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Abstract

Dielectric Elastomer Actuators (DEAs) are a novel soft actuator technology which has

been shown to be highly efficient, fast acting, proprioceptive and soft. These actuators

have been investigated for their impressive performance, but they do have significant

drawbacks due to their high voltage operation, failure modes and high stress concentra-

tions around soft-rigid couplings.

This thesis presents three main areas of research into DEAs to enhance their material

coupling and integration into practical applications by maximising performance through

innovative design concepts, and implementation optimisation.

A novel method of creating multi-layer actuators is presented where laminated di-

electric and conductive layers form an inter-penetrating network with captured strain

energy. A proof-of-principle DEA demonstrator produced active strain comparable to

mammalian muscle.

A new design space is explored to conceive a mechanically coupled DEA that produces

a stiff actuation output from a soft actuator. This mitigates key risks of failure of DEAs.

The design space includes potential for development of rotational and linear drives and

a proof-of-concept multi-state actuator implementation is characterised.

DEAs exhibit self-sensing capability, however high resolution sensing is difficult to

implement. An innovative approach for sensing coupling DEA actuation with a soft

optical touch sensor is presented. This active-touch system is demonstrated using a

palpating coupled module to detect objects.

This thesis has shown high performance DEAs can be integrated and coupled into

rigid and soft systems, producing state of art actuators and sensing. Additionally this

work demonstrates that the high performance characteristics implemented in thin-film

actuator, can be captured in a scaled-up multi-layer actuator through novel bonding,

prestrain and lamination methods.
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1 Integration and Optimisation of Dielectric Elastomer Actuators (DEAs)

Research in novel actuators has seen rapid expansion in recent years especially within

soft actuators including dielectric elastomer actuators (DEAs). There is a rich environ-

ment for research within this class of polymer actuator with scope for innovation. The

characteristics of DEAs in their most basic form are comparably impressive in the field.

They show high efficiency, high strain, fast response time and repeatability of actuation

cycles. These features should enable a whole range of devices to be developed, however

when applied to real world applications, the actuators exhibit some limitations. DEAs

require mechanical optimisation to achieve the characteristics described, and the deliv-

ery of mechanical energy from the active strain of an actuator membrane is difficult to

transfer to an external load. Additionally, the soft nature of these actuators requires a

more holistic consideration of actuator reliability and performance including integration

to external structures.

1.1 Overview of Polymer Actuators

In the last two decades there has been a renewed interest in the investigation of soft

actuators and soft robots. This reinvigoration is due to a number of factors in the fields

of engineering and robotics. As industrial robots have increased in complexity to take

on more tasks performed by humans, the requirements have shifted from large-scale re-

peated actions in a structured∗ environment carrying out mass-production tasks with

minimal feedback, to human-scale† unstructured environments with variable workspaces

and dynamic complex tasks. The set of tasks where there are limitations in current

actuation technologies also encompasses a wide range of applications beyond humanoid

robots, including medical devices (e.g. surgical tools [Cianchetti et al., 2014]), search

∗Structure is used to define the type of environment the robot is used in. If it is structured, the
workspace is considered ordered

†In this instance, human-scale refers to tasks that are capable to be undertaken by humans and
includes a range to the lower limit of human operational capabilities
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and rescue robots [Tolley et al., 2014], or pipe inspection [Kornbluh et al., 1998]. These

tasks require reliability, repeatability, flexibility, compact high power density (over a

range of scales) and feedback for control. As such there has been an increasing desire

to find alternative actuators and structures that offer potential to exhibit these char-

acteristics, and to be able to implement specialised devices in these expanding areas of

desired operation.

Of the many possible novel actuator choices available, electrostatic polymer actu-

ators are of particular interest and they are a type of electroactive polymers (EAPs).

EAPs encompass a wide range of materials and actuation types (e.g. ionic polymer

metal composite (IPMC), electrostatic, twisted-coil actuators (TCAs), shape memory

alloys (SMA)), each with specific benefits and limitations, which all use a polymeric

based material for actuation [Haines et al., 2014, Carpi et al., 2007]. Within this class

of actuators, dielectric elastomer actuators (DEAs) are a particular group of electrostatic

EAP actuator that show promise as efficient high energy, high strain, soft actuators and

have been used across a range of scales from millimetre to metre [Chiba et al., 2008].

Table 1 shows a comparison of maximum performance between a selection of smart

material actuators, and a biological actuator (mammalian muscle).
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Actuation

Types

Mammal

Skeletal

Muscle

DEA

(Silicone)

DEA

(VHB)

TCA SMA

(TiNi)

IPMC

Strain (%) 20 - 40 <120 <380 40 >5 <3

Stress

(MPa)∗

0.1 (0.35†) 3.2 7.7 70 >200 <3

Efficiency

(%)

∼40 <80 <80 <2 <5 <5

Response

(cyclic)

Medium/

Fast

Fast Medium/

Fast

Slow Slow Medium

Voltage

(V)

<1 >1000 >1000 N/A

(Thermal)

Low <7

Cycle Life 109 106 at

10% strain

106 at

50%

strain

104 at 2%

strain

107 at

0.5%

strain

104

Table 1: A comparison of prevalent alternatives to conventional actuator technologies
[Mirvakili et al., 2014, Carpi and Rossi, 2007, Bar-Cohen, 2004]

(†) - Only sustainable for short periods

Mammalian muscle is used as a benchmark when comparing how these actuators

perform, as many applications of soft actuators require the same range of characteristics

(however it should be noted, there are some signifiant exceptions). Mammalian muscle

has evolved to provide an efficient method of providing actuation to a skeletal framework,

which can operate across scales from sub-millimetre to metre. They offer a high power

density and function over the lifetime of the mammals in some cases exceeding a century

∗Peak Stress that can be sustained
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of continuous use. Nature’s methods of repair and continual replacement facilitate this

capability. DEAs potentially offer capabilities in excess of those attained by mammalian

muscle (in their thin film form). Scaling these results to the high power requirements of

larger muscles in mammals is still in active development. At a smaller scale DEAs are

already being applied to devices including haptic feedback units, and an autofocus lens

[O’Halloran et al., 2008, Matysek et al., 2010, SRI, 2010]. To apply an electric field of

the strength needed for actuation, the voltage required is high, and as such, a significant

drawback, especially for high power applications, where the energetic release on failure

would potentially be fatal for humans. Methods of protection and ways to reduce the

voltage amplitude required may be developed to mitigate this drawback. The parameters

of response time, efficiency and lifespan are exceptional and show the potential of this

technology. Twisted polymer coil actuators (TCAs) and shape memory alloys (SMAs)

use thermal response to actuate - by thermal conduction and electrical resistive heating

respectively -, producing high energetic output; greater than DEAs, but taking longer

to respond with a significantly slower response time. Additionally, their efficiency is

comparatively much lower than DEAs or mammalian muscles. Ionic polymer-metal

composite (IPMCs) offer another alternative actuation technology, even considering their

relatively fast response time, the energetic output of this actuator type is not considered

comparable to other technologies shown in Table 1.

DEAs can be seen to be a close approximation to their biological counterparts, but

have some drawbacks which affect how the technology can be used (especially in hu-

man robot interaction applications) discussed in Section 1.4. With response time and

efficiency improvements TCAs and SMAs could offer some competition to DEAs at mim-

icking the actuation potential of muscle. For all actuators described, the technologies can

be applied to real world problems requiring novel actuation. Figure 1 gives a compari-

son between competing actuator technologies, showing their optimum stress and strain

response.
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Figure 1: Chart of stress-strain characteristics of actuator technologies (reproduced from
[Conn, 2008]).

From the figure above, the maximal stress-strain performance of envelopes can be

compared. The electrostatic actuators fabricated from VHB and silicone straddle the

output of muscle, and outperform most non-conventional actuators and some more con-

ventional actuator technologies. As a mimetic for biological muscle DEAs can be shown

to, at present, have outputs that can match this capability. In addition, due to the lack

of significant breakthroughs in the chemical engineering of the dielectric materials for

DEAs, it can be assumed that further performance enhancements may be found.

1.2 DE Actuator Overview

From the very beginnings of the discovery of electricity, actuation of biological muscles

excited and intrigued. With the advent of the harnessing of electrical energy in the

late 19th century early experimentation involving dielectric actuation of balloons was

carried out [Breazeal and Bar-Cohen, 2003]. In the re-genesis of DEAs, the properties

of numerous elastomers have been explored.
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Due to the breadth of possible configurations, materials and applications that DE

actuators can be formed with, the categorisation of specific system types is difficult

to define. However, DE actuators can be divided into two broad categories of opera-

tion - higher power multi-layer implementations and thin films (usually single layer).

Across both operation types, DEA research efforts have included improving the ac-

tuators through endeavours in material science and modelling, mechanical design and

fabrication. The characterisation of DEA actuation has led to an understanding of the

parameters that determine the actuation and failure modes of the actuator. This re-

search is aimed at optimising the coupling of DEAs to external loads through a number

of configurations. The exploitable characteristics and methods intrinsic to the actu-

ator design and construction detailed in Table 2 are utilised along with novel design

approaches to create coupled DE actuators.
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Characteristic/

Method

Description

Material Composition Dielectric and conductive materials make up the electrostatic

actuator. The material compositions and characteristics can

be improved to achieve required levels of performance

Fabrication Methods Uniform dielectric membranes and consistent conductivity are

critical to optimal operation of DEAs. In stacks layering tech-

niques also help optimise performance.

Modalities To use the mechanical work done by the actuator, it needs to

be converted into a useful form. The modality will depend on

the design of the actuator and the modality, which in planar

arrangements includes transverse contractive actuation or pla-

nar relaxation actuation. Other modalities will be discussed

in reviewing relevant literature in section2.6

Actuator Modelling A better understanding of the mechanical dynamics enables

further enhancement of the actuator within quantified stable

boundaries.

DEA Specific Parame-

ters

Optimisation of parameters such as pre-strain and response

time of the DEA membrane and use of characteristics of the

actuator will enable increases in performance.

Design and Integration DEAs are inherently soft, and need to have external sup-

port or be self-supporting. Their operation can be enhanced

through structurally supported configurations, such as antag-

onistic cone pairs. The design of the actuator and its system

integration are important in developing real world applica-

tions.

Table 2: Description of customisable characteristics of DEAs and developmental methods
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A DEA’s operation is governed by the electrostatic compression of an elastomer

through the application of high electric field∗. To maximise the performance of the

actuator, the parameter and methods tabulated can be used. Inherent in the optimi-

sation and reliable operation of a DEA, the design of its integration into a structure

is paramount. In spite of achieving outstanding characteristics in thin film form, the

actuators are not resilient to high physical stresses generated from external interactions

especially during operation where over-stressing localised points of the material can

cause mechanical failure. Additionally, failure may be induced by electrical breakdown

(dielectric failure either through inhomogeneous material facilitating breakdown, or pull-

in failure†. Due to the capacitive nature of the membrane, a single point of failure causes

the whole device to fail, hence the importance of reducing these failure mechanisms.

1.3 DEA Actuator Applications

In principle DEA actuators offer a method of producing a variety of devices from high-

power large-scale, to efficient millimetre scale and proprioceptive devices (in both passive

and active operation). As such there are wide range of applications that this exciting

technology can be applied to. To classify particular groups of interest, Table 3 shows

some of the popular conceived applications.

∗The voltage is of a high magnitude due to the distance over which it acts. The Maxwell pressure
needed to compress the elastomer is proportional to the inverse square of the distance acted over. At a
material thickness where reliable dielectric layers can be produced the voltage is broadly in the order of
1kV to 10 kV with present materials and fabrication techniques

†Pull-in failure refers to an instability where Maxwell pressure continually exceeds film compressive
stress resulting in breakdown
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Application Description

Prosthetics Multi-layer - Artificial Muscle for use as the high power actu-

ator in prosthetic or supportive actuation for stroke rehabili-

tation

Surgical Robots A manipulator to produce precise control at small scale.

Gastrointestinal Inves-

tigation

A stand-alone robot to locomote and sense features of the GI

tract related to health conditions.

Damage Assessment A better understanding of the mechanical dynamics enables

further enhancement of the actuator within quantified stable

boundaries.

Search and Rescue The ability to locomote and explore an environment adapting

to traverse small gaps and unstructured environments.

Pump For the movement of fluids in a system (e.g. artificial heart).

Valve For the control of high pressure fluids as a control mechanism

for a high-power system (e.g. air muscle control valve).

Micro space system de-

ployment

Unfurling systems and sensors using lightweight minimum en-

ergy structure (MES) designs.

Artificial Skin For the development of areal sensory feedback of external in-

teraction forces on a robotic system.

Table 3: Conceived applications of DEA actuators and sensors

Soft materials can be used for a variety of applications as shown in Table 3. They can

be used for actuators as stand-alone devices, sensors, actuators with intrinsic position

sensing, and form entirely soft robots. DEA soft actuators are aimed to outperform

existing technology in manipulation and efficiency at a humanoid scale in particular

applications where large strain and compliance can be utilised. Many of these possible
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functions surround human compatibility and capability, but include a far broader range

of bio-mimicking technologies, which encapsulate a wide range of applications. The

research in the field has involved a broad array of specialised devices, which fill specific

gaps in the application space. In these cases particular features of the DEAs are exploited

with some success in proof of concept [Carpi et al., 2011, Araromi et al., 2015a]

1.4 Limitation and Opportunities in DEA Research

DEAs are an excellent candidate for generating actuation outputs that cannot be ade-

quately produced using conventional electric motor technology. This includes in appli-

cations requiring lightweight systems, non-metallic actuators, and as artificial muscles

mimicking the contractile actuation found in natural muscle. They have been shown

to have class-leading characteristics, and can self-sense, be used as an artificial sensory

surface (or skin) and are scalable [Gisby et al., 2013]. They are inherently compliant,

and based on analysis of characterisation data, DEAs appear to be a viable replacement

for popular conventional actuators∗ over a wide variety of applications, both current

and novel. However, there are some significant gaps between the current state-of-art

and the targeted spectrum of applications. Additionally, there are some significant

drawbacks due to the high voltages required for actuation (i.e. the need for protection

from failure), realisation of reliable actuation with different application requirements

(especially high-power) and resilience to interactions with external environment bod-

ies (especially rigid or sharp objects) that may adversely affect actuator functionality

[Kovacs and Düring, 2009]. Considering the benefits and the need for further optimi-

sations, and the current limitations of the actuators in their current form, a key focus

of addressing problems with coupling and integration of DEAs was identified. Specific

opportunities with significant potential have been identified:

∗Popular conventional actuators used are predominantly electric motor driven systems
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Integration of DEAs to Real World Actuation Systems - Soft actuators such as

DEAs have been purposefully used in combination with soft structures to assert a useful

output. This work will look at how to integrate DEAs into modules compatible with

popular conventional actuation systems∗ to produce useful and reliable interactions. The

integration of soft actuators into rigid systems is a currently under-explored area of this

field.

The research has however focused on thin film actuators (single layers) at a small

scale. This is partly due to the ease of fabrication with existing materials to create proof

of concepts, and partly due to the ease of optimisation of DEAs in their single layer

form. There are a few applications which have used larger scale membrane and, some

that have used multiple layers. [Kovacs and Düring, 2009, Carpi and Rossi, 2007]. As

planar actuators, DEAs can be designed to be used in a number of modes to provide

simple and complex planar, and out-of-plane actuation.

Development of Multi-layer Actuators for Integration in High Power Sys-

tems - The development of a high performance large-scale actuator has applications in

a number of fields. It can be used as a mimetic for mammalian muscle, or soft robot

actuation - for locomotion and manipulation. As a muscular mimetic, the DEA can be

used for humanoid robotic systems and prostheses, but more broadly can be used to

replicate muscular actuation in bio-mimetic designs.

Soft robotic actuators have been used for a range of novel, specialised small-power

devices. These have facilitated the development of soft devices and are inherently part

of the field of soft robotics. However, it has been found that high output multi-layer

actuators are much harder to construct, optimise and deliver a usable output in the

region characterised in single layers. The necessity of actuator supporting structure and

thickness mode configuration for multi-layer compressive strain is complex.

A significant proportion of large scale developments have focused on energy gen-
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eration rather than actuation, due to removal of high voltage requirements and the

acceptance of higher losses or lack of maximised optimisation in the operation of the

soft capacitor.

Multi-modal Compliant Sensing - In precise manipulation robots, the requirements

for sensing and actuation are closely linked, especially as researchers move to investigate

increasingly complex unstructured environments that we aspire to develop robots to

operate in future [Tiwana et al., 2012]. There is a need for feedback from robotics arms

and end-effectors. These sensors must provide multi-point sensing with a sensing density

high enough to give an emulation of skin that can be used to enable more precise dextrous

manipulation. The development of a robotic skin or complex sensing system seems

likely to be an essential part of future humanoid robotic systems especially with close

proximity to humans, due to need to protect people from damaging movements of robots.

Additionally, its uses on a range of robots with complex behaviours make it a sought

after technological advancement.

Previous research has been undertaken to utilise the properties of the DEA to provide

a form of sensing [Gisby et al., 2013]; intrinsic to the capacitive form is the complex

impedance (capacitive reactance) of the actuator. Superimposing a high frequency input

signal can allow the reactance to be detected at high or low voltage [Jung et al., 2008,

Huu Chuc et al., 2008]. The actuation of a sensing component (e.g. skin or proboscis)

whilst simultaneously sensing enables the use of a passive sensor in an active mode. This

method has been shown to provide precise sensing. However, only one sensing parameter

can be outputted per DEA. Additionally, bi-axial expansion cannot be distinguished from

uni-axial strain with the same area change. This fundamentally limits the capability of

this sensing method when considering zonal sensing.

This is not the only method of sensing whilst using a DE actuator. Other proven tech-

nologies such as optical or resistive sensing, as well as other capacitive sensing methods
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can be used whilst still leveraging the advantageous properties proffered by soft actua-

tors [Dahiya et al., 2010].

In summary, the field of soft robotics offers a wealth of new possibilities to implement

novel and high performance robotic systems that provide exceptional characteristics that

cannot be replicated in current popular robotic systems. These include pseudo-muscular

mimicry, intrinsic compliance and proprioception properties. There is a clear need for

flexible, bio-mimicking, sensory robots to work with humans and improve on the current

state-of-art in a number of sectors; from medical tools and prostheses, to close proximity

robot interaction with humans (where safety is paramount) and in a number of other

fields (such as space systems, or search and rescue robots). DEAs do have potential to

fulfil all of these tasks, however, there are some key limitations to be overcome including

safety, for high voltage required for operation, and realisation of optimised characteristics

in real world systems reported in literature [Pourazadi et al., 2017].

1.5 Research Objectives

This work is aimed at filling some of the gaps in the current actuator and sensing

technology for use in soft robots, muscles or actuating structures. The field and the

possibilities for the technology are still not fully explored. Soft actuators have been

explored as low power and broadly planar systems, where actuation has been optimised

and shown to have high performance characteristics. Some have been shown to have

sensing capabilities. Harnessing these performance characteristics to produce devices

with useful output requires novel specialisation, design, and fabrication methods. In

summary the objectives are as follows:

1. Analyse current state-of-art developments to provide insight into:

• Fabrication methods of actuators including materials and optimisation pa-
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rameters.

• Mechanical designs and structures used to provide specialised performance

characteristics.

• Actuator configurations and modalities of actuation for integration into elec-

tromechanical devices.

2. Use that analysis to identify key areas where DEA systems can be improved.

3. Develop innovative solutions to limitations of DEA system coupling

• Ideate novel concepts

• Develop requisite processes and methods to create proof-of-concept

• Test conceptual implementations and analyse performance.

1.6 Research Methodology

The motivation of this PhD is to enhance the current state-of-art of DEAs through

analysing their form and creating innovations in the optimisation of DE actuator devel-

opment and their integration and use in a variety robotic structures and implementations.

Three defined technological gaps were identified and solutions developed as part of the

investigations:

1. Multilayer actuators

2. Low-power or control actuation systems∗

3. Sensory systems

An approach of defining and characterising technological innovation was proceeded

by a unit system and integrated system design process as part of an engineering design

process. The methodology used is described in the flowchart in Figure 2:

∗The term ‘control actuator’ is used to refer to an assistive actuator that enables or controls the
primary (or power) output (e.g. valve in a pneumatic system).
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Understanding the Problem

Proposal of Solution

Development of Solution

Testing and Evaluation of Solution

Review

State-of-art

Identify Key

Limitations

Develop Novel

Concept Design

Construct

Prototype Device

Characterise

and Optimise

System Units

Update Unit

Design

Can the

concept be

improved

Characterise and

Optimise System

Analyse Proof

of Concept

yes

no

Figure 2: Chart of the research methodology used in the developments set out in this
thesis
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As described in Figure 2, a review of the literature surrounding DEAs was followed by

identifying key limitations within the application of soft actuators to real-world robotic

problems. This involved the targeted study of configurations, modes of operation, state-

of-art fabrication and modelling techniques.

A concept with innovative approaches to DEA utilisation was devised to solve limita-

tions within the current state-of-art of DEA. From this concept, steps/problems required

to be solved were identified. These were undertaken in the development of a prototype,

where these problems were individually or in combination resolved in the design and

fabrication of components and mechanisms for the system. Major unitised components

were individually characterised to ensure unit functionality of each element of the solu-

tion. If required, elements were redesigned and retested where they failed to meet the

requirements of the design. When the system was fully integrated in a working pro-

totype, the whole system was tested and its performance analysed. This method was

repeated in three areas where particular gaps were found in the development of DEA

actuators.

1.7 Structure of Thesis

The integration of optimised DEAs to operate in complement or in place of current

actuation technologies is under-explored. This work will attempt to change this by

exploring and optimising novel concepts for specific classes of applications to which DEAs

are suited. This introduction is followed by a literature review of the current state-of-art

in the field of soft actuation and sensing. The current attainable performance will be

discussed and how novel specialisation has provided a breadth to the field.

• Chapter 2 - Literature Review - a review of the current state-of-art in the field

of soft actuation and sensing. This will provide a more specific in-depth review

of DEAs, which form the main focus of the thesis. It will include modalities,

materials, fabrication, modelling, design, and structure. The current attainable
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performance will be discussed and how novel specialisation can be applied to the

field to attain some key benefits.

• In Chapter 3 - Mesoscale Thickness-mode Multi-layer Actuator Optimisation - ,

the requirements for the development of a high performance multi-layer actuators

will be investigated. How certain technological limitations could be overcome are

investigated.

• Chapter 4 - Multi-stable Soft Actuator with Rigid Position Control - will cover

the development of an enabling technology, providing secondary actuator with

application in valves. The use, configurations and optimisation of DEAs for this

purpose will be explored.

• In Chapter 5 - Development of an Actively Sensing Pneumostatic Probing Device

- use of soft materials in the development of active-touch sensing technology when

paired with optical sensors will be considered. The capabilities and possible meth-

ods of information retrieval about a surface will be researched.

These chapters will introduce the concepts and research pertinent to the endeavour and

describe the models, methods and experiments used. The outcome of investigations and

developments will be discussed and summarised.

The thesis focuses on the development of novel devices based on characterised mate-

rials. However, the novelty in each case is through the innovative pairing and coupling of

actuators, structures, and sensors. As such, the focus was on the optimisation of individ-

ual technologies and integrating them to form devices with highly useful functionality.

Due to the innate properties of the soft materials, the pairing combinations/coupling,

and the complex designs and manufacturing used, the developments are empirical as it is

highly unlikely to produce useful and comparable models in the cases presented. In ad-

dition the focus on the prediction of output would have reduced the achieved innovation
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in design and function delivered.

1.8 Contributions

This thesis makes the following contributions to the field of DEAs:

• Advancement of the techniques to enhance performance of multi-layer stack DE

actuators with specific emphasis on requirements for high-power tensile operation

actuation.

• Development of innovative pairing of a soft actuator with a multi-state mechanism

with rigid output and the creation of a prototype demonstration of a bistable

actuation device with zero-energy-fixity.

• Devise a novel active-touch zonal sensor, combining soft actuation and sensing

membranes to create a lightweight modular device.
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2 Literature Review

2.1 Introduction

The field of electrostatic actuators has expanded dramatically over the past two decades,

even though the principles and technologies have been described and understood for

over a century [Breazeal and Bar-Cohen, 2003]. The resurgence has grown from key

findings in new research within the field of soft actuators which have resulted in larger

performance increases [Carpi et al., 2007], as well as the current technological drive to

fill gaps in next generation robotics where more biomimetic properties are desired. New

types of actuator, materials and methods in a range of soft actuators, including twisted

polymer actuators, SMAs, DEAs and IPMCs have shown great promise and have exposed

the potential benefits still to be realised from innovations in novel actuation technologies.

The popular and standardised actuation technologies (such as electric motors) used

in most current commercial actuation systems are chosen for their power, scalability,

relative efficiency, and the gained economies of scale found in mass-production. There

are considerable economic, technological and research barriers to changes of actuation

technology, which may limit future commercialisation potential of DEAs until they are

proven to reach certain milestones of reliability and utility. However, there has been a

shift towards investigating alternative actuator solutions as robots (especially those of

a human-scale with future requirements of human manipulation) are being developed

where:

• Safer interaction characteristics currently are actively governed through complex

control systems of rigid bodies rather than inherent compliance and self-sensing.

• Actuator instantaneous power output in compact designs reaches the limits of

electric motors especially with high repetition, rather than with low loss, highly

responsive high strain direct actuation.
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• Haptic feedback is limited to optical, torque joint control and point-sensing feed-

back, rather than proprioceptive, biomimetic actuation with tactile skin.

These are the aims and outputs of some of the state-of-art soft actuation technologies

being developed today in the soft robotics field. The potential for soft actuators to pro-

vide alternative actuation in a near unexplored class of actuator has meant characterising

this group from the ground up.

Arguments made against developing this actuator class have included the comparable

high power, utility and scalability of electric motor technology, which have been the

primary drivers of a worldwide electrical motor industry for a century. The difficulty in

developing soft actuation technologies has been in the creation of new systems (including

designs, configurations, and devices) based on the basic principles and the formation

of a niche in which these technologies can surpass existing incumbent conventionally

actuated systems. However, the need for compliant sensors and actuators has become

increasingly clear from research endeavouring to further expand and leverage robotic

capabilities in both industrial and consumer applications. Research to solve these issues

has focussed on soft actuation and soft robots due to their bio-mimicry and comparable

output (to biological muscle) [Carpi et al., 2007]. The research and development in

novel actuation has expanded into many of the facets of the field, which has fuelled

competition in differing technologies and actuation methods internal to the soft robotics.

The majority of the outcomes of research in soft actuation are still developmental or proof

of concepts, however there have been commercial applications in the fields of wave energy

generation [Chiba et al., 2008], and in some haptic technologies [Haruna et al., 2007,

Matysek et al., 2009]. Additionally, many exploratory implementations in the soft robot

space have been created by Festo in their Bionic Learning Network [Fes, 2018].

There are significant hurdles in the development of soft robotics and soft actuators

to be overcome in order to reach these goals with the reliability and resilience expected

in industrial applications. The potential for specialised optimisation to an application
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is a potentially very beneficial feature, but also an “Achilles Heel” in the research, as a

large number of designs and types of actuation are possible, leading to a lack of targeted

aims. The breadth of research in materials, configurations, parameters and applications

will be discussed. These areas all play an important role in leveraging the technology

and enabling the current state-of-art through a mixture of optimisations to produce

specialised output.

Conventional actuation∗ for manipulation tasks has been mainly comprised of rigid

joint-and-link structures coupled with electric motors or hydraulic systems. Commer-

cially they have been mainly designed for industrial fabrication and manipulation. The

aim is to provide robots with the ability to deliver precise movements repeatedly with

high accuracy (in some cases with heavy loads). Large scale conventional robots have

excelled at these tasks, due to their well understood and proven dynamic movement and

control, enabling the robotic overhaul of industrial production. To automate a new range

of operations, robots are required to perform more complex tasks in semi-structured en-

vironments at a human scale (potentially with human interaction).

However, as robots are aimed towards less structured environments with more hu-

man interactions, reducing the scale of these systems whilst maintaining required perfor-

mance is hindered by limitations of the robotic components. The rigidity is an issue for

Human-Robot Interactions (HRI) due to the possibility of injury. This is compounded

by component weight and size.

Soft robots offer a potential solution to this and other problems. They may be

actuated by conventional and non-conventional actuators. Depending on the type of

actuation the robot can be tethered or untethered. Generally soft robots tend to be small

at present with a few exceptions (for example, Ant Roach by Pneubotics which is a large

hexapedal robot [Albert, 2016]), due to the early development stage of the technology.

∗For the purposes of this study, conventional actuation will encompass the use of electric motors
(linear, rotary, and geared), and rigid pneumatic/hydraulic systems
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Mostly they are produced at the lower end of the macro-scale for manufacturing∗, where

they are used in a mixture of primary and secondary actuation systems (such as pumps

and low-power muscles [Lotz et al., 2009, Gu et al., 2017a]).

This work, and hence the literature review, focuses on the development and optimi-

sation of soft systems using DEAs to facilitate further progress in soft robotic implemen-

tations, from multilayer actuators and their potential use for high power applications to

secondary actuators to control the actuation developed by other high power systems.

When considering soft robots with soft actuators, the supporting structure is an

inherent part of the actuator and vice versa (whether it is soft or rigid). The parts

are inseparable due to the actuators reliance on the support to enable applied force

generation for external interactions. There are relatively few large scale soft robot im-

plementations with some exceptions [Albert, 2016, Tolley et al., 2014]. One of the major

factors in this is the actuation technologies. Dielectric elastomer actuators are the tech-

nological focus of this work and their characteristics and operation will be discussed in

detail.

2.2 Dielectric Elastomer Actuator Overview

2.2.1 Principles of Operation

Actuation - DEAs are constructed of three formative layers; a central dielectric elas-

tomeric membrane separates two electrodes. The dielectric in DEAs is chosen to develop

high strain, whilst functioning as a continuous dielectric barrier. The electrodes are cho-

sen to be soft, so as not to inhibit the actuation - in sensors the electrodes can be stiffer

as high strain is not their primary task. The electrode material is tailored to apply a

continuous and uniform high electric field across the actuating surface area of the elas-

tomer, and maintain conductivity and coverage with a large expansion in the coated

surface. Figure 3 shows the actuation states.

∗macroscale denotes a range from 1 millimetre to 1 metre size components [Kalpakjian S., 2000]

41



(a) Short-circuited DEA (passive
state)

(b) High Voltage Applied to DEA (ac-
tive state)

Figure 3: DEA actuation principle showing (a) at rest and (b) actuated with application
of high voltage across dielectric

The DEA shown in Figure 3 is a single layer actuator. When a high voltage is

applied to the conductive plates either side of the dielectric material Figure 3b, an

effective pressure is generated by the electric field created across the dielectric. The

pressure can be calculated using Maxwell pressure, P, expressed as:

P = εrε0E
2 = εrε0(V/t)

2 (1)

where εr is the relative permittivity, ε0 is the permittivity of free space, E is the electric

field, V is the applied voltage, and t is the separation between conductive plates (i.e.

membrane thickness) [Carpi et al., 2007].

Stretch and strain are used to describe the deformation of elastomers depending on

their applicability. In Cartesian space, the stretches can be defined in each of the three

dimensions, where λ1, λ2, λ3 are the principal stretches in the directions x,y,z respectively

(x and y represent the in plane membrane lengths and z its thickness) [Carpi et al., 2007].

Stretch and strain are related such that:

λ = l/L (2)

e =
l − L
L

= λ− 1 (3)
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where λ is stretch, e is the strain, L is the initial length and l is the final length. Elas-

tomers used as dielectrics for DEAs are considered incompressible (having a Poisson ratio

that can be approximated to 0.5), which means that the pressure causes the membrane

to biaxially strain due to the relationship:

λ3 = 1/(λ1λ2) (4)

The stretch can be plotted against voltage to show how the material expands when ac-

tuated (shown in Figure 4) from Zhigang Suo’s Theory of Dielectric Elastomers [Suo, 2010].

The amount of stretch is dependent on the material properties of the dielectric mem-

brane and the pressure generated by the electric field. The mechanical strain limit of the

dielectric is shown as λlim and the breakdown voltage as VB(λ). The electrical break-

down voltage is determined experimentally for a particular elastomer by pre-straining

a membrane and using rigid electrodes to apply voltage while ensuring the membrane

strain is kept constant. The voltage at failure is the determined breakdown voltage.

The voltage-strain curve V(λ) is defined by the strain of an unconstrained dielectric

membrane due to an applied voltage.

Figure 4: Graphical illustration of general voltage - stretch relationship and breakdown
voltage curve

Sensing - The DEA as an electrostatic actuator can be considered in the same way as
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a capacitor – two conductors separated by a dielectric. To sense the current areal state

of the actuator a high frequency signal can be superimposed to calculate the capacitive

reactance of the actuator and hence its active area, which will vary with strain of the

soft capacitor. This method can be used for accurately calculating strain in active or

passive stretchable capacitors and can be used as control feedback [Gisby et al., 2011,

Schmitz et al., 2010, O’Brien et al., 2014].

The capacitance of the effective capacitor created can be written as:

C =
εrε0A

t
(5)

where C is capacitance, εr is relative permittivity, ε0 is permittivity of free space, A

is the overlapping surface area of electrode plates, and t is the distance of separation

between conductive plates (i.e. membrane thickness) [McKay et al., 2009].

The capacitive reactance can be measured through the application of a high fre-

quency input signal to the DEA, which can be applied with or without actuation high

voltage. The capacitance can be evaluated from:

XC =
1

2πfC
(6)

where XC is capacitive reactance, f the frequency of signal, and C the capacitance

[Horowitz and Hill, ]. From Equations 5 & 6 the area over which the capacitor acts

can be calculated and determine the strain of the capacitor and hence its position in a

controlled strain cycle.

