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Summary

The aim of this project is to enable robots to recognise objects and object cate-

gories by combining vision and touch. In this thesis, a novel inexpensive tactile

sensor design is presented, together with a complete, probabilistic sensor-fusion

model. The potential of the model is demonstrated in four areas: (i) Shape Recog-

nition, where the sensor outperforms its most similar rival, (ii) Single-touch Ob-

ject Recognition, where state-of-the-art results are produced, (iii) Visuo-tactile

object recognition, demonstrating the benefits of multi-sensory object representa-

tions, and (iv) Object Classification, which has not been reported in the literature

to date. Both the sensor design and the novel database were made available. Tac-

tile data collection is performed by a robot. An extensive analysis of data encod-

ings, data processing, and classification methods is presented. The conclusions

reached are: (i) the inexpensive tactile sensor can be used for basic shape and

object recognition, (ii) object recognition combining vision and touch in a proba-

bilistic manner provides an improvement in accuracy over either modality alone,

(iii) when both vision and touch perform poorly independently, the sensor-fusion

model proposed provides faster learning, i.e. fewer training samples are required

to achieve similar accuracy, and (iv) such a sensor-fusion model is more accurate

than either modality alone when attempting to classify unseen objects, as well

as when attempting to recognise individual objects from amongst similar other

objects of the same class. (v) The preliminary potential is identified for real-life

applications: underwater object classification. (vi) The sensor fusion model pro-

vides improvements in classification even for award-winning deep-learning based

computer vision models.
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Chapter 1

Introduction

1.1 Motivation and hypotheses

While it is largely believed that in humans vision is the dominant sense (as ex-

emplified by the Colavita effect [23]), it has been proposed that visual and tactile

object representations share information [86]. It has even been suggested that the

way in which this information integration is carried out could resemble maximum

likelihood integration [32]. It has been noted, however, that the representation

of scene layouts in touch and vision are likely not the same, but some form of

abstraction is possibly required to make them compatible [87]. So either tactile

and visual information are very efficiently combined or they have a shared mem-

ory representation [67]. Visual and tactile object representations are intrinsically

linked [119]. Multi-modal object recognition achieves view independence easier

than either modality alone [68]. The objective of this thesis is to find a fast and

robust representation for this integration, which enables a robot to learn about

objects from multiple sensors. This will be tested by attempting to perform shape

recognition, object recognition and object classification. These problems are well

understood in the field of machine vision, but, to date, classification of objects via

tactile sensing has not been achieved, neither has it been achieved with the fusion

of vision and touch. Humans integrate information from multiple senses to build

a representation of the world and in particular of objects. This is necessary since

individual senses have significant limitations if taken independently. In particu-

lar, in machine vision, some very difficult challenges such as recognising texture,

or reflective and translucent objects are significantly easier using touch. In ad-

dition, some properties of objects, such as softness or the relationship between

10



Chapter 1. Introduction

articulate parts, are very difficult to infer from vision alone, and some form of

supplementary information may be helpful. The hypotheses of this thesis are:

1. Non-grasping tactile object classification is feasible with a simple, low cost

tactile sensor.

2. A simple probabilistic graphical model for the integration of tactile and

visual robotic perception is likely to yield higher accuracy object instance

recognition and object classification than either modality alone.

Here, instance recognition refers to the ability to identify a known object (an

object that was present in a training phase, now sensed from a different angle),

and classification refers to the ability to identify the known class of an unknown

object (e.g. a new teddy bear which was not present during training, while

other teddy bears were). The hypotheses will be tested by conducting a set of

experiments of increasing complexity, from shape recognition to classification.

The data sets will be increasingly larger and more challenging.

1.2 Structure and contributions

The work reported in this thesis begins with the design of a new tactile sensor,

experiments to find the best way to encode its data leading to tactile shape

recognition. Then, an algorithm was designed to use multiple tactile readings

from the sensor to recognise a small set of household objects. The algorithm was

then extended to incorporate vision (using photos), demonstrating an increase

in accuracy. The multi-modal (vision and touch) system was then shown to be

able to classify objects within a new (the largest to date) visuo-tactile household

object database. Further validation was achieved by showing similar results when

the vision model was replaced by a fine-tuned deep-learning award-winning neural

net.

This is a thesis by publication. Chapters 3-5 are peer-reviewed papers and

therefore are enclosed without modification. Chapter 6 is a paper which was

submitted to the journal, “Robotics and Autonomous Systems” and is currently

under review, and therefore it is included blended into the style of the thesis. Each

paper is preceded by a short introduction that summarises and contextualises it

within the overarching narrative, providing continuity and cohesion.

11



1.2. Structure and contributions

Chapter 2 provides an overarching review of relevant background work, in-

cluding tactile sensors, tactile object recognition, visual recognition and classi-

fication and multi-modal fusion. Chapter 3 introduces the novel tactile sensor,

its design, data encoding comparisons and basic shape recognition. Chapter 4

describes how tactile data for objects were collected using the robotic arm, and

the first experiment pertaining to object recognition. Chapter 5 introduces the

sensor-fusion model, along with a comparison to alternatives, for the purpose of

object recognition. Chapter 6 introduces the new visuo-tactile database, and the

first example of tactile object classification, as well as an example of a potential

practical application (underwater object classification). The fusion approach is

further validated in this chapter by applying it to a deep-learning vision model.

Chapter 7 provides an overall analysis of the results in all contributions, highlight-

ing their strengths, limitations and proposals for further work. It concludes with

a summary of the contributions and how they relate to the original hypotheses.

12



Chapter 2

Literature Review

2.1 Tactile sensing

2.1.1 Tactile sensors

Tactile sensors have been the focus of much research recently [29, 111]. The

majority of efforts have been put into low resolution pressure sensor arrays [6, 109,

85, 97, 91, 123]. Many pressure sensor arrays consist of between 4×4 and 32×32

cells (most typically at the lower end of that scale). Each cell is either binary

(detects touch or no touch), or pressure sensitive. The low resolution of these

sensors means several must be used in conjunction. One of the most widely used

sensors, by Weiss1 has individual cells detecting force and contact and include

integrated signal processing to reduce cabling [123]. Attempts have been made to

make open source tactile sensors of high reliability and durability and low sensor

shift, in order to reduce the cost and increase customisability [56]. This unit,

named Takktile TakkArray, is based on arrays of MEMS barometers covered by

a rubber membrane, the deformation of which results in the pressure changes

being measured. Perhaps the most advanced tactile sensor is the BioTac [124].

The BioTac is capable of sensing pressure distribution via changes in impedance

measured at internal electrodes as the internal fluid that resides between them and

the deformable outer is displaced due to contact. It is also capable of measuring

heat transfer between itself and the contact object, which gives information about

the material being touched. A dedicated fluid pressure sensor is used to sense total

contact pressure, and the vibrations in this total pressure can be analysed to infer

1Weiss tactile sensors. http://www.weiss-robotics.de/en/english/technology/

tactile-sensors.html
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2.1. Tactile sensing

texture when stroking a surface. The BioTac is also one of the most expensive

sensors by at least an order of magnitude at present. A popular solution are the

tactile sensors built for the icub robot [104]; mounted on the fingertips of the

humanoid robot, these comprise 12 capacitive elements, which, when combined,

can, for example, estimate the the pressure applied.

Light-based sensors

It is possible to simulate touch by capturing images of the deformation of mem-

branes, as they make contact with an object. Ferrier et al. showed it is possible

to reconstruct the shape of a deformable rubber membrane by inspecting the

deformation of given patterns, assuming the total energy stored in the configu-

ration would be minimal [37]. Kamiyama et al. [60] used two colours of markers

at different depths within an elastic translucent layer to analyse the relative de-

formation between layers to infer magnitude and direction of applied forces. The

OptoForce sensor 2 uses four light emitters and a single receptor, enclosed in a

semispherical rubber membrane coated internally with a reflective layer. By de-

tecting the reflexion of light, they are able to very finely infer pressure in three

axes. Knoop et al. [63] use an opaque rubber membrane, internally painted with

semi-randomly placed white dots, and a low-resolution, high-frequency camera to

capture the location and track the movement of these dots. The sensor can run in

two modes: high-frequency ‘Reflex’ mode, where statistics such as displacement

are calculated by the on-board sensor circuitry, helpful for detection of contact,

and lower frequency ‘Explore’ mode, where the full 32-by-32 image is transmitted

an analysed externally, for example for the estimation of precise forces.

One of the closest related sensor to the BathTip is the GelSight [58], which

uses multiple light sources and frequencies, and a high-resolution camera, to

capture the deformation of an elastomer, and is able to reconstruct 3D surfaces

to microscopic precision. The similarity between this sensor and the BathTip

stems from the idea of capturing the deformation of a deformable membrane.

The purpose of the elastomer in the GelSight sensor is to conform closely to the

shape of the surface being touched, so as to effectively reproduce the surface

with a coating whose reflective properties are well known. In contrast, the sensor

presented in this thesis makes no such assumption. The shape of the deformed

rubber membrane is meant to only loosely respond to large scale properties of

2https://optoforce.com/
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Chapter 2. Literature Review

the surface in contact.

The sensor that inspired the creation of the BathTip is The TacTip (Tactile

fingerTip) [20]. It is a biologically inspired tactile sensor based on the deforma-

tion of a silicone rubber hemispherical surface and the consequential displace-

ment of a number of internal papillae (internally portruding antennae, whose

tips are painted white, so as to exacerbate the deformation of the membrane).

A digital camera is used to observe this displacement. This sensor was shown

to achieve a high degree of accuracy in sensing edges [21], showing small objects

are often clearly identifiable by a human from its tactile image. It has been

theoretically shown to have potential in tele-surgery [98]. More recently it has

also been successfully used to identify textures [126] by analysing the vibration

of a central papilla, and also in reconstructing 2D shapes from the autonomous

exploration and feature extraction [5]. It is remarkable that such a simple design

can achieve localisation resolutions of the order of 0.1mmm [71], with potential

already demonstrated for quality control in production lines [72]. More recently,

the TacTip was proven useful in maintaining control of a rolling cylinder, even

after forced perturbations [27]. The presence of papillae markers inside the sensor

are the key to many of these achievements, as they allow for a simple approach

for the measurement of vibration, shear, and torsion. Neither the GelSight nor

the BathTip have this capability, and, in fact, some of the recent experiments

with the GelSight, demonstrating capability to detect slip [128] and estimation

of hardness [130] use a new version of the sensor that includes additional internal

markers.

