378 research outputs found

    Design and Implementation of an Interactive Surface System with Controllable Shape and Softness

    Get PDF
    「平面的で硬い」という従来のディスプレイの物理的制約は、ユーザが3次元的な形状を有するデータを扱う場合や触覚的な情報を有するデータと対話する場合に様々な制限を与えている. また, 平面的なディスプレイ上で複雑な立体形状を閲覧・モデリングするためには, 頻繁な視点移動や複雑な頂点操作等を伴うGUI操作が必要である. このような問題を解決するため, 砂, 粘土のような非平面的・柔軟な素材をサーフェスに取り入れて, 従来のディスプレイにできない異なるインタラクションを可能にした研究が行われていたが, 一つのデバイスで異なる物理性質を表現できるディスプレイはあまり研究されていない.本研究は細かなパーティクルと気圧操作による硬さ制御技術に着目し, 硬度可変ディスプレイの実装を行った. 硬さ制御によって, 軟らかいときに形状の変形や, 用途に応じて形状を維持することもできる.このディスプレイの可能性を探るため, 硬さ制御を利用したモデリングアプリケーションを開発した. このアプリケーションでは, モデリング操作に応じて, 適切な硬さを選択する事ができ, モデルが完成した時にディスプレイを硬化し形状を維持させることが可能である.また, 深度カメラを用いることで, タッチ入力による彩色が可能になり, 作成したモデルをスキャンし, CADデータとして保存することもできる. さらに, 3Dプリンターで出力することも可能にした.このシステムは、従来のモデリング操作をより直感的する事ができるが, システム単独で形状を生成することができない. そこで, 本研究では粒子運搬技術を用いて, ディスプレイの形状アクチュエーション手法も提案する. この手法では, モデルの大まかな形状を生成することで, ユーザは形状の細部を自由にカスタマイズすることができる. この手法は, 硬さ制御技術と同じくパーティクルと空気アクチュエーションを用いているため, 低コストかつシンプルなシステムで実現することができる.電気通信大学201

    Multi-touch Detection and Semantic Response on Non-parametric Rear-projection Surfaces

    Get PDF
    The ability of human beings to physically touch our surroundings has had a profound impact on our daily lives. Young children learn to explore their world by touch; likewise, many simulation and training applications benefit from natural touch interactivity. As a result, modern interfaces supporting touch input are ubiquitous. Typically, such interfaces are implemented on integrated touch-display surfaces with simple geometry that can be mathematically parameterized, such as planar surfaces and spheres; for more complicated non-parametric surfaces, such parameterizations are not available. In this dissertation, we introduce a method for generalizable optical multi-touch detection and semantic response on uninstrumented non-parametric rear-projection surfaces using an infrared-light-based multi-camera multi-projector platform. In this paradigm, touch input allows users to manipulate complex virtual 3D content that is registered to and displayed on a physical 3D object. Detected touches trigger responses with specific semantic meaning in the context of the virtual content, such as animations or audio responses. The broad problem of touch detection and response can be decomposed into three major components: determining if a touch has occurred, determining where a detected touch has occurred, and determining how to respond to a detected touch. Our fundamental contribution is the design and implementation of a relational lookup table architecture that addresses these challenges through the encoding of coordinate relationships among the cameras, the projectors, the physical surface, and the virtual content. Detecting the presence of touch input primarily involves distinguishing between touches (actual contact events) and hovers (near-contact proximity events). We present and evaluate two algorithms for touch detection and localization utilizing the lookup table architecture. One of the algorithms, a bounded plane sweep, is additionally able to estimate hover-surface distances, which we explore for interactions above surfaces. The proposed method is designed to operate with low latency and to be generalizable. We demonstrate touch-based interactions on several physical parametric and non-parametric surfaces, and we evaluate both system accuracy and the accuracy of typical users in touching desired targets on these surfaces. In a formative human-subject study, we examine how touch interactions are used in the context of healthcare and present an exploratory application of this method in patient simulation. A second study highlights the advantages of touch input on content-matched physical surfaces achieved by the proposed approach, such as decreases in induced cognitive load, increases in system usability, and increases in user touch performance. In this experiment, novice users were nearly as accurate when touching targets on a 3D head-shaped surface as when touching targets on a flat surface, and their self-perception of their accuracy was higher

    Digital Fabrication Approaches for the Design and Development of Shape-Changing Displays