2.2.2 Failure Modes

The simple operation of the actuator belies the complexity and fabrication issues, when

optimal performance is targeted. Further to the principles of operation for actuation and

sensing, failures are known to occur for three main reasons [Plante and Dubowsky, 2006]:
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• Mechanical failure (breaking strength) - The elastomer used of the dielectric mem-

brane is a soft material, that contains cross-linked chains. As the material is

stretched, these tighten and will reach an elastic limit determined by the materials

composition. If this is exceeded, the material will mechanically fail. Approximate

limits can be determined, but materials are not ideally fabricated leading to a mar-

gin of error. The direction of pre-strain also affects the limit (discussed in Section

2.8).

• Dielectric strength failure - A dielectric material has a quantifiable dielectric con-

stant which defines the electric field strength per unit thickness at which the mate-

rial will breakdown. This parameter has been found to vary with changes to initial

stretch of the dielectric (discussed in Section2.8).

• Pull-in failure - Pull-in failure is caused by a pull-in instability, where the Maxwell

pressure generated by the electric field applied across a soft dielectric is greater

than the elastic stress of the material. Due to this, the material expands causing it

to thin, which increases the Maxwell pressure. This leads to runaway compression

in the elastomer material and failure by one of the previous failure modes.

2.3 Further Exploitable Properties

In addition to the simple behaviour described, DEAs also exhibit additional character-

istics under certain conditions, which can be utilised to affect the actuation dynamic

(potentially positively).

Wrinkling

When the effective Maxwell pressure generated through actuation is greater than the

planar stress in the material in a given direction, it expands. If the expansion in area

is large enough, it leads to wrinkling of the material where there is no axial tension. If
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the material is equi-biaxially strained, this can lead to a complex wrinkle patterning,

where bifurcation points lead to irregular mosaics of directional wrinkling due to the

non-linearities of biaxial wrinkling (shown in Figure 5b). Although wrinkling should

be avoided in most instances due to it being a precursor to material failure through

pull-in instability described, it can be used to preferentially instigate directional strain

behaviour. This can be used to develop traits such as effective uniaxial expansion in

a membrane facilitating, for example, rotational actuation [Conn and Rossiter, 2012b]

(shown in Figure 5b).

(a) Wrinkling used for rotational ac-
tuation

(b) Complex bifurcations in biaxial
wrinkling

Figure 5: Examples of DEAs with wrinkling (reproduced from
[Conn and Rossiter, 2012b, Conn and Rossiter, 2012a])

Controlling Snap-through∗ Instability with Giant Expansion

Snap-through instabilities in DEAs can be achieved by using a pressure gradient to

control the stress-strain equilibrium in a soft dielectric membrane. A diminishing me-

chanical load (for example from a pressurised fluid) counteracts mechanical instability

and creates a stable state. The negative feedback caused by the drop in pressure stops the

membrane reaching unstable state, creating a loading path that does not induce failure.

∗Snap-through is synonymous with pull-in
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This effect has been explored by a number of groups and has included exploration of pair-

ing DEA membranes to facilitate the mechanical load, thus providing bi-stability in a self-

pressurising DEA system [Hines et al., 2016, Huang et al., 2012, Keplinger et al., 2012].

2.4 DEA Materials

DEAs have two main constituent parts; electrodes and a dielectric. These can be con-

structed of homogeneous material or form a composite of materials combining certain

beneficial characteristics to enhance performance or optimise the actuator for a specific

function.

2.4.1 Dielectric Membrane Material

Dielectric materials were first investigated whilst searching for alternative means of gen-

erating actuation for artificial muscles to produce a man-made analogue to natural mus-

cle. Kornbluh et al made the suggestion of using electrostatic forces at micro scales to

produce actuation [Kornbluh et al., 1991]. A significant breakthrough came when Pel-

rine et al at SRI realised the resultant Maxwell stresses generated by the application of

high voltage on a polymeric sheet produced deformation at macro scale. Research in

the field was accelerated by Pelrine’s discovery of high strain in polyacrylate elastomer

materials, which led to peak strains increasing from 10-30% to greater than 300% in

polyacrylate elastomer.

Although silicone and acrylic are the two major choices for DEA fabrication, they can

also be made from a range of materials from biodegradable gelatine and natural rubber

(latex). The choice of material will depend heavily on application, due to performance

optimisation. For example, in space applications, the glass transition temperature must

be taken into account for the lower operation temperatures required. Natural rubber

and gelatine offer an option for novel robots that degrade and as such could be deployed

to operate and perform tasks in remote or inaccessible locations without long-term en-
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vironmental impact. An overview of a few of the possible combinations that have been

characterised are listed in Brochu and Pei’s review paper [Brochu and Pei, 2010].

Dielectric
Material

Strain (%) Electric Field
Strength
(MV/m)

Dielectric
Strength

Overall
Efficiency
(%)

Silicone 120 350 2.5 - 3.0 >80

Acrylic 380 8.2 4.5 - 4.8 >80

Table 4: Performance of dielectric materials from material characterisation papers
[Carpi et al., 2007, Brochu and Pei, 2010]

Table 4 shows the maximal attained performance characteristics of two popular di-

electric membranes. The criteria of the target application can influence the choice of

dielectric to attain higher task specific performance∗

2.4.2 Conductive Material

The conductive material holds the charge to the opposing sides of the dielectric material.

It should produce a uniform field, which is consistent and repeatable throughout the

straining action of the dielectric. A number of compositions have been used shown in

Table 5.

Conductive

Material

Description

Graphite Powder A powder that can be sprayed when mixed with an alcohol or directly

deposited. When spread onto a dielectric, this electrode is thin, but

can be prone to loss of function due to cracking causing a break in the

conductive pathways especially with high strains.

Continued on next page

∗Performance can be defined in a number of ways, but power output and overall efficiency are used
as generally indicators of performance.
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Conductive

Material

Description

Carbon

Nano-tubes

(CNTs)

The molecules of CNTs for a non-uniform lattice of pathways work-

ing as an effective electrode over large strains. CNTs have been

shown to provide ‘self-healing‘ properties by ‘clearing’ an area on

electrical breakdown allowing the rest of the actuator to function

[Yuan et al., 2007]. They are applied by spraying through a template.

Carbon Black Amorphous carbon black has been shown to have conductive properties

and due to its shell-like structure and agglomerative properties, can

be used to produce high conductivity through percolation even with

particle sizes in the order of 10nm.

Metal Powders Metal nano powders work similarly to carbon black, but can offer

superior conductivity above percolation threshold. Some effects of

quantum-tunnelling have been postulated to give rise to low perco-

lation especially in pointed particulates [Bloor et al., 2006].

Laser-scribed

Carbon

Carbon based compounds can be heated by a laser to produce a con-

ductive ash layer. This can be used to print electrodes from a variety

of materials. This is a novel method of producing electrodes and an

active research area [El-Kady et al., 2012].

Continued on next page
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Conductive

Material

Description

Ultra-thin film

metal

Ultra-thin film metal coatings can be used to produce electrodes, us-

ing particular cutting patterns to allow flexibility for example, biax-

ially crumpled silver thin-film electrodes [Low et al., 2012]. Through

vacuum sputtering this has also been used on a commercial scale roll-

to-roll method by Danfoss [Kiil and Benslimane, 2009]. Additionally

similar patterned thin film metal electrodes have been used as sensors

[Lu and Kim, 2014].

Carbon Grease Applied through a number of methods, the grease (comprising carbon

black homogeneously mixed in with an oil) enables adhesion to the

dielectric, whilst exhibiting good conductivity and compliance.

Conductive -

Silicone

Composites

These are cured electrodes using bulk silicone with a conductive filler

(carbon black is a common compound). This produces a reliable elec-

trode, but does - to a small extent -inhibit strain due to the stiffening

effects of the carbon black filler. As a curable electrode it can be

bonded to the dielectric which can be desirable.

Metal Weave Specifically for Sensing. This flexible material provides a tightly wo-

ven planar resilient electrode that can be used for capacitive sensing

[Low and Lau, 2014]. Due to its stiffness metal weave does not perform

well as an actuation electrode as it inhibits strain.

Table 5: Table of common conductive materials used for electodes in DEAs

Powders and Greases:

Conductive powders can be single elements, compounds, or coated micro-structures.
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They have no chemical bonding and do not affect straining performance of an actua-

tor. However, as the material expands, the gaps between conductive particles increase

leading to the loss of conductivity. This loss of conductivity can be counteracted by

encapsulating the powder in a grease, which remains a viscous fluid allowing enhanced

percolation over much larger strains. In the formation of electrodes for DEAs, this is

very useful, as it offers negligible resistance to strain in the material due to actuation,

but thins and spreads on the surface of the dielectric maintaining a conductive film

over the expanded soft membrane. However, the grease does potential spread, causing

unwanted cross connection between electrodes on the same surface, and it can dry out,

causing cracks and loss of conductivity. These factors can affect reliability in real world

applications, but can be countered using encapsulation materials (which may cause an

additional reduction in performance due to the extra passive stiffness added). Grease

can also leach into the dielectric and affect the actuation over time.

Composites and Conductivity:

Mixing a conductive compound into a base material (usually a dielectric material),

enables the composite to exhibit conductive properties. These properties can be en-

hanced by material molecular form, material mixing ratios and quality of mixing process

to achieve high conductivity with low particulate weight - at the percolation threshold

[Foulger, 1999].

• Percolation Theory - Mathematically it describes the behaviour of connected points

in a random space. The level of connection across a space is dependent on the

probability of occupation of points in a given lattice space (p). When the cluster

concentration reaches a critical level (pc), there is a cluster spanning the whole

system [Stauffer and Bunde, 2008]. The probability of an infinite chain (p∞) is

zero below the critical level and increases above this level. This is illustrated in
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Equation 7.

p∞ = (p− pc)β (7)

where β is the critical exponent. When applied to a physical medium where the

points represent conductive particles and the medium is a bulk insulator mate-

rial, the theory can be used to evaluate the conductivity of the resultant compos-

ite. When a certain ratio of conductive particles is introduced to the composite

via a mixing method, there is an exponential increase in conductivity, due to

the filler density creating continuous chains of particles forming conductive paths

[Xiao et al., 2014]. In Figure 6 the effect of particulate density on conductivity and

mechanical strength is depicted in a series of 2D illustrations. As the particle den-

sity increases (from (a) to (b)), the electrical conductivity increases very slowly,

due to marginal increases in leakage current. This continues until the percolation

threshold zone ((c)), where there is a rapid change in the resistivity, as chains

conjoin forming large conductive pathways. As the particulate density increases

above a certain level, the cross-linking of the silicone is affected significantly (from

(c) to (d)), which has the effect of reducing the mechanical strength. Addition-

ally, if the material is made thinner, the probability of conductive pathways being

formed for a given particulate density decreases, hence reducing conductivity (seen

in (e) and (f)), where X1 >X2 >X3. The particle size and shape also affects the

number of connections or chains formed. The size of particles also affect the bulk

material mechanical properties as mentioned [Altalhi et al., 2017].
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Figure 6: Graphical illustration of effects of particulate density on electrical conductivity
and mechanical strength.

There are a range of solutions currently being researched from arranged nan-

otubes [Romasanta et al., 2011, Sugino et al., 2012], to using the smallest available

particles of carbon black [Carpi et al., 2008, Araromi et al., 2015b]. The graph

in Figure 7 shows the general volume resistivity response to increased weight-

ings of carbon black in silicone. There is a large variation in the weighting at

which the critical threshold is reached between different carbon blacks, due to

the different fabrication processes, sieve sizes and dispersion in the bulk material

53



[Medalia and Heckman, 1969, Xiao et al., 2014].

Figure 7: Graphical illustration of general volume resistivity - particulate weight rela-
tionship with percolation threshold

The point at which the resistivity of the bulk material drops below a measurable

level is defined as the percolation threshold, where the chains of molecules conduct.

The curve of volume resistivity depicted in Figure 7 is calculated experimentally,

through testing samples with defined weightings of a particular filler mixed with a

chosen bulk material.

A curable compound can be mixed with a conductive material, forming a stretch-

able solid conductive compound film. To remain conductive under strain, care

needs to be taken to include enough conductive particulates to maintain connec-

tivity as strain can separate chains of particles leading to a reduction in conduc-

tion. The production of conductive compounds requires homogeneous mixing of

the constituents to optimise conductivity. Proprietary conductive greases are read-

ily available (such as MG ChemicalTM carbon grease [MG Chemicals, 2012]), and

are a popular electrode choice. However, curable conductive elastomer composites

are not generally commercially available. As such, these need to be produced in the
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lab. The weighting is chosen empirically to provide sufficient level of conduction,

whilst remaining mechanically able to undergo strain up to 100%.

• Electrical Contact Resistance (ECR) - This resistance has a potentially large in-

fluence on the overall resistance of a composite sheet and the response time of the

actuator due to its impact on the connectivity between the external power source

and the conductive composite [Carpi et al., 2015, Rosset et al., 2007]. A high con-

tact resistance will significantly increase the time required to charge the capacitive

plate the conductive composite forms in the DEA. The surface of a conductive

silicone sheet is a cut through the filler compound trees, providing a 2D surface

of possible connections. The number of points of connection define the contact

resistance. Additionally the surface of the sheet is not perfectly flat and hence

does not meet a connector surface (such as copper tape) perfectly leading to air

gaps. To reduce the contact resistance and resolve related connectivity issues.

Figure 8: Illustration of the potential affect of contact resistance at the connection
interface.
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2.5 DE Actuator Fabrication and Preparation

The fabrication of DEAs is an active area of investigation. Thin uniform layers are es-

sential in the effective performance of fabricated actuators. Any unwanted particulates

can lead to physical failure of the dielectric, either through affecting the uniformity of

the membrane or causing a rupture. It is preferable to reduce the thickness of dielectric

films to decrease the driving voltage. Dielectric layers <100µm thick are considered

a good target, but dielectric membranes of thicknesses < 10µm have been produced

[Lotz et al., 2008]

Spin-coating is a technique devised for repeatedly producing membranes of a defined

thickness with a known profile and margin of variation in thickness. The method uses a

commercialised technology used in silicon wafer preparation and etching. The method

employs centrifugal forces to thin the silicone producing a thin film on top of a flat

substrate. Lotz et al set out spin-coater parameters and an implementation to test the

resulting actuators [Lotz et al., 2011].

Spray Deposition includes two methods at present:

• Airbrush uses an airbrush to deposit fine coatings of material. This can be used to

fabricate layers of DEAs (of either dielectric or conductor) with a dielectric compo-

nent or in the case of the conductor as a conductive solution [Araromi et al., 2011].

• Inkjet uses a piezoelectric actuator and a jet nozzle to deposit small quantities of

material to form electrodes [Pede et al., 1998]

Doctor Blading is a method of thin film fabrication using a sharp blade pulled across

a flat substrate at a controllable height. The resultant film’s thickness can be precisely

controlled and is consistent over a wide area.
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K-bar Rolling is a technique similar to doctor-blading, in which a wire is wrapped around

a bar in a spiral with gaps of a known height and spacing. From these parameters, the

amount of material ‘rolled’ can be specified. The material flows into the space created

by the wire to form a continuous membrane before curing.

Pad Printing uses a soft rubber pad to transfer material from an engraved plate to

deposit on an object. The material is usually an ink, as the system is usually used in

mass production labelling systems, but can be used for application of conductive ma-

terial. The layer thickness can be very thin (in the order of microns) [Rosset et al., 2016].

Proprietary Films are used in some cases, especially dielectric layers that are commer-

cially produced. These pre-fabricated materials offer standardised parameters and con-

sistent performance (e.g. Parker EAP film [Parker, ], Wacker Elastosil [WackerChemie, 2014])

. Some companies specifically produce dielectric layers for DEAs, others produce mate-

rials for an unrelated purpose, but still offer good performance. In both cases there may

be a lack of information due to intellectual property, material composition and fabrica-

tion methodology protection. In the case of unrelated materials (a key example being

VHBTM - a proprietary acrylic material), sometimes properties have been seen to vary in

a way that affects DEA performance [McKay et al., 2009]. Additionally quality control

is not aimed at DEA applications and can lead to large error margins in breakdown

being accounted for.

57



2.6 DEA Configurations

Actuator De-

piction

Type System Output DE Actuation Description

Planar Film

(Spot

Actuator)

Planar Biaxial

Expansion

Planar Biaxial

Expansion

A relaxation planar actuation is used for material

characterisation.

Bow Tie Linear

Translation

Planar

Expansion

Hinged sprung joints of the bow tie allow the

planar expansion of the bow-tie to be translated

to a linear actuation output.

Rotary Film Rotation Planar

Expansion with

wrinkling

Rotary actuation is generated in a planar form

through careful electrode shape, designed to ac-

centuate wrinkling effects, causing rotation of

the centroid of the membrane (marked in blue)

[Conn and Rossiter, 2012b].

Continued on next page
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Actuator De-

piction

Type Type Operation Description

Spring Roll Spring assisted

translation

Cylindrical

planar Expansion

The spring roll uses a spring to oppose the elastic

strain of the parallel DEA membranes. When

actuated the spring roll DEA relaxes enabling

the spring to extend until a new equilibrium is

found with the opposing DEA.

Thickness-

mode

Amplifica-

tion

Transverse Con-

traction

Planar Expan-

sion

A layer of soft material (yellow) is adhered to a

DEA. The thickness contraction of the actuator

is amplified by the soft material, forming a deep

channel.

Diaphragm Volumetric ex-

pansion and/or

peak translation

Non-linear biax-

ial strain

A pressurised membrane forms a hemisphere,

which can be used as a pump by varying the

pressure on the internal fluidic media. As with

the cone the diaphragm can be arranged as an

antagonistic pair, to provide a double-cycle.

Continued on next page
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Actuator De-

piction

Type Type Operation Description

Antagonistic

Cone Pair

Linear Transla-

tion

Non-linear biax-

ial strain

The cone configuration can be made with a

spring and membrane, or more commonly (as

depicted) as an antagonistic matched actuator.

This arrangement allows a naturally balanced

equilibrium between two duplicated cones. If

both act as actuators a double actuation cycle

maximises overall displacement.

Individual

Layer Stack

Transverse Con-

traction

Planar expansion For transverse contractile actuation multi-layer

DEAs are used. Typically operating without

support various multi-layer specifications are dis-

cussed in Section 3.1.

Table 6: Tabulate list of common DEA configurations with distinctive characteristics of type of strucutre and operation,
with short description of features.
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2.7 Energy Efficient Configurations

An area of particular interest is the use of DEAs in energy efficient secondary actuation

and switching. The groups of technologies in this area are reviewed with specific focus

on DEAs as the actuation mode.

Minimum Energy Structures (MES) - MES are structures which move to a locally

minimal energy state based on the initial conditions of a structure’s spatial arrangement,

constituent material stiffness, and acting stresses and initial strains. A system can have

multiple minimum energy states. The system can be mechanically storing energy whilst

in a state. The transition between each of the states are made through application of

energetic impulses enabling the transfer of the system between minimal energy states,

causing spatial arrangement alteration of the structure. The specific application of MES

to dielectric elastomers is known as DEMES - dielectric elastomeric MES. In mechanical

systems there are many uses for bistable transition systems, where fixed displacement

states can be set and released, through the application of an energetic source. The

number of states can be arbitrarily chosen to match tasks, but in its simplest form a

transitioning MES is a bistable. A simple example is a switch, where two stable states

are attained by applying sufficient directed mechanical energy to surpass the energy sad-

dle point. Minimum energy structures can have actively or passively maintained stable

states. If the energetic input used to transition the structure between minimum energy

states is required to remain active in order to hold the structure in its state, the system

is considered active. The stable states are local minima in the Figure 9 with a local

maxima (or saddle point) separating the states in a two dimensional illustration of the

energy surface of a arbitrary system. The energetic input (shown by orange arrow),

allows the system to move from one stable local minima to another (marked by dashed

lines).
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Figure 9: Illustration of state tranistion of displacement in a multi-stable system, show-
ing relative energetic states.

This simple system is used throughout engineering systems, and has also been found

in nature (used by the venus fly trap to catch prey [Shahinpoor and Thompson, 1995]).

Bistable minimum energy structures have been developed to show how DEAs can be

used to provide this type of actuation [Follador et al., 2014]. DEAs are used in an an-

tagonistic configuration in combination with a buckling beam to provide bistability.

Zero Energy Fixity - As explained by Rossiter et al [Rossiter et al., 2010], DEAs

currently available are soft - to allow high strain required - and operate in a window of

approximately constant elastic modulus throughout their operation cycle. Considering

the DE on its own as an actuating system, once the energetic impulse to change state

(i.e. strain the DE) is removed, it will return to its initial state. The proposed solution

is to alter the elastic modulus of the structure in which the energy is stored providing

fixity - a property of a structure exhibiting the ability to be locked into a fixed, rigid

configuration -, enforcing bistability. DEAs are inherently soft and to optimise their

performance in their most common use - single layer film - need a structural body to

provide support to maintain pre-strain∗.

∗In Chapter 3 an alternative method for maintainingg pre-strain internal to the DEA is discussed
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The ability to put a system in a stable state through the application of directed ener-

getic input is very useful in the class of application considered in this chapter, but state

fixity improves on this as it provides resistance to state change of energy input greater

than the energy required for state change, adapting the state transition parameters. We

have discussed how DEAs have characteristics that could prove useful in some displace-

ment control systems. They could use structural configurations such as buckled beams

to enter minimum energy states. However, due to the operation of DEAs, the elastic

modulus is approximately linear, and due to the direct application of energy from the

DEA, the mechanical energy in the buckled beam must be below the maximum output

of an antagonistic actuator pair as described by Follador et al [Follador et al., 2015].

The use of symmetry in the bistable system limits the blocking force able to be pro-

vided as the actuator is mechanically linked with the bistable mechanism. Rossiter et

al [Rossiter et al., 2010] consider the use of creating an actuator with variable elastic

modulus to overcome this problem.

Binary Robots - Binary robotics is the application of discrete stable state as a paradigm

for robotic manipulators [Chirikjian, 1994]. The benefits include operation without feed-

back control, high repeatability and inexpensive implementation. The paradigm of bi-

nary robotics is in early developmental stages in actuation implementation. A robotic

system can utilise the discretised actuation, described as binary robotics, when work

done by the actuator shifts an end-effector between two stable spatial states (through

a combination of translation and/or rotation). Binary robotics can be considered to

be the mechanical equivalent of digital systems, providing discrete output position con-

trol from an actuation input. A collection of discrete actuation units can be used in

the implementation of many manipulators - defined as n-bit manipulators, where n is

the number of binary actuation units present - for example an articulated binary limb

using Inter-penetrating Networks [Brochu et al., 2013], but this is still in early development and is far
from common practice.
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[Lichter et al., 2001]. A paper by Follador et al [Follador et al., 2015], goes further, con-

sidering BiMES as bistable binary actuator units. The concept is novel, and enables

separation of end effector and actuation components, but the applications are limited

by the inherent flexibility of the structure. Hence it has few applications due to low

blocking forces of soft film of dielectric elastomer especially considering the relaxation∗

actuation is used in this system.

2.7.1 DEA Coupling

DEAs are soft and inherently compliant in both passive and active states. They exhibit

highly non-linear electro-mechanical behaviour and associated failure modes (Section

2.2.2). It is important that the coupling between the elastic DEA and the actuator

output is optimised to improve performance and reliability. In out-of-plane configura-

tions (commonly) planar membranes are stretched to enable out-of-plane actuation and

optimise the characteristics. In most cases a spring or spring-like element is coupled

with the membrane. Researchers have considered pairing DEAs with the same base di-

electric material to exactly match the actuating membrane. In some cases both coupled

elements have been DEAs enabling bi-directional pull-pull† actuation. The methods of

coupling have taken two main forms - rigid link and fluidic - which each have separate

benefits. A rigid link - as used in the cone configuration in Table 6 - directly attaches

the membranes. This enables effectively instantaneous position coupling, ideal for an-

tagonistic DEAs. However, the boundary interface between hard and soft materials is

highly susceptible to failure due to the high stress concentration found (discussed further

in Section 2.10). Instead of hard links between membrane, the coupling can be soft, for

example with a fluid linking opposing membranes. This resolves potential issues with

stress inherent to rigid coupling, however introduces potential issues with the weight of

∗relaxation actuation describes the way the Maxwell pressure acts in opposition to the elasticity of
the material lengthening it.

†pull-pull has been used to describe the coupling of relaxation actuators where the passive side
pulling is the energy source for the work on the end effector.
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the coupling fluid, or conversely its compressibility, both of which will affect actuation

performance. For some applications such as pumps, this is not a problem as the applica-

tion requires work on a fluid. A rigid link coupling has constant circumferential strain,

and linear radial strain. A fluidic pressure coupling the strain is inhomogeneous - the

balloon is fixed at the outer boundary -, giving rise to variations in strain from bi-axial

at the tip of the balloon, to a combination of non-linear radial and circumferential strain

in relation to the distance from the outer boundary. Examples of coupled DEAs are

shown in Figure 10.

(a) Pneumatically coupled
DEA segment for locomot-
ing worm (reproduced from
[Conn et al., 2014a]).

(b) Antagonistic rigid-link cone
coupled DEAs (reproduced from
[Conn and Rossiter, 2011]).

Figure 10: Examples of coupled pairs of DEA membranes in two common configurations

2.8 Prestrain of Dielectric Membranes

As part of the optimisation of DEAs for particular tasks, the dielectric membranes are

mechanically strained and held in this state for operational actuation (known as pre-

strain). The strain can be uniaxial or biaxial. The reasons for using pre-strain are due

to a number of material mechanical factors already discussed (in Sections 2.3 & 2.4;

namely limiting pull-in failure, reduction in wrinkling through tensioning, reduction in

viscoelastic damping, and to alter actuation material strain conditions, leading to me-

chanical amplification and increase in dielectric strength [Carpi et al., 2007]. As such

the ability to apply pre-strain to a material is advantageous in a number of configura-
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tions and implementations.

Biaxial prestrain is used to enable equi-bi-directional straining on actuation. This is

depicted in Figure 11:

Figure 11: Illustration of mechanical strain of DEA membrane.

Assuming uniform prestrain and considering the membrane is approximately incom-

pressible (Poissons ratio approaching 0.5), it can be said that:

λl1,0 =
l1
l0

(8)

λx.λy.λz = λ2p.λz = 1 , (9)

where l1 is final length, l0 initial length, and λL is stretch ratio of length [Kikuuwe et al., 2004].

Hence, the material thins as the membrane is biaxially strained.

To achieve uniform biaxial prestrain, in this work a hoberman platform was used,

which has been found to provide a practical method of applying biaxial to a pre-strain

[Conn and Rossiter, 2010]. Although the strain is not perfectly uniform it can be seen

in Figure 12b, where a silicone membrane is biaxially strained using this method, there

is a zone where the strain can be considered uniform.

Figure 12 shows an element of material being strained and the zone of uniform
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prestrain:

(a) Photo of relaxed silicone membrane
with grid of lines.

(b) Photo of strained silicone mem-
brane with grid of lines on a Hoberman
platform straining rig.

Figure 12: Photographic depiction of zone with uniform strain on Hoberman platform.

2.8.1 Methods of Capturing and Integrating Pre-strain in Systems and Devices

Pre-strain can be captured in a number of ways; the pre-strain maybe uni-directional or

bi-directional and may vary across the dielectric membrane depending on the constraints

of the configuration of the actuator.

Fluidic Inflation - When a membrane is inflated with a fluidic medium, it is strained

as the pressure difference across the actuator increases until the stress in the material

enables an equilibrium to be reached. In doing so the membrane forms a hemispherical

shape with a combination of prestrains (see Section 2.7.1 for more detail). The mem-

brane is attached to a ring (commonly rigid and inextensible, which enables the pressure

difference to be developed).

Supporting Structure - The method of mechanically controlling the membrane can

involve a supporting structure, which can be made from materials with a range of stiff-
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nesses. The supporting structure may be planar or out-of-plane. Commonly an annular

support is used, thus keeping the strain and stresses constant around the DEA. How-

ever, there are a wide variety of forms and structural complexity possible in the support

structure, which can create specialised benefits. For example, a DEMES structure pro-

vides opposing spring stiffness which pre-strains the dielectric. A cone structure would

be another example [Cao and Conn, 2017]. Each of these implementations utilise the

direction and size of the pre-strain to maximise performance.

IPN - Inter-Penetrating Network - In the previous cases, a rigid or inextensible

substrate is required to support the membrane in order to capture the pre-strain ∗.

Interpenetrating Networks (IPNs) use an interlaced material - typically soft - to stop

the strained primary dielectric from returning to its original size [Carpi et al., 2007]. In

this way, a dielectric can be supported by a soft incompressible substrate. A mixture of

silicones and acrylic materials can be used to enable an optimised strain.

2.9 Hyperelastic Modelling

Many models exist for determining the stress-strain relationship in hyper-elastic models

[Suo, 2010]. Incompressible hyper-elastic materials can be considered (and modelled)

using a number of methods.

• Physical Model - These use real physically definable parameters to model the be-

haviour of a material (e.g. Neo-Hookean and Gent Models [Suo, 2010, Gent, 1996])

• Phenomenological Model - In some cases a model is created for a material by fitting

to experimental data, using parameters that do not have any physical meaning (e.g.

Ogden mode [Ogden, 1972]).

∗Pre-strain is the stretching of material to improve its properties using and external support. Cap-
turing pre-strain uses a mechanism that is inherent to the actuator to maintain the pre-strain of the
material. Examples of this include IPNs and S-IPNs [Carpi et al., 2007, Brochu et al., 2013].
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The neo-Hookean model uses a single material parameter to describe, the dynamics

of an elastomer. The elastomer stress-strain relationship can generally be considered

linear initially, but exhibits strain stiffening at high strains. It takes the form:

W =
µ

2
(λ1

2 + λ2
2 + λ3

2 − 3) (10)

where W = Helmholtz energy, µ is small-strain shear modulus, and λ1,λ2,λ3 represent

strains in x,y and z respectively [Gu et al., 2017b]. The Gent model extends the neo-

Hookean model by including a parameter for straining stiffening through the strain lim-

iting term Jlim [Gent, 1996]. The model reduces to the neo-Hookean model as the strain

term tends to infinity. The parameters in these two models are physically interpretable

and are hence known as physical models. The Gent model has recently been popular

within the modelling of DEAs due to its simplicity and good approximation to experi-

mental outcomes. The parameters can be determined with relatively few experimental

data points which also reduces complexity of use. It is expressed as:

W =
µJlim

2
log

(
1− λ1

2 + λ2
2 + λ3

2 − 3

Jlim

)
(11)

where µ is the small-strain shear modulus, and Jlim is the strain-stiffening constant

[Gu et al., 2017b].

The Ogden model is a phenomenological model as the model parameters do not have

direct physical meaning as they are directly determined by the fitting of the models curve

to experimentally attained holistic data of the stress-strain relationship [Ogden, 1972].

Due to this fitting to specific materials through experimental data, the model can be

considered to have superior approximation, but the parameters are difficult to determine

and with a 3rd order approximation 6 parameters are required.

W =

N∑
i=1

µi
αi

(λ1
αi + λ2

αi + λ3
αi − 3) (12)
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where µi and αi are non-physical material parameters that are experimentally measured.

N is the model order (N =3 is a popular choice providing accuracy without high com-

plexity [Gu et al., 2017b].

Viscoelastic Dynamics

Some hyperelastic materials have a pronounced viscoelastic response - one of the

most popular dielectric membrane (3M VHBTM 4905/4910) has a distinctly damped re-

sponse - and this can be modelled through the Bergström - Boyce model. This includes

internal variables for the material to account for time-dependent effects of viscosity in

the dielectric material (such as Mullins effect, hysteresis and frequency based dynam-

ics) [Chang et al., 2017, York et al., 2010, Hong, 2011, Suo, 2010]. The Helmholtz free

energy density due to the stretch in the material can be described as:

Wstretch(λ1, λ2, ξα, ξβ, ...) (13)

where ξα and ξβ are time-dependent variables of the dielectric elastomer (more variables

may be needed to describe materials fully).

Assuming a system in mechanical and electrostatic equilibrium, the non-linear vis-

coelastic behaviour can be described by:

∑
γ

Wstretch(λ1, λ2, ξα, ξβ, ...)

δξγ
δξγ ≤ 0 (14)

where ξα and ξβ are time-dependent variables of the dielectric elastomer [Gu et al., 2017b].

The thermodynamics are accounted for in the model shown in Figure 13, where A is

a spring and B is a spring in series with a linear damper. The models discussed can be

used to describe the elastic springs in this model. However, the task of modelling DEAs

is still an open area of research and is not always consistent with experimental data.
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Figure 13: One dimensional rheological model
of viscoelasticity in hyperelastic materials (re-
produced froml [Bergström and Boyce, 1998]).

2.10 Union of Intrinsically Soft & Rigid Components

Electro-mechanical systems have been developed to predominately drive rigid compo-

nents from rigid motors∗. An example could be a servo driven industrial robotic arm,

where rigid motors drive rigid links and end effector. With the rapidly developing re-

search in soft actuators and robots, true soft robots have been developed which are

mimetics of some of natures’ diverse species. Figure 14 shows differing robotic systems

compared by the stiffness of their actuation and body/end-effector†.

∗Rigid in this context is used to describe the major proportion of a components constituent parts
†It should be noted electronic driver systems used for supplying power to systems are considered

an essential component in the power feed system of any robotic system irrespective of drive or form.
Pneumatic and hydraulic systems however are still considered part of the components that make the
robotic system even though they can be remotely separated from the actuation unit.
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Figure 14: Graphical exploration of the component space of robots considering actuator
and links (body/end-effector).