Samples of some of the tactile sensor mentioned in this section can be seen in

Fig. 2-1.

2.1.2 Tactile information encoding

It has recently been suggested that basic encodings such as edge orientation and

even edge displacement are detected by humans in first order tactile neurons, not

in the cerebral cortex [94]. Tactile sensing in robots is often comprised of many

tactile arrays which give rise to too much information to handle directly. Some

form of Tactile information encoding is therefore desirable.

Finding the best way to encode tactile information is an open problem, and

it is strongly dependent on the sensor used. Often a tactile sensory signal corre-

sponds to a heat map of pressure forces, so it makes sense to talk about a “tactile

15



2.1. Tactile sensing

(a) (b) (c) (d)

(e) (f) (g)
Figure 2-1: Most widely used tactile sensors: (a) Weiss sensor [123], (b)
Takktile sensor array [117], (c) BioTac [124], (d) PPS sensors on a gripper
(http://www.pressureprofile.com/), (e) OptoForce (optoforce.com), (f) GelSight sensor
[58], and (g) a recent version of the TacTip [20]
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Chapter 2. Literature Review

image”. The simplest approach is to use these tactile images (pressure images or

binary touch images) directly with no encoding and use a simple distance metric

[105] to compare similarity. Pattern recognition techniques have been used to

find the best encoding function automatically. Early approaches focused simple

Artificial Neural Networks (ANNs) [115]. One limitation of ANNs is that they

require a large amount of data to be trained. This is at odds with tactile in-

formation gathering, which at present is slow due to the robotic manipulation

limitation (i.e. the need to make contact with an object means considerations

about robot planning must be made). Self-Organizing Maps (SOMs) [64] have

been adapted for the purpose of fusing proprioceptive and tactile input for object

recognition [59, 97].

Alternatively, preprocessing this tactile information can be done by hand-

crafted features. For example, it has been shown that with sufficiently many sen-

sors, extracting image intensity linear moments and extrema is enough to perform

object recognition to high accuracy [109]. The performance of Principal Compo-

nent Analysis (PCA), moment analysis and binary images have been compared in

haptic object recognition [45], concluding that central moments outperforms the

others. It is also possible to combine the two approaches, for example using PCA

and SOMs to extract tactile features which were then used for object recognition

[85].

A thorough overview of in tactile sensor technologies in general can be found

in [29].

2.2 Tactile object recognition

A large amount of effort has been put into texture recognition [74, 107, 55, 30],

since texture is usually difficult to capture from vision alone. This usually involves

performing frequency analysis on the vibrations of an end effector which scratches

the surface in question. Other common applications of tactile sensors include

object localisation [89], slippage detection [17], and grasp stabilisation [8]. Even

if the object itself is not labelled, it is possible to extract important information

about it using tactile information, such as location and pose for the purposes of

grasping and manipulation [90], softness of material [88] and internal states such

as whether a bottle is full or empty [18]. Object recognition is a well-studied

topic in Computer Vision, however tactile approaches are still relatively few in

number.
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2.2. Tactile object recognition

2.2.1 Volumetric representations

One possible approach to object modelling involves encoding information about

its geometry by means of a volumetric representation. Polyhedral approximations

have been used successfully, albeit with a limited number of basic geometric solids

[16]. Another possible approach is to subdivide the work area into voxels (discrete

subdivision of space) and model knowledge about each voxel, which can be used to

perform intelligent exploration, even considering empty space. Such an approach

combined with primitive tactile feature matching has been applied successfully

using Iterative Closest Point (ICP), an iterative procedure which converges to

a local optimum match between sets of points for the model and the data, for

object recognition [44].

More commonly, however, point-clouds of contact points are used. Point

clouds have the advantage of being easily integrated into vision [46]. One clear

disadvantage is that, usually, point-clouds comprise many data points and object

recognition using direct point cloud comparison is not possible in real time. They

are also susceptible to errors and are not robust to changes in the environment

during sensing. Work by Bierbaum et al. [11] shows how a point cloud is obtained

via exploration performed by a human wearing a data glove. They later refined

an algorithm for estimating the shape to be recovered using superquadrics [10]

yet their system was not tested on a real robot. Point clouds including surface

normal information have been used to reconstruct solid shapes using simulated

tactile sensing [46]. In that system, touches from a simulated anthropomorphic

hand are used to extract points of contact and surface normals. These points

are then used to generate feature vectors that describe the objects, including

basic object properties such as proportions, dimensions, and histograms of ori-

entation of surface normals. Crucially, they compare between spherical models

and voxel models. Spherical models are histograms of oriented normals mapped

onto spherical coordinates. Voxel models simply count the number of points over

a 3D grid subdivision, after some regularisation, and apply PCA to reduce di-

mensionality. The spherical model obtains the best recognition accuracy (93%

with a feature vector of size 10) for a set of 15 objects using 375 contact points

for training and 375 for testing. While some translation invariance is obtained,

the method is susceptible to missing information, such as unreachable parts of

the object. A combination of features and volumetric is used by [1]. They em-

ploy Random Sample Consensus (RANSAC) [39] to evaluate matches between
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Chapter 2. Literature Review

sets of tactile features to a number of running hypotheses. They also maintain

a voxel representation of the work space to keep track of empty space. Finally,

it is merged with a form of point cloud and ICP for hypothesis verification. The

system achieves 80% recognition with fewer than 10 touches, from a database of

45 objects. Object models need to be known in advance, which in their context

(deep sea object recognition) is not a major limitation.

One way to solve the problem of having too much data (especially potentially

redundant data) is to merge points that are close into a probability point modelled

by a Kalman filter. This was proven to be achievable in real time and with no

significant error with respect to a direct ICP [83]. Attempting to address the

sparsity and noise problems in point clouds obtained by tactile exploration, Jin

et al. [57] use clustering to subdivide the point cloud into regions which are then

encoded as features. These features are then classified using a Gaussian Process

(with a squared exponential kernel) for object classification. This is therefore

a bag-of-tactile-features approach (see section 2.2.3). Simulations of 8 shape

primitives (e.g. pyramid, cone, etc.) give a high accuracy for recognition.

2.2.2 Recognition by grasping

More recently, there have been several projects involving recognition by grasping

using machine learning techniques. PCA, SOMs and ANNs have been combined

to process the output of Weiss tactile sensory arrays attached to a number of

robotic end effectors, to classify household objects [85]. Novel recursive Gaussian

kernels have been designed to encode the various stages of contact during grasping

leading to a robust on-line system capable of learning new models and classifying

objects in real time [109]. In the field of on-line spatio-temporal unsupervised

feature learning for object recognition from grasping, the best results are currently

obtained by [81]. They extend Hierarchical Matching Pursuit (HMP, a multi-layer

hierarchical feature learning system) to include temporal information. They test

their method on 6 tactile databases and produce an accuracy of between 80 and

100%. One of the advantages of grasping is that pose ignorance is not that

important, since the grasping action can often result in the object coming to

one of a small number of possible poses [116]. Using the most advanced tactile

sensors (BioTac) and grasping, it has been shown possible to distinguish between

49 objects with almost perfect accuracy [53].

Grasping, and therefore combining proprioceptive, pose and tactile informa-
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2.2. Tactile object recognition

tion is likely to yield better results than either modality alone [62, 45]. Using

grasp, however, limits the size of the object to be identified, requires a robotic

hand, and requires a grasp to be achieved.

2.2.3 Bag of tactile words

Bag-of-visual-words models are models that use local feature information to de-

scribe an object [28], ignoring relative position between these features and any

other global properties of the object. They were originally used for document

classification based purely on word counts and not word location or global doc-

ument structure, hence the name. Similarly, “Bag of tactile words” approaches,

here, refer to those that use local tactile information in parts of the object but

disregard their geometric location, and any other global object properties such as

dimensions, pose or location. These approaches are therefore robust, in principle,

to changes in the aforementioned parameters. Discarding those data, however,

can be the major limitation since crucial information is lost.

One of the first attempts at a tactile-only object recognition is given by [101].

They use geometric features such as lines and points, together with their evolution

over time (named tactemes, since they are similar in concept to phonemes in

speech recognition). Their accuracy recognising objects is high (83%); however,

the number of shapes is only 6 and they are very basic predefined geometric solids

(cylinder, cone, etc.).

Schneider et al. [105] use repeated application of a two fingered grasps us-

ing a gripper equipped with Weiss tactile array sensors. Features are extracted,

then a bag-of-features approach is used to recognise household and industrial

objects. They provide an interesting information theoretic approach for maxi-

mum expected information gain to inform grasping position. Using histogram

intersection [52] as a measure of similarity, they obtain an accuracy of 84.6% in

recognition. They use 830 tactile images for training and 8 to 10 grasp actions to

achieve this accuracy, which equates to 16 to 20 tactile images in the testing set.

The object pose is strictly known and unchanging (small translation variance is

tolerated). It could be argued that this work uses proprioception (they know the

height of the gripper) and thus is not purely bag-of-words.

Pezzementi et al. [91] use simulations to compare various methods of feature

extraction, and create clusters of these features to compile feature histograms

to be compared (using Kullback-Leibler (KL) divergence [66] minimisation) for
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recognition. Out of all the feature extractions they tested, after 10 samples for

testing, the best performance on simulations was given by Moment-Normalize

(65%), whilst on real physical experiments was given by Polar Fourier (70%)

(different features). The real testing was done using DigitTacts sensors over a

set of 5 objects (the context was recognition of plastic letters) using a basic top-

down approach for sensor readings, giving a baseline chance accuracy of 20%.

The accuracy of the system improves significantly if more samples are provided

for testing, particularly in simulations. It would be interesting to see this system

tested on a real scenario with a larger and more varied set of objects, since its

simulated performance is promising. The learning phase required 384 tactile

images per object.

