Representing Graph Collections

	Factorized Representation of Query Results
	Join and Aggregate Query Processing
	Worst-case Optimal Joins
	Iceberg Queries
	Similarity Joins
	Data Reduction Operators

	Conclusions
	Leveraging Graph Representations of Relational Data
	Limitations
	Closing Thoughts

	Algorithm Pseudocodes
	Bibliography