Examples of each of the robots types listed in Figure 14 are given here:

(a) - ABB motorised Arm [ABB, 2018]

(b) - Festo Bionic Cobot [Festo, 2018]

(c) - E-braille DEA [Runyan and Blazie, 2010]

(d) - Micro Aerial Vehicle [Conn et al., 2007]

(e) - FlexShapeGripper [Stoll, ]

(f) - Autonomous Soft Robotic Fish [Marchese et al., 2014]

(g) - A small biomimetic quadruped robot [Nguyen et al., 2014]
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(h) - Seal-like therapeutic robot [Chang et al., 2013]

(i) - Robots Made from Interesting Materials [OtherLab, ]

(j) - Artificial muscles and soft gripping [Bogue, 2012]

(k) - Electroactive elastomeric actuator for all-polymer linear peristaltic pumps [Carpi et al., 2010b]

The figure shows a lack of robots that have soft actuators and rigid end-effectors.

This is partly due to the current power outputs achieved in soft actuation technologies

(excepting pneumatic systems due to their tethered supplies). However, considering this

is where nature has evolved to be most successful, there is a juxtaposition between en-

gineered and evolved systems. Considering the expectation of closer operation of robots

and humans, this current gap has been under-explored and may yield possible innovative

approaches. For example, multi-material printing has enabled the addition of flexible ma-

terials to deliver a variation of stiffness in a continuous body [Ward-Cherrier et al., 2016].

The possibilities of this area of research will be considered in this thesis.

Relative Rigidity

When considering the development of robotic devices operated by soft actuators with

soft or rigid linkages, the rigidity of the components relative to each other becomes an

important factor in the kinematics of systems and devices. To this point the strain

of a material due to the maximum stress applied on it by another material should be

negligible (i.e. its form remain intact). The rigid materials are the supporting substrates

used, which are made of cast acrylic. The soft materials are silicone (Dow Corning HSIII)

and acrylic elastomer (VHB4910). The maximum stress of VHB with a high strain rate

(0.05 % strain per second)∗ at a strain of 100%† is <100KPa [Nenno and Wetzel, 2014].

Dow Corning HSIII has a stress of ¡300Kpa at a strain of 100% [Yao et al., 2005]. Cast

∗due to the viscoelastic properties of VHB a higher strain rate will give a higher stress at a given
strain

†100% strain is greater than that used in any prestrain conditions.
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acrylic attains a strain of ≤ 5% when a stress in the region of ≥65 MPa is applied. At

a stress of <300KPa - the highest stress the dielectric material applies - the strain on

the supporting frame is negligible. Applying this to the context of the thesis, the frames

can be considered rigid relative to the soft actuator materials.

2.11 Soft Sensing Technology Review

Sensor feedback has been a key part of the development of robot technologies to enable

them to complete tasks. This is especially true with humanoid robots; the inherent aim

requires the ability to manipulate objects in a way that humans do.

2.11.1 Sensors Variants

There are a large number of transducers of different materials and structures too numer-

ate to explore in full, however current major sensor research modalities are described,

discussed and then compared here. The discussion focuses on the features of state-of-art

sensors and the road blocks that have to be overcome in their development.

1. Capacitive

The electrostatic interaction between two conductive materials separated by an in-

sulator can be measured through analysis of reactance using a high frequency input

signal and measuring the resultant impedance, as mentioned in Section 2.2.1. Using

soft materials, a capacitor can be developed into a physical sensor from which a capac-

itance value can be calculated at high frequency providing a continuous approximation

of the capacitance of the sensor. The capacitor’s construction can be of hard or soft

conducting plates and a separating insulator. Their physical arrangement can be used

to provide three dimensional data of force - normal application and a 2-D surface shear

force [Schmitz et al., 2010, Viry et al., 2014].

The possible material properties, arrangements, and designs for capturing data of tactile
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stimulus using capacitance are multitudinous, and as such are too numerous to explore

fully. Two examples will be briefly discussed highlighting their individual properties and

merits:

• I-cub fingertip - uses a combination of both hard (for the inner) and soft (for the

outer) conductive plates in the construction of the sensor [Jamali et al., 2015]. The

specifications of the chosen central processing unit limit the number of separate

taxels forming the sensory skin and the soft and hard, compliance with underlying

anthropomorphic bone-like structure.

• Dielectric elastomer sensors - There are a few implementations of DE stretchable

sensors. An example StretchSenseTM uses a soft polymeric capacitor based on

DE membranes to produce a sensor that can detect strain, pressure, shear and

proximity/touch modalities [O’Brien et al., 2014]. These sensors are designed for

feedback from compliant high degree of freedom movement found in humans. Sim-

ilar technology has been developed using overlapping metal mesh flexible plates

separated by a soft insulator to produce a highly sensitive artificial touch sensor

providing information about shear and normal force to a high degree of accuracy

[Viry et al., 2014].

Capacitive sensors have shown the potential for highly accurate measurement of mul-

tiple degrees of freedom. The sensors can be scaled to a size able to provide a significant

resolution, however sensor signal processing and sensor hysteresis limit the potential for

use as a touch skin on a robotic digit.

2. Variable Resistance Sensors

The variation in resistance found when observing bulk conductive materials under

the application of external forces can be used to provide feedback. The resistive mate-

75



rial maybe homogeneous or a composite with specialised conductive materials providing

complex interactions and properties when under compression or tension. The force reg-

istered is normal to the surface and cannot be easily expanded to provide more in depth

shear data. In a simple form, as with capacitive sensing, the conductive terminals can be

separated by a compressible conductive foam [Pang et al., 2016]. There is potential for

more complex implementations however, which use percolative or quantum tunnelling

conductivity to acquire more accurate sensing data (described in Section 2.4.2).

In conductive composites, percolation paths can also be reduced by using a foamed

substrate for the filler. This enables paths to be reduced and specified, whilst giving

high sensitivity to compression when pocket sides begin to touch.

Quantum tunnelling composites are a sub-class of filled conductive composites. Metal

fillers are mixed with a polymeric base material. However, due to a specific mixing pro-

cess, the nano-structure including spikes found on the surface of the metal particles

are preserved within the filler [Bloor et al., 2005]. This spiky structure is theorised to

give rise to quantum tunnelling through the polymer, producing conductive channels.

The material produces linear conductivity behaviour at high and low stress, with high

non-linearity in between, with resistivity varying from 1012Ω to less than 1Ω. It also

increases in conduction when stretched, compressed, twisted or bent, which is contrary

to the resultant attributes of filled polymers. This is significant in sensing technologies,

due to its ability to discern very soft touch and hard forces repeatedly across a range of

externally applied forces.

3. Optical Sensors

Optical sensors record many discrete values simultaneously multiple times per sec-

ond in a mass-produced, cheap and compact architecture. In vision systems, mono-

camera temporal tracking paired with a set of spatial location markers enables track-

ing of movement in 3D space using SLAM - Simultaneous Localisation and Mapping
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[Smith and Cheeseman, 1986]. When applied to tactile sensing, an intermediary layer,

which makes contact with external surfaces, allows the same spatial tracking to perceive

surface textures [Chorley et al., 2009]. The use of a specifically designed, compliant or

bendable interactive surface as an intermediary layer, perceives resultant deformation

from an external contact, and through surface slope variation can infer the location and

force applied to it. The optical sensor can more readily monitor the deviations of points

on the interactive surface (or skin) through the use of internal pins normal to the surface

of the skin. The slope of the skin in a given region can be calculated due to its pro-

portionality to the lateral displacement of the head of the pins [Chorley et al., 2009].

The pins act as a magnifier similar to the ”contact lens” used in the car industry

[Kikuuwe et al., 2004].

2.12 Summary

This chapter has reviewed the field of soft actuators with a specific focus on dielectric

elastomer actuators and their features, configurations, and operation optimisation pa-

rameters. DEAs form a major topic in soft actuators and have the potential to produce

significant performance enhancement in both actuators and sensor fields for robotic and

wider actuator and sensing applications. The method of operation is well understood,

but due to the huge range of possible dielectric material chemistries and physical char-

acteristics, the modelling of such systems effectively is an open problem. Novel ideas

of use and fabrication are possible in this relatively young field. The majority of re-

search has focussed on single layer actuators and sensors, which can be fabricated to

utilise optimisation parameters to create high performance characteristics. However,

these works, although laudable for the results achieved, have avoided key questions on

increasing power density and reliability. Some high power multi-layer actuators have

been produced which are discussed further in Section 3. Fabrication is a particularly
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complex process with multi-layer actuators due to a number of factors. Optimisation

is also more problematic, as any frame or superstructure attached to the DEA stack

will lead to a possible reduction in output due to the inherent coupling effects. This is

augmented in stacks due to the layering. Even in soft body implementations an encap-

sulating insulating layer is required to avoid short circuiting at the dielectric boundaries.

This layer does not compress with actuation, which creates a restraining structure as

seen in 16a. Sensing using DEAs has been implemented with great effect leading to

commercial products, however the sensing capability is limited by capacitance of, and

size of the electrode. A single DEA acts as a capacitor to produce a strain or touch

sensor. To create a sensory array hundreds of individual DEAs would be required. Some

method of creating soft actuated touch would advance soft sensing state-of-art

To tackle the issues discussed above this work will aim to overcome these issues in

the following research avenues:

• A solution to creating high performing stacks is to incorporate the enhancements

made to single layer actuators in the multi-layer while mitigating or reducing the

effects of any features of stacks that limit actuation performance.

• For the problem of reliability a method of protecting the soft actuator, whilst

enabling strong coupled output will be explored.

• With regards to sensing, novel methods of creating sensory arrays in a soft skin or

body will be investigated.
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3 Mesoscale Thickness-mode Multi-layer Actuator Optimisation

3.1 Introduction

DEA actuators are based on thin films, which are compressed through the application

of an electric field, causing useful mechanical work. Individual layer actuators tend to

have relatively small active electrode areas producing low power outputs. These are

still very useful actuators in this form for a large number of novel devices and systems,

but advances in fabrication are needed for higher power applications. The attributes of

single-layer DEAs would be very advantageous in larger scale actuator systems too, due

to the high efficiency and power density exhibited in single layers [Carpi et al., 2007].

The chapter aims to devise an optimised thickness mode actuator to imitate biolog-

ical muscle contractile actuation. This aim will enable further muscle mimetic actuator

development in DEAs through the optimisation of performance characteristics in this

actuation mode actuation. In this endeavour the chapter will explore barriers to op-

timisation that hinder the development of high powered layered actuators and, where

possible, create novel methods to overcome them.

Below are the key performance characteristics for the improvement of multi-layer

actuators that will be investigated:

• Tensile loading resilience (including best configuration type determination).

• Optimisation of actuation through material properties of both dielectric and con-

ductive components (including layer uniformity, thickness, dynamic and electrical

performance).

• Development of fabrication methods for the combining of individual components.

• Development of a fabrication method for creating high layer number multi-layer

devices for high power actuation.

79



To meet these characteristics the features of materials, devices and fabrication meth-

ods need to be evaluated.The work has been divided into interlinked criteria of:

1. Conductive layer performance.

• Layer thickness and uniformity.

• Conductive performance under strain.

2. Dielectric layer performance.

• Layer thickness and uniformity.

• Optimisation of dielectric layer (enhanced strain).

3. Multi-layer fabrication methods.

4. Multi-layer passive characteristics.

5. Multi-layer actuation.

3.2 Evaluation of Multi-layer Actuator Implementations, Configurations, and Formu-

lation

3.2.1 Multi-layer Actuator Implementations

State-of-art Stack Actuator Review

A number of stack actuators have been developed, from demonstrations of arm-wrestling

using rolled actuators [Kovacs, 2006], to tensile stacks lifting weights [Kovacs and Düring, 2009].

Solutions to fabricating stacks have also been proposed using large fabrication rigs and

rolling methods, which have had some success in stack creation for laboratory testing

[Kovacs and Düring, 2009]. Some other examples of the top state-of-art actuators are

shown in the images in Figures 16a-20. As well as the configurations and designs used,

some research has been focussed on how to form a stack. Manual stacking can be used,
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but is a painstaking process which is prone to human errors, with handling, alignment,

and membrane damage. Additionally, due to the size of stacks desired and the fact that

this is not a scalable process, a new approach is required. The production of DEAs is not

yet a fully developed process, even though some components (such as DE membranes)

are becoming more readily available. As such, research groups need to develop fabrica-

tion methods to be able to test and characterise these devices.

Contractive tension force stack DE actuator - This actuator was characterised and its op-

eration demonstrated by Kovacs and Düring [Kovacs and Düring, 2009]. This actuator

is one of the best demonstrations of the capability of DE stack actuators. The dielectric

is pre-stretched to provide optimisation, using the IPN - Inter-penetrating Network -

process, which involves spraying a pre-stretched film with monomer (TMPTMA), which

is subsequently cured. A high number of optimised layers (order of 100) are stacked

using very thin electrodes using rubbed carbon black of order of 100 nanometres. The

stack was fabricated using two methods; manual and automated. These were both in-

vestigated to try to maximise the accuracy of the stack construction, due to the need

for precise alignment to avoid premature breakdown and failure of the stack. However,

the automated system was not able to use the pre-stretched membranes previously men-

tioned, and a maximum could only stack 200 layers due to the practical limitations of

the stacking machine (Figure 15).
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Figure 15: Example of a multi-layer stack fabrication rig (reproduced from
[Kovacs and Düring, 2009]).

This is common problem with stacking machines due to the complexity of manipula-

tion required for applying pre-stretch and capturing it in a stack. The actuators shown

in operation show a considerable actuation strain even when loaded shown in Figure 16b.

The characterisation tests showed up to 46% contractile strain when unloaded, with an

actuation voltage of 4.1kV. It was noted that the border around the electrode (or margin

- detailed in Section 3.2.3) did not alter shape leading to a stiff passive border (as shown

in Figure 16a).
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(a) Actuation of an encapsulated
multi-layer stack actuator with
stiff margin (reproduced from
[Kovacs and Düring, 2009])

(b) Demonstraion of actuation of a multi-layer stack lifting
a weight (reproduced from [Kovacs and Düring, 2009])

Figure 16: Images of two developed multi-layer actuators

The method of bonding between layers is not explicitly mentioned, and it is as-

sumed the 3M VHB tape’s acrylic dielectric pressure-sensitive adhesive nature is used

to bond the layers. It is speculated that due to the separating carbon black this bond

could be based mainly on the surface wetting and the vacuum formed between the layers

(hence heavier weights are supported in images to avoid excessive strain in passive state).

Multi-layer DEA pneumatic valve - This is a multi-layer actuator designed for use as

a pneumatic valve or linear actuator made from DEs requires high number of layers

(Figure 17) [Tepel et al., 2014, Maas et al., 2015].
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Figure 17: CAD depiction of conceptual multi-layer actuator valve (reproduced from
[Maas et al., 2015])

This example shows that an automated fabrication process can be used to produce

multi-layer actuators with a large number of layers. It uses a folding table which enables

multiple stacks of a small number of layers to be made in parallel, and subsequently

conjoined to form a larger actuator. The steps of the process are shown in Figure

18. It should be noted that the actuator is encapsulated with conductively coated DE

material to form conductive channels to alternating layers. Additionally, the compliant

electrode is applied using spray-coating, again forming surface adhesion between layers

as mentioned with the previous actuator discussed. The whole actuator is additionally

encapsulated which will aid in air-tight sealing avoiding any peel effects between layers.
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Figure 18: A step guide to a manual fabrication process of a DEA stack (reproduced
from [Maas et al., 2015])

Spring-stack hexapod - A symmetric multi-layer stack is created using a manual fabrica-

tion method of cured 2-layer segments of alternating electrod and dielectric elastomer.

When stacked to “approximately 58 layers” [Nguyen et al., 2014], the actuators contrac-

tile strain was recorded under an external load (no tension tests were undertaken). The

stack was demonstrated in a robotic leg using a spring-stack arrangement to keep the

stack under compression. This spring addition is speculated to be required to stop layer

separation and hence ineffectual actuation (shown in Figure 19). The resultant walking

stack actuator robot was demonstrated, delivering rotation of 25% of the angle of the

femur.
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Figure 19: Spring stack leg concept and implementation (reproduced from
[Nguyen et al., 2014])

Spring-Roll Arm-wrestling actuator - As part of a competition, EMPA - Swiss Federal

Laboratories for Materials Testing and Research - presented a robot using 250 rolled

actuators. These actuators use a large prestraining rig to create bi-axial pre-stretch

and maintain it while it was captured round a spring core. Arranged in an antagonistic

layout the system was large, but was able to perform the task (although not beat a

human competitor) as shown in Figure 20. This system is mentioned as the competition

was central to the push for higher power actuation from DEAs.
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Figure 20: Arm wrestling implementation demonstrated at EAPAD 2005 (reproduced
from [Kovacs, 2006])

Core-free roll DEA Actuator - This high power actuator is also put forward by Kovacs,

Pei, Pelrine, Michel and Ha [Kovacs, 2006]. This actuator uses a free standing DEA

roll to produce a relaxation actuation. This differs from most multilayer actuators, as

the capacitor plane is in parallel with direction of actuation. It can produce a tensile

force, but only when actuation energy is removed and the material undergoes areal con-

traction. Additionally, it uses no internal spring to maintain pre-stretch, which may be

advantageous compared to the more conventional method, where the interface between

the rigid support (spring) and the DE is a common point of failure. Spring-rolls also

develop different layer strai,n on actuation related to distance from the axis leading to

sub-optimal performance. However, using the L-IPN method as described in the con-

tractive stack actuator from the same group, a stress-free prestretched material can be

used to fabricate a rolled DEA. A large sheet of prestretched material is coated with

a compliant electrode and rolled. A 10% strain was achieved at 6kV. Although the

strain is not as great as previously mentioned implementations, the fabrication is far less

complex.

These examples have each overcome the limitations of multi-layer actuator optimi-

sation and fabrication using different techniques, which have resulted in several well
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characterised proof-of-concept actuators that demonstrate the force and stroke that can

be developed with larger DEA actuators.

3.2.2 DEA Multi-layer Actuator Configuration

Scaling up DEA sizes can be carried out in a number of ways as shown in Table 7. Rolling

is a simple method of attaining higher power actuators, but the inherent relaxation actu-

ation in this configuration leads to the requirement of additional antagonistic springs to

perform extension/retraction behaviour [Zhang et al., 2006]. These additions also add

bulk and potentially rigidity to the overall actuation system. However, the control of

extension/retraction behaviour is very desirable, due to its muscle-like operation, which

can be easily used in bio-mimetic and industrial applications. To attain this important

trait, DEAs can be used to develop tensile strain on actuation, through active compres-

sion of the thickness of thin film DEAs, forming thickness mode tensile actuation. The

contractile actuation operation mode, where contraction is produced through activation

rather than relaxation, is advantageous in many applications. However, although these

actuators can be constructed through a number of methods, they are hard to fabricate

due to issues with film purity and thickness consistency, positional accuracy of layering,

electrode conductivity and common rail conductivity, and layer optimisation.
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Actuator

Depiction

Type System Output DE Actuation Description

Multi-layer

Roll

Transverse Relax-

ation

Planar expansion A spring-free roll actuator is simple to produce,

and can be enhanced through retained pre-strain

on roll. However, it provides relaxation actua-

tion, which although soft is harder to implement

for robotic applications due to the limited stiff-

ness under tensile strain.

Folded Layer

Stack

Transverse Con-

traction

Planar expansion A Folded multi-layer stack consists of a single di-

electric layer with conductive electrodes on each

side. The dielectric is then folded back and forth

to form a stack. This is easy to fabricate, but

does lead to potential stress concentrations at

folds. The folds also cause reduction in perfor-

mance as the stiffness of the material in the fold

leads to an effective passive region.

Continued on next page
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Actuator

Depiction

Type System Output DE Actuation Description

Bi-Film Heli-

cal Stack

Transverse Con-

traction

Planar expansion A helical design actuator has been manufactured

by slicing a dielectric tube using a spiraliser

[Carpi et al., 2005]. A conductive coating can be

applied to one side of the spiral, and then an-

other helix inserted forming a second electrode.

This has the advantage of not requiring elec-

trode patterning, but cannot be easily enhanced

through pre-straining techniques.

Individual

Layer Stack

Transverse Con-

traction

Planar expansion A stacked multi-layer actuator is potentially the

hardest of the three configurations to fabricate,

due to the requirement for separable layers.

However, as the margins can be reduced to the

minimum required to protect from breakdown,

the performance can be maximised.

Table 7: Tabulation of current forms of multi-layer DEA configurations and categorisations of structure and output.
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3.2.3 Breakdown of Multi-layer Actuator Components

To understand the components and processes involved in stack creation a detailed review

is needed. The following list describes the features and processes used for construction.

Dielectric Elastomer Material - The choice of dielectric elastomer is a key factor in

the creation of a DEA. It defines the maximal electric field and hence force that can be

generated, as well as the actuation strain.

• Dielectric Layer Thickness - The layer thickness determines the voltage required

to actuate. Reducing the actuation voltage is advantageous from safety, cost,

and operational perspectives, reducing danger to health from harmful discharge

to users (application dependent), whilst enabling simplification of high voltage

electrical requirements.

• DE Optimisation - The DE material is still an ongoing chemical research topic and

further advances are expected. Better characteristics will enable improvement of

multi-layer actuator performance. Further, DEs have been shown to offer higher

performance when pre-stretched due to the increase in dielectric constant this

delivers, and can operate in softer straining region (i.e. the stiffness is reduced see

Section 2.2.1).

Electrode Material - The electrode material must spread the charge across the DE

surface to enable consistent actuation. If the electrode is too thin, the resistance may

be too high when strained causing a slower response and inhibiting maximal strain.

Margins - Multi-layer actuators need good separation of electrodes between consecutive

layers to avoid short circuiting through the air gap between high voltage electrodes. The

dielectric separator must extend beyond the edge of the electrodes by a margin defined

by the voltage to be applied to the actuator. An additional factor to be considered is

for environment variation (such as humidity). Ideally a dielectric sealing all electrodes
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would be created. However, the margin does affect the actuation as can be seen in Figure

16a.

Connections to Electrodes - The electrodes are alternately high voltage and ground,

and in larger stack actuators, the number of layers may extend to hundreds or more.

For these to be connected alternately requires an infrastructure of inter-connected wires.

It should be noted that this is a key benefit of folded and helical high-power actuators,

where the electrodes are constant planar linings on the dielectric as shown in Table 7.

In stacked actuators, an electrode connection tab is required which will must follow the

margin guidelines as set out above. These can then be connected to a common rail, but

care should be taken to ensure the rails do not inhibit the actuation of the stack.

Fabrication - Single layers can be constructed with a well-documented relatively straight-

forward process. However, when this is extended to multi-layer stacks, the complexity

of fabrication becomes much higher, due to the factors described previously in this list.

Developing a fabrication method that resolves problems arising in implementing these

features is required. The features used in the creation of a stack vary due to targeted

aims of implementation and the specific optimisations proposed. Based on this, a fab-

rication system may be of a novel bespoke design. This is reflected in the state-of-art

methods described in Section 3.2.1.

Packaging and Unitisation - To create a unit actuator, the stack must be able

to connect to external components. Some method of connection is required, that can

deal with the tensile load, whilst being spread across the stack surface area evenly

to avoid local mechanical stress concentrations that could lead to premature failure.

Furthermore, limiting z-axis (orthogonal to planar actuation surface) extension may

be required to remove the potential for delamination. Due to the high voltage used,

the unit electrodes and common rails would have to be electrically isolated through an

encapsulating insulator to avoid harmful discharge.
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3.3 Criteria for Improving Multi-layer Actuator with Single Layer Actuator Charac-

teristics

To create a multi-layer actuator with the high performance characteristics of single layer

actuators, certain characteristics must be incorporated into multi-layer implementations.

These characteristics are presented in Table 8.

Single Layer Actuator Charac-

teristics

Description

Mechanical Strength The mechanical strength of the multi-layer ac-

tuator is critical to operation at high force con-

tractile actuation. The mechanical strength in

the case of a stack actuator can be defined by

the strength at delamination as this is the mode

of failure of the layered structure∗.

Actuator Flexibility The maintenance of DEAs inherent flexibility

should be implemented for consideration in bio-

mimetic applications.

Pre-stretch Pre-strain has been shown to give a number of

performance enhancements, including lower op-

erating voltages resulting from thickness reduc-

tion

Maximisation of actuation area. The framing required for voltage supply, separa-

tion of voltage rails, and stack support inhibits

the performance of the actuator and reduces its

effectiveness and should be minimised.

Continued on next page
∗Due to a stacks construction this differs from the ultimate strength of the homgeneous silicone

material that is used due to the layering process and fillers used in its fabrication.
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Multi-layer Development

Issue

Description

Uniformity of Thin Films To reduce the risk associated with high volt-

age systems, and size of complimentary actua-

tor electronics, thinner dielectrics are necessary.

These films should be as uniform as possible,

as the breakdown voltage will be related to the

thickness at the thinnest point.

Table 8: Table of high-level development issues in the development and fabrication of
stack actuators.

To produce a multi-layer actuator that integrates these features, the design and

configuration need to be selected that offer potential for innovation and improvement in

these areas. The development and optimisation of multi-layer actuators was a key focus

of the work due to the limited progress of current state-of-art, and the possible utility of

combining the single layer DEA characteristics, with the form of a tensile actuator and

the potential of mimicking the dynamics of natural. This obvious goal is beset by many

issues in developing a commercial actuator. The resolution of some of these issues is the

focus of this chapter.

Stack actuators have been compared favourably alongside similar small-scale, and

large-scale actuation alternatives [Poole and Booker, 2008]. However, large-scale stack

implementations have yet to be realised with performance characteristics approaching

power-to-weight or volume of biological counterparts.
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3.3.1 Selection of Design of Multi-layer Development

Section 3.2 has discussed the possible options for the creation of a multi-layer actuator

in terms of configuration and component, and considered how the features of single-

layer actuators can be applied to layered actuators. Table 9 shows the analysis of the

materials for the actuator and highlights the chosen configurations and materials that

were decided on for combined enhancement.

Table 9: Design Selection Decision Matrix

Reviewing the possible stack constructions, there are three ways of realising a stack

shown in Table 7. The helical actuator concept requires layers to be sliced out of a
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bar, if a uniform structure and strain is to be developed [Carpi et al., 2005]. Larger

scale folded designs have been evaluated with circular and rectangular planar layers

[Huu Chuc et al., 2008, Randazzo et al., 2008], demonstrating that effective stacks can

be produced in this scale. Stack arrangements differ from folded stacks, due to the com-

plete separation of dielectric layers. Both folded and stacked designs require electrodes of

alternate layers to be connected to separate voltage sources. This leads to a complicated

fabrication for a stacked approach, because each dielectric layer is isolated. Thus far,

stack actuators have been created using a range of hand-assembled and semi-automated

techniques [Huu Chuc et al., 2008, Randazzo et al., 2008].

To produce a multi-layer actuator the aim is to produce a stack of alternate con-

ductive and dielectric layers that has sufficient lamination adhesion strength at limit in

both active and passive states to remain bonded with sufficient tensile strength. The

concept is able to be used for multiple implementations including valves, pumps and bio-

inspired artificial muscles [Fes, 2018, Stoll, , Lotz et al., 2011]. The target application for

this work specifically is to investigate steps towards the development, optimisation, and

characterisation of an actuator. DEA technology has been shown to be able to produce

output characteristics comparable to mammalian muscle, when the DEA is considered

in its thin film form. As discussed in Section 3.2.3, there is a greatly increased level

of complexity when stacking DEAs, making the design of a fabrication mechanism a

difficult and intricate task.
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3.3.2 Defining Scope for Optimisation of Multi-layer Actuator

The scope to be covered in this research on multi-layer actuator development can be

broken down into three sections:

Layer Bonding

The bonding of consecutive layers of a multi-layer DEA stack enables the integrity

of the actuator to be maintained under high loads in both passive and active conditions.

The examples described in Section 3.2.1 have shown a variety of techniques which have

used different adhesion of elements in the fabrication process. The layered smooth soft

materials are adhered by Van der Waals forces at the molecular level. However, in the

examples given, there is graphite or carbon (powder or similar) spread on one sheet -

to form an electrode - before they are layered, leading to a mechanical adhesion with

intermediary carbon particles. The bond between the silicone and acrylic described by

Kovacs et al is likely diffusive where polymer chains diffuse into the other material (as

acrylic can absorb silicone oil) [Kovacs and Düring, 2009, da Silva et al., ]. For the ac-

tuator to repeatedly operate effectively, the maximum tensile stress must be less that

the yield strength. The yield strength of the stack is determined by the weakest layer

adhesion leading to delamination and stack separation. This adhesion is not as strong as

chemical bonding and may be too weak for requirements of high load applications. The

methods of developing good inter-layer adhesion whilst maintaining performance will be

explored as well as comparing the strength of different adhesions.

Capturing Pre-stretch

In DEAs, stretching the dielectric material prior to actuation has been shown to

be beneficial to actuator performance and has been implemented and characterised

[Carpi et al., 2007]. It would be highly advantageous to capture this performance in

a multi-layer actuator whilst reducing the thickness of the actuator and maintaining
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chemical bonding. The maintenance of a fixed strain of a DEA, for actuation (us-

ing a support material), is known as pre-stretch (or pre-strain). Pre-stretch has been

captured using a silicone interpenetrating network with acrylic and silicone substrates

[Kovacs and Düring, 2009, Brochu et al., 2013].

Multi-layer Fabrication

The high performance attributes of single layer DEA membranes have been thor-

oughly explored and characterised [Carpi et al., 2007]. The properties need to be shown

to be implementable in multi-layer stacks. The two sections above are about developing

performance characteristics. In order to test the functionality of a multi-layer actuator

formed using the improved properties, a prototype needs to be fabricated with sufficient

layers to allow experimental analysis. Methods of forming a stack actuator to deliver

these optimisations will be explored and a multi-layer implementation tested.

These tasks are broad and cover every major component of the DEA, however they

are separable into individual undertakings that can be combined to further improve the

current state-of-art. As such, the following sections will discuss as individual projects the

novel processes harnessed and the characterisation thereof, facilitating the creation of a

multi-layer actuator which will be analysed and compared to other available technologies.

Materials and Experiments Note - In this Chapter, the investigation of stack ac-

tuators will focus on the use of a single silicone material, and all experiments will use

this base material unless explicitly stated. This is to reduce variability in results due to

a number of properties and side-effects of processing techniques used. The silicone base

chosen is Dow Corning Xiameter 3483 (also known as HSIII), which has been charac-

terised as a high performing silicone DEA material [Carpi et al., 2007]. It is also a readily

available material and has been used by other groups in certain fabrication techniques
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that are to be explored. This is a two part RTV - Room Temperature Vulcanisation -

silicone, which can be readily mixed by hand in small or large quantities. As described in

the technical data sheet it is highly recommended the mix should be degassed before use

[Dow Corning, 2011]. Degassing uses a high vacuum to facilitate the removal of air from

the mixture, enabling a homogeneous bulk to be produced with significantly reduced

internal air pockets.

The materials are affected by humidity, temperature and fabrication [Boonstra, 1979,

Guo et al., 2015]. As the materials were produced in house and were cured into forms

required for testing, only small batches could be produced which were comparable. This

has limited the number of tests able to be performed on samples and creates inherent

variability between batches affected by environmental and accuracy factors. The predic-

tive modelling of the materials is also limited due to the lack of precise understanding of

the dynamics of the materials used. The use of phenomological models to describe the

behaviour limits comparability between the samples, whereas physical models require

more complex parameters. With the addition of filler materials and pre-strain used in

this investigation methods for prediction are not currently available that can provide

any support to the work.

3.4 Novel Thin-layer Fabrication Process

Creating uniform thin layers is critical to the formation of high performance DEAs. The

layer thickness needs to be as small as possible to reduce voltage required to achieve

significant actuation, while being as uniform as possible to achieve the highest thickness

to dielectric strength ratio for any given layer (as this is dependent on the thinnest

point of the membrane). The common thin film production methods are discussed

in the Literature Review (Section 2.5). A new method which enabled a combination

of forming thin layers whilst adhering to another silicone film was developed. Some

methods do offer this ability, but do not investigate the utility that this bonding can
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have on improving the properties of the DEA or for enabling for a higher yield strength

in passive or active states.

3.4.1 Lamination

A process was devised to encapsulated uncured silicone between supporting films in a

lamination process. The use of a fixed height aperture, between rigid components was

used to produce a silicone layer of a given thickness. A method using shims of known

thickness was used to adjust the aperture to produce a lamination gap of desired height.

Once cured, the supporting films can be removed (acting as release films), revealing a

highly uniform layer produced in a contained environment - hence preventing particu-

lates from affecting the film uniformity. Figure 21 shows the lamination of a dielectric

layer using a fixed spacing.
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(a) Step 1. Setup of lamination thickness and appplication of sili-
cone to substrate.

(b) Step 2. Application of force to pull substrate and squeeze silicone
to set thickness.

(c) Step 3. Allow the produced silicone thin film to cure

Figure 21: Illustration of process for creating thin films of silicone dielectric using de-
veloped laminator.

This process was shown to produce highly uniform layers as shown in Figure 22,

where an 93 micron thick layer was produced.
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Figure 22: Microscopy image of cross-section of laminated silicone layer (target thickness
100microns).

A uniform silicone dielectric layer was created using the method described above to

produce films of approximately 100 microns thickness. The Force-strain characteristics

of the sheet were measured (shown in Figure 23). It can be seen after an initial linear

phase there is some strain softening. This lower stiffness range is the area in which strain

is greater for a given applied stress and hence the actuation would be enhanced through

pre-strain.

Figure 23: Experimentally calculated uniaxial force-strain relationship of Xiameter 3483
silicone
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3.5 Electrode Development

As discussed in Section 2, there are many choices of electrode material; the selection of

which varies on the application that it will be used for. However, there are some key

features of the electrodes essential to providing good actuation.

• They must provide a consistent conductivity across the surface of the dielectric

material

• They need to exhibit low stiffness and hence provide negligible resistance to strain.

• Conductivity should not significantly deteriorate over the full strain the actuator

is required to achieve.