Luo et al. [80] use a Weiss tactile sensor mounted on a robotic arm to explore

and build models for 10 objects, using an adaptation of the SIFT descriptors for

the tactile images, removing scale hierarchy and location, as they are redundant

for tactile sensing. They discard pose information and thus build a pose invari-

ant model. In their initial model, they use a dictionary learning stage whose

dimensionality they optimise to 50. In their subsequent work [78], a novel semi-

supervised method is presented, whereby the dimensionality of the dictionary is

optimised automatically, further increasing recognition accuracy in a larger (12)

and more challenging (higher similarity between items) data set.

Regoli et al. (cite Controlled Tactile Exploration and Haptic Object Recogni-

tion, as yet unpublished) achieve an outstanding tactile-only object recognition

accuracy (99%) in a data set of 30 objects (some of which are quite similar),

by means of stabilising grasping, and performing tactile exploratory procedures.

This is particularly impressive given the simplicity of the approach: they use a

form of least squares classification on the vector resulting from the concatenation

of pressure response vectors.

2.3 Visual object recognition and classification

The field of visual object recognition/classification is large and a detailed analysis

goes beyond the scope of this thesis. This section covers main approaches. A

detailed review can be found elsewhere [114].
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2.3. Visual object recognition and classification

2.3.1 Object recognition: early approaches

The first problem (recognition) relates to the need to identify a known object,

perhaps viewed from a novel viewpoint or under different conditions (e.g. lighting,

occlusion). Early approaches were based on geometric properties, polyhedral sim-

plification (assuming objects are fully or partly made of polyhedra), generalised

cylinders (an attempt to account for non-flat surfaces), aspect graphs (sets of 2D

views linked by a graph representing their relative position), feature matching

(searching for key local features and their relative position after an affine trans-

formation), and appearance methods (considering the full image, and performing

dimensionality reduction). A detailed survey of early approaches can be found in

[84].

2.3.2 Object recognition: feature-based approaches

Since the turn of the century, approaches based on local features have gained

traction [77, 99, 43]. The idea is to focus on a small region of an image and to

encode it using a transformation that will remain largely constant if said part is

photographed under different conditions (e.g. scale, lighting, angle). Recognition

is then performed by attempting to match these features to known images, ei-

ther by alignment, considering the relative position of features (e.g. [99]), or by

description only, ignoring the features’ absolute and relative locations (e.g. [28]).

The latter are commonly referred to as ’bag of features’ approaches.

2.3.3 Object classification

Object classification, by contrast, is a much more difficult problem. It aims to

create a higher level of abstraction: a model for generic object categories. If a

new object instance of a known category is sensed, it should be assigned to that

category, even if the object itself had never been seen before. The dominating

approaches for classification are part-based models, bag-of-features, and deep

learning.

Part-based models

Originally proposed by [38], part-based models refers to the family of approaches

that aims to represent an object class by its structure, i.e. the relative location of

its parts. Parts are image patches considered similar based on their appearance.
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The problems of deciding what region of an image is a part, and identifying the

class of the image are generally solved simultaneously. If each part is considered

as the node in a graph, and edges represent the importance and relationship

between parts, assumptions can be made about the type of graph that can emerge.

Assuming all inter-node relationships are important results in a fully connected

graph in what is called constellation models [15]. If a central part is assumed

and only relative positions to this part are considered, the resulting graph is

a tree [34]. Typically, a custom designed energy function is minimised which

jointly penalises matched parts appearances and overall structure dissimilarity

between candidate classes and a test image. If no part interrelationships are

considered, and only their appearance is compared, the method collapses to bag-

of-words (See Section 2.2.3, also below). Part-based models have the advantage

of encoding structural information about the object class as well as localised

appearance information. This makes them robust to variations in appearance and

occlusions. It also makes them particularly suited for object detection (where in

the image is a given object, if at all), as matching structure results in part (and

therefore object) location. Key disadvantages include the difficulty of matching

graphs and the computational complexity of the joint energy minimisation.

An overview of part-based models is given by [35]

Bag-of features models

Bag-of-features approaches in general were discussed in Section 2.2.3. Specifically

for vision, the seminal work was done by Csurka el at. [28], comparing simple

classifiers on histograms of SIFT features. The pipeline is similar to the process

described in Section 2.2.3. First, a visual ‘vocabulary’ is formed by clustering

a large number of feature descriptors. The clusters then act as ‘visual words’

(following the equivalence with document classification), hence the name. Images

are processed by extracting features and using a proximity measure to assign the

closest ‘visual word’, and are thereafter represented by a histogram (or bag) of

such words. This quantised approach is not universal, however, as it is possible to

perform similarity comparison between vectors of different sizes [47]. The main

limitations of bag-of-feature approaches are the lack of relative spatial information

and the strong dependency on the choice of visual feature. In particular, feature

detectors may be unsuitable for a given class. This can be ameliorated by using

dense features (extracting features throughout the image, not just where the
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detectors identify a point of interest) [33]. However that brings complications

with respect to performance and storage, and the debate on whether dense or

sparse features are to be preferred is not settled.

An extended review of bag-of-feature approaches is given by [133], including

a comparison between a range of descriptors and classifiers.

Deep Learning

The most recent (and arguably the most successful [50]) approaches to object

classification have been based on neural networks of increasing depth and a large

number of parameters, they are collectively referred to as Deep Learning ap-

proaches [69]. Previously mentioned approaches attempt to define a specific vi-

sual feature, or aim to prescribe the potential variables to consider to extract and

compare structure, and perform classification on the resulting vectors or repre-

sentations. Deep learning relies on end-to-end classification, where images are

used directly as input, and object class is used as output. It is left to the neural

net to ‘discover’ suitable low-level encodings and useful higher level abstractions

to maximise performance. Perhaps the best known deep nets are convolutional

neural nets (CNNs, originally introduced by [40]), which force local patches of an

image to be treated equally by the neural net classifier, no matter their location,

thus enforcing position invariance, and reducing the number of parameters at the

same time.

An overview of deep learning methods is given by [103].

2.4 Visuo-tactile integration

Early attempts used vision to guide a series of exploratory behaviours and com-

bined vision and touch to create a modular geometry-based model of an object [2].

Once possible matchings are identified, the robot proceeds to verify a hypothesis

by sensing parts of the object which are yet unseen. Rafla, in their PhD thesis

[95] developed a method to integrate tactile and (virtual) visual range data to

recreate surface equations analytically and perform recognition on simple objects.

Their work focuses on surface normals and does not delve into more complex tac-

tile or 3D visual features. Haptic and vision sensors have been used to estimate

parameters of a kinematic model for hand-object interactions [4]. Other early

efforts have gone into integrating vision, touch, heat and vibration sensors us-
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ing a multi-layer ANN [115]. Their system is capable of classifying 14 objects;

it is at times perfect in accuracy, yet one must bear in mind that robot-object

interactions are pre-programmed, neural nets are trained independently for each

modality, and images are taken and classified in advance. Integration by use of

direct ANNs has also been shown to be effective at recognising 11 objects when

the tactile information is simply the reaction force of robot fingers during grasp-

ing [62], clearly demonstrating that accuracy improves when both modalities are

considered, over either modality alone. Integration of modalities has proven very

valuable in pose estimation for manipulation [93], using a hierarchical approach,

where vision and touch are graded for their reliability and preferred accordingly.

Proprioception has been combined with vision to perform pose estimation of

grasped objects, using simple vector concatenation and an extended Kalman fil-

ter [51]. Guler et al. [49] combine vision and touch to determine the content of

a number of containers, by grasping, squeezing, and observing the results. They

conclude that a multi-modal approach is superior to either sensor alone, as it

provides complementary information.

Another advanced system for sensor fusion aims to learn weak pairings be-

tween modalities [65]. Their two methods are based on Maximum Covariance

Analysis (MCA)[118] (a tool for dimensionality reduction of paired data). The

first, called Mean MCA (µMCA), performs strong direct pairing between the

mean value of various readings, and therefore it is robust to having many read-

ings from vision and very few from touch. The second, called weakly paired MCA

(WMCA)[65], allows for any pairing to be formed between modalities, restricted

to pairings within defined groups (so the matching matrix is in block diagonal

form), and optimises the choice of pairings. One particular advantage of this

approach is the fact that both modalities are only needed during training, so

if either is not present during classification, the system will still perform well.

In fact, they show that performance on single modality classification is better

if both modalities are used in training, so the system does not get “confused”

by the additional data, but instead can use it to create a more robust internal

representation of sensory information. The application domain used is material

recognition, which is performed in a strongly controlled environment. There is

potential for a similar approach to achieve tactile-visual feature matching.

Recent work employs an extended Kalman filter to build a refine 3D models

of the sensed objects fusing sensory information from an RGB-D camera and a

set of binary tactile sensors in a robotic hand which is grasping the object [54].
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In this case, the sensor fusion is performed via expectation maximisation on the

probability that each cloud point corresponds to a certain tactile point. One of

the benefits of this approach is that it is robust to perturbations in the object

location due to the grasping procedure, as object velocity is encoded as part of

the Kalman Filter. Their main focus is the accurate 3D reconstruction of the

objects instead of recognition. Still, the increased accuracy in the reconstruction

could then be used for point-cloud based object recognition using methods such

as local point-cloud cluster descriptors [42]. A major limitation of this approach,

however, is that it makes two strong assumptions: objects are symmetric and are

only perturbed on a plane perpendicular to the supporting plane.

2.5 Visuo-tactile object recognition

Recognition of objects using a combination of vision and touch was demonstrated

by Yang et al. [127], and Liu et al. [75].

In [127], vision and touch are combined by the concatenation of feature vec-

tors. A simple weighted nearest-neighbour classifier is used, where the weights

attributed to vision and touch are a parameter to be learnt and optimised. Their

solution is able to recognise any one of 18 household objects, some of which are

very similar (such as identically shaped bottles, which differ only by their vi-

sual plastic labels) with reported accuracies of over 90 per cent. In all of their

experiments, the sensor fusion model outperformed either modality alone.