    Get PDF
    Interactive shape-changing displays enable dynamic representations of data and information through physically reconfigurable geometry. The actuated physical deformations of these displays can be utilised in a wide range of new application areas, such as dynamic landscape and topographical modelling, architectural design, physical telepresence and object manipulation. Traditionally, shape-changing displays have a high development cost in mechanical complexity, technical skills and time/finances required for fabrication. There is still a limited number of robust shape-changing displays that go beyond one-off prototypes. Specifically, there is limited focus on low-cost/accessible design and development approaches involving digital fabrication (e.g. 3D printing). To address this challenge, this thesis presents accessible digital fabrication approaches that support the development of shape-changing displays with a range of application examples – such as physical terrain modelling and interior design artefacts. Both laser cutting and 3D printing methods have been explored to ensure generalisability and accessibility for a range of potential users. The first design-led content generation explorations show that novice users, from the general public, can successfully design and present their own application ideas using the physical animation features of the display. By engaging with domain experts in designing shape-changing content to represent data specific to their work domains the thesis was able to demonstrate the utility of shape-changing displays beyond novel systems and describe practical use-case scenarios and applications through rapid prototyping methods. This thesis then demonstrates new ways of designing and building shape-changing displays that goes beyond current implementation examples available (e.g. pin arrays and continuous surface shape-changing displays). To achieve this, the thesis demonstrates how laser cutting and 3D printing can be utilised to rapidly fabricate deformable surfaces for shape-changing displays with embedded electronics. This thesis is concluded with a discussion of research implications and future direction for this work

    Analysis and Classification of Shape-Changing Interfaces for Design and Application-based Research

    Get PDF
    Shape-changing interfaces are physically tangible, interactive devices, surfaces, or spaces that allow for rich, organic, and novel experiences with computational devices. Over the last 15 years, research has produced functional prototypes over many use applications; reviews have identified themes and possible future directions but have not yet looked at possible design or application-based research. Here, we gather this information together to provide a reference for designers and researchers wishing to build upon existing prototyping work, using synthesis and discussion of existing shape-changing interface reviews and comprehensive analysis and classification of 84 shape-changing interfaces. Eight categories of prototype are identified alongside recommendations for the field

    Integrating visual and tactile robotic perception

    Get PDF

    The unlubricated sliding wear behaviour of austempered ductile irons

    Get PDF
    Bibliography: pages 85-89.A study has been made of the unlubricated sliding wear behaviour of austempered ductile irons under conditions of sliding velocity and load. The load was varied between 0.9 and 2.8 MPa, whilst the sliding velocity range was between 0.5 and 2.0 ms⁻¹. Two commercial grades of spheroidal graphite irons, SG42 and SG60 were austempered between 250⁰C and 400⁰C. A distinction in the wear behaviour was found with metallic type wear dominating at the lower sliding velocities and an oxidative type wear being evident at the higher sliding velocities. It was however found that an increase in the load resulted in an earlier onset of the oxidative type wear regime, for a specific sliding velocity. On austempering these spheroidal graphite irons the mechanical properties as well as the sliding wear resistance increased dramatically. Furthermore, the austempered irons' outperformed a series of steels of much higher hardness by factors between 2 and 28 times under the same conditions. At the lower velocity of testing the outstanding wear resistance is attributed to the austempered iron's unique microstructure of acicular ferrite and retained austenite and a partial transformation of austenite to martensite. However, at the higher sliding velocity the exceptional wear resistance is derived from a development of an tribologically protective oxide film together with the formation of a hardened white layer. The development of the work hardened layer is linked to the high carbon in the matrix of these irons. The work hardened layer leads to a similar wear rate prevailing for all irons austempered from a specific parent iron. The synergism of variation in load, sliding velocity and wear counterface together with the effect of initial microstructure has been explain in terms of simple wear models

    Drop coalescence in technical liquid/liquid applications : a review on experimental techniques and modeling approaches

    Get PDF
    The coalescence phenomenon of drops in liquid/liquid systems is reviewed with particular focus on its technical relevance and application. Due to the complexity of coalescence, a comprehensive survey of the coalescence process and the numerous influencing factors is given. Subsequently, available experimental techniques with different levels of detail are summarized and compared. These techniques can be divided in simple settling tests for qualitative coalescence behavior investigations and gravity settler design, single-drop coalescence studies at flat interfaces as well as between droplets, and detailed film drainage analysis. To model the coalescence rate in liquid/liquid systems on a technical scale, the generic population balance framework is introduced. Additionally, different coalescence modeling approaches are reviewed with ascending level of detail from empirical correlations to comprehensive film drainage models and detailed computational fluid and particle dynamics
    corecore