These requirements are consistent for all configuration types used in DEAs, but with

specific reference to multilayer actuators, there are additional considerations. A multi-

layer actuator uses thickness-mode actuation to produce a useful strain. Hence, this type

differs from most configurations of DEA, which utilise the relaxation of the membrane

to deliver useful output in tandem with a spring or other energy store (even internal

energy used in single layer planar actuation).

Conductive Filler

Conductive particles can be introduced into a bulk material (such as silicone) to

make it conductive. For the creation of a conductive compound, the properties of con-

ductive filler material are critical to achieving conductivity. Research into composite

conductors for anti-static and sensor purposes have investigated a wide range of fillers

[Bloor et al., 2005, O’Halloran et al., 2008]. Smaller particles have a lesser effect on the

stiffness of the material compared to larger particles [Jha, 2008].

Metal and carbon powder based particulates are most commonly used as fillers due to

their conductivity and lowparticle size. It has also been found that agglomerates are elec-
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trically conductive at a lower volume ratio (weight and volume) [Wolff and Wang, 1993].

It is thought that the formation of chains of particles that are loosely grouped can form

highly conductive pathways with low overall stiffness.

Table 10 shows the characteristics exhibited by a range of different conductive powder

that have been used in recent research in DEAs and capacitive sensors. Conductive

compounds are listed in the table, which are relevant to the research, but this is not an

exhaustive list.

Filler Type Characteristic Description

Carbon Black Particles Size Carbon Black is a nomenclature for a

range of carbon powders of different con-

glomerate sizes, which are grouped by siev-

ing.

Carbon Black Particle Aggregate

- Mean Diameter of

Spheres in Chain

The thickness of the chains formed of car-

bon black. This is generally inversely pro-

portional to the surface area of carbon

black [IARC, 2010].

Carbon Black Particle Aggregate -

Extent of branched

Chain Aggregate

This is the aggregate size of the

chain forming conductive pathways

[Alsteens, 2005].

Carbon Black Porosity The porosity of carbon black is a key

factor in aggregate to aggregate contact.

Higher porosity (number of pores present)

increases probability of contact and leads

to higher conductivity [Jha, 2008].

Continued on next page
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Filler Type Characteristic Description

Metal Pow-

ders

Quantum Tunnelling

Conductivity

A spiky metal particle (Nickel) retains

its shape leading to conductivity which

is extremely sensitive to deformation

[Bloor et al., 2005].

Carbon Nan-

otubes

Nanotube forests The long single wall carbon nanotube

molecules can be grown as forests and

form collective aggregates, which leads

to low percolation threshold conductivity

[Ata et al., 2012]

Table 10: Table of main characteristics and addtional description of common conductive
powders for DEAs

Carbon black has also been shown to improve the tensile strength of elastomers

[IARC, 2010]. However, it does increase the stress for a given strain, hence increasing the

stiffness of the conductive material and actuator. Both carbon nanotube and composites

with quantum tunnelling effects (QTCTM) are either IP protected or hard to produce in

sufficient quantities, whereas carbon black is readily available due to its large number of

industrial uses.

As described in Section 2.4.2 of the Literature Review, the weight of the conductive

additive in the bulk material will reach a point where the bulk material becomes suffi-

ciently conductive. This point is known as the percolation threshold (shown in Figure

7). Finding the combination of ratio of carbon black to provide the required level of

conductivity, while keeping the overall actuator sufficiently soft to actuate effectively is

the target of these experiments.
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Mixing

The mechanics of mixing is still an area of research, but techniques have been devel-

oped and are currently used that give sufficient mixing for the research described herein.

In order to get a homogeneous composite material, the conductive particles must be

thoroughly mixed together to achieve the best conductivity. Mixing can be carried out

in different ways from hand-mixing, high shear mixing, ball milling and sonication. Af-

ter some initial tests, hand mixing was found to be laborious, inconsistent and overall

had poor conductivity. High-shear mixing enabled well mixed composite samples to be

quickly produced consistently, however, the process did introduce significant heat to the

bulk material. Finally, sonication has been used in mixing solutions, but it was found

that even when thinned, the viscosity of the material was too high to mix. High-shear

mixing was chosen as the method to produce electrode material due to its effective and

consistent processing and speed of production.

3.5.1 Electrode Characterisation

In order to understand the properties of the conductive compounds produced, a set of

tests were undertaken to understand the conductivity characteristics of the composite

material.

Sheet Resistance Tests

Using a process of high shear mixing with a consumer blender, carbon black was

mixed with a silicone bulk material (Dow Corning Xiameter 3483) for a fixed period

of time - 20 seconds. This time period was chosen to give a consistent output without

overheating the sample in the process and causing premature cross-linking. The samples

were laminated using the process described in Section 3.6 with a thickness of 150 microns.

The samples were cured and then tested using a four wire measurement meter (Keithley
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2001 series), to calculate the sheet resistivity at different strains. From precursory test

samples a range of weightings around the percolation threshold was investigated shown

in Figure 24 using a Megger insulation testing multimeter (MIT310) on a sample size of

100mm x 40mm. It can be clearly seen that there is a step change in resistance in 3.5 -

4.5 % weighting of carbon black, where the resistance falls by over 85% to 33.7kΩ.

Figure 24: Plot of experimental results of two-wire resistance for composite silicones
with different carbon black weightings at 1kV using a Megger high voltage resistance
meter

At 3% carbon black (CB) weighting, the samples began to show some conductivity,

and at 5% the resistance was over an order of magnitude lower. It was noted however,

the mixture at this weighting was very viscous and hard to laminate. Additionally,

unmixed carbon black agglomerations were found in the sample leading to holes from

blocked cross-linking, suggesting inhomogeneous mixing due to the viscosity limiting the

shear mixers capability (sample shown in Figure 25b). An additional a 7.5% weight

sample was produced and was found to be significantly inhomogeneous, much stiffer,
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more conductive, but mechanically weak, with a low tear resistance. Images of these

samples are shown in Figure 25:

(a) Photograph image of surface of conductive composite
sample with 3% carbon black by weight showing minor
surface imperfections.

(b) Photographic image of surface of conductive composite
sample with 5% carbon black by weight showing slightly
larger surface imperfections.

(c) Photographic close up image of surface of conductive
composite sample with 7.5% carbon black by weight show-
ing mm-scale surface imperfections and holes.

Figure 25: Comparison of photographic imagery of samples with different carbon black
weights analysing homogeneity.

Samples were taken in the range of 3-7.5% weight and strained whilst recording sheet

resistance. For these tests sheets of conductive composite silicone of dimensions 100mm

x 40mm x 0.15mm (wxhxt) were cut using a guillotine (to avoid potential for tearing
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from stress concentrations around small cutting defects). They were strained between

two clamps to which copper tape was applied and a layer of carbon grease added to

reduce contact resistance. Figure 26 shows the straining set up. A four wire resistance

meter was used to accurately measure the resistance removing any effects of the lead

resistance.

Figure 26: Illustration of experimental set up of straining rig for testing conductivity
change with strain.

The setup used for the experiment is show in Figure 27. Carbon grease and copper

tape were used to ensure the best practicable connectivity to the sample surface. The

frame allowed for the samples to be incrementally strained and the resistivity measured:
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Figure 27: Illustration of experimental setup for straining conductivity samples of vary-
ing thickness.

The results of the tests are shown in Figure 28.

Figure 28: Graph of experimental data on effects of uniaxial material strain on resistance
for silicone conductive composite samples with varying carbon black weightings.

It can be seen from the graph that the initial resistance drops significantly with

increased weight of carbon black in this range. Another effect is that under strain con-
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ditions the percentage increase in resistance decreases with weight of carbon black. This

is due to the number of pathways allowing conductivity being much higher in these sam-

ples. The results show that conductivity is possible with thin composite samples that

can conduct under strain. However, as more carbon black was mixed into the samples,

the resultant material became significantly stiffer. This would be detrimental to the

actuation of the multi-layer actuator, thus the stiffness was explored.

Force-Strain Test

The samples were found to be stiffer with a higher filler content, so the stress-strain

characteristics of the conductive silicone samples was investigated due to its significant

impact on the performance of the actuator produced. The samples used in the sheet

resistance tests above were strained using weights to provide a uni-axial force-strain

characterisation of the different samples. Uni-axial straining was used due to the ease

and accuracy of measurement. A tensile strength testing rig would be normally used,

but due to the thickness and delicate nature of the samples, the attachment and the force

range required a simpler set up was considered with a mass attached on to a clamped,

vertically held sheet of composite material. Figure 29 illustrates the setup used for the

measurements:
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Figure 29: Illustration of set up for force-strain characterisation of conductive silicone
composites.

Figure 30: Plot of relationship between applied tensional force and uniaxial strain of
silicone conductive composite samples with varying carbon black weightings.
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The results presented in figure 31 show the stiffening effects of increased filler con-

centrations in the bulk material. It can be seen with higher levels of filler the rate of

stiffening increases.

Figure 31: Effect of weighting of carbon black in a silicone conductive composite on
material stiffness

Sheet Resistance Variation with Thickness

An optimum was needed to be found between thickness, stiffness and sheet resistance.

The thickness of the material may affect the level of carbon black required to create

pathways through the bulk material. This is due to the material transitioning from 3-

dimensional to an effective 2-dimensional sheet. As the thickness reduces the agglomerate

pathways are reduced hence increasing filler weighting at which the percolation threshold

is found [Stauffer and Bunde, 2008]. This was tested with different sheet thicknesses with

a 5% carbon black weighting, which is considered to offer a good compromise between

resistance and stiffness. Two samples were tested per thickness as a significant variability

in resistance was found between samples. The test setup is the same as used for sheet
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resistance tests show in Figure 27 & 26.

The graph in Figure 32 shows some variability between samples, which may be due to

low contact conduction, non-homogeneous final mixed state or variability due to unpre-

dictability of internal connections of carbon black. However, a clear curve is discernable

showing an exponential increase of resistance with reduction in layer thickness, as ex-

pected. The aim to reduce the conductive layer thickness led to the selection of 65

microns as the target conductive layer thickness, which would give a good compromise

between conductivity and softness.

Figure 32: Plot of the effect of conductive composite thickness on sheet resistance with
a constant carbon black weighting of 5%

3.6 Multi-layer Bonding and Pre-Stretch

With the aim of producing a tensile stress using a thickness-mode multi-layer actuation,

there are a number of options for securing layers together, including chemical bonding,

contact adhesion, and vacuum sealing. An alternative solution as mentioned in Section
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3.2.1 is to use stacks under constant compression, however this requires extra structural

components around the DEA, which limits the operation and flexibility of the actuator.

The examples of previous tensile stack implementations in Section 3.2.1 use a mixture

of contact adhesive or vacuum sealing in order to create an adhesion between layers.

A chemically bonded layer could be much stronger, however optimisation is difficult to

introduce to bonded multi-layers especially in thin layers (i.e. good conductivity, soft

extensibility, mechanical efficiency, layer uniformity etc). To investigate whether it is

possible to create an effective chemically bonded multi-layer stack actuator the compos-

ite electrode must be able to cross-link to the dielectric membrane when curing.

Laminated Inter-penetrating Networks (L-IPNs)

To consider methods of forming conductive layers for chemically bonded multi-layer

actuators, it was considered that the formative layers of DEAs (conductive or dielectric

layer) would need to be cured to each other. An additional layer of silicone could be

used to enable cross-linking of layers, but this would increase the overall thickness of the

dielectric layer and hence increase voltage. Maintaining layer thickness uniformity might

also be a problem. Considering the methods of producing layers of elastomer discussed

in the Literature Review (Section 2.5), doctor-blading was most promising for forming

a bonding layer, due to the layer uniformity, thickness variability, and area coverage it

could provide. Other methods had drawbacks which were too limiting to be used:

• Spray coating - Found to be inconsistent and block due to filler particulates

[Cox, 2012].

• Spin coating - Fillers altered the even spreading of mixed conductive silicone, which

led to streaking.

• Modified Doctor blading∗ - Found to give uniform thin film conductive output.

∗Instead of direct contact with the film compound in the membrane fabrication, an acetate sheet of
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To use doctor-blading to join cured dielectric layers, a backing substrate was used

so that two layers could be laminated together, forming a chemical bond between two

layers with the electrode material also acting as the chemical adhesive.

With two elastomer films on support acetate films, a conductive compound adhesive

is prepared and applied in a line to one side of the films. The amount of compound

is calculated to adequately fill the gap over an area larger than the film - this is to

ensure no thinning of the adhesive layer during lamination. They are pulled through a

laminator with a set thickness, as shown in Figure 33. Shim spacers were used to sepa-

rate a machine bar and plate to ensure uniform thickness. Once formed, the laminated

dielectric-electrode-dielectric sandwich is cured prior to the removal from the temporary

support substrate. This process was found to produce a consistent electrode layer.

Substrate Uniform biaxially strained elastomer

Thickness Limited LaminatorConductive Elastomer

Figure 33: Depiction of the process of laminating two dielectric silicone membranes
together with a silicone-carbon black conductive composite.

Pre-stretched Lamination

To enhance the properties of the DE, pre-stretch can be used to create a stress free

membrane in the strain-softening region stress-strain curve of the material. To create

an optimal stack actuator, a more complex construction method will be required. To

known thickness is used to increase layer uniformity
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achieve this, thin films of cured elastomer are strained using a biaxial straining frame.

The pre-strained film is placed on a supporting substrate forming a temporary adhesion

(Figure 34a). Any excess to the uniform area of elastomer is removed (Figure 34b).

Biaxial straining on frame
Area of uniform biaxial strain

Spun elastomer sheet

(a) Illustration of biaxial strain of a silicone elastomeric
membrane

Supporting Substrate
Removal of non-uniform elastomer

Uniformly biaxially strained thin film elastomer 

(b) Image of capturing uniform biaxial strain of a pre-
strained silicone elastomer membrane using an acetate
substrate.

Figure 34: Process of capturing pre-strain of a silicone elastomer in preparation for
forming an L-IPN
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Once cured, the uniform laminated two layer DEA can be removed from the tem-

porary support, cut free from excess adhesive, and allowed to relax as shown in Figure

35.

Cured Supported L-IPN

Released L-IPN

Figure 35: Illustration of three resultant three layer L-IPN with silicone - carbon black
composite sandwiched between two dielectric membranes with caputred pre-strain.

When cured and released from the temporary support, the adhesive layer is deformed

in the layers’ plane by the contractile forces of the dielectric membrane. With the char-

acterisation of chosen layer materials, this relationship can allow the device to be tuned

for different levels of relaxed pre-strain. Additionally, the adhesive layer can be formed

from the same base composition as the dielectric membrane enabling greater homogene-

ity of the stack. The insulator-electrode combination will need to be in effect actuated

by each single dielectric layer (further analysed in Section 3.7.1). When actuating the

laminated structure, the electrostatic pressure exerted over the dielectric layer strains

both electrode and dielectric material. The force is generated solely based on the thick-

ness of the dielectric, hence the ratio of electrode to dielectric layer thickness should

be as low as possible, whilst maintaining high pre-stretch. An additional benefit is the

compression of the electrode, which increases the range of strain in which it can conduct.

The LIPN equilibrium is mathematically considered in Appendix A.
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Sample Silicone L-IPN

The silicone L-IPN was observed using microscopy to confirm the thickness and struc-

ture of the samples. The thickness of each layer in the laminate was measured over a

cross-section of the sample (as shown in Figure 36∗).

(a) Depiction of cross-section slice used for microscope image and uniformity measurements

(b) Microscope image of L-IPN with captured pre-strain silicone layers adhered through lamina-
tion with siliicone - carbon black electrode composite.

Figure 36: L-IPN Uniformity Images

∗The cross-section length was limited by the range of the microscope motorised axis (50mm travel),
hence a sample of suitable length was taken
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Figure 37: Meaurements of layer thickness uniformity from cross-section of L-IPN.

The L-IPN produced from the lamination method demonstrated global layer unifor-

mity (Figure 36). The thicknesses of each layer were measured over the cross-section

of a prepared sample. The conductive layer, dielectric layers 1 and 2, had coefficient of

variance (CoV) of 2.55%, 3.23% and 4.87% respectively. These measurements demon-

strated a consistent thickness profile, which is key to maximising the actuation potential

of a stack. The conductive layer does show a markedly lower CoV, which may suggest

that lamination between soft membranes may increase uniformity of a thin layer. It can

be seen that the retained pre-strain is demonstrated by the reduced thickness of the

outer (dielectric) membranes from the initial thickness. The initial silicone film sample

diameter and the final relaxed L-IPN diameter were used to calculate the retained strain

as 31%. The average thickness of the dielectric layer was 65µm when measured as part of

the L-IPN, giving an initial thickness of 112µm. This was consistent when the measured

laminate gap (based on a fully uncured lamination), was compared to the calculated
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sum of layers using calculations demonstrated in Section 3.7.1. The measured thickness

of the laminate gap was 130µm, and the L-IPN thickness was calculated as 158µm. The

variation is attributed to local deformation of the elastomer as it passes through the

laminator, leading to a thicker composite layer.

3.6.1 Mechanical Strength Characterisation of Multi-layer Structure

Stack actuators which will operate as a thickness mode tensile configuration, must stay

mechanically linked through the cross-linking of the silicone. With any multilayer cur-

ing, where cured layers are bonded by the addition of an uncured silicone layer will

cross-link. However, this bond is expected to be weaker than bulk cured material due to

the reduced cross-linking between cured layers and the uncured silicone. Additionally

in the process described in the L-IPN fabrication technique, the use of carbon in the

silicone may inhibit the cross-linking. To test the maximum normal stress of the L-IPN,

an hour glass mould (shown in Figure 38a) was produced using two conical segment

moulds, allowing a circular sample of fixed initial area to be tested in a material testing

frame. This allowed a defined cross-sectional area to be uniformly stressed. The test of

a laminated structure showed an instantaneous failure when delamination occured.
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(a) Tensile test of orthogonal
lamination of silicone layers

(b) Photo of delamination mechanical failure of orthogonal
lamination silicone layer sample

Figure 38: Example Tensile Sample
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Figure 39: Experimental set up and breakdown of test sample.
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It can be seen from Figure 38b that the L-IPN sample delaminated normal to the

tensile force. The individual layers of the L-IPN are highlighted as a, b, and c which

form the separate layers of the DEA. At mechanical breakdown, the layers separated and

tore. The laminated sample was found to have a strong inter-layer bond with a peak

stress of 200kPa, withstanding tensile stress in the same range as mammalian muscle

(see Figure 39). The mould design allowed a sealed vacuum test sample to be created,

by joining two conicals separated by carbon grease and sealing the edge with silicone.

The vacuum sample gave a result in the region of the generated atmospheric pressure

acting over the area. The results were slightly higher due to the presence of elastomer

used to seal the mould. The solid bar, although degassed, was found to perform at an

order of magnitude below the material specifications for Dow Corning Xiameter 3483,

but was consistent over a number of tests. The mode of failure was tearing due to high

surface stresses of the mould structure, which could have led to a lower value. This is

also considered a cause for the lamination sample failure, as a small tear was found on

the edge of each tested sample.

This section has shown that chemical bonding can be achieved between layers of

dielectric and conductive silicone rubber. Additionally, it has shown that this bond is

far superior to contact adhesion and vacuum suction, which have been previously used.

The chemical bonding attains ultiamte tensile strength in the middle of the range found

with mammalian muscle.

3.7 Multi-layer DE Actuator Implementation

3.7.1 L-IPN Stacking Techniques

The lamination process produces a uniform bonding layer, which provides a method of

developing pre-strain and creating a self-supporting optimised actuator. The method can

produce multi-layer actuators, however the method does have some significant limitations
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beyond small numbers of layers:

• The process is time consuming involving multiple steps of capturing pre-strain, and

single electrode layer curing per cycle (hence high layer number actuators would

have high fabrication time).

• Lamination has inherent limitations in the number of layers that can be developed,

due to the thickness of the substrate increasing as more layers are added, leading

to increased deformation and error in layer height.

• The electrode patterning cannot be specified meaning that an alternative method

of connecting electrode power lines is required.

3.7.2 Multi-layer Actuator Proof of Concept

In order to conjoin all of the performance characteristics found in the tests described, a

novel method for producing a multi-layer proof of concept is required. The aim was to

create a multi-layer actuator capturing pre-strain with compressed conductive silicone

electrodes using thin silicone dielectric sheets. A process was devised combining earlier

work on lamination with doctor blading and a more scalable stacking method.

Methods and Materials

To create samples, dielectric layers were created using the lamination method adapted

for the formation of single layer thin uniform dielectrics. A thickness of 150 microns was

chosen for the layers as this was considered sufficiently thick to handle, and thin enough

to show the effect of the pre-strain on actuation. The dielectric layers were pre-strained

and mounted on separable concentric circles which were stackable to form a multi-layer

actuator. The aforementioned method for creating conductive compound was used to

produce conductive silicone with a loading of 5% carbon black. The modified doctor-

blading method was used to apply the electrode material to the dielectric, which involved
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using a mask for the shape of the electrode, and a separating acetate sheet between

the blade and the uncured material to protect the dielectric layer from tears and to

form uniform layering. The layers were stacked and a three dielectric layer actuator

was created using this method. Once the conductive layer was cured the actuator was

released from the supporting frames, allowing it to contract and compress the conductive

compound.

To test actuation of the samples, the multi-layer actuators were hung from a clip and

the thickness measured through differential laser measurement. A method to calculate

the blocking force was considered, however the device properties negated this option.

As the actuator is soft and flexible, any external constraints would have to be attached

directly to the actuator planar surface (as the actuation is thickness-mode), and would

therefore inhibit the actuation by applying some extra stiffness. On a large scale blocking

forces may be possible to extract, but the free measurement of actuation was considered

the most effective test of the developed actuator in its present form.

The setup is shown in Figure 40.

Figure 40: Arrangement of equipment for actuation test of pre-strain silicone multi-layer
actuator

The lasers were aligned using a piece of paper - allowing the dots to be seen through

the paper -, such that the laser dots could be centred reducing any measurement error.
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The lasers were clamped symmetrically on a Thor Labs plate so that they were accurately

aligned.

For the experiments the following equipment was used:

• DAQ - NI USB 8343

• Two Laser Units - Keyence LK-GD500

• PC - computer running MATLAB software

Strict safety protocol was used in the experiments, using an insulated test space and

isolated high voltage supply. The setup is further described in Appendix C.

Characterisation

For the test sample, a pre-strain for mounting of 50% was used. Once the uncured

conductive layers were applied, layers stacked and curing completed, the sample was

released and the contraction measured. The resultant retained pre-strain was 29%. The

overall thickness of the sample was measured a 0.7 mm thickness

The sheet resistance of the cured conductive silicone electrode on the surface of the

actuator was measured using the 4-wire method. It was found to drop from 30 kOhms

to 5 kOhms. This shows the compressive action of the dielectric causes a significant

rise in the conductivity in the range of expected operation of the actuator. This clearly

shows the benefit of the pre-strain on improving the conductivity.

The sample was set up as shown in Figure 41 and tested. As can be seen in the

photo, although strain is retained in the silicone, the actuator is soft and flexible and

requires no external structure. The resulting response from application of a high voltage

was recorded and the maximal displacement response is shown in Figure 43.
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Figure 41: Multi-layer sample actuator in situ for experimental test.

Figure 42: Actuator input voltage and current profile (3.2kV) for actuation test.
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Figure 43: Differential laser actuator displacement response for 3.2kV input voltage
actuation test.

From Figure 43, it can be seen that the actuator contracts by 0.11mm during each

actuation cycle. The figure also shows some high amplitude dynamic oscillation, which

was not directly observed during tests. On actuation (between 2-3 seconds), there is

exponential rate of change decay observed as it approaches full displacement. When the

voltage is removed (between 3-5 seconds) there is an exponential decay to equilibrium.

Finally it is observed that there is some drift in the recorded thickness between the start

and end of the experiment. To analyse these features in more detail the individual laser

displacement measurements have been separated and plotted in Figure 44:
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Figure 44: Individual laser displacement measurements

It can be seen that one laser signal in black is negative (meaning the actuator moved

towards this laser). The signal shows minimal background noise, no continuous creep

over the experiment, but does show a curve symptomatic of charging during actuation

(a). The second laser signal in red is positive (meaning the actuator moved slightly

away from this laser). The signal shows minimal background noise, shows symptomatic

of charging during actuation (a), however exhibits oscillation on application of voltage

(b), creep during actuation and global creep (c).

These three features can be individual analysed:

a The rate of change of contraction (measured by differential displacement) when

charged and discharged would suggest the conductivity of the samples affecting

the time constant of the conductive layer and hence the time taken to reach the

maximum compression of the layers.

b The oscillation of the signal was not anticipated and was only observed at one side

of the actuator.
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• It is hypothesised it could be due to surface roughness affecting the point

at which the displacement is measured. The near identical repetition in the

cycles in both on and off states would suggest this is not the case.

• Intermittent connectivity of the outer conductive film on this side of the actu-

ator could potentially cause this effect, where the contact resistance increases

causing charging to stop, but this would not necessarily cause the negative

change in displacement. However, the response does settle and the underlying

signals rate of change reduces.

c To consider how this may have occurred, it is important to consider that the

actuator was hung from a crocodile clip attached to a fix clamp. The lowest part

of the actuator was connected to a free hanging crocodile clip. The top and bottom

clips were the power supply (high voltage and ground respectively). A creep such

as this could be caused by a slightly loose clamp and slight rotational slip of a

component of the set up leading to the creep.

After testing the sample a cross-sectional microscope image was taken to show the

internal uniformity of the actuator (see Figure 45).

Figure 45: Microscopy image of slice cross-section of actuated pre-strained LIPN multi-
layer actuator.

It can be seen from the response, that the actuator had a significant change of thick-

ness based on it’s initial thickness of 0.7 mm. This is a resulting thickness contraction of

0.11mm giving a 16% strain which approaches the range of strain found in Mammalian
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skeletal muscle of 20-40% [Carpi et al., 2007]. This was achieved using a method which

involved retained pre-strain in a completely soft layered actuator of chemically bonded

material of the same base silicone. However, a contractile actuator of 0.7mm thickness

is still too thin to be useful for muscle-like actuation systems.

Comparing the strain developed by the tested sample with other multi-layer actua-

tor works, the resulting output recorded is significant. Maas et al produced a contrac-

tile strain of 3% with a silicone DEA [Maas et al., 2015]. An acrylonitrile butadiene

rubber (NBR) is created producing 10% contractile strain with a 50g mass applied

[Nguyen et al., 2014]. Kovacs et al produced an acrylic stack with a maximal contrac-

tion of 46%. The final outcome of this experiment is a significant thickness contraction

in a bonded multi-layer stack actuator.

3.7.3 Automation of L-IPN Stack Fabrication

The multi-layer bonded stack developed in this Chapter has shown a contractile strain

on actuation of 16%, however, although proving the principle, the scale of the actuator

is still too small for high power applications. To expand upon the prove concept of an

inherently soft-bodied silicone stack actuator with captured pre-strained, a method of

increasing the scale of the actuator was investigated.

Some research groups have developed semi-automated stacking systems for unstrained

stacks (see Section 3.2.1). To produce a high-power actuator the current manual process

of stacking needs to be improved to enable actuators of increased layer numbers to be

produced, whilst harnessing the benefits developed. Automation of fabrication is crit-

ical due to the high number of layers (in the order of 100’s) required for a large scale

actuator. Additionally, the processing of thin films and the detailed patterning required

to be precisely located relative to preceding and subsequent layers require an accurate

forming mechanism.

The required stacking system is envisaged to produce stacks on a similar scale (in
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terms of layers and diameter) to those produced in other groups (in the order of 100’s

of layers), whilst also enabling the production of pre-strained stacks using the L-IPN

method. To do this certain criteria must be met:

Precise Placement - Accurate layer-to-layer placement aids efficient actuation through

the alignment of electric field between sequential electrodes, across the dielectric layer

. Considering actuation, at a voltage of 5kV, arcing can occur through air over a dis-

tance in the region of 5mm (hence a margin of 2.5mm required). However, to maximise

actuation, the margins must be kept to a minimum, and as a result there is a need for

accurate placement to reduce inefficient margins, yet avoiding arcing.

Scalable - The system must be able to stack a large number of layers in a single ‘run’,

which should be repeatable through additional ‘runs’ to create joined units.

Pre-stretch - The layers must still be able to be pre-strained prior to stacking, to in-

clude the benefits discussed.

Multi-layer Stacking Rig

To consider a method of stacking, the principles that allowed the proof-of-concept

actuator to be developed were considered. The layers must be supported (to capture

pre-strain), stacked such that the gap between dielectric layers is minimised to the

thickness of the conductive compound. This limited and focussed the design constraints

of a mechanism. A concept was developed using a three-screw mechanism, which could

lower membrane (which were attached to a ring of supporting substrate to maintain

prestrain shown in Figure 47) on small tines whilst aligned by three sets of ‘teeth’ onto

a central support plate. When all three screws were rotated in unison, the membranes

could be lowered and deposited on top of each other. An initial model was constructed

to test whether the stacking method devised was viable (Figure 46).
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Figure 46: Prototype Stacking Rig Iteration
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Figure 47: Illustration of arrangement of components for stacking layers.

The mechanism operated, but had the following issues:

• The mechanism was found to be too constrained in its design.

• There were reliability issues due to the materials used for the alignment supports

(3mm acrylic) , which were too brittle for the purpose.

• Misalignment was found due to the alignment teeth being too inaccurate.

A new model was created in CAD using the lessons learned from the first itera-

tion.The design was created to fulfil the criteria listed, and to allow for a large film size

(up to the limit of the spin coating equipment). Plates (shown in orange) form separa-

tors of sequential disc layers of the actuator∗. They have grooves design to allow tines,

which support the layer to bend out of the way as the disc is lowered onto a central plate

∗The individual actuator layers are prestrained and the uncured electrode applied in the same way
as in the L-IPN multi-layer proof of concept
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shown in pink in Figure 49. As the tines bend away the layer is deposited on the plate.

This happens repeatedly until all layers are deposited accurately on top of each other.

The discs are left to chemically bond before the stack is removed.

Figure 48: CAD drawing of arranged components for conceived stacking rig.

Improving on the first iteration involved a less structurally constrained design which

was used to allow easier stacking, along with an improved spacer and film support

mechanism allowing the reduction in misalignment on placement found on the earlier

model.
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Figure 49: Complete prototype stacking rig.

Key Features:

Bendable Flange Plate - The flange and spacer are designed to fold out of the way

allowing the membrane to settle accurately on the disc below, whilst exerting minimal

force on the forming stack.

Uni-directional Stacking Mechanism - The flange and spacer are designed to sup-
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port the individual film discs and hold them apart until deposited on the stacking column

(Shown in Figure 48).

Scalable Design - The fabrication rig is designed to accept thin films up to the maxi-

mum disc size of the spin coater (120mm diameter), maximising the potential of the rig.

This allows for more complex designs including more than one discrete actuator to be

included in a single stack.

Support Discs - In the laminator rig, the L-IPN required a temporary substrate to

maintain the pre-strain. With the stacking rig this is required for all discs to allow the

manipulation required to apply a patterned electrode and to be adequately supported

for uniform layering. A hollow disc is used to support the membrane, whilst allowing

bonding to both sides of the dielectric.

Issues to Resolve:

Consistent Bond - Contaminates (chemical or particulate) can lead to poor bonding

reducing the overall bond strength, maintained pre-strain, and electrode contact area

for actuation. Air bubbles, for example, will significantly affect bonding and hence

maximum tension stress and potentially actuation. An issue with effective bonding

between layers during curing has occurred with subsequent stack outputs, following a

successful first run (Figure 50). Potential causes include:

• Temperature - Either external or insufficient exothermic output of small quantities

of bonding material.

• Inhibited chemical bonding - expired silicone active compound, or nitrogen com-

pounds blocking cross-linking sites.
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Figure 50: Photograph illustrating the nature of peelable inconsistent bonding between
layers encountered.

Precise Repeated Electrode Patterning - To enable actuation each electrode layer

must be patterned to include a connection to a voltage terminal. The patterning must

be precise to allow the maximisation of effective electrode area. A pad-printer has been

developed to mitigate this, but other methods of using a doctor blade, and spray depo-

sition are still being investigated.

Automated Stacking Resultant Sample - The stacking rig operated as desired and

has been used to produce a prototype actuator stack (Figure 51) using a non-conductive

secondary bonding material, and a doctor blade material application technique. A non-
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conductive bonding material was used as a temporary measure due to the unresolved

issues described causing problems with the stack fabrication. It is considered however,

once these problems are resolved, a conductive stack can be produced using the same

method.

Figure 51: Prototype stack cross-section consisting of 16 dielectric layers fabricated using
stacking rig.

The uniform laminations can be clearly seen and when viewed under a microscope

(Figure 52) can be seen to be achieving a similar level of uniformity to the original lam-

ination method. The layers are shown to be repeatably less than 100 microns thick. In

Figure 51 a large air bubble can be clearly seen. This was anticipated as the prototype

was not created in a vacuum. This reinforced the need for an air free environment for

stack fabrication.

139



Figure 52: Microscopy image of prototype stack in sliced cross-section showing layer
thickness consistency and uniformity.

3.8 Summary

This Section has covered a large number of innovation steps in design and fabrication,

which have culminated in the production of a method to produce a high-performing

pre-strained chemically bonded wholly silicone actuator, in a process that, at least in

part, can be automated.

The investigations in this chapter have given rise to the following results:

1. Dielectric layer performance. Dielectric layers were developed using a fixed aper-

ture lamination method and spin coating. The lamination fabrication system cre-

ated was able to produce repeatable, thin and uniform dielectric membranes. The

layer thickness was specified using shim spacers, but was also affected by the sub-

strate layers between which the uncured silicone was squeezed. Layers of a thick-

ness in the region of 100 microns were produced with a uniformity and a CoV for
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all layers of below 5%.