In [75], a novel sparse coding algorithm is presented to attempt to detect

weak pairings between the tactile vector (directly extracted from the sensor) and

the visual vector (a covariance matrix of feature descriptors at various windows

within an object’s photo). This approach seems to outperform the earlier nearest-

neighbour counterpart [127]. The 18 objects could be subdivided into 5 classes,

and while explicit classification was not attempted, the confusion matrices reveal

that most of the uncertainty arose within-class, so the potential for classification

is established.

2.6 Tactile and visuo-tactile object classification

To this date, tactile-only and visuo-tactile object classification (recognising the

known class of an unknown object) has not been achieved. Multi-sensory object
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representations are gaining traction in the literature [61]. The first large visuo-

tactile database could soon be a reality [14]. A form of tactile classification

is classifying object by attributing binary adjectives (e.g. soft, coarse) using

touch [22], which was also attempted using deep learning, comprising of two deep

layers, one for vision and one for touch, finally connected by a fusion layer [41].

Deep learning nets of a similar topology were also used by Zheng et al. [134] to

classify textures, The work of Sanchez-Fibla et al. [102] hints at the potential

for classification using curvature prediction using vision and touch. Tactile-only

shape recognition of a small set of shape primitives (cone, cuboid, cylinder, ball,

prism) was performed by [48]. Since the given shape models are learnt during

training, this can be seen as a form of classification, with prescribed distinct

shapes.

Perhaps the most similar work to the one presented in this thesis can be found

in [129]. There, 118 fabrics are photographed and 3D scanned while draping

from a platform and are also touched with a GelSight sensor (placed on a flat

surface, laying flat and folded). The project mainly focuses on performing joint

learning from multiple modalities using Convolutional Neural Networks (CNNs),

in such a way that the learnt embeddings are similar for similar fabrics. What

is remarkable is that the neural nets trained on multiple modalities produce

embeddings that allow better matching even using vision alone. By contrast, in

this thesis, a related but different problem is tackled, investigating how to learn

object categories for a more varied set of objects (household objects), where

the tactile perception is likely to be significantly different for different readings.

Contact sensations for a fabric laying flat are likely to be similar for various

readings. For objects such as shoes or bottles, the tactile sensations will vary

greatly depending on the contact location. The aim is also to only loosely control

the data collection, to be performed by a robot in a random fashion, simulating

some of the conditions of a robot exploring an unknown object.
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Shape recognition with a novel

inexpensive tactile sensor

3.1 Motivation: deciding to create a new sensor

A thorough review of available tactile sensors was performed early (see Section

2.1.1), aiming to choose a suitable device for the purpose of this study. Most

commercially available sensors proved either too low resolution, too expensive,

or both. Two sensors were within the budget of the project: the TacTip [20]

and the Takktile [56]. Of the two, the TacTip was chosen as it has higher resolu-

tion, it was readily available (a loan of a prototype was secured from the Bristol

Robotics Laboratory) and the designers were intending to make the sensor avail-

able open-source. Preliminary tests were conducted with this prototype. By the

end of the lease, extensive attempts were made to recreate the TacTip (see Sec-

tion 2.1.1) here at Bath. A number of different rubber membranes were cast,

which initially lacked the internal papillae due to insufficient resolution of the 3D

printers used for the cast. The idea of using smooth membranes was a result of

this complication.

3.2 Summary: sensor design

The sensor is inspired in the working principle of the TacTip (see Section 2.1.1).

Simplifications in the TacTip design were identified so that the new sensor would

have no papillae nor internal gel. Instead, it has a plain black matt smooth

opaque silicone rubber hemispherical membrane, mounted at the end of a rigid
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opaque encasing for the digital camera. The body of the sensor was designed to

fit the chosen USB camera and commercially available rubber membrane. The

length was chosen to allow for the field of view of the camera to capture the entire

membrane. The camera incorporates a set of white LEDs which illuminate the

rubber membrane from within. When the sensor is in contact with an object,

the shading pattern on the membrane changes accordingly and is captured by

the camera. Figure 1 in the paper shows the sensor design and a diagram of its

functioning principle.

The membrane is 1mm thick, its internal diameter is 40mm, and its exter-

nal diameter is 42mm. Its main purpose is to render sensing invariant to light

conditions and colour.

The encasing has a cylindrical top designed to fit the membrane about it.

Its base is squared, designed to securely fit an off-the-shelf e-secure digital USB

camera1, and has a groove to allow space for the camera cable. Its length is the

minimum needed to allow the camera to capture the full membrane in its field

of view. The encasing was made using 1.75mm Acrylonitrile butadiene styrene

(ABS) plastic with a UP3D Plus 3D printer. The camera itself has a resolution

of 640 by 480 pixels, at 30 frames per second. The 3D file used to print the

encasing (STL file), as well as the Freecad2 model and links to the other parts

are available online3.

Isometric views of the sensor and detailed schematics can be found in Figure

(3-1).

3.3 Results: sensor evaluation

In order to test whether the simplified sensor was suitable for the overarching

aim of this project, the first experiment designed involved basic shape recog-

nition. The first step was to find a robust combination of a low-dimensional

representation of tactile images and choice of classifier. Various systems were

tested in their ability to accurately distinguish between a small number of tactile

shapes: nothing, corner, edge, point, curved, spherical, flat, flat-to-edge. The

same experiments were run using the TacTip to provide a comparison. The new

sensor outperforms the TacTip at shape recognition. This may be due to the fact

1https://goo.gl/KseVHG
2https://www.freecadweb.org/
33D model of the tactile sensor encasing available at: https://github.com/Exhor/bathtip
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3.3. Results: sensor evaluation

Figure 3-1: Schematics of the BathTip’s dimensions (top) and isometric view of the
sensor assembly (bottom). See Section 3.2 for details.
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that the raw image is used as an input to the various linear encodings. The high

contrast between the papillae (white) and the background (black) in the TacTip

mean that small perturbations to the surface may result in large perturbations to

the raw image vector. It would perhaps make for a better encoding to use track-

ing on the papillae and to use their location and displacement as input (such as

in [72]), instead of the raw image. Therefore, this result should be considered as

a way of validating the BathTip, not as a way of stating a superior capability.

3.4 Errata

The paper citation number referring to the work of Barron-Gonzalez and Prescott

(in-paper reference [2]), incorrectly states that their work was published in ICRA

2013. Their work was in fact published in TAROS 2013, the correct reference is

found in the bibliography of this thesis [6].

3.5 Paper: Tactile Features: Recognising touch

sensations with a novel and inexpensive sen-

sor

The sensor design, data encoding, and shape recognition experiment and results

were published [24] as a paper at TAROS (Towards Autonomous Robotics Sys-

tems Conference), achieving the ‘Best Student Paper Prize’. The Statement of

Authorship Form and the paper can be found next.

31





Tactile features: recognising touch sensations
with a novel and inexpensive tactile sensor

Tadeo Corradi, Peter Hall, and Pejman Iravani

University of Bath, Bath, UK
t.m.corradi@bath.ac.uk

Abstract. A simple and cost effective new tactile sensor is presented,
based on a camera capturing images of the shading of a deformable rub-
ber membrane. In Computer Vision, the issue of information encoding
and classification is well studied. In this paper we explore different ways
of encoding tactile images, including: Hu moments, Zernike Moments,
Principal Component Analysis (PCA), Zernike PCA, and vectorized scal-
ing. These encodings are tested by performing tactile shape recognition
using a number of supervised approaches (Nearest Neighbor, Artificial
Neural Networks, Support Vector Machines, Naive Bayes). In conclusion:
the most effective way of representing tactile information is achieved by
combining Zernike Moments and PCA, and the most accurate classifier is
Nearest Neighbor, with which the system achieves a high degree (96.4%)
of accuracy at recognising seven basic shapes.

Keywords: Haptic recognition, tactile features, tactile sensors, super-
vised learning

1 Introduction

The aim of this paper is to find an accurate low-dimensional representation of
a tactile image perceived by a novel tactile sensor developed by us, these repre-
sentations are from now on referred to as ‘encodings’. Tactile sensors and tactile
information encoding have been focus of much research lately [5]. Whilst numer-
ous standards exist in Computer Vision, there is no consensus on the best ap-
proach to encoding tactile sensing information [5], and the only tactile database
known to us [24] is limited to a single sensor type. Unlike visual information,
haptic information can be distributed over a potentially unknown geometry [5]
(for example a single robotic hand can be fitted with many different combina-
tions of tactile sensors), so the equivalent problem to ‘camera calibration’ is a
significantly more difficult task. Whilst the majority of efforts have gone to low
resolution sensor pads [2], [16], [19], [20], [26], a new biologically inspired sensor
design, called the TacTip [3] aims to provide higher resolution whilst remaining
inexpensive. This paper presents a similar, simplified, low cost tactile sensor and
evaluate its accuracy recognising 7 basic tactile shapes (Corner, Cylinder, Edge,
Flat-to-Edge, Flat, Nothing, Point), comparing a selection of encodings and a
range of supervised classifiers.
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2 Related Work

Tactile sensors can be designed using a variety of techniques, perhaps the most
popular being resistive sensors [28]; but also including magnetic, piezo-electric,
capacitive and others [5]. A large amount of effort has been put into texture
recognition [7], [11], [14], [25], since texture is usually difficult to capture from
vision alone. The most direct approach to tactile feature classification is to use
the tactile images with no encoding and use a simple distance metric [23]. Re-
cently, there have been several projects involving recognition by grasping using
Pattern Recognition techniques to find the best dimensionality reduction func-
tion for tactile information. Early approaches focused on tailored designs [1] or
classical Artificial Neural Networks (ANNs) [27]. More recently, PCA, moment
analysis and binary (contact/no contact) have been compared in a system that
integrates tactile and kinesthetic information for object recognition [8], finding
that the use of central moments outperforms other encodings. A variation on
Self-Organizing Maps (SOMs) [13] has been developed and applied to fusing
propioceptive and tactile input for object recognition [12]. PCA and SOMs have
been used to extract tactile features which were then used for object recogni-
tion [16]. Novel recursive gaussian kernels have been used to encode the various
stages of contact during grasping leading to a robust online classifier [26].