2. Conductive layer performance. The investigation and experimentation of materi-

als, fabrication methods and innovative ideas led to development and characteri-

sation of a conductive soft silicone composite for electrode material. A method of

producing replicable uniform silicone layers was developed and used for dielectric

and conductive layer fabrication. The conductive silicone was characterised with

varying parameters of straining, carbon weighting and layer thickness.

3. Development of novel L-IPN Method. Interpenetrating networks have been pre-

viously developed to capture pre-strain solely in the dielectric membrane. The

lamination method and strain capturing innovation put forward in this chapter

uses the conductive layer (in the form of a silicone composite) to capture the

pre-strain, whilst compressing the conductive compound (aiding maintenance of

conductivity with strain) and bonding the layers together forming a single silicone

body.

In this chapter the following results were attained with L-IPN:

• Capturing of pre-strain - A strain of 31% was captured in a two dielectric layer

LIPN, proving that strained dielectrics can be supported in a soft structure.

Expanded on the lamination method to include the capturing and retention

of pre-strain within dielectric layers, allowing them to perform with improved

prestrain characteristics as developed in single layer actuators

• Conductivity was shown in strained layers of carbon black - silicone composite.

A trade-off between stiffness and conductivity led to the selection of a 5%

weight filler mix, delivering a resistance of 8.3kohms with a Youngs modulus

of 4.1kPa.

• Confirm tensional loading in active and passive states in the range of that
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found in mammalian muscle could be attained using laminated bonding tech-

niques.

4. Multi-layer bonded actuator with captured pre-strain. Developed an alternative

method of stacking layers using concentric supporting rings to retain pre-strain

whilst multiple layers were cured together. A thickness mode strain of 16% was

produced in a proof of concept sample containing three dielectric layers.

5. Multi-layer actuator fabrication and characterisation Due to the limitations of

lamination for multi-layer stacking, the a new method evolved for creating multi-

layer actuators with captured pre-strain using a stacking rig. The pre-strain of

the dielectric could be temporarily maintained using a supporting substrate and

a method called doctor blading was used to apply a conductive layer. Using a

vertical stacking rig enabled these layers to be aligned and placed on top of each

other forming a multi-layer device. The method allowed the bonding of pre-strained

dielectric layers with conductive silicone, which captured the pre-strain once cured

and could be released from the supporting substrates. A demonstration stack

actuator with 16 dielectric layers (each of 100 micron thickness), bonded together,

was produced using a developed multi-layer stacking rig and analysed.

The resultant proof of concept actuator and automated stack output show the feasi-

bility of producing a stack with improved characteristics using a semi-automated process.

This resulting multi-layer actuator is soft and flexible and mimics the actuation of bio-

logical muscle.

142



4 Multi-stable Soft Actuator with Rigid Position Control

4.1 Introduction

In the literature review (Section 2.10), the mechanical design space in which DEA ac-

tuators operate was discussed. Many implementations of DEA systems (robots and

devices) have some compliance due to the DEA being directly coupled to the output

[Carpi et al., 2007]. If the output of a DEA could be made more rigid - even for short

periods of time - they could form a useful form of actuation which would overlap with

existing technologies. Whereas DEAs are inherently soft, a large proportion of actuators

need to operate with interfaces involving rigid components. This has led to DEAs being

limited to use in soft body technologies, or in systems where they are directly linked to a

substrate that reduces the potential for any reliability issues or failures. In this chapter,

soft actuators in coupled systems will be considered for use as control actuators in rigid

blocking systems. Generally blocking actuation technologies - existing and in develop-

ment - require enabling technologies such as lightweight valves or locking mechanisms.

For example, pneumatic systems require valves for flow control. In smaller (and in some

cases soft systems), these control actuators need to be lightweight, responsive, and ef-

ficient. This type of task is an application that DEAs can be used for, where - when

suitably designed -, the features of fast response can facilitate power output control.

It is proposed that the relaxation work, produced by the application of electrostatic

force to a dielectric membrane, can be harnessed to deliver a number of useful motion

modes which can be applied through a rigid framework to an external body. Modules

created in this form could be used to replicate the function and, in some application

under requirement constraints, replace conventional rigid actuators. To achieve this

goal, methods of maximising power output and energy efficiency will be explored, whilst

considering how to ensure reliable repeatable actuation in a usable form for real world

application in a rigid system.

143



The aim of this Chapter is to develop a method to couple lightweight, efficient, and

high-energy density soft DE-actuator membranes to a robust and controllable stiff output

end effector, while mitigating or limiting the effects of the inherent electromechanical

instabilities and failure modes of DEAs. Additionally it will require the development

mechanism work over a range of scales (from millimetre to decimetre. In more detail this

involves demonstrating that a scalable mechanism can be developed that can be powered

by a DE-actuator to perform a range of applications including low energy miniature

actuators (such as braille pins) and larger designs (individually such as lock-pins or in

arrays such as dynamic surfaces). The mechanism should provide a non-back-drivable

output, which will enable control of movement and ability to withstand intermittent high

loading forces at end effector. The project aims for the mechanism to use bi-stability

principles to increase energy efficiency of the device whilst ensuring isolation of the soft

- and hence potentially fragile - part of the device from the rigid end-effector. This will

create a a controllable bi-stable (and potentially a multi-stable) output device from a

thin film actuator in a linear displacement configuration. Through the variation of the

supporting structure design, and assembly of a connecting mechanism, these modules

can be used to replicate or extend the performance of conventional rigid actuators.

The key performance criteria to be met in this chapter are:

1. Development of a lightweight efficient mechanism to transfer the energetic input

of the DEA to a specific pin-locks.

2. Provide non-back-drivable with low energy consumption.

3. Create a compact actuator design that is scalable.

4. Expand the operation to include a variety of output formats for a range of appli-

cations.

To meet these criteria there are a number of targets to be met:
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• Minimise the weight required to produce a useful output to meet concept criteria.

• Maximise the energetic output of the actuator per cycle.

• Enclose DEA actuator to make it resilient and hence reliable.

• Minimise energetic losses in the mechanism.

• Design a novel mechanism that can deliver the required outputs potentially in a

range of formats.

4.2 Finite Displacement Actuators

To consider how to use DEAs most effectively for this purpose, the possible forms it can

take will be analysed. Generalising this class of actuators, a set of desired characteristics

can be extracted:

• High blocking force - The device must be able to hold its position once set.

• Low energy consumption - The device should require minimal energy once set in

a control position.

• Fast response time - An input stimulus to alter position should be acted on quickly.

• Fast cycle time - The time required to reset or perform multiple full cycle repeti-

tions should be as short as possible.

Evaluating these target characteristics, it is considered possible for the device at-

tributes to be replicated by the design of a specific class of DEA system. To achieve this

however, the method of application of forces from a soft membrane to a rigid structure

would have to be addressed. It was realised that a possible solution could be devised

through utilising minimum energy states and an arrangement that had a stiff output

end-effector.
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4.3 Mechanical Output of a DEA System

The use of soft actuators in real world applications has been relatively limited and fo-

cused mainly on soft robotic implementations [Gu et al., 2017a] and fluidic applications

[Carpi et al., 2010a, Chiba et al., 2008], due to the inherent flexibility of the actuator

used. The pairing of actuator and application has led to devices which cannot be cre-

ated through the use of conventional actuator technologies (i.e soft pumps, pneumatic

actuators, inchworm). The tendency to use unconventional actuation methods for these

tasks has advantages over the conformation of the task to conventional actuators (motors

or valves etc). Soft actuators can, not only be used to power inherently flexible devices,

but can be used for manipulation of rigid structures. Complimenting soft materials with

hard frames/structures can enhance the resilience and increase the reliability of soft ac-

tuator powered devices. A comparison found in nature are arthropods, which possess an

outer shell which can be articulated with soft muscular tissue to provide external forces,

but provides a dual purpose as a protection to the delicate organic structures contained

in the outer shell. This creates a rigid interface with external objects protecting the soft

muscles used for actuation.

DEAs are highly nonlinear in their electromechanical operation and have multiple

failure modes. Hence, they require a safe working region of operation in order to maintain

dependable actuation, which does reduce the maximum strain of the DEA. The strain

can be used in different arrangements to produce useful output as discussed in Section

2. To maximise the power output of an actuator the force and displacement of the

actuator must be maximised, as well as the cycle time of the device. The cyclic strain

of an actuator is dependent on a number of material and control parameters. Some

elastomers will provide a higher power output even though they have lower strain due

to their superior cycle time.

DEA implementations have been popular in inherently soft systems or systems with

flexible structures [Carpi et al., 2007]. The advantageous characteristics are not uniquely
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useful to robotics but across mechanical systems for active damping, yet in robotics the

actuators are limited in their use by their resilience to external interactions. This is in

part due to the inherent material properties enabling easy coupling to soft structures,

but also due to the complexity of developing a rigid output from a delicate actuator.

Some configurations such as antagonistic cone pairs allow semi-rigid end-effectors to be

controlled by a DEA∗ [Nguyen et al., 2017].

Rather than solely considering actuator configuration, some works have exploited

the characteristics of DEAs when paired with with rigid support structures for rigid me-

chanical output. One novel exploitation uses segmented actuation to control movement

of a soft orbital gear around a central geared shaft to elicit rotary motion and produce a

DEA motor [Anderson et al., 2011, Tse et al., 2011]. This motor can easily suffer from

slip due to the inherent elasticity of the drive gears mounting on the DEA (shown in

Figure 53).

Figure 53: Flexidrive prototype rotary drive (reproduced from [Tse et al., 2011]).

Another novel device uses DEAs to shift a central mass, altering the center of

gravity generating a rotation which can move a wheel and allow self commutation

[Rosset and Shea, 2015]. This device could have applications as a vibrator motor us-

ing the resonance of the mass-spring dynamic system. However, there is no easy method

∗the cone end-effector is considered semi rigid, as although a hard component interacts with the
external environment, it is mounted on a DEA that is inherently flexible
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to output the energetic motion generated for controlled displacement.

Both of these examples do convert the work done by the DEA into a useful output,

through some rigid coupling, but in both cases, the inherent flexibility in the actuator

can have a negative impact on the performance. These are not implemented in a form

where there is a rigid end-effector and fixed position control. This is a key area that is

currently underexploited in the actuation unit body/end-effector vs actuation stiffness

space as discussed in Section 2.10. Hence, this Chapter aims to explore the potential

for using DEAs in this way. Evaluating systems which provide bistable fixity, a key

characteristic of valves and many applications of this class of actuator is the discrete

application of force, where the device is required not only to provide enough energy to

manifest state change under limited load, but hold position in the end states.

Defined State Transition Pathways - In Section 2, some examples of discrete state-

space mechanical systems are discussed with reference to minimum energy actuation.

It is shown that bistability can be used with the DEA technology to create binary

robots that use minimum (or zero) energy states. The utility of such an output is clear

in many applications using popular electromechanical actuation methods (i.e. switches,

valves [FISHER, 2005]), and novel applications (i.e. self-deploying lightweight structures

[Araromi et al., 2014]) which are made possible by specialised design of DEAs in flexible

structures. To develop such a system using soft actuators would enable the beneficial

features of DEAs to be exploited - the lightweight, fast response time, and efficiency in

a rigid frame.

4.4 Coupling Soft and Stiff Sub-Systems

DEAs have outstanding operating characteristics and closely resemble the mode of op-

eration of biological muscles, and as such are an excellent technology for replicating

biological work. Using biological and other design inspirations, their uses include a
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broad array of applications requiring lightweight, compact and soft structures. Many of

the applications explore and optimise the soft and elastic characteristics of this actuator

type, as the primary driving force in the formation of concepts. The actuators’ soft and

elastic structure does not have to limit it to operation devoid of rigid bodies or interac-

tions. Unconstrained rigid bodies do have the potential to cause physical damage to the

dielectric or conductive layers, but in a well designed supporting and containing struc-

ture the actuator can be used to produce a useful rigid end-effector mechanical output

using some coupling method (such as a rod or strut as found in the DEA antagonistic

cone configuration).

Soft components - in artificial muscles or limbs∗ - tend to be less resilient to point

loads from interactions than stiff or rigid components. There are a plethora of benefits

from using DEAs including weight, efficiency, response time and other application specific

factors. Crucially, DEA materials currently available are soft so that the material can

be highly strained for optimal performance; thus this property must be maintained.

To consider using DEAs to provide energetic output to rigid systems, the resilience

of the actuator must be addressed. The actuator performance should not be heavily

compromised by the system, but the reliability of the actuator must be significantly

increased, and the output should have rigid position control so as to hold position under

loading.

One possible solution investigated alters the actuator material properties to increase

the actuators structural rigidity enabling it to hold a specific state as demonstrated by

Rossiter et al [Rossiter et al., 2010]. A material that acts as a DE and SMP -Shape

Memory Polymer - is put forward forming a bimodal actuator. As a result zero energy

fixity is generated after actuation. The design does leave the fragile actuator exposed

however, and due to layering, affects the performance of the DEA. Additionally, the use

of SMPs may significantly limit the time to fixity and the frequency of actuation due to

∗Artificial muscles and limbs reflect the common replication or influence of biology in soft robot
design, but robotic terminology would normally be actuator or link (and/or end-effector)
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the heat cycling required for effective operation. Figure 54 shows the proposed design

state transition diagram.

Figure 54: DSMPA - Dielectric shape memory polymer actuator - state concept transi-
tion illustration. (reproduced from [Rossiter et al., 2010])

DEAs, as mentioned are relatively fragile (see Section 2.2); any damage to the di-

electric will cause the actuator to fail with few exceptions (self-healing has been shown

in some DEAs [Yuan et al., 2008]), and the actuator would be irreparable if perforated.

A similar mode of failure is found in batteries, which suffer from high energy failures on

puncture. To counter this, batteries are encased in a rigid external structure, yet can

still fail through external impacts. A protective skin or structure could be used likewise

to protect the DEA, but this may impair the primary function - the DEAs actuation.

4.5 DEA Stable State Actuator Concept

The ideal solution is to produce a device which would use the minimum energy required

to change between a number of stable states and provide an infinite blocking force at an
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end effector, whilst consuming zero energy to hold position (i.e. zero energy fixity). The

previous works discussed have focused on different aspects of these principal characteris-

tics. To produce an improved system with this combination of features, other aspects of

the system were considered. In DEA systems, a structure is required to support DEAs

in many forms to provide optimal performance. This structure could also be used to

provide some function through mechanical dynamics. Whilst reviewing popular systems

for valves it was found that in some cases external mechanisms were used to convert a

motors rotational output to mechanical translation to block flow [FISHER, 2005]. This

transfer allows for the torque and hence force generated to be altered through the gear

ratio. Other mechanisms may be able to be utilised to facilitate better transfer of work.

4.5.1 Ratchet Mechanisms

So far current state-of-art research on fixated resilient end-effectors able to translate

between states has been limited to a small number of examples [Rossiter et al., 2010],

although bistability has been explored in a broader set of research works. However, these

implementations exhibit some significant performance drawbacks, from response time to

fixed state position control. To try to further the development of fixed position bistability

using DEAs, another possibility was considered; mechanisms. Mechanisms can be used

to convert translational to rotary motion and vice versa, or produce a combination of the

two. They can provide gearing to increase force/torque, while reducing displacement and

ideally conserving input energy and outputting the work in the mechanical form required,

however there are necessary losses in the system due to friction effects. Depending on

the requirements of the application, this cost can be borne for the additional benefits

the combination of actuator and mechanism provides. Hence, developing the actuation

strategy and matching it to the system is essential for optimal performance.

Considering a mechanism for converting DEA displacement, output rotational de-

vices have been devised but they do have drawbacks, such as slip and active membrane
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area maximisation. Translational actuation has been used in a direct-drive format for

a large number of systems, but it can also be used to drive a mechanism. In this way,

the actuator can be physically separated from the external environment and encased.

Additionally, the output can be adjusted to maximise performance for the task through

variation of the mechanisms characteristics.

In servo motors, gearing is used to produce high torque output from a low torque

high speed motor. The design of efficient gear mechanism, can be advantageous in terms

of maximum power transfer efficiency and stall torque. Servo motors can be considered

non-backdrivable due to the high torque required to reverse the gear ratio employed.

Analogous to this gearing of a stepper motor, the mechanism proposed is non-back-

drivable.

Combining the ideas described above, the functional objective is for the mechanism

to convert the active elastic translation of the soft artificial muscle to a rigid position

controlled output. With this in mind, an exploration of possible mechanisms was un-

dertaken [Sclater, 2011]. It was discovered that fixity could indeed be introduced, con-

trolling the movement of the end-effector due to directional forces, through the specific

design of interactions of the mechanism, whilst enabling state change. A mechanism

that fulfilled the purpose is an indexing barrel cam mechanism which can be adapted to

provide multi-state fixity based on a translational input.
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Figure 55: Exploded view detailing a design of an indexing cam
(reproduced from [Sclater, 2011])

In Figure 55, the rotationally locked cam slides up and down a shaft, while a pin

travels between cam track levels, creating uni-directional travel. This enables the pin

to rotate in steps controlled by the translation of the barrel cam. A mechanism similar

to this would enable the translational motion of the DEA to be converted into rotation.

The control of the pin travel could also enable non-backdrivability.

4.5.2 Actuator Configuration

The actuator is the sole source of energetic input to the system and as such, its perfor-

mance limits the output of the actuation mechanism. The particular configuration of

the actuator can be used to enhance the actuator. The chosen configuration will inform

the design of the supporting structure. For the design of a system using a soft actuator

to drive a rigid end effector, some method is required to link the rigid mechanism to the

soft DEA. For this to occur, a controlled displacing rigid point is required. From earlier

discussions on DEA actuator configurations, it can be seen that an out-of-plane actua-

tion mode is advantageous. A rigid connection point is preferable so that the membrane
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is protected from potential damage from the interaction. For the electro-mechanical

system to work optimally, the energetic output of the actuator is critical. A number of

parameters characteristic of the configuration type can be used to classify and compare

possible actuators for the required task.

Parameter Antagonistic

DEA Cone

Antagonistic

DEA Hydro-

stat

Multilayer

DEA

Planar DEA

Motor

Force

Output

Low/Medium Low/Medium High Low/Medium

Output

Stroke

High High Low Medium

Degree of

Freedom

Translation Translation Translation Rotation

Output

Interface

Rigid Soft∗ Soft∗ Soft∗

Operational

Reliability

Medium Low Medium Medium/High

Continued on next page

∗The interface can be made semi-rigid through reinforcement
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Parameter Antagonistic

DEA Cone

Antagonistic

DEA Hydro-

stat

Multilayer

DEA

Planar DEA

Motor

Coupling Solid Rod Pneumatic Solid Soft

Elastomer

Solid Gear

Resilience Translation Translation High Low (Slip)

Ease of Op-

timisation

High Medium Low High

Table 11: Tabulation of comparison of actuators matching concept desired parameters

Numerous actuator designs could be considered and used for this system (shown in

Table 11), but as discussed in the literature review (Section 2.6), each configuration

has relative strengths. Specifically, cones seem to offer the best match to the desired

function, hence this was chosen as the actuator configuration for this novel system.

Although the actuators all use passive and active elements to enable useful work

output from the relaxation actuation of the dielectric elastomer, some can be enhanced

by duplication of actuation in the opposite direction. This is a useful benefit of DEAs,

where the passive element at one point of operation can be activated in another point.

The antagonistic cone benefits from the ability for two active zones, enabling the increase

of displacement control through sequential actuation.
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4.5.3 Multi-state Actuator Concept

From the analysis above, for this application, the most usable energetic output is attained

through an antagonistic cone pair producing a translational output. The pairing of the

DEA with a mechanism can be advantageously used to lock the actuator position and

hence fix the end-effector. Furthermore, at its most fundamental level, a mechanism can

be used to alter the energy output (trading force/torque and displacement) with respect

to the input, such that it can be transferred to a more useful form. Thus, a unit can

be devised to fulfil the tasks of switching state and concurrently enable final state fixity

from the input using a single actuation source. The optimisation of the mechanism will

also minimise losses introduced to the system. For this mechanism to function, the forces

applicable to the end-effector during transition must not exceed the force generated by

the actuator; this is the blocking force of the actuator.

In Figure 56 an example multi-state actuator mechanism is shown as a linearised

version showing the full circumference of the cylindrical system.

Figure 56: Illustration of linearised conceptual multi-state mechanism design

Plotting the polar coordinates of the barrel cam in planar form against the axial

translation of the mechanism, the state transitions can be graphically presented as shown

in Figure 56. In the figure:

• State (a) shows the pin wheel (represented by three red pins showing the spokes

of the wheel in cross-section) in its high position locked in the teeth of the outer

cam (marked in green).
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• State (b) shows the upward translation of the index cam (marked in blue) transi-

tioning through upward actuation force supplied by the paired actuator along the

z-axis. This raises the pin wheel enabling it to rotate over the teeth of the outer

cam in the direction controlled by the barrel cam teeth. (The movement of the pin

wheel spokes during the state transition is shown in dark red).

• State (c) - shows the downward translation of the index cam transitioning through

downward actuation force along the z-axis. The mechanism is now in locked low

position.

• State (d) shows the upward translation of the index cam along the z-axis. This

raises the pin wheel enabling it to rotate over the teeth of the outer cam once

again.

• State (e) - shows the downward translation of the index cam along the z-axis. The

mechanism is now in locked high position - repeating State (a).
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Figure 57: Illustration of state tranistions of multi-state mechanism for a 120 degree
cycle

The mechanical constraints of the system state transitions are considered in Figure

58. The pin wheel is highlighted red, the outer cam green and the indexing cam blue

consistent with the previous figure. In the actuation activation strokes in transition a

to b, and c to d, the actuation force (Fa) must overcome the force from the mass of

the pin wheel (mp), and combined strut & indexing cam (ms) acting under gravity (g).
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There is also a friction force (Ffp) of the pin wheel as it moves in contact with the

outer cam. Finally, there is a frictional force (Ffo) of the indexing cam moving through

the outer cam. When the actuator returns to its steady state (b to c, and d to e), the

actuator returns to a pair of passive elastomeric elements out of equilibrium resulting

in elastic returning force (Fe), which along with the force from the strut & indexing

cam acting under gravity must overcome the friction Ffo. The pin wheels mass mp

acting under gravity must overcome the friction on the slope of the outer cam as it slides

into an output state (high or low). If the friction is reduced by material choices and

the actuation force is large enough to lift the mass, the mechanism should be able to

operate.

Figure 58: Illustration of forces involved in the state transitions
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To enforce unidirectional mechanical interaction, a gearing system can be chosen

with a high ratio, but this would add to losses and complexity. From rotation to trans-

lation worm gears can be used, whereby a transition in direction creates a controllable

unidirectional movement. The inverted equivalent is not obvious however. A planar

slider could be used with diagonal channels to drive a gear, for example. A cylindrical

slide could be used, which would transfer the translation uni-directionally into rotational

displacement∗. This displacement can be used to relocate and lock an end-effector. In

its simplest form, this mechanism is a non-backdrivable multi-state cam system (shown

in Figure 56). The nature of the directed state transitions of this system mean that the

system can benefit from feedforward control to track the position of the end-effector in

the same manner as stepper motors.

The inspiration for the device pairing the actuator and mechanism was borne out of

a desire to enhance the current designs and provide truly rigid position fixity. However

it was realised that the design space of this simple non-backdrivable system could be

expanded to produce an array of actuation modalities that are commonplace. Therefore

this has opened up the possibility of using such a pairing in numerous applications

where lightweight, scaleable and highly efficient actuators are needed. The revolute

design creates a more compact actuator than a linearised mechanism. As no metals are

used in the design, this could expand on current applications to medical technologies,

where the system could be used in conjunction with live CT scanning. The possible

designs that could be realised will be discussed in the next section.

4.6 Mechanism Design Space

Considering the separable components of the actuation system, a passive multi-state

structure or mechanism can be used alongside an actuation source to transfer a mech-

anism between two stable output states. The mechanism allows the development of a

∗The conversion is bi-directional, but once a new state is reached the conversion is non-reversible
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system with translational output. The actuator enables controlled state change through

discrete energetic application.

The multi-state non-backdrivable DEA concept described in Section 4.5, is an imple-

mentation of the novel combination of mechanisms with DEAs. This implementation is

only a single example of a multitude of possible devices. The design space of the concept,

and the rigid translation outputs made possible through the design will be explored. For

the concept to function as a real world system, the chosen actuator is required to produce

axial translational motion to drive the specific class of ratchet explored in this work. An

indexing barrel cam mechanism can be designed to alter the translational actuation of

the DEA into rotational or alternate axis translations or a combination of both. Hence,

a broad spectrum of outputs can be created from the simple linear translation generated

by the DEA antagonistic cone actuator.

4.6.1 Actuation System Operation Modes and Applications

Lock pin - A locking pin can be created with this orthogonal ratchet mechanism using

a uni-directional bi-stable barrel cam ( [Sclater, 2011]). This is the simplest form of

the actuator and is the same as the conceptual multi-state non-backdrivable actuator

described in Section 4.5. Figure 68 shows a CAD representation of the envisaged device.

A barrel cam (or lifter), which is directly translated through the actuation of the DEA

unit, is used to rotate a pin wheel. Once rotated, the lifter is retracted and the wheel

relocated in a new state position on the static outer cam. This two-step extension and

retraction enables the transition of the effective end-effector (the pin wheel) between two

axially aligned translation locations.

N-State Translation Output - The circumference of the barrel and the size of the

reciprocal pin define the number of states that can be created in a single rotation of the

mechanism. The number of states and translation amplitude order can be varied (within

the maximal energetic range of the paired actuator) to create a specific state transition
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path for a particular application. The state path would enable a defined number of

discrete amplitudes to be outputted using a set number of actuation pulses (shown in

Figure 59). The order of consecutive states could be used to define state pathways.

Figure 59: Conceptual illustration of an linearised N-state mechanism configuration

Stepper motor - The lock-pin mechanism can be seen to use the rotation of the bi-stable

barrel cam to translate a reciprocating pin wheel between two positions on the z-axis.

Evaluating the system from the perspective of the free cam, it can be seen that the pin

and external cylinder control its movement. Driving the mechanism causes rotational

movement of the barrel cam. The cam track can be designed such that the rotation of

the stepper is non-back-drivable when there is no active drive. The mechanism can also

be designed to allow for bi-directional rotation.

Linear Screw Drive - Extending the idea of the stepper motor further evaluation of

the mechanism shows that it could be further extended to utilise the rotational drive

to enable an axially aligned screw drive. This extension combined with the use of a bi-

directional linear actuator (i.e. a twin-side active antagonistic cone actuator, as opposed

to, single-side active antagonistic cone actuator), would enable the development of an

indefinite (but pre-determined) height extending linear actuator (see Figure 60). This

unit could be paired with many duplicates in a grid surface to produce a transitional

active 3D surface, which could be used for topographical mapping, for example.
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Figure 60: Image of cross-section of linear screw mechanism CAD design.

The chapter has, thus far, brought together concepts of position control mechanisms,

soft actuators and minimum energy structures. Numerous applications and designs have

been discussed as part of a broad possible design space, that can provide a range of

modes of rigid actuation output, that could have broad uses and implications for future

design and implementation of soft actuator based systems for applications currently

using rigid actuators. However, to confirm that DEAs are capable of providing the force

and stroke necessary, a device was devised to test the operation. A simple multi-state

device as described and depicted in Section 4.5 was chosen for the test, as it would

simplify the mechanism whilst still containing all the components needed in any multi-

state actuator. A key consideration in such low-power devices is the losses in the system

especially with the use of mechanisms, where friction due to part contact may inhibit

the smooth operation of a device.

Development Note - The design of such a system, and the possible physical forms

the actuator could take, will be analysed in detail. The actuator configuration and

potential output mechanism design will be explored. This chapter uses DEAs in a

studied arrangement and uses VHB4910, which is a characterised material described in

the literature as a planar actuation membrane. However, the material has not been

characterised in the particular arrangement used in this chapter and as such can only

be compared to similar devices. The arrangement used applies a prestrain using an

antagonistic cone which is non-uniform biaxial strain and varies between tested setups.
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This has meant that empirical study rather than predictive analysis have been used.

4.7 Antagonistic Cone Pair Characterisation

The antagonistic cone DEA configuration has a number of optimisation parameters

including pre-strain, rod/strut length, cap size. The use of an antagonistic pairing of

DEA cones enables a high stroke and blocking force to be generated in both two-side

or single-side active DE membrane forms. To characterise the antagonistic cone, the

maximum force and stroke would be measured over a range of cone shapes. The cross-

sectional shape of the cone is shown in Figure 61 with (a) the strut cap, (b) the strut, (c)

carbon grease electrodes, (d) the supporting frame, and (e) DE membrane marked. The

parameters l and w are the length of the strut (including tip), and the width of the strut

tip respectively, which were varied as part of the characterisation. Length I.D. is the

internal diameter of the supporting acrylic frame. Due to the number of parameters that

can be varied, the pre-strain of the DEA and the size of the aperture of the supporting

frame were kept constant at 400% and 60mm respectively. The strut cap size varies the

angle of slope of the cone. Due to the surface area of the cap, it also affects the available

actuation area.

In order to find the optimum configuration with the parameters of strut cap size and

strut length, a set of characterisations were undertaken.
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Figure 61: Antagonistic coupled cone actuators cross-sectional schematic

4.7.1 Materials and Methods

A proprietary dielectric was used for the experimentation (VHB 4910). This was due

to its standardised material parameters enabling comparison between separate tests.

Additionally it yields high strain on actuation, which is desirable in this system. A

supporting frame for each cone was cut from 3mm cast acrylic sheet. VHB was pre-

strained using the Hoberman platform method described in Section 2.8, and adhered to

the frame, then a cap was centrally aligned on the membrane. The centering is crucial

to forming an axisymmetric cone actuator. Any deviation leads to the cone leaning and

thus, sub-optimal performance. Carbon grease electrodes were painted on to the active

membrane and connected to the high voltage supply using copper tape connections.

Care was taken not to to allow the active section -covered in carbon grease - to come

within a 2mm boundary of the strut cap, due to the high stresses at the boundary due

to boundary constraints potentially leading to premature material breakdown and hence
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actuator failure.

Strut caps were 3d printed (using a Wanhao Duplicator 4s 3D printer) to and planar

of 11µm and z-axis resolution of 100µm [Wanhao, 2016]. The caps high resolution print-

ing enabled repeatable production and accurate cone alignment due to axial symmetry.

The sizes of cap small, medium and large are 15mm, 20mm, and 30mm in diameter

respectively. The rod was cut from extruded aluminium rod of O.D - Outer Diameter -

4mm, and wall thickness 0.5mm.

4.7.2 Experimental Setup

For the characterisation tests antagonistic cones were set up as described in Section

4.7, and a load cell rigidly located at varying distances from the active cone. As such

the blocking force to displacement relationship over a range of voltages could be char-

acterised. The set up is shown in Figure 62. The data was recorded for each of the

configurations of three cap sizes and five rod lengths at voltages up to membrane break-

down. A DAQ was used to trigger actuation and recorded actual voltage (through

sensing circuit via high voltage supply), displacement (from laser sensor) and blocking

force (from load cell).

For the experiments the following equipment was used:

• DAQ - NI USB 8343

• Laser Unit - Keyence LK-GD500

• Load cell - Kyowa LMA-A-10N load cell with a Strain Amplifier Kyowa DPM-700B

• PC - computer running MATLAB software
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Figure 62: Experimental rig schematic of antagonistic cone actuator characterisation.

Strict safety protocol was used in the experiments, using an insulated test space and

isolated high voltage supply. The setup is further described in Appendix C.

4.7.3 Characterisation Results

Using the materials and methods, and experimental setup as described, the antagonistic

cone actuator was characterised and graphs of blocking force against displacement com-

bined by strut length and plotting results for each strut cap size for the application of

3.5kV.
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Figure 63: Plot of force - displacement for strut length 80mm

Figure 64: Plot of force - displacement for strut length 90mm
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Figure 65: Plot of force - displacement for strut length 100mm

Figure 66: Plots of force - displacement for strut length 110mm
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The graphs in Figures 63 - 66 show the blocking force vs. displacement characteristics

of the cone actuator over a range of cap and strut length combinations∗. The force-

displacement relationship can be seen to be linear across all strut and cap sizes, which

was unexpected due to the highly non-linear nature of the material and the variation

in pre-stretch between samples - caused by the out-of-plane straining of the material by

the insertion of the strut. However, due to the antagonistic membrane pairing, the non-

linear attributes cancel out. Grouping measurements for each cap size, a longer strut

length shows an increase in force due to the extra elastic energy stored in the membrane

due to the increase in pre-stretch. This is countered by a reduction in displacement of

the cone tip when actuated.

To compare the energetic output before membrane breakdown, the work done through

actuation was calculated for each of the samples each combination of strut length and

cap size (shown in Figure 67). With each cap size there is a clear peak in output†. The

mid cap is shown to have the highest energy output.

∗In arrangements with a strut length of 100mm and 110mm the testing of a cap size of 30mm (large
cap) was not possible due to mechanical failure of the membrane on set up of the experiment. This was
due to the combined pre-strain on the membrane being to great for it to withstand in a passive state.

†The peak in output for the large cap is with the maximum reliable pre-stretch (with 90mm strut)
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Figure 67: Plot of work output of single side actuation of antagonistic cone pair.

At an actuation voltage of 3.5kV each of the membrane work output was measured

from the recorded free displacement and blocking force. The result aided selection of

parameters to create a prototype. It can be seen that the maximum energy output

was found in the mid-cap size cones (with the 110mm strut configuration providing the

highest output). However, as the displacement of the actuator is of critical importance to

maximising the utility of the device the relatively low displacement of this configuration

was deemed inadequate (at 4.4mm). Thus, it was considered a lower energy output

configuration with the highest displacement would be overall the best parameter set.