2.1 The TacTip

Most previous studies are based on pressure sensor arrays. An innovative biologi-
cally inspired sensor was proposed recently [3] which uses a flexible hemispherical
membrane with internal papillae which move as the membrane deforms when-
ever it touches an object. A digital camera records and transmits the image of
the displaced papillae (see right side of Fig. 1). This sensor, called the TacTip,
was shown to achieve a high degree of accuracy in sensing edges [4] to a point
where a small object is clearly identifiable by a human from its tactile image
and has been theoretically shown to have potential in tele-surgery [21]. More
recently it has also been successfully used to identify textures [29]. The new
sensor presented by this paper is an adaptation of the TacTip. No papillae nor
internal gel is needed (significantly simplifying the sensors manufacture process
and cost) and the shading pattern of light is used as input, instead of the papillae
locations. This paper shows that the new sensor is effective at recognising tactile
shapes.

3 Sensor Specification

3.1 Design

The new sensor consists of an opaque silicone rubber hemispherical membrane of
radius 40mm and thickness 1mm, mounted at the end of a rigid opaque cylindri-
cal ABS tube. At the base of the tube, there is a PC web-cam equipped with 8
white LEDs. The LEDs illuminate the rubber, the shading pattern of the image
changes as the rubber makes contact with various surfaces (see Fig. 1).
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Fig. 1. The new tactile sensor design (left). The main body is 3D printed in ABS.
The tip is a 1mm thick silicone rubber hemisphere. At the base (not visible) there is a
USB eSecure c©web-cam with 8 LEDs illuminating the inside of the silicone hemisphere
(bottom right). As the tip makes contact with an object, it deforms resulting in a
specific shading pattern (middle). As a comparison, the same tactile shape as perceived
by a TacTip is shown (top right).

4 Methods

4.1 Preprocessing: Discrete Derivative

The shading pattern is related to the angle between the membrane’s normal and
the light rays going to the camera. Therefore drastic changes in luminosity are to
be expected whenever the discrete spatial derivative of the normal of the surface
is highest, that is where the rubber is most sharply bent (see Fig. 2). This
concept motivates the analysis of the images’ discrete derivative’s magnitude
matrix D(I), defined, for any square image matrix I ∈ Rw×w, as:

D(I)i,j := +
√

(Ii−1,j − Ii+1,j)2 + (Ii,j−1 + Ii,j+1)2, ∀i, j ∈ [1, w − 1] (1)

In the experiments described below, encodings will be applied to the raw image
received by the camera, and to the magnitude of its discrete derivative, D(I).

4.2 Rotationally Invariant Encodings

Due to the circular geometry of the sensor image, a rotation invariant encoding
was required. Five alternatives were explored: Hu moments [10], Zernike Mo-
ments [30], Principal Component Analysis (with regularized rotation), Zernike-
PCA (PCA applied to the Zernike moments), and image scaling.
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Fig. 2. Examples of occurrences of 6 of the 7 basic tactile shapes (the 7th is “nothing”,
in Fig. 1) (left columns), and their corresponding shading pattern (middle columns)
and the magnitude of its first spatial derivative D(I) (right columns). From the top
left, downwards: Corner, Cylinder, Edge, Flat-to-Edge, Flat, Point.

Hu Moments Hu moments are special combination of central moments which
aim to be invariant to rotation, translation and scale (for details see [10]). The
implementation used here was the one by [15], who have demonstrated the use of
Hu moments in effective feature extraction on edge images for object recognition.

Zernike Moments A Zernike Moment is the element-wise product of an image
with a Zernike polynomial evaluated at the locations of the pixels of the image,
rescaled to circumscribe a unit disk.

Definition 1. Let m ≥ n be non-negative integers, and let 0 ≤ φ ≤ 2π, 0 ≤ ρ ≤
1 define a polar coordinate system. Then the even and odd Zernike polynomials
are defined as:

Zm
n (ρ, ϕ) = Rm

n (ρ) cos(mϕ) (2)

Z−mn (ρ, ϕ) = Rm
n (ρ) sin(mϕ), (3)

Which can be indexed by:

Zj = Z
m(j)
n(j) (4)

Where m(j), n(j) are Noll’s indices (See Table 1) of Zernike polynomials [17],
and

Rm
n (ρ) =

(n−m)/2∑

k=0

(−1)k (n− k)!

k! ((n+m)/2− k)! ((n−m)/2− k)!
ρn−2 k (5)
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Table 1. First ten Noll indeces [17] to compose a linear sequence of Zernike polyno-
mials.

j 1 2 3 4 5 6 7 8 9 10

n(j) 0 1 1 2 2 2 3 3 3 3

m(j) 0 1 -1 0 -2 2 -1 1 -3 3

Now, the dth Zernike Moment of an image M is given by:

Zerd(M) =

∣∣∣∣∣∣
∑

i,j∈{i2+j2≤n2/2}
M(i, j)Z ′d(i, j)

∣∣∣∣∣∣
(6)

Where,

Z ′d(i, j) := Zj

(√
(i2 + j2)
√
2
2 n

, arctan

(
j − n/2
i− n/2

))
(7)

PCA and Zernike-PCA In the third encoding, the orientation of each im-
age was computed (from central moments) and the image was rotated so as to
regularize its orientation. Then PCA was performed on the vectorised images.
The fourth encoding, Zernike-PCA, was simply applying PCA to the Zernike
Moments of all images. In both of these, the dimensionality reduction matrix
was computed on training data and used for both the training dataset and the
testing dataset.

Scaling (Vectorized) For the fifth encoding, image orientations are regularised
first, then images are resized by averaging pixel intensities, into a much smaller
resolution (up to 13 by 13 pixels, from an original resolution of 300 by 300). The
resulting images are vectorized, so for example, a 13-by-13 image, is converted
into a 1-by-132 vector, by concatenating the pixel columns.

4.3 Encoding Evaluation

Each of these encodings was applied to a training dataset of 175 images, labelled
from 1 to 7, corresponding to the tactile shapes they represented (see Fig. 2).
Each encoding will produce a different set of data clusters. Good encodings
will result in clusters which are spatially conglomerate: vectors corresponding to
images of equal label will be close together and those with different labels will
be far apart. One way of measuring this property is the Davies-Bouldin index
in L2 [6], defined below. Lower values of this index represent more distinctive
clusters.
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Definition 2. Let d(a, b) represent the euclidean distance metric. Let X be a

set of vectors of dimension d, partitioned into k disjoint clusters, X =
⋃k

i=1Xi.
Let ci be the centroid of cluster Xi. The Davies−Bouldin index is given by:

Gives lkinear indexing for zernike polynomials [17]

D =
1

k

k∑

i=1

max
j:i 6=j

(
σi + σj
d(ci − cj)

)
(8)

Where,

σi :=

√
1

|Xi|
∑

x∈Xi

d(x− ci)2 (9)

Classifiers Cross Validation As a second way of judging the suitability of
a particular encoding is to train a supervised classifier given the known labels
and to test their accuracy at predicting the labels of the encoded data. The
measure used here is the 5-fold cross validation accuracy, defined as the average
percentage of correct classifications performed by a given classifier trained with
4
5 of the labelled data and tested on the remaining 1

5 of the data. The process is
repeated 5 times so that all data is used for testing. This method was applied
to the following classifiers:

– Nearest Neighbor classifier
– Artificial Neural Network with a single 7 neuron hidden layer, trained using

backpropagation.
– A group of seven binary Support Vector Machines (one per label) used in

conjunction, arbitrarily choosing the largest label id, if more than one re-
turned a positive classification.

– A simple Naive Bayes classifer, using Kernel Density Estimation (KDE) [18],
[22].

For the implementation of these four algorithms, and for the simulations de-
scribed in this paper, MATLAB1 was used.

5 Results

Seven basic tactile shapes were defined: Corner, Cylinder, Edge, Flat-to-Edge,
Flat, Nothing, and Point. Using the new sensor images were manually captured,
resulting in 70 sample frames of each one (see Fig. 2). Data was split: 175 im-
ages were used for training (selecting the optimum encoding vector size), and
the remaining 175 images for validation. Each one of the encodings defined in
Section 4.2 was applied to each training image and the magnitude of its discrete
derivatives (as described in Section 4.1). Then two tests were performed: cluster
evaluation and classifier evaluation.

1 MATLAB c©, Statistics Toolbox and Neural Network Toolbox Release 2013b, The
MathWorks, Inc., Natick, Massachusetts, United States.
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5.1 Cluster evaluation

First, the Davies-Bouldin index was computed on the training data data (175
images) to find the optimum number of components to use in each encoding
(number of principal components, number of zernike polynomials, etc.). This
parameter (number of components) is then fixed and the Davies-Bouldin index
is computed on the remaining 175 images (the validation dataset). Table 2 shows
the result. Zernike moments combined with PCA seem to produce the most
distinct clusters under this criteria. Cluster formation using the new sensor seems
superior with respect to the TacTip using this measure. This is possibly due to
the fact that papillae displacements mean that small perturbations in the object
surface translate into significant non-linear changes in the image.

Table 2. Davies−Bouldin index (described in Section 4.3) computed for the clusters
resulting from the different encodings. They represent the distinctiveness of a cluster,
smaller numbers represent better defined clusters.

Applied Applied Applied Applied
to Image to Image to D(Image) to D(Image)

Encoding (Our sensor) (TacTip sensor) (Our sensor) (TacTip sensor)

Hu Moments 5.3 10.4 5.1 13.2

Zernike M. 2.0 2.5 1.9 3.8

PCA 2.6 5.9 1.8 5.4

ZernikePCA 1.5 2.6 1.4 2.9

Scale (Vect.) 37.1 37.9 10.4 1378.8

5.2 Classifier evaluation

Each one of the classifiers described in Section 4.3 is now trained. Using 20 iter-
ations of randomized 5-fold cross validation on the training dataset the optimal
vector sizes for each encoding and classifier are obtained. Then, the process is
repeated on the validation dataset, but only using these optimum vector sizes.
Figure 3 shows the accuracy of each encoding/classifier pair.

Zernike PCA applied directly to the image outperforms other encodings in
general. In terms of classifiers, Nearest Neighbor is the overall best for both
sensors, reaching an accuracy on the validation dataset of 96.4%. It must be
born in mind that Nearest Neighbor classifiers using cross validation are prone
to data twinning (bias if similar data are present in a dataset). To reduce the
effects, a small value for k (5) was used in k-fold cross validation, together with
randomisation and multiple trials; furthermore, separate dataset were used for
training and validation. Nevertheless, if data twinning is likely to be an issue in
further applications, it may be advisable to use Naive Bayes (KDE).
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Fig. 3. Randomized 5-fold cross validation accuracy for the 7 basic tactile shapes
(higher is better, 1 is 100% perfect recognition). Input set of 175 labelled tactile images,
corresponding to 7 clusters. Comparison between our sensor and the TacTip, using four
different encodings as classified by four different supervised algorithms.
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There is no significant difference between the performance of any encod-
ing/classifier pairing when comparing their use on the image and on its deriva-
tive. This may be due to the fact that the discrete derivative only loses base
intensity information, which is a single degree of freedom over images which are
90000-dimensional. The accuracy achieved with our sensor is slightly higher to
the one with the TacTip, for these particular choices of encodings and classifiers.
Once again, the non-linearity introduced by papillae is potentially a factor, and
so the comparison is by no means exhaustive in scope.

6 Conclusions

This paper presented a novel, simple and inexpensive tactile sensor based on
shading resulting from the deformation of a rubber membrane. Various encod-
ings were tested on the input images and on their discrete derivatives. For each
encoding, the accuracy of a selection of classifiers was tested, by performing
tactile shape recognition. The new sensor is capable of distinguishing between
these shapes, the most accurate encoding is Zernike Moments combined with
PCA, applied directly to the input image. The most accurate classifier is Nearest
Neighbor, which reaches a classification accuracy of 96.4%. Our sensor performed
slightly better than the TacTip in these tests, which is remarkable considering
the simplicity of our sensor’s design. However it must be stressed that other ap-
proaches may very well favor the TacTip. The discrete localization of the papillae
may be a disadvantage in linear encodings, but it can be an advantage in general,
as it is more resilient to image noise and less dependent on calibration of camera
parameters. Only pattern recognition was discussed in this paper, it may be of
interest to use “shape from shading” [9] to reconstruct the exact shape of the
deformed hemisphere. Further work should also focus on this sensor’s potential
for object recognition.

Acknowledgments. This work was supported by the Engineering and Phys-
ical Sciences Research Council (EPSRC), UK. We would like to thank Bristol
Robotics Lab2 for lending us the TacTip sensor.

References

1. Allen, P.K.: Integrating vision and touch for object recognition tasks. The Inter-
national Journal of Robotics Research 7(6), 15–33 (Jan 1988)

2. Barron-Gonzalez, H., Prescott, T.: Discrimination of social tactile gestures using
biomimetic skin. In: IEEE International Conference on Robotics and Automation.
Karlsruhe, Germany (2013)

3. Chorley, C., Melhuish, C., Pipe, T., Rossiter, J.: Development of a tactile sen-
sor based on biologically inspired edge encoding. In: International Conference on
Advanced Robotics, 2009. ICAR 2009. pp. 1–6 (2009)

2 www.brl.ac.uk

41



4. Chorley, C., Melhuish, C., Pipe, T., Rossiter, J.: Tactile edge detection. In: 2010
IEEE Sensors. pp. 2593–2598 (2010)

5. Dahiya, R., Mittendorfer, P., Valle, M., Cheng, G., Lumelsky, V.: Directions toward
effective utilization of tactile skin: A review. IEEE Sensors Journal 13(11), 4121–
4138 (2013)

6. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Transactions on
Pattern Analysis and Machine Intelligence PAMI-1(2), 224–227 (Apr 1979)

7. Decherchi, S., Gastaldo, P., Dahiya, R., Valle, M., Zunino, R.: Tactile-data classi-
fication of contact materials using computational intelligence. IEEE Transactions
on Robotics 27(3), 635–639 (2011)

8. Gorges, N., Navarro, S., Goger, D., Worn, H.: Haptic object recognition using
passive joints and haptic key features. In: 2010 IEEE International Conference on
Robotics and Automation (ICRA). pp. 2349–2355 (2010)

9. Horn, B.K.P., Brooks, M.J. (eds.): Shape from Shading. MIT Press, Cambridge,
MA, USA (1989)

10. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Transactions on
Information Theory 8(2), 179–187 (Feb 1962)

11. Jamali, N., Sammut, C.: Majority voting: Material classification by tactile sensing
using surface texture. IEEE Transactions on Robotics 27(3), 508–521 (2011)

12. Johnsson, M., Balkenius, C.: Sense of touch in robots with self-organizing maps.
IEEE Transactions on Robotics 27(3), 498–507 (2011)

13. Kohonen, T.: Self-organized formation of topologically correct feature maps. Bio-
logical Cybernetics 43(1), 59–69 (Jan 1982)

14. Liu, H., Song, X., Bimbo, J., Seneviratne, L., Althoefer, K.: Surface material
recognition through haptic exploration using an intelligent contact sensing finger.
In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). pp. 52–57 (2012)

15. Mercimek, M., Gulez, K., Mumcu, T.V.: Real object recognition using moment
invariants. Sadhana 30(6), 765–775 (Dec 2005)

16. Navarro, S., Gorges, N., Worn, H., Schill, J., Asfour, T., Dillmann, R.: Haptic ob-
ject recognition for multi-fingered robot hands. In: 2012 IEEE Haptics Symposium
(HAPTICS). pp. 497–502 (2012)

17. Noll, R.J.: Zernike polynomials and atmospheric turbulence. Journal of the Optical
Society of America 66(3), 207–211 (Mar 1976)

18. Parzen, E.: On estimation of a probability density function and mode. Annals of
Mathematical Statistics 33, 1065–1076 (1962)

19. Pezzementi, Z., Plaku, E., Reyda, C., Hager, G.: Tactile-object recognition from
appearance information. IEEE Transactions on Robotics 27(3), 473–487 (2011)

20. Ratnasingam, S., McGinnity, T.: A comparison of encoding schemes for haptic
object recognition using a biologically plausible spiking neural network. In: 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
pp. 3446–3453 (2011)

21. Roke, C., Melhuish, C., Pipe, T., Drury, D., Chorley, C.: Deformation-based tac-
tile feedback using a biologically-inspired sensor and a modified display. In: Gro,
R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds.) To-
wards Autonomous Robotic Systems, pp. 114–124. No. 6856 in Lecture Notes in
Computer Science, Springer Berlin Heidelberg (Jan 2011)

22. Rosenblatt, M.: Remarks on some nonparametric estimates of a density function.
The Annals of Mathematical Statistics 27(3), 832–837 (Sep 1956)

42



23. Schneider, A., Sturm, J., Stachniss, C., Reisert, M., Burkhardt, H., Burgard, W.:
Object identification with tactile sensors using bag-of-features. In: IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, 2009. IROS 2009. pp.
243–248 (2009)

24. Schopfer, M., Ritter, H., Heidemann, G.: Acquisition and application of a tactile
database. In: 2007 IEEE International Conference on Robotics and Automation.
pp. 1517–1522 (2007)

25. Sinapov, J., Sukhoy, V., Sahai, R., Stoytchev, A.: Vibrotactile recognition and
categorization of surfaces by a humanoid robot. IEEE Transactions on Robotics
27(3), 488–497 (2011)

26. Soh, H., Su, Y., Demiris, Y.: Online spatio-temporal gaussian process experts with
application to tactile classification. In: 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). pp. 4489–4496 (2012)

27. Taddeucci, D., Laschi, C., Lazzarini, R., Magni, R., Dario, P., Starita, A.: An
approach to integrated tactile perception. In: 1997 IEEE International Conference
on Robotics and Automation. vol. 4, pp. 3100–3105 vol.4 (1997)

28. Weiss, K., Worn, H.: The working principle of resistive tactile sensor cells. In:
Mechatronics and Automation, 2005 IEEE International Conference. vol. 1, pp.
471–476 Vol. 1 (2005)

29. Winstone, B., Griffiths, G., Pipe, T., Melhuish, C., Rossiter, J.: TACTIP - tac-
tile fingertip device, texture analysis through optical tracking of skin features. In:
Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.)
Biomimetic and Biohybrid Systems, pp. 323–334. No. 8064 in Lecture Notes in
Computer Science, Springer Berlin Heidelberg (Jan 2013)

30. Zernike, V.: Beugungstheorie des schneidenver-fahrens und seiner verbesserten
form, der phasenkontrastmethode. Physica 1(7-12), 689–704 (May 1934)

43



Chapter 4

Tactile object recognition

4.1 Motivation: from tactile shapes to tactile

object recognition

Chapter 3 corroborated that the simplified sensor was apt for shape recognition

and identified a way to encode data using Zernike moments and PCA. The next

step was to create an algorithm on top of this features, for object recognition.

A single robotic hand can be fitted with many different combinations of tactile

sensors and each such configuration would be unique. It is therefore not surprising

that tactile databases are a relatively new phenomenon [106, 7, 8, 31]. These

databases are all limited to pressure sensor arrays, and all except the first are

based on some form of grasping. Therefore a new data set would be needed.

Following the nature and number of objects used in similar work (e.g. [91, 105]),

the type of objects chosen was household objects (such as bottles, books, etc.)

and the sample size was set to 10. This would give an early indication of whether

object recognition (and perhaps classification) would be feasible.

4.2 Summary: data collection and tactile object

representation

The aim of this stage of the project was to design object representations which

are able to recognise simple household objects. A procedure for tactile explo-

ration of 10 such objects was designed, using the BathTip sensor, mounted on a

robotic arm. The arm would sequentially move inwards towards the object from
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Chapter 4. Tactile object recognition

a randomised approach angle until contact was detected, recording the resulting

tactile image. Detection of contact was performed using an icub FTSENS 6-axis

force-torque sensor1, mounted between the robotic arm end-effector and the tac-

tile sensor. When a compressing (z-axis) force of at least 0.74N was read, the

arm would stop and a tactile image would be recorded. The value of 0.74N was

chosen after manual experiments to discern a suitably large force so the sensor’s

rubber membrane would be deformed sufficiently but not so large as to endanger

the sensor’s integrity. Only small parts of an object can be sensed at a time.