Thus a configuration with a 100mm strut length and a small cap was chosen, which had

only 15% reduction in energy output (of 3.75mJ) and approximately a 50% increase in

displacement (to 6.4mm).
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4.8 Lock Pin Functionality Test

The multi-state mechanism has been discussed in Section 4.5.3 (a 2D state transition

diagram is shown in Figure 57). When this mechanism is used in a cylindrical form,

it can be seen that a sequence of n-stable states can be created through the rotational

movement of the wheel enabled through vertical travel produced by the translational

actuator of the antagonistic dielectric cone.

Figure 68: CAD desing of multi-state actuator prototype demonstra-
tion rig.

A design was created using Autodesk CAD, enabling the realisation of this circular

instance of the bi-stable mechanism shown in Figure 68. In the figure, it can be seen
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that the mechanism is between the antagonistic cones, which is to increase the potential

for miniaturisation of the unit. The translation of the surface of the wheel provides the

displacement for the pin forming a non-back-drivable multi-state end-effector. From the

analysis of the cone characterisation energy plots (Figure 67) produced for the antagonis-

tic cones, the highest work output actuator was selected and paired with the mechanism

and tests under real conditions for the application.

An illustration of the degrees of freedom of the mechanism is shown in Figure 69:

Figure 69: Illustration of defrees of freedom of multi-state mechanism design

The pin wheel is freely moving along the strut, but during an actuation cycle, the

strut would move with the pin wheel. The pin wheel would encounter some frictional

losses on rotation as it moved along the teeth of the cams and rotated around the strut.
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It was considered that the weight of the pin wheel would overcome these losses. The

indexing cam is attached to the strut and moves along an indexing groove keeping it

from rotating.

4.9 Experimental Setup

As the confirmation of the concept would be made through the repeatable state transition

of the multi-state device, the setup involved a freestanding actuation system as shown

in the exploded view in Figure 68. The actual setup is shown in Figure 70.

Figure 70: Photo of multi-state actuator with component descriptions.

In order to fabricate the device, the moving components need high accuracy and low

weight. For the strut and indexing cam combination of aluminium rod and 3D printed

PLA was used to meet these requirements. Hollow 3D printed parts allowed low weight

and high accuracy, and the aluminium rod as smooth for low friction (and stiction), while
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keep the weight low. The pin wheel was again constructed of aluminium rod and a PLA

wheel for the same reasons. An acrylic plate was used to ensure accurate alignment of

the strut in the mechanism, through laser cut holes which minimised additional frictional

losses.

4.10 Concept Proof Results

Figure 71 shows the actuator displacement in active and passive states respectively As

can be seen in the active state, there is significant wrinkling of the actuation membrane.

This is due to equilibrium stress being reached in the circumferential plane of the cone.

However, there is still tension in the radial direction. Although wrinkling tends to show

the membrane is approaching limits of operation, the membranes performed reliably in

repeatable actuation cycles at this voltage.

The images shown in Figure 71 show the state transitions as described in Section

4.5.3. The Figures 71(a-e) represent the states in Figure 57 (a-e) showing the pin wheel

transitioning from high to low repeated twice. The actuator was able to achieve the

required displacement using a 5kV actuation voltage. It is believed that the higher

voltage was required to overcome stiction and to achieve the desired displacement to

enable transition. Although the voltage was larger than expected the actuator was able

to perform multiple cycles without failure.
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(a) State 1 - Initial State of device (HIGH
state)

(b) State 2 - DEA Actuated (Vertical lift
and rotation to inner teeth limit)

(c) State 3 - DEA Off - (Rotation to outer
teeth limit to LOW state)

(d) State 4 - DEA Actuated (Vertical Lift
and rotation to inner teeth limit)
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(e) State 5 - DEA Actuated (Rotation to
outer teeth limit to HIGH state)

(f) State 6 - DEA Actuated (Rotation to
inner teeth limit)

(g) State 7 - DEA Off - (Rotation to outer
teeth limit to LOW state)

Figure 71: Series of figures showing state steps of actuation cycle of prototype unit.
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For the experimental actuation of the device Figures 73 and 72 show the rotational

angle displacement about the axis of the coupling strut of the actuator and translational

displacement of the rigid end effector of the actuator along the axis of the strut during

the DE actuation. This information was attained through calibrated tracking of the dots

attached to the pin wheel.

Analysing Figure 72, the z-axis translation (along the axis of the strut) is plotted.

The dashed line shows the ideal displacement of the pin wheel. It can be seen that

there is some time displacement (particularly on the first application of voltage), where

the wheel takes 0.2 seconds to rise to the required displacement for state transition of

5mm - this displacement is required for the wheel to pass over the teeth of the outer

cam. There is some overshoot and undershoot of the position which was observed as the

wheel ‘bounced’ at the maximum displacement. This bounce is mostly clearly observed

by the high variation in displacement as the actuator transitioned from low to high state

between 3.25 and 4.25 seconds.

Figure 72: Plot of translational displacement of end effector along the axis of DEA
actuation displacement. (Letters a-e mark states referred to in Figure 71).
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Considering the plot in Figure 73, the dotted line shows the ideal transitional steps.

The states from Figure 57 are labelled and depicted by crosses on this line. The blue

solid line shows the retrieved data of the polar rotation in degrees from the test. When

compared to the experimental data it can be seen that the ideal line significantly differs

from the experimental results, however the wheel does rotate and transition between

states. The differences are due to the delayed response in displacement of the actuator

vertically, slowing the rotational displacement, which can be seen clearly at multiple

steps (for example (a) to (b)). It was also noted that the wheel seemed to over-rotate

(for example between (c) and (d)), however this may have been related to the ‘bounce’

observed between in the translation data in Figure 72. The wheel did under-rotate in

the transition to low states (e.g. (b) to (c)), however it did travel far enough to allow

the state change to occur, but not as accurately as expected.

Figure 73: Plot of the rotational displacement of the end effector about the axis of DEA
actuation displacement. (Letters a-e mark states referred to in Figure 71).

The bistable concept did deliver output transition between high and low states of a

non-back-drivable rigid end effector through the application of translational actuation
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from an antagonistic cone pair and whilst in the locked states required no energetic

input. It can be seen that the actuator only uses energy when changing state, producing

a very efficient device for numerous applications.

4.11 Summary

In this chapter, a system using DE actuator coupled to a non-back-drivable mecha-

nism with a rigid end-effector has been presented. A review of soft robotic actuation

technologies and the methods developed to couple soft actuators with rigid bodies was

undertaken. The initial concept aimed at producing a device that combined soft actu-

ators with a bistable mechanism aimed at zero-energy fixity. The review showed a lack

of comparable device and as such this was a novel implementation of DEAs.

A review of coupled actuators led to the testing and characterisation of antagonistic

cone actuators to provide the energetic source and rigid output of the actuator to the

mechanism (through the coupling strut). The characterisation of the coupled DEA at a

voltage of 3.5kV showed a maximum displacement of 6.4mm was attained with a small

cap (15mm cap size) and 100mm strut, but the highest force generated by a medium

cap (20mm cap size) with a 110mm strut, whilst producing a displacement of 4.4 mm.

Additionally a cap of 20mm was found to generate larger energetic output over the

range of strut lengths with an output of 4.4mJ. However, for the device actuation to be

effectively utilised a high displacement was deemed advantageous and a 15% reduction

in maximum force resulted in a ≈50% increase in displacement (of 2mm).

A mechanism concept was created, redesigning reference implementations [Sclater, 2011],

to enable a bistable barrel cam to generate axial displacement of an end effector. Once

formulated the design concept was expanded to include multiple multi-state output sys-

tems, which have potential for use in a host of applications. The mechanism is actuator

type agnostic and hence could be powered by a range of conventional or non-conventional

actuators. The use of a non-back-drivable mechanism separates actuation from external
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loading, hence allows a stable state to be maintained with no power consumption.

For the subsequent proof of concept device, materials were chosen to minimise weight

applied to the antagonistic cone pair using aluminium and low density 3d printed parts

and using low friction parts (such as laser cut acrylic for alignment). The system was

designed in a way that the soft actuator can be isolated from external forces, whilst

providing rigid end effector output.

Due to scaling and complexity issues the scale of the device was much larger than the

envisaged application, however the prototype showed the operation worked in practice. A

characterised displacement of 6.4mm enabling a zero-energy fixity bi-stable displacement

along the axis of the strut of 110mm to be achieved using a voltage of 5kV. The proto-

type also showed repeatable operability, and the use of a non-back-drivable mechanism

separates actuation from external loading, hence allows a stable state to be maintained

with no power consumption.
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5 Development of an Actively Sensing Pneumostatic Probing Device

5.1 Introduction

This chapter will discuss the development of a novel sensing unit, which uses a combi-

nation of dielectric elastomer actuation in a pneumatically coupled arrangement, and

a flexible membrane with surface protrusions paired with an optical sensor. The novel

concepts used, and the innovations made to develop the active sensor will be discussed

and an appraisal made of the sensing capability of a prototype unit for object shape

detection.

The continued research and innovation in the field of sensory feedback devices is

carried out to enable robots - and wider electro-mechanical systems - to more precisely

understand the environment in which they operate and objects which they are tasked

with manipulating. This in turn enables the development of better control of the robotic

system and more precise fulfilment of functional requirements. The sense of touch is of

particular interest; it facilitates exploration of the proximal environment to the robot

and enhances understanding of the environment’s mechanical properties. Paired with

an actuation system (such as a robotic arm), the sense of touch allows the physical

exploration of the environment.

Creating a robotic equivalent of nature’s senses has been a long held ambition of

roboticists. It is firstly a fully functional solution that we can characterise and model;

it can be reverse engineered to produce a robotic equivalent, which we know can work

effectively; finally nature’s solutions lend themselves to a large spectrum of useful tasks

we wish robots to perform, namely those already performed by humans for which our

senses have evolved to complete effectively. Due to the level of complexity of humans’

sensors, and the functional requirements of robots, humans are often used as inspiration

from nature. For example, the finger has a dense somatosensory system providing the

body with information to be evaluated, providing environmental feedback such as tem-
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perature, touch, pressure, pain, and vibration [Van Putte et al., 2015, pp. 240 - 243]. As

an example of its feedback and control potential, touch alone can be used as a means of

navigation without visual information∗.

Producing a tactile sensory skin (ignoring other sensory capabilities found in human’s

skin) is a complex task due to the multiple functional requirements of skin in the bodies

interactions with the external environment. Consider, for example, in mimicking the

finger, the ability to perform manipulation and grasping tasks must be maintained in a

humanoid robot of human scale - the scale should be similar in order to perform the bulk

of tasks robots are expected to carry out -, whilst providing highly parallelised sensory

capability†.

Current state-of-art sensor implementation use technologies including (but not lim-

ited to) flexible capacitive, fluidic resistivity, piezoresistive, and optical sensors. These

and a plethora of alternative sensors, while individually producing an analogue to a

unique neuronal receptor found in nature, are hard to scale in number and density, in

a way that can replicate or approach the tactile sense of human skin. When delving

deeper into the formative sensors that enable the sense of touch, it can be considered to

be generated by singular point sensors, the functionality of which, has been replicated

using a variety of sensors. However, this is not sufficient to feel an objects features.

Increased density of sensors used in implementations provide a better approximation of

human tactile sensing, but are much more complex to implement due to connectivity,

bulk (volume and weight), materials, sensor wiring and control integration.

It should be noted that although nature is a huge resource for inspiration, sensors

do not have to replicate its complete feature set to provide useful function in the robotic

paradigm, but it does form the basis of systems for targeted emulation, for use in many

∗A knowledge of surrounding structures (an internal map) must be known to allow directed navigation
- analogous to landmarks when using sight.

†When considering possible novel technologies, it should be noted that parallelised sensory capability
is consider to act as an addition rather than replacement to current sensing technologies such as passive
sensory end-effectors.
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areas of the robotic field. This is not only due to the inspiration for unit function, but

that the environment of intended operation - the structure and unstructured physical

domains on earth - are well adapted to by nature.

Tactile sensing found in nature can be considered to be active-touch. Active-touch

defines the act of touching, rather than passive contact, or being touched [Gibson, 1962].

It effectively allows a system to recover more information from a passive sensor’s inter-

action [Visell et al., 2016]. For example, the BIOTACT EU project Whiskerbot was

developed to explore the use of vibrissal mimetic active sensors as part of a system and

in the design of a modular single sensors [Pearson et al., 2007]. Active-touch exploits the

inferred dynamics of a physical interaction to further enhance the modelling required for

a robotics system to meet functional requirements [Lepora and Ward-Cherrier, 2016].

Active-touch is a very dynamic and influential research topic at present due to the ca-

pability found in nature and the potential increase of sensing performance for robotics

applications.

The combination of accurate sensing of a region - rather than point based - at a

discrete time, and the actuation of the sensing surface, provides an extremely useful

tool in developing active-touch sensors that could be attached to robotic systems for

use in visually occluded and physically limited environments. This could be as part

of a robotic armature or limb, an autonomous exploratory robot, or as a stand-alone

self-active sensory device.

The aim of this chapter is to develop and active touch system, hence requiring:

1. Development of a sensory membrane providing high resolution feedback.

2. Create a coupled or direct actuation method to allow for active-touch or palpation

of a surface.

3. Create a soft sensor that can provide dynamic sensing.

4. Ensure versatility of system through providing robust and scalable design.
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Key performance criteria are:

• Develop a system that provides sensory palpation over an effective distance (rela-

tive to the size of the unit).

• Produce a highly parallelised sensing capability, able to deliver zonal sensing, whilst

being lightweight.

• Ensure reliable and repeatable sensing.

In order to meet these criteria, this work will investigate existing technologies that

provide elements of the function desired. The novel concepts mooted will be discussed

and characterised in the aim of producing an active-touch unit.

5.2 Understanding Tactile Sensing and Nature’s Design

Tactile sensing in robotics is crucial to providing feedback for position control or oper-

ation in complex dynamic unstructured environments. Considering this complex case,

the information necessary to control and safely locomote a manoeuvrable robot requires

considerable computation for path calculation and dynamic error-minimisation. To gain

a more complete understanding of an environment, more sensors can be used. These

sensors inform modelling of the surroundings by a robot, and allow movements to be

made on that basis. The task of navigating an environment can be made easier by reduc-

ing effects of locomotion error, for example by having a lower centre of gravity so that

the robot is more stable, utilising high precision components. However, an alternative

approach could be to follow nature’s design by using soft and temporarily deformable

structures with flexible high density sensory interfaces. Perception of the environment

in robotic systems is usually captured by cameras or distance sensors providing both

far-field and near-field information, which is a common standardised approach. In more

complex unstructured environments, robots interact with objects in their environment
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- from uneven floors to obstructions, tactile sensing gives a proximal sensory feedback

allowing a robot to probe and capture valuable information to enable it to negotiate the

environment. Considering tactile sensing, more sensors allow a robot to gain a greater

understanding of its proximal environment at a given time. Through this information

the robot will be able to anticipate problems which other sensors (such as optical or

more coarse tactile sensors) will not detect. This is something seen in nature across a

broad range of species, locomotion methodologies and sensor availability.

5.2.1 Tactile Sensing

In somatosensory systems, the breadth of the information retrieved at any given instant is

very significant in the computation of a reaction. Tactile sensing uses an array of sensors

to give a system an understanding of its interaction with the surrounding environment.

Sensing external forces at a single point on a body will give very little information about

the force experienced by the whole body.

The disambiguation of touching and feeling must be clearly expressed to understand

tactile sensing and how it can be engineered to provide useful feedback control to a

system in robotics.

Touch (n) - the act or state of passively touching. [Gibson, 1962]

Feel(n) - [an act of touching something] to obtain the kind of stimulation

which yields a perception of what is being touched. [Gibson, 1962]

For example, a robot (or other actor) can touch an object and know where it touched

it and describe the location in Cartesian space, and how much force acted in the act

of touch, using a single point touch sensor; this can be defined as point sensing. This

method provides enough feedback to allow a robot to perform grasping tasks, some

proximity calculation and position error reduction (mainly used in industrial robotics).

Point touch sensors can be used in increased numbers to provide a greater resolution
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of touch. Further, an array of sensors can provide greater feedback information on a

surface. This expands point sensing to zonal sensing, where a group of sensors can

feedback on a local area, providing information on roughness, edges and sharpness.

When evaluating an external surface with sensors spread over a controlled limb, the

material properties of the limb become a key factor in the limbs interactions with the

surface. A rigid locally flat body surface will, through mechanical limitations, have lim-

ited contact with an irregular external surface. Consequently the sensory data retrieved

of the external surface will be limited. Considering the sensing of a region (enabling

feeling) of a surface, multiple sensing elements are required to be in contact with the

unknown surface. Thus, compliance is essential in this endeavour to promote conforming

of limb to surface and hence, its examination.

5.2.2 Nature’s Design

As one of the main areas of physiological and psychological study for the advancement

of understanding of touch, we (humans) are a key resource in the development of sys-

tems which emulate Natures tactile sensing. Empirical evidence shows that the sense

of touch is invaluable in manipulation and control of objects using hands in humans

[Gibson, 1962, Kikuuwe et al., 2004, Dahiya et al., 2010]. The somatosensory system

found in humans has a broad range of environmental senses, which includes tempera-

ture, chemical, touch (both static and dynamic over a range of frequencies), and pain

(detecting potentially damaging intrusions) [Van Putte et al., 2015, pp. 240 - 244]. The

tactile sensing investigated here, is focused on increasing the complexity of touch sensors

to improve environment interaction in robotics. Whilst this is a complex task, it still

simplifies some significant sensory inputs used in the processing of interactions in na-

ture. This focus is used to reduce system complexity to the minimum and limit hardware

complexity requirements whilst still aiming to provide enhanced function.
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(a) Drawing of cross-sectional detail of skins features (reproduced from [Mescher, 2003]).

(b) An illustration of how the human finger is constructed with specific focus on haptic sensing
(reproduced from [Chorley et al., 2010]).

(c) Schematic of the resultant deformation of the human finger structure resultant from a normal
force (reproduced from Chorley et al [Chorley et al., 2009]).

Figure 74: Images of human finger structure and illustration of the use of papillae in
haptic sensory feedback.
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In humans, the finger is one of the most densely packed sensory appendages. This

specific sensory digit has developed through evolutionary pressure found in the command

and manipulation of objects. The fine motor control in manipulation tasks performed by

humans has been shown to be heavily influenced by the feedback from the dense array

of mechanoreceptors in the fingers. The finger has numerous types of mechanoreceptor

adding to the layers of sensing it is capable of. A cross-section is shown in Figure 74a.

The mechanoreceptors are used to evaluate the sensations of touch, which encom-

passes four types of skin receptor operating over stimuli of varying vibration ranges. The

sensory information provided from these mechanoreceptors forms the feedback required

for the human to actively interact with surfaces, detecting environment or object fea-

tures and textures following the controlled trajectories navigated through the actuation

of muscles in the body and digit [Berryman et al., 2006].

The mechanical structure of human digits (and many other sensory appendages in

nature) are evolved to optimise utility. Figure 74b shows the ridged papillae structure

which interact with the Meissners corpuscle to provide the touch sensitivity to exter-

nal objects. In the case of the finger, the dermal layer and supporting sub-dermal

tissues form a compliant, but resilient material, which envelops surfaces and provides

feedback through encapsulated sensors forming an embodied sensor. The compliance

helps the grip of an object, and the mechanoreceptors help with feature recognition

[Feix et al., 2015, Monzée et al., 2003]. Individual sensors must be employed in large

number to provide the sensing required to emulate human skins touch sensing capabil-

ity. Considering the physical design, Figure 74c illustrates how an external object would

interact with the skin, causing strain and compression, augmented by the papillae, to

provide the broad range of touch sensitivity humans can analyse and use.
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5.3 Touch Sensing Modes

Research groups and commercial enterprises have produced numerous touch sensing sys-

tems [Winstone et al., 2013, Rahbar et al., 2014, Bloor et al., 2006, Kawasaki et al., 2002,

Valdivia Y Alvarado et al., 2012, Metta et al., 2008]. In its most basic point-sensing

form, the sense of touch has been widely used in robotics - especially in industrial au-

tomation - by utilising highly accurate, but sparsely distributed sensors. These touch

sensors can be used to provide a robot an affirmation of its location in a workspace using

predetermined physically grounded points in a referenced Cartesian space. The sensors

are also used to ensure factory output dimensions are within designed tolerances, for

example. However, to sense more complex, temporally unique, actions in unmapped

environs, a robot needs a more intricate sensing system. To meet its functional require-

ments a robot needs a sensory network providing regional tactile sensing over external

surfaces that interact with the environment (i.e. it’s skin). The system could provide

accurate perception of external materials’ properties whilst enabling a robot to control

and manipulate external objects. To this end, to capture adequate information of its

proximal environment, the tactile sensor may need to perceive shapes, grain, edges and

other features of dynamic materials in an unspecified environment. Multiple features

that have less than millimetre order dimensions are detected even at low normal forces

in human fingertips [Berryman et al., 2006].

This level of functionality has yet to be satisfactorily achieved by robotic systems,

where simple tasks, such as manipulation of an egg, or fruit picking currently use

‘workaround’ solutions, which avoid the sensing of the object and use materials that

are soft and compliant to wrap or differential pressure to pick up target objects [Stoll, ].

To try to implement a sensory array on the surface of an end effector capable of

controlled manipulation - usually a digit or limb -, sensors able to evaluate normal and

shear forces to a high accuracy must be densely pack and appropriately distributed over

a useful surface area. The information must be processed and made available to the
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control system for the calculation of actions in near real time so that robots can react

in a similar time frame to natural mimetics; nature’s response has been optimised by

evolution to enable perception and reaction to facilitate survival.

5.3.1 Robotic Tactile Sensing Implementations

The sensors described in the Literature Review Section 2.11 have been used in a number

of robotic system designs with specialised functional scope; some humanoid and others

mimicking the advantages of other natural inspiration such as rodents. One of the main

applications of tactile sensors is in the emulation of touch, focussing on the emulation of

humanoid manipulation. This is essential in facilitating the replication and repeatability

of skilled human physically demanding jobs. As such, this is an area of interest in a large

proportion of the work; combining sensors into a workable system enabling feedback con-

trol to advance the capabilities of humanoid robots. The integration of multiple sensors

into a robotic hand gives rise to complexity issues such as the number of connections,

overall system bulk, and the trade off between localised and global processing.

The iCub fingertip is an implementation of capacitive sensing that is used in a dis-

tributed sensory system aiming to match the anatomy of the fingertip for use on a

humanoid hand. A flexible PCB is used to arrange 12 rigid capacitive sensors around

the finger, which is overlaid by a compliant foam silicone coating and a grounded en-

capsulating outer electrode. The fingertip is designed to emulate the resilience to ma-

nipulation control errors of human fingers, whilst providing broad area tactile feedback

[Schmitz et al., 2010]. The capacitance is calculated locally to each fingertip and a global

CAN - Controller Area Network - is used to feed the data back to a central control board.

A relatively complex microcontroller capacitive measurement PCB is employed locally

to the fingertip, but which requires only minimal spatial volume at the tip. The digits

are linked together to form a full hand [Jamali et al., 2008].

The GIFU Hand III is designed as a robotics research platform providing humanoid
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characteristics such as opposable thumb and sensory feedback. It features a high number

of sensing points; 859 in total [Mouri et al., 2002], however few are presented on the

fingertip as they are spread from fingertip to base of palm resulting in approximately 7

sensors per tip. The sensors are based on conductive ink separated by a thin film, which

varies resistivity proportionally to pressure [Kawasaki et al., 2002].

The implementations described are examples of current state-of-art humanoid hands.

The sensor density in both examples is relatively low, and hence could be considered

as multiple single point sensors rather than a ‘sensory skin’ that provides zonal sensing.

The lack of sensors effectively limits the extent of manipulation tasks due to the inability

to track surface shape and contours.

5.4 TACtile sensor and artificial fingerTIP - TACTIP

The TACTIP sensor is part of a class of optical tactile sensory devices used to de-

tect external force stimuli. It is designed to use optical input and a structured FOV -

Field of View - emulating cutaneous components found in the human finger to provide

high resolution tactile sensing of a region of interaction of the device with a surface

[Chorley et al., 2009] shown in Figure 75. The tactile sensing it provides, achieves the

goal of retrieval of highly accurate external surface details. Other devices based on sim-

ilar optical technology have been presented [Yong, 2009, Ohka et al., 2006], however the

research and optimisation of TACTIP have made it a class leading technology.
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Figure 75: Photo of original TACTIP device and corresponding casting moulds (repro-
duced from [Chorley et al., 2009]).

The fingertip - the biological inspiration for this device - uses a number of uniquely

specialised sensory nerve cells to discern any tactile stimulation. Of these sensors, Meiss-

ners corpuscles are located between dermal papillae in the papillary layer of the skin (Fig-

ure 74a). The spatial location and physical attributes of these sensors are hypothesised

to detect the lateral strain developed orthogonally to the surface [Chorley et al., 2009].

When the TACTIP sensor comes into contact with an external surface, its compliant

skin flexes following the undulations of the surface. This flex orientates the internal

pins (or papillae) orthogonally to the gradient of the external surface. This gradient can

be assumed to approximately match that of the contact surface. This is dependent on

how closely the membrane can conform to the surface and the comparative difference

between feature size and pin separation. The relative displacement of the papillae tips is

recorded by the camera over a wide FOV and gives rise to its exceptional tactile sensing

performance.

Human skin features inelastic but flexible outer layer and papillae, combined with

the soft and deformable sub-dermal internal construct. This can be mimicked using
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elastomeric compounds. Having replicated the structure of the skin, the retrieval of the

parallelised touch sensory information is needed. In most cases this is a difficult task

to solve due to problems of scaling, mechanical interference of sensory structure, and

complexity of parallelism etc. However, the novel use of an optical sensor, is an essential

part of the TACTIPs capability. It provides high resolution, high refresh rate capture

of large image based datasets. Fabricating the device to emulate the finger’s mechanical

structure and using a translucent internal gel allows the internal optical sensor to accu-

rately capture the papillae movement. The performance is further optimised by reducing

interference from external ambient light, using infrared as the illumination medium for

capturing the papillae tip locations. The tips are painted white to maximise reflection

and contrast to the outer shell of the TACTIP (painted black). The camera is adjusted

such that the focal depth matches the range over which the pin tips will move.

The TACTIP is a device with high density tactile sensing when compared to the

current state-of-art alternatives described. Whilst very promising in sensing capability,

the overall size of the standard TACTIP module is quite large (diameter of 50mm).

However, it has been shown to be scalable to a size comparable to that of a human

fingertip [Winstone et al., 2013], whilst maintaining effective zonal sensing.

The TACTIP approach to sensing a scene allows the capture of stimuli at many

sensory points simultaneously with maximal sensory contact surface - the entirety of the

contact surface of the tip is sensory as opposed to alternative implementations where

areas are used for connections and circuitry. The operation over an hemispherical surface

is innovative and effective for capturing point force and scene contact features using the

papillae to mechanically amplify the forces.

5.5 Embodied Active Touch

Active perception is used in literature to describe the use of displacement to facilitate

sensing of an environment [Gibson, 1962, Lepora, 2015]. This definition includes the use
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of active sensors (such as electromagnetic or ultrasonic sensors), but also encompasses

the controlled movement of a passive sensor to receive external stimulus. Relating ac-

tive perception to the sensory paradigm of touch, which is manifested in mammals as

the somatosensory system, the perception is narrowed to the physical inference of the

environmental state (through sensory feedback) and known as active touch.

The differentiation of active touch (from passive touch) could seem a needless and

dispensable clarification, especially when related to the field of robotics, where movement

and controlled interactions are inherent. However, there is reason to separate the two;

to allow there to be a distinction between which object is considered to be in control of

movement relative to the sensor. A passive touch sensor can receive sensory stimulus

from a dynamic environment without moving. Active sensing requires the sensor to

be controlled in its interaction with the environment. An example cited is the focal

adjustment of the eye [Bajcsy, 1988]. The eye and body is orientated to the region

of interest, the lens is adjusted to bring a target object or zone into focus, the retina

retrieves the targeted information.

we do not just see, we look - Ruzena Bajcsy [Bajcsy, 1988]

In the perception of physical contact characteristics, active touch describes the move-

ment of a tactile sensor relative to a surface, to learn more about the surfaces form

and composition using dynamic stimulus and feedback analysis. The embodiment of

active touch can therefore be made through a variety of novel architectures using pas-

sive sensor technologies ranging from capacitive to optical, to receive information whilst

manipulated. Active touch has been specifically developed on a number of platforms

[Visell et al., 2016, Pearson et al., 2007, Lepora and Ward-Cherrier, 2016]. The use of

other passive sensors will also be discussed as a means of providing a robot with active

touch through the manipulation of its limbs. This distinction is made to discern systems

that have been developed with active touch as a focus, and those developments that can
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provide active touch as the passive touch component of an active system.

The sensory units described in this chapter thus far are passive. They cannot enable

or control their interaction with their surrounding environment. Each sensor must rely

on external manipulation. Some sensors are not designed to be used for active touch;

StretchSenseTM has been developed and produced as a physiological aid or telemetric

sensor rather than for their use in robotic systems [O’Brien et al., 2014]. When a passive

tactile sensing unit is specifically designed for, and deliberately paired with, a robotic

system, which enables a method of control through sensing dynamic interaction with an

environment, that sensor has the characteristics of an embodied touch system; It is no

longer passive in its interaction. The iCub robot is an example of a system with active

touch. When attached to the end of a controllable end-effector the capacitive sensor

array can be used to purposefully interact with its surroundings. Similarly this can be

used to describe other humanoid sensing hands.

Although humanoid robots are a focus of a large proportion of research for sensory

systems, other approaches have been investigated for their use in exploratory systems.

Some approaches found in nature are highly tuned to visually occluded environments

such as seals and rodents [Hanke et al., 2010]. These specialised methods are a useful

inspiration for a novel approach to sensing.

Developed as part of the BIOTACT EU project, Whiskerbot is a robot which was

designed to emulate the vibrissae of rodents [Pearson et al., 2007]. This system uses

actuated whisker sensors to detect local stimuli including surface characteristic informa-

tion from the dynamic interactions of the whisker on the near-field environment. This

performs an exploratory function, but also protection (object avoidance) in visually im-

paired operation scenarios with dynamic environments. The system explored the use

of modular active touch single point sensors in an array of 24 whiskers. The perturba-

tion effects of external stimuli on the expected sensory feedback from a predetermined

patterned oscillation of an array of whiskers is used to determine location, shape and
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texture of external objects.

Figure 76: Photo of prototype Whiskerbot.

Pinnipeds (e.g. seals, sea lions) use their whiskers to track potential food via

the vortices the prey produce as they move through the water [Hanke et al., 2010].

The mammals generate a whisking motion using their follicle sinus complex (FSC)

[Valdivia Y Alvarado et al., 2012] to actuate the whisker. The whisker movement is

then interpreted by mechanoreceptors in the follicle to understand the flow perturba-

tions generated by prey.

The active touch implementations described are entire robotic systems, which are

built from the ground up, with the robot as an essential part of the dynamic control

of the passive sensor. Modularising an active touch unit allows the separation of active

touch from the holistic system control of a robot. In situations of physical constraints

and low visual stimulus - for example opaque fluid in a complex piping systems found in

industrial complexes - the robot may not be able to provide consistent repeatable control

over short distances due to the environmental constraints. An active module that has

an optimised control could be invaluable in certain scenarios.
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5.6 Pressurised Active-Touch Sensing Module

The TACTIP is a single variant of visual touch sensing technology. It is a passive sensor

implementation, primarily designed for robustness and durability, and in recent develop-

ments has been explored for use applications in industrial conventional robotics as part of

a robotic end effector sensing system [Lepora and Ward-Cherrier, 2016, Ward-Cherrier et al., 2016].

Although the unit can act as a sensor in a robotic implementation, it is inherently pas-

sive as a stand-alone unit. It is designed as a passive sensor, requiring the attachment

of an external actuator - either from a controlled system or uncontrolled environmen-

tal stimulus - to the sensor in order for the sensory unit to move around and retrieve

information actively. However, the TACTIP is not the only method of implementing

the innovative optical sensing system. The essential elements of the TACTIP - sensory

membrane with papillae and optical sensor - can be re-engineered into a module design

as a novel self-contained active sensor. Considering it for use in lightweight soft robots,

the original design is too heavy and rigid. In this work a set of novel developments have

advanced the sensor for its use in soft robotics.

5.6.1 Pressurised Vessel Sensor

The TACTIP uses a spherical cap shape to provide a localised tactile sensor. The

spherical cap can be replicated using pressurised air using the pressure difference from

inside the capsule to the external environment to form an inflated skin. Using an airtight

cylinder with a planar skin membrane, a hemispherical cap enables the creation of a

spherical sensor. The pneumostatic vessel idea takes inspiration from nature in the form

of similar vessels in mammals and invertebrates (e.g. earthworm, elephant trunk, octopus

tentacle, and fish swim bladder). In these the hydrostatic body allows antagonistic

coupling between muscles and sensory surfaces. In all mammals, muscular hydrostatic

structures are used to perform manipulation and the outer skin provides sensory feedback
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adding an extra layer of complexity (e.g. the tongue).

The envisioned pressurised vessel creates a comparable field-of-view (FOV) for the

camera whilst allowing the removal of the transparent gel inside the membrane of TAC-

TIP. Although the gel replicates the fatty tissue found in human fingers, it is not essential

to the visual sensing of a surface, rather emulating the biological structure of the finger.

Omission of the gel makes the sensor much lighter, but the pressurisation of the vessel

maintains and enables enhancement of the essential functionality; the membrane is now

free to stretch with pressure variation of the internal pneumo-static volume.

The development of a pneumatically supported thin sensor membrane creates a much

less constrained skin. The membranes which form the pressurised spherical caps at the

ends of the vessel can be tailored to provide specific mechanical characteristics; For the

actuation membrane through the variation of dielectric material composition and the

use of pre-strain, for the sensory membrane through material and papillae dimensions,

density, zonal patterning, external surface texture etc. These characteristics enable the

use of the conceived device to carry out specific tasks and in specific environments. Vari-

ation of the material properties not only aids in the shaping of the sensory surface, but

through the DEA allows it to be dynamically extended, thus creating an implementation

of active-touch. The pairing of an elastic membrane and a pneumatically pressurised

vessel enables the modularisation of a dynamic sensor, which can be controlled by mod-

ulating the pressure inside the pneumatic vessel.