Therefore, several such tactile images must be considered simultaneously. The

relative location and orientation of the contact position are not straightforward

to compute, and prone to large relative errors, considering the object’s pose may

be perturbed by the tactile interaction.

As a consequence of these considerations and the nature of the data, a bag-

of-words model was adopted (similar to [105]), discarding information about the

position and orientation of the sensor. Building on the results of the first publi-

cation (Chapter 3), Zernike-PCA encoding was used for tactile information. In

order to be able to represent objects from tactile perceptions, a novel likelihood

function was devised, which models the probability of each Zernike-PCA vector,

given an object’s label. Thereafter, object recognition was performed by max-

imising the marginal likelihood of test data. The likelihood function designed is a

normalised sum of Gaussian probability densities, with means equal to the train-

ing samples vectors, and covariance equal to the training set’s covariance matrix.

This is similar to a Gaussian Mixture Model (GMM) [82] with the number of

components equal to the number of training vectors, and component coefficients

all equal to one. It is also similar to Multi-Variate Kernel Density Estimation

(MVKDE) [13] with a normal kernel, and bandwidth set to the covariance of

the data. Both GMM and MVKDE were tested on validation data sets and

classification results were significantly poorer than the model here proposed.

The inference process is described as Bayesian, since, when a test object is

classified, there are multiple tactile readings, and to obtain a probability distri-

bution over object labels, the following equation is used.

P (C|Y ) = α

m∏

j=1

P (Yj|C)P (C) (4.1)

1http://www.icub.org/
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4.3. Results: state-of-the-art non-grasping tactile recognition

Where m is the number of tactile touches considered jointly, Yj is the jth

tactile vector (the Zernike-PCA vector resulting from a tactile image), C is an

object class, and α is a normalising constant. This can also be framed in terms

of Bayesian updates, where there is an initial prior probability for a class, P0(C),

and m updates steps are performed, one for each tactile vector read. Each step

uses Bayes’ rule to update the believed probability, given the tactile input.

Pj(C) := P (C|Yj) =
P (Yj|C)Pj−1(C)

P (Yj)
, j = 1, ...,m (4.2)

After m updates, the final posterior probability for class C, Pm(C) is given

by:

Pm(C) = P0(C)
m∏

j=1

P (Yj|C)

P (Yj)
(4.3)

Which is equivalent to Equation (4.1), since the denominator is constant, i.e.

α =
∏m

j=1 P (Yj)
−1.

4.3 Results: state-of-the-art non-grasping tac-

tile recognition

Tactile recognition within the 10 object data set ranged from 0.5 to 0.95 depend-

ing on the number of touches considered at test time. At the time, this was the

highest accuracy reported in comparable (tactile only non-grasping) experiments.

There were indications that the approach could be used for classification of un-

seen objects: 4 new objects were correctly classified, but further work was needed

at this stage to corroborate that hypothesis.

One remarkable result was the presence of high uncertainty when the system

aimed to classify previously this unseen object. Furthermore, in the other four

cases, the correct object label obtained a high value posterior probability with few

touches. This points to a potential further approach using Sequential Analysis

[122], where the test may be stopped early, if sufficient evidence is considered

to be already gathered to make a decision as to the identity of the object being

recognised.
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Chapter 4. Tactile object recognition

4.4 Paper: Bayesian tactile object recognition:

learning and recognising objects using a new

inexpensive tactile sensor

The details of the data collection, model definition, experiment and results were

published at the International Conference on Robotics and Automation (ICRA)

[25]). The Statement of Authorship Form and the paper can be found next.
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Bayesian Tactile Object Recognition: learning and recognising objects
using a new inexpensive tactile sensor*

Tadeo Corradi1, Peter Hall2 and Pejman Iravani1

Abstract— We present a Bayesian approach to tactile object
recognition that improves on state-of-the-art in using single-
touch events in two ways. First by improving recognition
accuracy from about 90% to about 95%, using about half
the number of touches. Second by reducing the number of
touches needed for training from about 200 to about 60. In
addition, we use a new tactile sensor that is less than one tenth
of the cost of widely available sensors. The paper describes
the sensor, the likelihood function used with the Naive Bayes
classifier, and experiments on a set of ten real objects. We also
provide preliminary results to test our approach for its ability
to generalise to previously unencountered objects.

I. INTRODUCTION

A Bayesian system for object learning and recognition
using purely tactile, orientation independent information is
presented. A novel, inexpensive sensor is used, mounted on a
robotic arm which learns in an automatic manner to recognise
objects outperforming state-of-the-art. We also provide some
evidence that the system can recognise previously unseen
objects.

The system learns and recognises objects from single-
touch events using a newly developed sensor [1]. Tactile
sensations are encoded using Zernike Moments and objects
are modeled by a sum of Gaussian distributions. The ap-
proach presented does not use the orientation information
of the objects and requires only a very limited number of
training samples, making a substantial improvement over
previous work. A fully automated robot system (depicted in
Fig. 1) was constructed to learn the tactile appearance of 10
household objects and to recognise these with an accuracy
of 87% after 15 touches and 95% after 30 touches.

II. RELATED WORK

A. Tactile sensors

Tactile sensors can be designed using a variety of tech-
niques, the most common being piezo-resisitive sensors,
conductive polymers, or capacitive sensors [2]. The most
widely used in robotics include the impedance based BioTac
[3], the Weiss tactile array [4], and the capacitive array based
DigiTact [5], all of which have a price tag exceeding USD
700. Recently, efforts have been made at creating cheaper and
more accessible sensors. The TakkTile TakkArray [6] is an
open source and open hardware sensor based on an array of

*This work was funded by the Engineering and Physical Sciences Council
(EPSRC), UK

1Department of Mechanical Engineering, University of Bath, Claverton
Down, Bath, BA27AY, UK t.m.corradi@bath.ac.uk

2Department of Computer Science, University of Bath, Claverton Down,
Bath, BA27AY, UK

Fig. 1. The new tactile sensor mounted on a KUKA KR5-sixx-
R650 robotic arm, currently exploring the tactile appearance of a
mug.

MEMS barometers, it has a retail price of USD 500, and their
material cost is approximately USD 200. The TacTip [7] aims
to provide higher resolution whilst remaining inexpensive
as they can be non-professionally manufactured (material
cost is approximately USD 200). It is a biologically inspired
tactile sensor based on the deformation of a silicone rubber
hemispherical surface and the consequential displacement of
a number of internal papillae. A digital camera is used to
observe this displacement.

B. Recognition by grasping

Recently, there have been several projects involving recog-
nition by grasping using machine learning techniques. Prin-
cipal Component Analysis (PCA), Self Organizing Maps and
Artificial Neural Networks have been combined to process
the output of Weiss tactile sensory arrays attached to a num-
ber of robotic end-effectors, to recognize household objects
[8]. Novel recursive Gaussian kernels have been designed to
encode the various stages of contact during grasping leading
to a robust on-line system capable of learning new models
and classifying objects in real time [9]. The most accurate
system, to the best of our knowledge, is the one developed
by [10]. They extends HMP (Hierarchical Matching Pursuit,
a multi-layer hierarchical feature learning system) to include
temporal information. They test their method on 6 tactile
databases and produce an accuracy of between 80% and
100%. Whilst it is evident that combining proprioceptive
with tactile information is likely to yield better results than
either modality alone [11], [12], using grasp limits the size
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of the object to be identified, requires a robotic hand, and
requires a grasp to be achieved.

C. Single contact tactile recognition

Recognition using a single touch at a time is a possible
solution which remains relatively unexplored. As far as we
know, the best results so far are achieved by [13], requiring
60 touches to converge to 90% recognition accuracy, using
200 touches for training, over a set of 5 objects.

The most common approaches for single contact tactile
object recognition are voxel based or point clouds [14], [15],
[16]. Recently, a very efficient and accurate combination
of both was developed [17], which is able to model the
object shape and the uncertainty about occupied space. They
achieve above 80% accuracy in recognition over a set of
45 objects, and from only 10 touches; however, object 3D
models are required in advance. Voxel representations and
point-clouds provide a natural way of representing tactile
information about objects, but they can be cumbersome in
terms of computational power for recognition, as they usually
comprise a large number of points/voxels whose matching to
a database can be complex, and are prone to noise which
is difficult to model. Attempts to address these problems
include merging points that are close into a probability point
modelled by a Kalman filter [18], and clustering to subdivide
the point cloud into regions which are then encoded as
features [19].

D. Appearance based tactile-only recognition

One of the first attempts at a tactile-only recognition is
[20], which uses geometric features such as lines and points
and their evolution over time. Their accuracy recognising
objects is high (83%), however the number of shapes is
only 6 and they are very basic predefined geometric solids
(cylinder, cone, etc.). The two notable recent pieces of
research which most closely relate to our study are the work
of Schneider et al. [21], and the work of Pezzementi et al.
[13].

The first [21], involves the repeated application of a
two fingered grasps using a gripper equipped with Weiss
tactile array sensors. Features are extracted, then a bag-of-
features approach is used to recognise household and in-
dustrial objects. They use an information theoretic approach
for maximum expected information gain to inform grasping
position. They obtain an accuracy of 84.6% in recognition,
using 830 tactile images for training and 16 to 20 tactile
images in the testing set. The object pose is strictly known
and fixed (small translation variance is tolerated). It could
be argued that this work uses proprioception (they know
the height of the gripper) and thus is not purely appearance
based.

Pezzementi et al. [13] use simulations to compare var-
ious methods of feature extraction, and create clusters of
these features to compile feature histograms to be compared
for object recognition. Most of their testing is performed
in simulation using 3D models of objects. The physical
testing was done using DigitTact sensors over a set of 5

objects (the context was recognition of plastic letters) using
a predefined exploring routine. They use 200 samples for
training and 100 for testing. The accuracy in these physical
experiments reaches 90% for one of their feature choices
after approximately 60 touches. It would be interesting to
see this system tested on a larger set of objects, since its
simulated performance is quite good.