5.6.2 Sensory Skin Actuation

To modulate the pressure, a number of methods could be used:

• A compressor could be used, which would allow pressure control through elec-

tromechanical valves.

• An actuated syringe with external fixed volume could be used to modulate the
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internal volume and hence pressure within the sensor module.

These possibilities require external components which add bulk and weight that

essentially tie down the sensor to fixed location applications and remove its modular

capabilities.

Considering less conventional actuation options, developments in soft materials have

allowed thin membrane actuators to be provide a pressure differential to modulate pres-

surised vessels to form pumps [Lotz et al., 2009, Carpi et al., 2010b, Hines et al., 2016].

Exploring the development of a pressure difference, it can be seen that DEAs can be

used as an integral pressure pump. Combining this novel actuation with the idea of a

pressurised cylinder a module can be formed with a sensing membrane on one end, and

the other end to be encapsulated using a DEA membrane. As such both membranes

oppose each other when the module is pressurised through pneumostatic coupling. The

pressure can be modulated by the application of voltage to the DEA membrane causing

the skin membrane to dynamically stretch, and extend or retract as required. The DEA

is lightweight, potentially proprioceptive, scalable and as a continuous surface, seals the

pressure vessel. The sensory membrane could also be made active - functioning as a DEA

- to increase the displacement of the membrane, as the materials used in its fabrication

are capable of dielectric actuation. However, the antagonistic membrane is a preferable

actuator for actively deflecting the membrane, as it separates the contact surface from

the high voltage surfaces required to provide actuation.

5.7 ActivePneumostaticTIP Concept

The abstractions discussed in this chapter thus far are the formative innovations of an

active-touch antagonistically coupled pneumostatic sensor, based on an optical tactile

system. Named ActivePneumostaticTIP or APTIP - the combination of the pressurised

DEA antagonistically paired with a pressurised sensory membrane to form an active

device -, it is an implementation of the sensor as a proof of concept showing the func-
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tionality of the actively sensing module and its potential uses. Figure 77 illustrates how

the ActivePneumostaticTIP would operate.

(a) Spread of Actuated Pins (b) Spread of Relaxed Pins

(c) Actuated DEA APTIP (d) Relaxed DEA APTIP

Figure 77: Diagrammatic representation of APTIP actuation and sensing of object.

As discussed the DEA would protract the sensory membrane allowing it to explore

artefacts in its immediate surroundings. The concept of an ActivePneumostaticTIP

physical device consists of four principal parts, the skin, optical sensor, pressurised vessel

and actuator. The pneumostatic vessel uses an acrylic tube to form an inextensible

cylindrical body as shown in Figure 78c & 78d. Each end has a soft membrane attached.

The sensor membrane depicted in Figure 78c is comprised of a silicone skin, cast with

papillae, and forms a passive membrane used with the camera sensor sealing one end of

the vessel. Sealing the opposing end of the tube is a pre-strained DEA actuator. The
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pressurisation of the vessel enables the coupling of the active and passive membranes

through the pneumatic pressure in the vessel. The silicone skin is protracted through

the contraction of the DEA actuator (through discharging the actuator). The silicone

membrane is passive and is only moved through the coupling of the membranes on the

ends of the pneumostatic vessel. The ActivePneumostaticTIP is designed so that it is

inherently safe for human robot interaction (HRI) at the sensory end. The palpating

surface is passive and the high voltage isolated inside the rear of the cylinder. In the event

of a puncture or DEA breakdown, deflation of the pneumostat will occur, retracting the

membrane from surface interaction.

The internal camera is used to track the individual papillae and map the surface of

the membrane. Actuation of the coupled DEA enables the membrane to envelop and

probe a surface. Figures 78c & 78d show the ActivePneumostaticTIP unit in actuated

and relaxed states, the switching of which enables the probing of an object. The field-

of-view (FOV) of the camera is shown in the diagrammatic representation and captures

images of the domed silicone membrane shown in Figure 78a & 78b. If considered from

the camera’s perspective, the pin head density can be seen to increase around this specific

test object, decrease at the object edge and stay approximately constant at the centre,

for the APTIP states actuated (retracted) and relaxed (protracted) respectively. This

is useful for detection purposes through the measurement of pin density.

The DEA actuator membrane and silicone skin form domed ends to the APTIP.

With the pressurisation the membranes form a coupled pair. In order for the device to

palpate a surface, the DEA actuator must be first in an actuated state (relaxing the DEA

membrane) prior to the sensor approaching the surface; With the DEA in its actuated

state the skin is retracted. The skin is then protracted by discharging the DEA actuator.

Development Note - The development of a soft sensor required the combining of two

ideas using similar membrane based concepts. However, the function and materials of
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these membranes were not comparable. The membranes are inflated, forming spherical

caps as part of the pneumostatic design, which strains the membrane non-uniformly. The

materials used in the design are different for each function (e.g. actuation, moulding to

form sensory papillae) as it required specific design. This has meant that the pairing

is complex and has material features such as pins, which make predictive analysis of

the active or passive material very complex. For this reason the focus was on empirical

analysis.

5.8 Materials and Methods

The proposed concept design shown in Figure 77 requires the integration of four major

components:

• An air tight vessel

• Internally sealed and externally connected Camera

• Fabrication and attachment of a DEA

• Fabrication and attachment of a sensory membrane

The cylinder required an air tight seal to maintain the pneumatic pressure to cou-

ple the two antagonistic membranes of the DEA and the sensory membrane. Air was

chosen as the medium for coupling the membranes, as this allowed the sensor to be

lightweight and limited the need for further isolation of the camera module and high

voltage membrane. Inside the vessel a camera would be mounted with a transmission

line sealed through the vessel wall. Additionally an air inlet would be required. As such

holes were drilled and sealed using epoxy resin once the cable was fitted. The vessel was

made of two halves allowing the fabrication of the actuation and sensory membrane to

be separable. The arrangement also allows for adjustment of the camera for optimisation
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of FOV without adjusting the membranes. The diameter of the tube affects the design

specification of the camera mount and the membranes.

Based on the limitations of the FOV and DEA sheet material dimensions, the AP-

TIP module was constructed from a 2-part body made of acrylic tube of diameter 60mm,

length 80mm and thickness 3mm. The sensory and DEA membranes were each attached

to a body section. The two parts were joined with an airtight seal using duct tape. The

module was inflated to a determined pressure and used in the experimental setup shown

in Figure 81.

The camera module used a standard CMOS sensor on a board of 30mm x 30mm

dimensions. The internal camera captured video at the maximum frame rate and res-

olution of the sensor (720x540 at 30fps - the frame rate varied with frame data size).

This was the highest frame rate that could be attained from a commercially available

video capture product in the price range to make a low cost proof of concept, which re-

quired heavy customisation to reduce weight and size. It was thought that the frame rate

and resolution were sufficient for gathering of active-touch data. The camera included

a manual focusing thread adjusted lens. A USB camera was mounted on a 3d printed

cylindrical frame and inserted into the tube with the lens facing the sensing membrane.

The FOV of the camera was recorded using a simple measurement test whilst main-

taining required focal length. A scale on a piece of paper was placed in front of the

camera at a set distance. The focal distance was adjusted to match the distance from

CMOS sensor to membrane, once inflated. The aim of the focusing was to allow the

FOV to match the range of protraction of the sensory membrane. This could be further

fine-tuned in the module experiments as required to optimise image clarity. From these

tests the FOV was calculated as 45mm at a focal range of 40mm. This measurement

was used to position the camera mount inside the vessel.

The APTIP uses a hemispherical sensory membrane which could be formed from a

domed mould as used with TACTIP. This would use an optimised fabrication method,
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however the diameter of the hemisphere would be dictated by the mould and hence

influence the module size and limit variability for optimisation. Although this form

could have been modified to counteract some of these constraints, however the membrane

coupling - forming the basis of the active-touch functionality - would be compromised

due to the form and lack of flexibility of the domed mould. The resulting form from

an inflated flat membrane is comparable to that of a domed membrane. As a flat cast,

the membrane specifications including thickness, size, pin spacing and length could be

modified rapidly. Due to the number and influence of these factors a flat membrane

design was chosen.

To create the flat sensory membrane, a material was required that could be easily

moulded, would be light, compliant and elastic, whilst being resilient to some wear. A

low shore hardness silicone was chosen, as it met these requirements owing to the variety

of stiffness available, ease of use through prior experimentation - and as such, ease of

use -, and the wealth of research in its use and fabrication methods in the soft robotic

field. The material was also chosen due to its potential for DE actuation, if a two-sided

module could be developed. Xiameter 3483 (Shore A -13) [Dow Corning, 2011] was

the silicone chosen as it offered a good compromise between resilience, flexibility and

elasticity [Dow Corning, 2018].
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(a) Step 1: Pouring of de-
gassed silicone in to acrylic
mould.

(b) Step 2: Allow silicone to
cure.

(c) Step 3: Demould and re-
fine finish.

(d) Step 4: Paint tips of
papillae.

Figure 78: Fabrication steps for production of silicone sensory membrane.

Figure 78 shows the steps used to create the silicone sensory membrane. A drop cast

process was used to produce a thin layer with pins. An acrylic mould was laser cut with

holes to create papillae and a small spacer below the mould was used to ensure the silicone

flowed through and holes in the mould filled fully. A pin width of 0.75mm was chosen,

trading flexibility for resolution, after some experimentation (examples are shown in

Figure 79; the thinner the pin the more its tip would displace, while increasing diameter

resulted in a stiffer pin, but also leading to a more inflexible membrane due to area of

attachment of pin to membrane at the base Additionally practical limitations of available

substrate material - the laser cut acrylic was available in millimeter increments. A pin

length of 6mm generated a papillae head translation of +/- 3mm (assuming generated

angle from axis orthogonal to surface of 30 degrees) to enable external object sensing
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and tracking. This is shown in Figure 80. The membrane was made using Xiameter

3483 - with a Shore hardness of 13 -, which was deemed to have a balance of flexibility,

strain, and robustness. The silicone was prepared using a vacuum to remove any air

that could affect the quality of the membrane or pins - and hence affect the integrity of

the pneumo-stat or the sensing capability of the device.

Figure 79: Photo of test pieces of sensory membrane.

Figure 80: Illustration of deflection of papillae on sensory membrane resultant from
contact with test object.

To control the thickness of the sensory membrane layer, laser cut acetate layers of
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known thickness were used to precisely specify the membrane. For the specification of

the pins, holes were laser cut into an acrylic sheet of precise size and length. Figure 78

shows an illustration of the finished membrane, where painted tip papillae are distributed

over the soft inflatable membrane. The pin tips were painted to differentiate the tips

from the background of the membrane, aiding in the calculation of pin displacement in

image processing.

The DEA is designed to produce the force to protract the sensory membrane and

allow it to interact with the environment. In its low energy state - with no voltage

applied - the membrane is extended to a displacement established from the developed

pressure in the pneumostatic vessel from the contained air. The application of a high

voltage across the DEA membrane causes it to biaxially strain, and the dome it forms

to expand and protract from the body of the vessel. This shifts the static volume in the

vessel retracting the sensory membrane. In turn, when the DEA is grounded, the tactile

sensor is protracted.

The DEA material chosen was VHBTM 4905. This was selected due to its reliable

and high volume fabrication by 3MTM, enabling repeatable tests. Furthermore, previous

research has characterised the optimal properties for maximising radial expansion of

the membrane through the application of specified high voltage based on pre-strain.

This known relationship allows repeatable, reliable tests to be performed, which can be

replicated expediently in the event of failure.

To effectively couple the DEA to the sightly thicker and stiffer silicone sensory mem-

brane, the VHBTM acrylic membrane was biaxially pre-strained to 4.5 times its initial

size. This enabled good volume matching at each end of the pneumostat over a range

of volumetrically useful initial pressures. An initial pressure of ≈20mbar was chosen as

this gave a good initial protracted displacement of the sensory membrane.

208



5.9 AP-TIP Characterisation

5.9.1 Experimental Setup

Using the methods described, an APTIP module was created and used to confirm and

characterise the displacement of the active-touch sensory membrane, from its retracted

position. An inflation pressure was applied to provide a predetermined steady state dis-

placement of the active DEA membrane for optimisation of strain, and hence volumetric

displacement. A laser was placed orthogonally aligned to the tip of the hemispherical

pressurised membrane. The experimental layout is shown in Figure 81.

Figure 81: Schematic of characterisation rig setup for APTIP.

5.9.2 APTIP Static Tests

To maximise the displacement of the sensory membrane, and hence its active palpating

capability, the module was tested over a range of input voltages in its pneumostatic con-
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figuration at a fixed initial pressure. For each test, the voltage was held low for 2 seconds

to retract the membrane, then held high for 2 seconds to allow for the displacement to

stabilise and finally held low for two further seconds to allow the membranes to settle -

allowing for any residual viscoelastic deformation. The pressure and displacement were

recorded at each of the voltages tested, to provide some insight into the coupling of the

membranes.

From the experimental setup, two sets of data were obtained - an orthogonally aligned

external video capture of the APTIP and a set of synchronised pressure and laser dis-

placement data measured with varying voltage. For the experiments the following equip-

ment was used:

• DAQ - NI USB 8343

• Laser Unit - Keyence LK-GD500

• PC - computer running MATLAB software

Strict safety protocol was used in the experiments, using an insulated test space and

isolated high voltage supply. The setup is further described in Appendix C.

Video Analysis

In the recordings captured of the individual tests, snapshots of maximum displacement

show features of the actuator with successive application of increasing voltage, as shown

in Figure 82. Figure 82a shows the membrane as an idealised hemispherical cap. Figure

82b shows the relaxation due to actuation, which extends the DEA along the longitudi-

nal axis of the vessel, but also shows some expansion at the edges. In Figure 82c, the

expansion seems to be predominately circumferential expansion as the membrane bal-

loons outwards. Finally in Figure 82d the sideways expansion is even more noticeable,

with some wrinkling clearly visible on the membrane surface.
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(a) Snapshot of passive state (0kV) (b) Snapshot of active state (3kV)

(c) Snapshot of active state (4kV) (d) Snapshot of active state (4.75kV)

Figure 82: Actuation of APTIP at varying voltages

Wrinkling

As mentioned, at higher applied voltages, wrinkling artefacts are clearly visible on

the DEA membrane near the interface with the rigid vessel frame. Under the influence of

uniform orthogonal stress a planar compliant membrane will strain uniformly biaxially.

When considering a spherical expansion with an inflating pressure, there is significant

deviation from ideal biaxial strain. The conditions at the edge of the membrane are

highly non-uniform, due to the boundary effects of the rigid acrylic frame to which the

DEA membrane is attached and the elastic membrane itself. This adhesion restricts the

strain circumferentially near the edge of the actuated section of the dielectric membrane.

As the strain increases this effect becomes more pronounced. The deviation from biaxial

strain is apparent through the wrinkling seen at the side of the membrane shown in

Figure 83b, which, when compared to the unactuated form of the membrane shown in

Figure 83a. Figure 83c shows how the wrinkling affects a large band at the outside of the

211



actuated surface. The effect is pronounced on an inflated membrane where the effective

circumferential stress reduces to zero. This is possible where the inflation pressure

reduces significantly or the strain is very high, which have both shown to be the case in

these experiments.

(a) Passive (unactuated) DEA membrane (b) Actuated wrinkling DEA membrane

(c) Close-up image showing wrinkling details of DEA membrane

Figure 83: Photographic evidence of wrinkles on pneumostatic DEA when actuated with
voltages approaching material breakdown.

Wrinkling was found to occur from 4kV. After wrinkling was present it was noted

that the displacement began increasing again with higher actuation voltage before elec-

tric breakdown of the membrane occurs. Thus a safe optimum application voltage can

be identified for the tests at 3.5kV.

212



Data Analysis

The synchronised pressure and pole height data is shown in Figure 84. The laser

displacement data was converted to provide a precise pole height measurement of the

sensory membrane. It can be seen that there is a close link between the pressure and

pole height, both following the same curve. The relationship in region (i) follows typ-

ical DEA behaviour (as expected from a coupled diaphragm system, where the pole

height has an inverse square relationship with voltage [Carpi et al., 2007]), with Figure

84 showing the pole height of the opposing sensory membrane (measured) falling with

increased voltage. There are two significant non-linear features in the data. In region

(ii), between 4.25kV and 5kV, the pole height increases by approximately 1.5mm or 20

percent of total pole height. It is hypothesised that the increase of pole height of the

sensory membrane is due to droop described in the data in Figure 86. This droop may

have caused the volume in the actuator spherical cap to drop and hence increase the

pressure and inflate the sensory membrane. It may also be affected by the coupling of

two different non-linear materials in an antagonistic configuration.

Figure 84: Plot of pole height and pressure against voltage for pneumostatic character-
isation.
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The shape of sensory skin affects the distribution of the papillae from which infor-

mation is recovered. From Figure 85 the membrane can be approximated to ideal and

thus the skins strain and the position of the pins can be calculated over the actuation

cycle.

Assessing possible drivers for these effects, the video capture was found to provide

some insights. Figure 82 shows the retraction displacement of the membrane at 0V

(initial state), 3, 4, and 4.75kV. To investigate how the sensory membrane deflects with

increasing voltage, Figure 85 shows the membrane outlines overlaid. The results show

that the sensory membrane can be considered to be an approximately ideal spherical

cap throughout its retraction and protraction cycle. The shape of sensory skin affects

the distribution of the papillae from which information is recovered. As the membrane

can be approximated to ideal, thus the skins strain and the position of the pins could

be calculated over the actuation cycle, to model and negate any pin deviation effects.

Figure 85: Plot of sensory membrane retraction on actuation recorded from video frames.
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Due to equipment limitations of laser displacement sensors, the pole height of the

active membrane was not precisely measured. The shape and characteristics can be

investigated from the video. Initially in Figure 82a, the membrane can be seen to be

of ideal shape, but under actuation at 4.75kV shown in Figure 82d, the expansion is

non-ideal forming a squashed dome. Additionally wrinkling can be seen on the outer

edge of the actuated membrane. Using the same evaluation method as previously, the

membrane protraction can be overlaid to see how it varies with voltage shown in Figure

86. Although volumetrically initially larger, the pole height of the actuated membrane

does not increase as much as expected. From this figure, it can be clearly seen that

the ideal cap, expected to be formed by the active membrane, does not deform solely

longitudinally, but laterally, forming a squashed dome. The membrane is also seen to

droop slightly, which is assumed to be due to the influence of gravity.

Figure 86: Plot of actuator membrane expansion on actuation recorded from video
frames.
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The droop of the membrane is caused by the weight of the membrane (and car-

bon grease electrodes) distorting. The pressure drop associated with the relaxation of

the membrane reduces the pressurisation of the membrane as it extends, which led to

the slight asymmetry. The droop was calculated as having a maximum of 4mm over a

60mm membrane. The asymmetry of the spherical caused by the gravitational droop

will affect the volumetric displacement and hence the maximum retraction of the sen-

sory membrane. Although the experimental vessel orientation could have been altered

and the tests re-run, the gravitational effect would have still been present. If held ver-

tically the gravitational effect of the heavier sensory membrane would have limited the

displacement.

The antagonistic coupling between the opposing membranes underpins the active-

touch capability of the sensing module. Considering the air inside the cylinder as an ideal

gas at the operational pressures <20mbar, the expected pressure-volume relationship can

be simply described using Boyles law - assuming temperature is constant -, and it can

be assumed that any effects of compressibility of the gas are negligible enough to be

ignored.

p1.V 1 = p2.V 2 (15)

The illustration in Figure 87 shows the antagonistic arrangement and the volume

shift. The volumetric sections of the APTIP have been separated and labelled such

that:

p1.(VA1 + VB1 + VC1) = p2 ∗ (VA2 + VB2 + VC2) (16)

The internal initial volume can be predicted from the shape of the membranes in

the non-actuated state where both membranes are approximately ideal. However, as

discussed, at high actuation voltages required for optimal sensory skin displacement, the

DEA does not form an ideal hemisphere, thereby limiting measurement of the internal
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volume [Fleisher, 2002].

(a) APTIP with sensory membrane in
protracted state.

(b) APTIP with sensory membrane in re-
tracted state.

Figure 87: Illustration of APTIP volumetric changes between states.

Any air volume in the tubing to the manometer can be considered negligible.

DEA Membrane Breakdown

The tests of the APTIP module were concluded with the electrical breakdown failure

of the DEA membrane. This was recorded and an anomalous displacement reading

found. On further inspection it was found that immediately following breakdown the

membrane was protracted momentarily by 2.3mm. This unexpected displacement was

found to be due to the near instantaneous retraction of the DEA membrane. In its

actuated inflated state, the membrane is at a maximal (given a specific voltage) energy

state. When the dielectric membrane breaks down, this causes two effects. Firstly the

short-circuit of the electrically charged plates (carbon grease); Secondly the resultant

spark causes (in most cases) an air outlet from the pneumostat. Due to the size of the hole

the first effect is dominant. It is hypothesised the discharge releases the elastic energy

stored in the membrane producing a pressure wave inside the vessel, which protracts the

membrane. The pressure then equalises between the internal and external surfaces of

the pneumostat, causing both sensory and actuating membranes to retract.

Although not applicable to this work this momentary pressure variation causing

some protraction may be of use in some developments. However, the eventuality of a
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breakdown or failure of the membranes are shown to cause the retraction and inherently

safe failure of the high voltage actuator.

5.9.3 APTIP Dynamic Tests

Figure 88 was created to generically describe the relationship between pole height, vessel

pressure, and voltage input for the vessel. It can be seen that the pressure is inversely

proportional to the applied voltage. At Figure 88 sector (i) the conductive plates of the

DEA are grounded; there is no voltage applied across the actuator membrane, and the

sensor membrane is protracted. As the voltage across the DE membrane is increase, it

relaxes, expanding and reducing the pressure inside the vessel in sector (ii). In sector

(iii) the sensory membrane is fully retracted (minimum pole height), the vessel pressure

stabilises at a new level, as the voltage across the DEA is at its maximum.

Figure 88: Illustrative plot of dynamic variation of parameters with actuation of DEA
pneumostat.
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To evaluate the dynamic functionality (protraction and retraction of the sensory

membrane) of the active-touch, a test object was placed within range of the sensor

and a test actuation cycle performed. The voltage, DEA membrane displacement, and

internal pressure of the vessel were recorded, with the internal video captured by the

camera. A square wave input voltage was applied to the DEA.

Figures 89 show the particle image velocimetry (PIV) of internal frames displaying

the FOV of the camera. The frames sequence show the protraction distancing the pins

from the camera (Figure 89b), their dynamics splaying (Figure 89c) as they conform to

the object, and final resting protracted state (Figure 89d).
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(a) Protraction Frame 2

(b) Protraction Frame 4
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(c) Protraction Frame 8

(d) Protraction Frame 12

Figure 89: Processed data of internal camera video frames of sensory membrane pro-
traction.
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5.10 APTIP Module Object Palpation

Having confirmed the parameterisation of the APTIP through characterisation, and

optimisation of the pairing of active and sensory membranes to maximise protraction, the

module was tested with the aim of retrieving scene-wide features in an environment. For

these tests a series of test objects were identified and fabricated. A range of objects with

multiple features, some with sharp angles, were constructed - a prism, cylinder, cuboid.

The 2D shape of the end face was of particular interest. Additionally, the interaction of

the tactile sensor with a featureless planar surface was also used, to capture the effect

of the pins on membrane conformance to a flat obstruction or wall. The test objects

were aligned end face towards the membrane to maximise the feature impression and

measured 10mm across. This was chosen to allow the membrane enough ’free’ contact

surface to conform to the edges of the object. The experimental set up is shown in

Figure 81 , with the addition of the test object (shown in Figure 92). The pneumo-stat

and external object are in fixed relative positions with a spacing of 5mm. The external

object was placed within range of the active sensor, and with its end face in the same

plane as the end of the APTIP body.

(a) Photo of APTIP with sensory membrane in
protracted state.

(b) Photo of APTIP with sensory membrane in
retracted state.

Figure 90: External Photos of ActivePneumostaticTIP

The camera recorded the papillae movement during this time and a single actuation

cycle was used to analyse the sensory feedback for each of four test objects (cylindrical
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block, cuboid block, and triangular prism block) shown in Figure 91.

Figure 91: Photo of test
blocks used in sensory
membrane object detec-
tion tests

5.11 Experimental Setup

A similar setup was used for the experimental test interactions of the APTIP with test

objects, however the displacement was not recorded due the the orthogonal alignment

of the test object to the hemispherical sensory membrane. The image below illustrates

the changes made to the set up in Figure 81 - replacing the laser displacement sensor

with test objects.

Figure 92: Schematic of APTIP set up for object detection tests

5.12 Image Processing of Camera Video

As discussed in Section 5.8 and Section 5.2.2, the pins remain orthogonal to the mem-

brane as an object is touched. The membrane conforms to the object and at edges or
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angled surfaces, this causes the pins tips to translate in the 2D plane of the field of view

of the camera. The raw image data of the initial and final resting conditions of the pins

during a protraction cycle are shown in Figure 93. In each case, it can be clearly seen

that a discernable shift in pins is visible in the FoV of the camera, however it is not

immediately obvious in which direction each pin has shifted.

(a) Internal image of sensory membrane pins
with membrane retracted

(b) Internal image of sensory membrane pins
with membrane protracted on circular object

Figure 93: Unprocessed frames from camera of circular object test

5.12.1 Image Processing Methods

To analyse the movements of the pins in more detail to capture the resultant sensing

from the protraction of the membrane onto the test objects, a number of image process-

ing methods were considered:

Particle Image Velocimetry (PIV)

PIV is a processing technique which analyses the velocity of particles over a planar

(2D field) to create a velocity field. Comparison of pixel blocks of an image provide a

velocity vector; repeating this process over the whole image gives a velocity vector field.

A matlab tool called OpenPIV was used to process the images [Taylor et al., 2010].
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Pseudocode Algorithm:

1. Divide video into a set of frames.

2. Use interrogation windows to identify speckling.

3. For all interrogation windows across consecutive frames:

(a) Locate speckles, and calculate velocity and size.

(b) Calculate velocity for each window.

4. Plot velocity vector field.

For each of the test case objects, PIV - particle image velocimetry - was used to

confirm whether objects could be identified. In each case the PIV images the travel

of the pins is represented by a heatmap of vector arrows showing the amount of pin

movement during the object palpation. Multiple sample rates were tested to try to

maximise the object recognition. When a global optimum PIV parameters were found,

the parameters were fixed for PIV analysis across all tests objects. An interrogation

window of 64x64 pixels was used with a 8 pixel window spacing for the PIV. Using

the PIV across the full set of frames from the video of the membrane protraction, the

computed vector field was found to have low amplitude for many frames (Appendix D).

It can be seen in Figure 94 that as the voltage drops across the actuated membrane, the

sensory membrane and associated pins protract, resulting in the inward pin movement

in the FOV as the distance between camera and pins increases, shown in Figure 94 a.

Once the membrane contacts the test object the pins then splay around the edges of the

object causing an outward movement of the pin tips shown in Figure 94 b.

A simplified version of PIV was considered, due to the limitations of the frame

rate on attaining useful data from the PIV. As the captured active-touch was found

to be limited to approximately two frames (dependent on frame to voltage application

timing), binary digital image correlation would enable the analysis of the data of the
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touch captured to be processed. This uses a pair of images and considers the velocity of

particles in the same way as PIV. Using this method both the initial protraction of the

sensory membrane and the contact with the test object can be captured. The examples

in Figure 94 show the results for a circular test object:

(a) PIV between frames 4 and 5 on DEA relaxation

(b) PIV between frames 8 and 9 on sensory membrane
contact with test object.

Figure 94: PIV of succcessive frames at key state changes.

Using a binary PIV of sequential frame pin positions resulted in a clear, interpretable
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vector field showing the movement and the shape made on protraction of the membrane

and contact with the object. The output shows the movement of the pin tips and tracks

their displacement.

Pin Centroid Tracking

Instead of considering velocity vector field, which assumes that elements of an image

could be moving in all of the field, a second algorithm was considered using centroid

tracking. To do this the image was scanned for pins by looking for concentrations of

high luminance in a grayscale thresholded image of the FoV of the camera. The cen-

troids were then located in subsequent images and then correlated to the centroids of the

previous image. This was repeated over the complete set of images from the protraction

of the membrane onto a test object.

Pseudocode Algorithm:

1. Divide video into a set of frames.

2. Grayscale frames.

3. For all frames:

(a) Locate centroids of high luminance pixel clusters of threshold size.

(b) Find closest centroid in previous frame.

4. Plot paths of pins.

The path of individual pin tracking is shown in Figure 95:
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(a) Vector tracking of individual pins for circular object detection test.

(b) Vector tracking close up of small group of pins for circular object detection test.

Figure 95: Circle object test individual pin vector tracking.

The centroid tracking shows the full path of the pin through protraction and con-

forming to the test object. In Figure 95a the tracking shows ‘U-turn’ trajectories of the

pins, where the path vectors are shown overlaid on the final resting state of the mem-

brane. The U-turns are shown in a magnified section of the image in Figure 95b. As the
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membrane protacts, it moves away from the camera, and as such the FoV covers more

of the membrane and the pins appear closer together. This has caused the displacement

of the pin towards the centre of some of the pins. The membrane then contacts the

surface of the test object causing the pins to incline and displace relatively on the edges

of the object as the pins moved orthogonally to the membrane as it enveloped the object.
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Pin Centroid Correlation

In a similar method to two frame PIV, the pin tracking algorithm can be simplified

to process the frames only involved in the contact with the test object. The distance

travelled was use to create a velocity vector for each of the pins.

(a) Image of test object pin vectors (green) from consecutive video frames (marked red and blue
respectively).

(b) Two frame PIV vectors from consecutive video frames using image processing tool.

Figure 96: Output of image processed frames from circular object detection test
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The pin overlay figures for each test case show the retracted (red pins) and protracted

(blue pins) states of the membrane with arrows depicting the cumulative movement vec-

tor.

5.12.2 Summary of Image Processing Development

PIV processing has shown that a higher frame rate camera may allow more complex

analysis of the palpation of a test object. The current proof of concept is only able

to provide two frame PIV output for the palpation as the whole pin deflection occurs

within the window between two frames. Further analysis with a high speed camera

(externally) may enable the specification and selection of a camera for this module for

future tests. However, the resultant algorithm producing a single vector field resulting

from the membrane contacting the test object does enable quicker processing and output

of useful information on the local deflection of windows scanned on the membrane.

Pin tracking was also affected by the frame rate, but did confirm (as found in PIV

analysis) that two stages of protraction and encapsulation of the object can be iden-

tified. The algorithm developed was able to identify pins and return its inter-frame

displacement. This produced exact tracking information rather than a velocity vector

field.

Following the analysis of methods of image processing and considering the nature of

the data retrieved during the test (specifically the frame rate limitations which affected

the number of frames over which the touch affected the pin positioning), two-frame

PIV and pin centroid correlation were investigated further with multiple test objects

focussing on the encapsulation frames of the videos recorded from the camera:
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5.13 Analysis of Test Objects Contact

Through the analysis of the pin displacement when contacting multiple objects, it was

hypothesised that key elements of the movement could be identified. With the frame

rate limiting the data retrieved, the investigation focused on whether the test object

could be identified and how the pins moved on contact with the test object.

Figure 97a shows the relative pin positions (blue - retracted, red - protracted). the

arrow vectors show the direction of travel of the pins. It can be seen there is a square

block with approximately 30◦ rotation shown, where pins have only minimal movement

in the central region of the image (depicted by short blue arrows). Surrounding pins can

be seen to spread and conform to the sides of the object.

Figure 97b shows the PIV analysis of the initial and final sample images. As with

the pin movement vectors a discernable object is recognisable with minimal movement

in the centre and larger movements to the sides of the square palpated object. The

corners of the square cause a rounding of the pin spread, increasing displacement, as the

membrane conforms to the sharp intersection (red arrows). It can be seen that at the

corners of the external test object, the pins splay in the direction the corner is pointing

(on the middle left hand side of Figure 97b. A higher number of pins could decrease the

rounding effect this demonstrated in the test module. The pin density and length will

have to be optimised to improve the sensor accuracy.

In this test there is negligible lateral movement reflected in the very low vector

magnitude inside the central region shown in Figure 97b.
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5.13.1 Square Object Test

(a) Image of test object pin vectors (green) from consecutive video frames (marked red and blue
respectively).

(b) Two frame PIV vectors from consecutive video frames using image processing tool.

Figure 97: Output of image processed frames from square object detection test
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5.13.2 Triangular Object Test

(a) Image of test object pin vectors (green) from consecutive video frames (marked red and blue
respectively).

(b) Two frame PIV vectors from consecutive video frames using image processing tool

Figure 98: Output of image processed frames from triangular object detection test

Figure 98a shows the pin vectors over the period of protraction. The left hand side of the

image shows a clear edge detection with pins splaying out on the edge and pins on the

extreme of the FOV moving inwards as predicted. Although the triangle is not central
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to the palpation, edges are still discernable on the right hand side.

In Figure 98b PIV vectors correspond to the triangular shape, with the left hand side

edge of the triangle detected strongly. The membrane is conforming to the surface and,

at the edges of the applied shape, showing a large change in density. The object is slightly

misaligned in its mount leading to only a partial shape detection with both methods.

The PIV also shows that the tip moulds around the most central edge, deforming the

membrane along the side of the block, leading to a higher concentration of particle

vectors and an increased pin density.

5.13.3 Circular Object Test

Figures 96a & 96b show post-processed data highlighting the differences in the protracted

and retracted states. Figure 96a shows the circular spreading of the pins in the protracted

state (blue pins) in the left of the image around a central pin. There seems to be only

a very limited movement at the centre.

As discussed in Section 5.9.3, the internal image data shows a circular contraction

of the pins on the edge of the image as the membrane moves away from the camera

(Figure 94 a). The central spread occurs momentarily later in the protraction (Figure

94 b), which is due to the domed membrane flattening as it conforms to the shape,

whilst around the edge of the cylinder, the direction of movement is highest, where the

membrane envelops the object. At the furthest limits of the FOV corners, it can be seen

that the pins are still moving inwards, where the membrane is not in contact with the

object and the membrane returns to its domed shape.

It should also be noted there may be some lateral shift in the membrane to the right

of the image. Without perfect alignment of the sensor and the object this will always

occur, and shows the type of mechanical shift that will have to be accounted for in

future work. The analysis of the pin overlay is backed up by the PIV tracking of the

pins (Figure 96b) . The vectors show a circular expansion around a central point region.
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The pin tracking analysis shown in Figure 96a) depicts a pin spread at the centre, and

increased density of pins in the 2D image just beyond the circumference of the cylinder

where pins move outwards and pins on the extremities of the FOV move inwards. This

is replicating the expected response as shown in Figure 74c.

During the test, it was observed that the membrane did seem to rise in the centre of

the circular object. As a result the membrane flexibility may need to be further opti-

mised to fully conform to object details. The experiment shows that there is an inherent

lower limit of object size, from which shape information can be retrieved for a given

papillae density. The membrane will however, still detect the object, but not all of its

detail.

5.14 Summary

In this chapter, the harnessing of DEAs and soft materials for an innovative zonal sensing

technology has been presented. This has culminated in the development of a novel

type of active-touch sensor, combining soft actuation technology and soft sensors in a

pneumostatic modular frame. This innovation has been demonstrated through a proof-

of-concept, developed to characterise the actuation and optimise the performance of

active membrane palpation, thus providing an effective and dynamic sensor.

The coupling of the membranes at the pressures required was found to be more

complex than originally anticipated, but the parameters could be tuned to produce a

displacement in the order of 5mm. When considering that it is possible to reduce the

cylindrical module length to near zero, this actuation can be significant and useful for a

range of applications. It can be concluded that the module can be optimised to provide

a useful millimetre range deflection active-touch sensor for feature detection.

The experiments have also shown that the implementation of an optical sensor in a

lightweight module, with a soft actuator can still perform reliable shape detection whilst
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adding the extra capability of active palpation of near-field environment features. The

current pneumatic solution has not been tested with object manipulation and the thin

membranes and low pressure will not be optimal for most tasks. But, with the increase

in sensory membrane thickness and a stack DEA actuator, combined with an increased

pressure, the benefits of the proof-of-concept module should be maintained whilst en-

abling direct interaction and manipulation of heavier dynamic external structures.

As discussed in section 5.7, the APTIP is a self-sensing active module, which can be

applied to a number of tasks. It can be used as a statically located sensor, externally

locomoted sensor, conventional robotic attachment, or as part of an self-locomoting soft

robot. It’s capability for sensing dynamic or static environments expands the range

of applications. The modular design can, not only be used independently of external

actuation, but can be attached to conventional and non-conventional robotic systems

to enhance, for example, sensing in visually occluded environments, where delicate and

dynamic sensing may be required. For these applications further characterisation of the

vessel with different membrane thicknesses and pressures would allow optimisation to

environmental conditions. Additionally, the effects of using different actuator materials

would enable the benefits of high frequency palpation to be explored.
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6 Conclusions and Further Work

6.1 Introduction

The integration of DEAs in coupled systems is still an area of intense research focus.

These actuators have been shown to be efficient and can be tailored to a range of tasks, as

well as having useful features such as proprioception. However, the route to creating high

performance actuators through a repeatable automated fabrication using soft materials

remains elusive. Additionally, the soft nature of the materials used makes integration

into or with conventional actuation frameworks difficult. There is potential for reliability

issues and exposure to high voltage if these problems are not resolved.

In this thesis, a number of research avenues have been explored to expand the capa-

bility and integration of DEAs:

The first aim was to explore multi-layer actuators and see how the current state-

of-art could be improved, where significant limitations in extracting the performance

found in single layer actuators meant limited progress has been made. The investigation

showed that optimisation of individual layers and the mitigation of impacts of stacking

(such as passive margin size) were the main issues experienced, although additional

issues seemed under-explored such as laminate tensile strength. A number of optimising

parameters have been characterised and combined in the formation of a novel multi-layer

stack actuator. An optimal conductive layer was fabricated with a carbon black weight

of 5%, and formed into a multi-layer actuator with captured pre-strained. These steps

have aimed to remove some of the key barriers to developing an optimised stack actuator

with performance characteristics comparable to mammalian muscle.

Secondly, integration of DEAs with rigid components is difficult due to the soft nature

of the actuator materials and the potential for mechanical breakdown due excessive

stress concentrations leading to membrane rupture. Hence, the separation of non-linear

actuation dynamics from work output is extremely beneficial. The work has included
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the design of a novel arrangement to separate the output from the soft actuator and

produce an output that with multiple stable states allowing it to be used for a host of

applications.

Lastly, the ability to sense in DEAs has been shown to be useful, however up-scaling

its capacitive sensing leads to huge complexity for zonal sensors and would reduce perfor-

mance if used for both actuation and sensing. Alternative sensing methods are available.

This work has investigated and analysed how zonal sensing can be achieved in a soft

body and has led to the production and characterisation of a novel soft active-touch

sensor.

6.2 Conclusions

This thesis is split into three parts, which cover the individual topics of integration and

coupling of DEAs investigated. The following conclusions were drawn from the work:

1. Developed Multiple Advances in Stacked Multi-layer Actuators.

• Conductive silicone composite layers of thickness 100 microns can be produced with

a carbon black loading of 5% by weight.

• A multi-layer DEA can be created using bonded layers to enhance passive me-

chanical strength, whilst maintaining a completely soft body. A review of existing

stacking methods has shown that bonded electrode and dielectric layers have not

been utilised. Literature shows the use of adherence and encapsulation; meth-

ods which have been shown in tensile strain tests in this thesis to provide a far

weaker mechanical strength under tension than bonded layers or mammalian mus-

cle. This is an insight that led to the use of bonding to produce a layered actuator

with bio-mimetic properties.

• Pre-strain can be captured in an inherently soft bonded actuator. The concept of
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using all-silicone interpenetrating networks (S-IPN), which have been previously

produced [Brochu et al., 2013], has been reconfigured to using the silicone con-

ductive compound to enable the capture of pre-strain in dielectric layers. A new

method for capturing pre-strain was developed to create a two layer dielectric ac-

tuator using a cured conductive compound to bond the pre-strained layers. This

pre-straining enhances the performance of the actuator whilst providing the ex-

tra benefit of compression of the conductive layer improving range of operational

strain∗. To demonstrate the pre-straining method on an increased scale, an actu-

ator with multiple dielectric layers was created using a manual stacking method;

Conductive layers with a thickness of 65 microns and a carbon black weight of

5% was used to bond together three pre-strained laminated dielectric layers of 100

microns (initial thickness). When cured together they formed an actuator with

dielectric retained pre-strain of 29%. The actuator produced a thickness mode

contraction of 16%; an output which is comparable to mammalian muscle.

• DEA stacks can be produced with 100’s of layers using the advances described (pre-

strain and conductive layer bonding. A demonstrator stack actuator sample was

produced with 16 pre-strained dielectric layers (each with an initial 100micron

thickness) on a device capable of stacking >100 layers, to show that a method of

stacking that could be up-scaled had been produced. Large multi-layer DEA stacks

can be fabricated but the process is complex and intricate, especially with the

introduction of performance enhancements such as capturing of pre-stretch. DEA

stacks are still confined to academic research due to fabrication and operational

limitations as the actuator technology is too immature.

2. Integration of Soft DEAs into Rigid Actuation Systems.

• The use of flexible actuators to drive rigid end-effector displacement is currently

∗operational strain would be limited by the strain of the conductive silicone composite, where strain
would temporarily break chains of connection and cease conductivity

240



under explored in the field of soft robotics. The field of soft robotics covers a broad

array of technologies. Some of these technologies mimic biology using soft bodies

and soft actuators to perform complex tasks that are difficult for conventional rigid

robots to complete (such as gripping and squeezing through gaps [Bogue, 2012]).

Mammals (among a broad set of other examples in nature) use soft muscle with

rigid skeletons to enable forceful interaction with their surroundings. The review of

literature found this is under-explored, which can in part be explained by the lack

of high-power actuators of the scale and power density to mimic biological muscle

effectively. However, this work aimed to use a combination of soft muscle and rigid

links. The separation of actuator and output in soft actuator technologies enables

a wide breadth of unitised actuation systems based on soft actuator technologies.

• Characterisation of an antagonistic cone pair has shown that the force-displacement

relationship is linear., which has since been confirmed independently by other

works [Cao and Conn, 2017]. The characterisation of multiple cap and rod com-

binations led to the identification of the highest energy output pairing of 4.4mJ,

with a mid-range size cap (20mm) and mid size strut (110mm). This was found

to be different to the arrangement with maximum displacement of 6.4mm - with

the combination of small cap (15mm) and strut length 100mm.

• A novel mechanism has been conceived and an accompanying design space to pro-

duce a number of modes of operation of zero-energy fixity multi-stable devices.

The development of a non-back-drivable mechanism for a bi-stable concept was

expanded to include a possible range of mechanisms which could use the energetic

output of the antagonistic cone pairs linear displacement to produce:

– Lock pin

– N-State Translational Output

– Stepper motor
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– Linear Screw drive

– Other mechanisms are also possible

• A non-back-drivable bistable actuator prototype with rigid output has been developed

and has proved the concept can operate effectively. The device was tested to provide

bistable rigid output from a soft actuator.

• Coupling arrangements can be developed for the coupling of soft DE actuators with

rigid external forces using an approach which disconnects the actuator from the

end-effector through mechanical coupling. This idea could be used to bring soft

actuation into use for applications traditionally reserved for solely rigid mechanical

systems.

3. Develop a novel method of sensing using soft active touch.

• A novel concept has been developed for a soft active-touch sensor. Pairing of soft

membranes in form prototype active pneumostatic vessel to provide zonal sensory

feedback is an innovative idea, which may have a range of possible applications,

which are further evaluated in Section 6.3.

• A sensory membrane with papillae can be fabricated, and biased out-of-plane through

pressurisation into a spherical cap and paired with a camera to produce a zonal

sensor with an FOV of 45mm. A pneumatic optically based sensor has been devel-

oped generating a comparable function to TACTIP [Chorley et al., 2009], whilst

decreasing weight and widening the application space through the inclusion of

modular active sensing.

• An active-touch pneumostatic module (APTIP) can actively protract a sensory

membrane 5mm using a DEA in an antagonistic pneumostatic configuration, and

conform to the surface of an object and retrieve information of its shape. DEA
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actuators can be used in conjunction with the developed pneumatic sensor to

produce an active touch coupled unit facilitating dynamic sensing of environments.

• Multiple algorithm implementations can be used to tracking pins. Both PIV and pin

centroid tracking were able to detect pin deflection. Further investigation would

be required to consider the trade off with data retrieve and speed of calculation

for evaluation of real-time processing.

6.3 Discussion of Applications of Developed Technologies

The following section considers the application of the developed technologies to real-

world applications.

6.3.1 Multi-Layer Actuator Optimisation and Fabrication

The focus of the study on multi-layer actuators has been on creating higher power soft

actuators. Additionally the aim has been to create a contractile actuator with similar

properties to mammalian muscles. The reason for this is to enable the creation of high

efficiency artificial muscles that can deliver the tensional forces in passive and active

loading to emulate biological muscles, or more specifically human muscles. This work

was aimed at steps to making this a reality. The resultant actuator could be used in a

plethora of systems and as such its applications span robotic technologies, medical pros-

thetics and beyond (from biomimicry to pumps and valves). The advantageous feature

of proprioception could be used in addition to provide position feedback.

Biomimetic Muscle

The contractile actuation resulting from the stack actuator configuration could be

used in a prosthesis to replace a missing limb. The efficient and silent actuation would

enable long lasting and inconspicuous devices to be developed. The scale of these devices
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could be limbs, but could also could replace small extremities such as fingers:

Figure 99: Concept of an antagonistic finger prosthesis

6.3.2 Multi-state Device Future Development

The design tested for a binary multi-stable mechanism was fabricated to produce a proof

of concept device using a particular form of the broad range of modes of operation the

device can be used to develop. The electro-mechanical structure and possible arrange-

ments that could be used for many applications.

Valves

There exists a group of actuation systems used as control actuator forming a critical

component of high-power systems e.g. pneumatic actuation valve in a system such as

a McKibben muscle [Shadow Hand, ]. This is essential in the control of the system,

just as a transistor will control current flow in an equivalent electrical actuation system.

However, due to the physical medium used in pneumatics, for example, a mechanical

flow control is required.

For systems involving high-power pneumatics or hydraulics, there is a requirement

to distribute pressurised fluids from vessel to actuator where flow is controlled by an ac-

tuated disc (or other method/configuration) [FISHER, 2005]. The valve is an enabling

actuator, producing a low-power switching function to a high-power system. The precise

control and variability of such a device is essential in the optimisation and control of

the high-power actuator. Using conventional technologies, a popular example would be
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a rotary motor actuating a disc butterfly valve. These can be bulky and can require

constant current consumption in holding a desired position. Given these characteristics,

the multi-state device described may be able to compete with conventional technologies

used for this purpose.

Tactile Display

The suggestion of using DEAs for a Braille reader has been the subject of research

since it was first discussed [Runyan and Blazie, 2010]. This is a significant target within

from the group of novel actuators to develop e-Braille.

Braille displays are made up of dots. These dots are either created or adjusted to a

predetermined height from the ground surface of the display. The difference in height

is used by the reader to feel the symbol denoted in a Braille cell. The Braille cell is a

collection of (most commonly) eight dots arranged as two columns of four rows. The

dots in the cell are spatially arranged based on a defined standard. The requirements

set out for Braille devices are not clearly defined, but are characterised in a review paper

[Runyan and Blazie, 2010]. Currently Braille readers consist of a single row of up to 40

cells using linear actuators to power the pins. This technology leads to higher power

consumption and bulk [Runyan and Blazie, 2010] leading to heat dissipation issues. An

example is shown in Figure 100:
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Figure 100: Photo of common braille display device (reproduced from
[Runyan and Blazie, 2010])

The multi-state actuators use as an electronic Braille reader as part of the accessible

technologies available to the blind or visually paired was chosen. In this application

the device is shown in one of it’s most rudimentary designs. The use for e-Braille

is also useful for comparison with other DEA arrangements. This is because the use

of DEAs as a solution to enable the production of a Braille reading tablet has been

previously postulated. As a result examples exist of DEAs in alternative configurations

in designs for this application. There are some problems that may arise from creating a

miniaturisable mechanism that meets the needs of the Braille standard and this would

need to be explored.

Figure 101: Illustration of conceptual DEA braille display device.
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The operational characteristics of a tactile display are not tied to that of a Braille

reader, hence some devices have been created which extend or alter the mode of stimu-

lation for the communication of information to the sensory reader. This could be further

explored with the multi-state actuator design, and a conceptual illustration is shown in

Figure 101.

6.3.3 Soft Active-Touch Sensor

The formulated design of the ActivePneumostaticTIP is a complete encapsulated self-

active sensing module. It can be applied to a range of tasks:

1. - As an attachment to a robot arm the self-active sensor can be used in areas of

physically constrained workspace. In such situations actuation of the whole robot

arm may damage, interfere with the environment being sensed, or more impor-

tantly the actuation may not be smooth or repeatable over small displacements

required in some potential applications. The nature of the materials used allow

for this sensing to be performed at a high frequency of protraction. For detection

of the dynamic response from changeable localised characteristics of a surface, the

ActivePneumostaticTIP could be employed providing controlled minimal actua-

tion.

Figure 102: Illustration of APTIP as a robotic arm attachment
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2. - The module could be used with a biomimetic novel exploratory robot probe. In

the field of soft robotics wheeled transit is primarily replaced by biologically in-

spired locomotion such as snakes or simple legged robots [Plante and Dubowsky, 2007,

Nguyen et al., 2014]. As such, a sensory end-effector enhancing or providing pri-

mary exploring capabilities of a self-propelled autonomous robot, in an environ-

ment with no external visual acuity (i.e. operating in soft material such as earth,

or opaque liquids). The active touch could double as embodied touch with partic-

ular advantages for operation in potentially damaging physical objects.

Figure 103: Ilustration of active pneumostatic device as worm end effector

3. - Furthermore, the module could be used as an externally locomoted stand-alone

self-active sensor. For example, it could be used for the observation of dynamic

response of surfaces within the GI tract or vascular system or intra-body cavity.

Gently probing of the normally inaccessible body surfaces can be used to find vi-

sually occluded objects of interest. Its soft body and compliant form can be used

where rigid bodies are highly likely to damage delicate structures.
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Figure 104: Concept of APTIP as standalone senory device

6.4 Further Work

Each of the parts of the thesis have created novel development to the field of soft actu-

ators and have opened up opportunities for further research:

6.4.1 Multi-Layer Actuator Optimisation and Fabrication

The multi-layer actuator implementation has shown it is possible to optimise and imbue

a layered actuator with characteristics currently only found in single films and additional

properties such as mechanical strength. However, even with the processes described in

this thesis, further work is required in:

• Scaling up the presented fabrication method to produce a reliable high layer num-

ber stack actuator (100-1000 layers) .

• Testing of stack actuators for ultimate tensile strength and force-displacement

characteristics.

• Analysis of the practical efficiency and mechanical strength achievable with these

multi-layer actuators using the novel design approaches presented.
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6.4.2 Multi-state Device Future Development

The multi-state actuator concept opens up a variety of possibilities for further work

including development of mechanisms based on the concept presented, but additionally

it exposes a new area of research of encapsulation (using soft or rigid materials) in soft

robotics and their potential for use to protect the core components in more dangerous∗

environments. For example lightweight low-power valves could be created using this

concept. The precise control and variability provided by the implementation of the

concept as a valve would enable suitable control of flow.

6.4.3 Soft Active-Touch Sensor

Particularly, when considering the APTIP in a soft robot, it could be added as a sensory

attachment to an inch worm pneumostatic robot [Conn et al., 2014b]. The additional

capability this provides to the robot for search and rescue, industrial, and exploratory

applications would expand the possible uses and environments the robot could be used

in. Although created for the experimental tests described, the module was also created to

be as lightweight as possible with the intention of pairing it with an existing inch-worm

locomoting robot enabling sensing.

Another method to expand upon the palpative displacement of the APTIP is to

consider utilising inherent non-linear instabilities that can be developed using particu-

lar material and fluid parameters (particularly pressure). This can lead to the use of

pneumatically controlled snap-through of the DEA membrane creating increased volume

shifts and hence sensor displacement.

∗Dangerous in this context is referring to environments which could damage unprotected DEAs
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[Kovacs and Düring, 2009] Kovacs, G. and Düring, L. (2009). Contractive tension force

stack actuator based on soft dielectric EAP. Proc. SPIE, 7287.

[Lepora, 2015] Lepora, N. F. (2015). Biomimetic Active Perception with Tactile Fin-

gertips and Whiskers. 9:1–12.

[Lepora and Ward-Cherrier, 2016] Lepora, N. F. and Ward-Cherrier, B. (2016). Tactile

Quality Control With Biomimetic Active Touch. IEEE Robotics and Automation

Letters, 1(2):646–652.

[Lichter et al., 2001] Lichter, M. D., Sujan, V. a., and Dubowsky, S. (2001). Experimen-

tal Demonstrations of a New Design Paradigm in Space Robotics. pages 219–228.

[Lotz et al., 2008] Lotz, P., Matysek, M., Lechner, P., Hamann, M., and Schlaak, H. F.

(2008). Dielectric elastomer actuators using improved thin film processing and nano-

sized particles. Polymer, 7976.

260



[Lotz et al., 2009] Lotz, P., Matysek, M., and Schlaak, H. F. (2009). Peristaltic Pump

made of Dielectric Elastomer Actuators. 7287.

[Lotz et al., 2011] Lotz, P., Matysek, M., and Schlaak, H. F. (2011). Fabrication and

application of miniaturized dielectric elastomer stack actuators. IEEE/ASME Trans-

actions on Mechatronics, 16(1):58–66.

[Low and Lau, 2014] Low, S.-h. and Lau, G.-k. (2014). Bi-axially crumpled silver thin-

film electrodes for dielectric elastomer actuators. Smart Materials and Structures,

23(12).

[Low et al., 2012] Low, S. H., Tan, A. W. Y., Shiau, L. L., and Lau, G. K. (2012).

Actuated strains in excess of 100% in dielectric elastomer actuators using silver film

electrodes. 8340.

[Lu and Kim, 2014] Lu, N. and Kim, D.-H. (2014). Flexible and Stretchable Electronics

Paving the Way for Soft Robotics. Soft Robotics, 1(1):53–62.

[Maas et al., 2015] Maas, J., Tepel, D., and Hoffstadt, T. (2015). Actuator design and

automated manufacturing process for DEAP-based multilayer stack-actuators. Mec-

canica, 50(11):2839–2854.

[Marchese et al., 2014] Marchese, A. D., Onal, C. D., and Rus, D. (2014). Autonomous

Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators.

Soft Robotics, 1(1):75–87.

[Matysek et al., 2010] Matysek, M., Lotz, P., Flittner, K., and Schlaak, H. F. (2010).

Vibrotactile display for mobile applications based on dielectric elastomer stack actu-

ators. Proceeding of SPIE, 7642.

261



[Matysek et al., 2009] Matysek, M., Lotz, P., and Schlaak, H. F. (2009). Tactile display

with dielectric multilayer elastomer actuators. SPIE Smart Structures and Materials

+ Nondestructive Evaluation and Health Monitoring, 7287.

[McKay et al., 2009] McKay, T. G., Calius, E., and Anderson, I. a. (2009). The Dielec-

tric Constant of 3M VHB: a Parameter in Dispute. Proc. of SPIE, 7287.

[Medalia and Heckman, 1969] Medalia, A. and Heckman, F. (1969). Morphology of ag-

gregates. Journal of Colloid and Interface Science, 36(2):173–190.

[Mescher, 2003] Mescher, A. L. (2003). Junqueira ’ s Basic Histology Text & Atlas.

Number November 2015.

[Metta et al., 2008] Metta, G., Sandini, G., Vernon, D., Natale, L., and Nori, F. (2008).

The iCub humanoid robot: an open platform for research in embodied cognition.

Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems,

pages 50–56.

[MG Chemicals, 2012] MG Chemicals (2012). Carbon Conductive Grease 846 Technical

Data Sheet. pages 1–4.

[Mirvakili et al., 2014] Mirvakili, S. M., Rafie Ravandi, A., Hunter, I. W., Haines, C. S.,

Li, N., Foroughi, J., Naficy, S., Spinks, G. M., Baughman, R. H., and Madden, J. D. W.

(2014). Simple and strong: twisted silver painted nylon artificial muscle actuated by

Joule heating.

[Monzée et al., 2003] Monzée, J., Lamarre, Y., and Smith, A. M. (2003). The effects of

digital anesthesia on force control using a precision grip. Journal of neurophysiology,

89(2):672–683.

[Mouri et al., 2002] Mouri, T., Kawasaki, H., Yoshikawa, K., Takai, J., and Ito, S.

(2002). Anthropomorphic Robot Hand : Gifu Hand III. Iccas2002, pages 1288–1293.

262



[Nenno and Wetzel, 2014] Nenno, P. T. and Wetzel, E. D. (2014). Rate-dependent ex-

tensional ”dynamic ligaments” using shear thickening fluids. Spie, 9057.

[Nguyen et al., 2017] Nguyen, C. T., Phung, H., Hoang, P. T., Nguyen, T. D., and Jung,

H. (2017). A novel bioinspired hexapod robot developed by soft dielectric elastomer

actuators. pages 6233–6238.

[Nguyen et al., 2014] Nguyen, C. T., Phung, H., Nguyen, T. D., Lee, C., Kim, U., Lee,

D., Moon, H., Koo, J., Nam, J.-d., and Choi, H. R. (2014). A small biomimetic

quadruped robot driven by multistacked dielectric elastomer actuators. Smart Mate-

rials and Structures, 23(6).

[O’Brien et al., 2014] O’Brien, B., Gisby, T., and Anderson, I. A. (2014). Stretch sensors

for human body motion. Proceedings of SPIE - The International Society for Optical

Engineering, 9056.

[Ogden, 1972] Ogden, R. W. (1972). Large Deformation Isotropic Elasticity: On the

Correlation of Theory and Experiment for Compressible Rubberlike Solids. Pro-

ceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,

328(1575):567–583.

[O’Halloran et al., 2008] O’Halloran, A., O’Malley, F., and McHugh, P. (2008). A review

on dielectric elastomer actuators, technology, applications, and challenges. Journal of

Applied Physics, 104(7).

[Ohka et al., 2006] Ohka, M., Kobayashi, H., Takata, J., and Mitsuya, Y. (2006). Sens-

ing precision of an optical three-axis tactile sensor for a robotic finger. Proceedings

- IEEE International Workshop on Robot and Human Interactive Communication,

pages 214–219.

[OtherLab, ] OtherLab. Robots Made from Interesting Materials. Technical report.

263



[Pang et al., 2016] Pang, Y., Tian, H., Tao, L., Li, Y., Wang, X., Deng, N., Yang,

Y., and Ren, T. L. (2016). Flexible, Highly Sensitive, and Wearable Pressure and

Strain Sensors with Graphene Porous Network Structure. ACS Applied Materials and

Interfaces, 8(40):26458-26462.

[Parker, ] Parker. Films - promo.parker.com/promotionsite/eap/us/en/the-technology.

[Pearson et al., 2007] Pearson, M. J., Pipe, a. G., Melhuish, C., Mitchinson, B., and

Prescott, T. J. (2007). Whiskerbot: A robotic active touch system modeled on the

rat whisker sensory system. Adaptive Behavior, 15(3):223–240.

[Pede et al., 1998] Pede, D., Serra, G., and De Rossi, D. (1998). Microfabrication of

conducting polymer devices by ink-jet stereolithography. Materials Science and En-

gineering: C, 5(3-4):289–291.

[Plante and Dubowsky, 2006] Plante, J.-S. and Dubowsky, S. (2006). Large-scale failure

modes of dielectric elastomer actuators. International Journal of Solids and Struc-

tures, 43(25-26):7727–7751.

[Plante and Dubowsky, 2007] Plante, J. S. and Dubowsky, S. (2007). On the perfor-

mance mechanisms of Dielectric Elastomer Actuators. Sensors and Actuators, A:

Physical, 137(1):96–109.

[Poole and Booker, 2008] Poole, A. and Booker, J. D. (2008). Classification and selection

of actuator technologies with consideration of stimuli generation. Proceedings of SPIE,

6927.

[Pourazadi et al., 2017] Pourazadi, S., Shagerdmootaab, A., Chan, H., Moallem, M.,

and C, M. (2017). On the Electrical Safety of Dielectric Elastomer Actuators in

Proximity to the Human Body.

264



[Rahbar et al., 2014] Rahbar, a., Rahbar, M., and Gray, B. L. (2014). Flexible touchpads

based on inductive sensors using embedded conductive composite polymer. Nanosen-

sors, Biosensors, and info-tech Sensors and Systems, 9060.

[Randazzo et al., 2008] Randazzo, M., Buzio, R., Metta, G., Sandini, G., and Valbusa,

U. (2008). Architecture for the semi-automatic fabrication and assembly of thin-film

based dielectric elastomer actuators. Proc. of SPIE, 6927.

[Romasanta et al., 2011] Romasanta, L. J., Hernández, M., López-Manchado, M. a., and
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M. K., Grüner, G., and Pei, Q. (2007). New electrode materials for dielectric elastomer

actuators. Proceeding of SPIE, 6524(2007).

[Zhang et al., 2006] Zhang, R., Lochmatter, P., Kunz, A., and Kovacs, G. (2006). Spring

Roll Dielectric Elastomer Actuators for a Portable Force Feedback Glove. Smart Struc-

tures and Materials 2006: Electroactive Polymer Actuators and Devices (EAPAD),

6168(0).

269



Appendices

A Equilibrium Mechanics of L-IPNs

We will now consider the effects of the lamination on the structure of the material. The

elastomeric films in stages of the lamination process are represented in Figure 105. A

layer of elastomeric material can be produced such that it can be considered isotropic

and approximately incompressible. Biaxial pre-strain causes a uniform strain in the x-y

plane, and reduction in the thickness plane (comparing Figure 105a and Figure 105b).

Due to the use of biaxial plane any measurement in x and y can be considered equal to

planar length p of an element.

ZD0

x or PD0

y or PD
0

(a) Schematic of uniform silicone sheet

ZD1

PD1

(b) Schematic of strained silicone sheet

ZD1

PD1

ZL0

(c) Representation of pre-strained lam-
inated 3-layer silicone sheet.

PD2

ZD2

ZL1

(d) Image of resultant L-IPN from re-
leased pre-strained laminate.

Figure 105: Set of schematics illustration the strain mechanics in producing a layered
actuator with captured pre-strain.

When the pre-strained laminate is released from its supporting structure, the ratio

of conductive composite to dielectric remains constant as shown in Equation 17. From

Equation 8 & 9, and applying this to the element lengths described in Figure 105, it can

be seen that the dielectric to electrode thickness ratios in Figures 105c & 105d are the
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same.

zD2

zL1
=
zD1.λzD1,2

zL0.λzL0,1

=
zD1.pD2

zL0.pD1
=
zD1

zL0
, (17)

where zL, pL are thickness and planar lengths respectively, and λp, λl are the respective

stretches.

If an adhesive element is applied between two pre-strained elastomeric layers, and is

assumed to form a uniform bond with each, the adhesive undergoes a compression when

relaxed. In equilibrium, the compressive stress on the adhesive will equal the retained

pre-strain stress of the elastomeric layer in the thickness plane. Due to the repeatability

of the structure, this result can be extended to a stack. Due to the symmetry of the

lamination in the envisaged stack, there will be no out-of-plane moment, given that the

forces in repeated layers can be assumed to be equal.

(a) Image of single L-
IPN

(b) Image of laminated
multi-layer stack

(c) Image of L-IPN sec-
tion in planar equilib-
rium.

Figure 106: Laminations In an Envisaged Stack

B DE Membrane Fabrication For Multilayer Actuators

DEA actuator fabrication requires the formation of a high purity (i.e. no particulates)

uniform dielectric membrane. This enables the maximisation of the electric field of a

membrane of a given thickness.
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B.1 Spin Coating

Spin coating has been discussed in the literature as one method of producing thin film

actuators out of silicone material. It benefits from the following attributes:

• Consistent uniform layers

• Relatively large sheets

• Can be batch produced for consistency

• The material thickness can be customised

• The material stiffness can be customised through type of silicone and addition of

silicone oil.

To characterise the sheets of material, an elastomer used in previous works was used

and the thickness compared across a range of spin speeds [Lotz et al., 2011].

B.2 Spin Coating Sample Analysis

For a number of rotational speeds (as per Lotz et al [Lotz et al., 2011]), a layer of spun

Dow Corning 3483 silicone was cured and the variation of thickness of a centre-line

cross-section was measured. The results confirmed layers were of a similar composition

to initial findings [Lotz et al., 2008] showing uniformity across the entire cross-section

with a slight thickness increase at the centre and edge of the film disc. Figure 107a shows

the cross-section along which the thickness was measured. The thickness was affected by

the mix batch of silicone, but was found to be consistent within the batch. A spinning

program was created to produce films of approximated 100µm thickness. Figure 107b

shows an example of the uniformity of the sample.
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(a) Illustration of silicone cross-sectional slice used for microscopy image.

(b) Silicone sheet cross-sectional microscopy image

Figure 107: Illustration of measurements of spun silicone sheet

C High Voltage Test Rig

In order to test the DEAs, a test rig was required that provided a safe experimental area.

A bespoke electrically insulated rig has been created by the group for DEA testing. It

consists of a perspex box with a magnetic interlock to ensure high voltage grounding

if the door is open. The high voltage boxes are controlled by a remote low voltage

control box, which is also sealed. The high voltage boxes are separated from the main

test area by an electrically insulated floor panel of Perspex. All recording equipment

is electrically insulated from possible high voltage sources. The outputs of the devices
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are then connected to a PC for control of experiments and data recording. The setup is

shown in Figure 108 and a photo is shown in Figure 109.

Figure 108: Depiction of high voltage experimental rig.
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Figure 109: Photo of high voltage experimental rig.

D PIV Frames of Palpation of Circular Object

The PIV tool (OpenPIV) produced a series of between frame PIV vector frames shown

below from which a selection have been used in describing the dynamic process of pal-

pation onto an object.
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(a) Internal video of circle object test pal-
pation; Frame 01

(b) Internal video of circle object test pal-
pation; Frame 02

(c) Internal video of circle object test pal-
pation; Frame 03

(d) Internal video of circle object test pal-
pation; Frame 04
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(e) Internal video of circle object test pal-
pation; Frame 05

(f) Internal video of circle object test pal-
pation; Frame 06

(g) Internal video of circle object test pal-
pation; Frame 07

(h) Internal video of circle object test pal-
pation; Frame 08

(i) Internal video of circle object test pal-
pation; Frame 09

(j) Internal video of circle object test pal-
pation; Frame 10
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(k) Internal video of circle object test pal-
pation; Frame 11

(l) Internal video of circle object test pal-
pation; Frame 12

(m) Internal video of circle object test pal-
pation; Frame 13

(n) Internal video of circle object test pal-
pation; Frame 14

(o) Internal video of circle object test pal-
pation; Frame 15

(p) Internal video of circle object test pal-
pation; Frame 16

Figure 110: Complete set of frames of video of circular object test palpation.
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