III. SENSOR AND TACTILE DATA REPRESENTATION

The new sensor [1] used in this paper is based on the
same principle as the TacTip. However, it has neither papillae
nor internal gel. Instead it has a plain black smooth opaque
silicone rubber hemispherical membrane of radius 40mm
and thickness 1mm, mounted at the end of a rigid opaque
encasing for the digital camera, 3D printed in ABS 1.
The camera has a resolution of 640 by 480 pixels, and
incorporates a set of 8 white LEDs. The shading pattern of
light is used as input. When the sensor is in contact with
an object, the shading pattern on the membrane changes
accordingly (see Fig. 2). In recent work, it was shown to
recognise seven basic shapes with over 95% accuracy [1].

Due to the circular geometry of the sensor image, a
rotationally invariant representation was required. In previous
work, a number of encoding methods were compared and
it was suggested that Zernike Moments together with PCA
achieved the best performance [1]. Zernike Moments have
been shown to be useful when scale, rotation and translation
invariances are sought [22], and have been successfully
used for basic shape recognition [23]. Zernike moments
here refers to the absolute value of the inner product of a
vectorised image with a vectorised Zernike polynomial, a set
of radial complex polynomials defined on the unit disk (see
Fig. 3).

Let m ≥ n be non-negative integers, and let 0 ≤ φ ≤
2π, 0 ≤ ρ ≤ 1 define a polar coordinate system. Then the

13D model of the tactile sensor encasing, and links to the other compo-
nents are available at: https://github.com/Exhor/bathtip

Fig. 2. The new tactile sensor design (left). The main body is 3D
printed in ABS. The tip is a 1mm thick silicone rubber hemisphere.
At the base (not visible) there is a USB eSecure web-cam (running
at 640 by 480 pixels) with 8 LEDs illuminating the inside of the
silicone hemisphere. As the tip makes contact with an object, it deforms
resulting in a specific shading pattern (right).
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Fig. 3. The first Zernike polynomials evaluated on a unit disk.
Here depicted as modulus (red) and phase (blue).

even and odd Zernike polynomials are defined as:

Zm
n (ρ, ϕ) = Rm

n (ρ) cos(mϕ)

Z−mn (ρ, ϕ) = Rm
n (ρ) sin(mϕ),

Which can be indexed by:

Zj = Z
m(j)
n(j)

Where m(j), n(j) are Noll’s indices of Zernike polynomials
[24], and

Rm
n (ρ) =

(n−m)/2∑

k=0

(−1)k (n− k)!
k!
(

n+m
2−k

)
!
(

n−m
2−k

)
!
ρn−2 k

Then, the dth Zernike Moment of an image M is given by:

Zerd(M) =

∣∣∣∣∣∣
∑

i,j∈{i2+j2≤n2/2}
M(i, j)Z ′d(i, j)

∣∣∣∣∣∣

Where,

Z ′d(i, j) := Zj

(√
(i2 + j2)
√
2
2 n

, arctan

(
j − n/2
i− n/2

))

Once the Zernike moments are obtained from the entire
training set, PCA is performed. The Zernike moments of
images obtained during validation/testing are multiplied by
the PCA dimensionality reduction matrix obtained during
training. This process is hereafter referred to as “finding the
Zernike-PCA moments”. The number of components to be
used is decided by inspecting the eigenvalues and retaining
sufficiently many principal components so as to explain 95%
of the variance in the training data.

IV. OBJECT LEARNING AND RECOGNITION

The proposed model stores the Zernike-PCA moments of
all tactile images and their corresponding object labels given
during training. During testing, the Zernike-PCA moments
of each new tactile image is compared against those stored
values, and the likelihood of the new image, given each
learnt object, is computed. This likelihood is defined as the
normalized sum of nC Normal probability density functions,
where nC is the number of training images used for object
C. Each one of these is evaluated at the sensed image’s
Zernike-PCA value, centered at one of the training points,

and with covariance given by the covariance matrix of all
training points2. The process is depicted in Fig. 4.

Formally, let the training set be XC = {XC,i, i =
1, ..., nC}, where XC,i is the Zernike-PCA moment vector
corresponding to the ith tactile image of object C, which was
observed nC times during training. Let W be the covariance
matrix of XC . Let Y = {Yj , j = 1, ...,m} be the sequence
of Zernike-PCA moments (PCA reduction is performed
using the dimensionality reduction matrix obtained from
the training data), where Yj represents the Zernike-PCA
moments of the jth tactile image of the object being sensed
for recognition. Then the likelihood of Yj for a given object
class C is defined as:

P (Yj |C) =
1

nC

nC∑

i=1

N (Yi|XC,i,W ) (1)

Where,

N (Yi|XC,i,W ) =
e−

1
2 (Yj−XC,i)

TW−1(Yj−XC,i)

√
‖W‖(2π)d

Here, d is the dimensionality of the feature vector. Using
this likelihood function a Naive Bayes classifier was imple-
mented. This assumes that observed Zernike-PCA moments
are statically independent. Note that PCA projection here
helps to mitigate against correlations between features.

P (C|Y ) = α
m∏

j=1

P (Yj |C)P (C)

Where α is just a normalizing constant, and P (C) can be
estimated from the number of times each object is observed
during training, which in our case forms a uniform prior
distribution. Therefore object recognition can be performed
using maximum a posteriori:

Cpred = argmax
C

P (Yj |C)

The computational complexity arises from Equation 1. As-
suming there are n observations times during training, the
complexity is O(dn2) during training and O(d2n) during
testing.

V. EXPERIMENTS AND RESULTS

Two experiments were performed to test the accuracy of
the object recognition method outlined above: one to recog-
nise objects seen before within a fixed collection, the other to
test generalisation to unseen objects. Both experiments were
carried out under the same setup.

A. Experimental setup

The system consisted of a 6 degrees of freedom (DOF)
KUKA KR5-sixx-R650 robotic arm, a 6 DOF force-torque
sensor mounted on its end effector, and the new tactile sensor
mounted on the force-torque sensor (see Fig. 1). The force-
torque sensor was used to detect touch events and to ensure
the safety of the robot-object interaction.

2In practice, this is the diagonal matrix of variances, since XC is the
scores matrix resulting from PCA.
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Fig. 4. The recognition process: from touch to object posterior probabilities.

The initial location of the object is assumed to be known,
but its orientation is unknown. Limited unintentional pose
alteration (less than 5% of object size) does occur during
the experiments, as a consequence of contact. The aim is
to have the robotic arm move the sensor to various point
on the object surface and collect the tactile information
autonomously. Each object was manually placed and secured
in this location. The robotic arms is programmed to perform
the following exploration procedure:

1) Define a “safety hemisphere” of radius 30cm about
the assumed object centre. The hemisphere occupies
the space above the object.

2) Generate a set of random points on that hemisphere.
3) Take the sensor to the next unvisited position in the

list, facing inwards towards the centre point.
4) Move the sensor linearly inwards, until a normal force

of 75 grams is detected.
5) Record the tactile image.
6) Retract the sensor linearly away from the object back

to the imaginary sphere.
7) Back to step 3.

B. Object recognition

The objective of the first experiment was to automatically
explore, learn and recognise objects from a set of 10 house-
hold objects (see Fig. 5): stapler, toothbrush, porridge pot,
mug, shampoo bottle, box, pen, ball, textbook, water bottle
(empty).

A total of 120 tactile images were collected for each
object. These were split into 60 for training, 30 for validation
and 30 for testing. A number of tests were attempted using
the validation data set for testing. Initially, a Naive Bayes
classifier using clustering was implemented, which resulted
in approximately 70% accuracy after 30 touches, using k-
means. Alternative clustering methods were tested, but did
not improve performance. In particular Gaussian Mixture
Models seemed suitable due to the natural representation of
the likelihood function for observed data, but the parameter
estimation led to an under-determined system for such a
small data set. The final choice of inference system is non-
parametric, and as such there is no need for a validation data
set for parameter estimation. Of the 90 samples (training and

testing) for each object, 100 different partitions (60 training
images and 30 testing images) were made, the accuracy
reported is the percentage of correct recognitions, averaged
of these 100 iterations. Fig. 6 shows the confusion matrix
after 5 and 15 touches.

After 15 touches the overall accuracy is 87% ; however,
there is still a marked (approx. 19%) confusion between the
toothbrush and the pen. These objects are very similar to
touch in many of their local patches. This confusion repre-
sents 2.7% of the inaccurate predictions after 30 touches.
There is high uncertainty about the stapler in the first 5
touches, perhaps reflecting the varied tactile features of its
surface.

Fig. 7 shows the average accuracy for all objects, over 100
trials. As a comparison, best previous results (averaged over
7 trials) are shown [13]. The recognition accuracy follows a
similar pattern in all methods, however our system gains a
clear advantage from the start, and it stabilizes after about
25 touches.

C. Classifying unseen objects

In the second experiment, the potential for classification
of previously unseen objects was preliminarily tested. The
aim was to discern if the system had potential to classify
objects that had not been used in training. Five previously

Fig. 5. The objects to be learnt and recognised.
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Fig. 6. Confusion matrices showing recognition errors for the 10
household objects, after 5 and 15 touches.
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Fig. 7. Accuracy as a function of the number of touches, averaged
over 100 trials. Comparison to previous work by [13], showing
their best performing features: “Polar Fourier” (PF) and “Moment
Normalized Translation Invariant” (MNTI).

untouched objects were sensed and attempted to be classified
using the system outlined above. The objects used were: a
plastic card, a different mug, a different pen, a smaller and
harder ball, and another textbook (soft-back). This time the
full data set for the 10 known objects was used for training,
and 120 images of the unseen object were used in testing.
Fig. 8 shows the posterior probabilities of each of the known
10 objects, assigned to each of the new objects, against the
number of touches.

The plastic card is very different to any known objects and
as such causes high confusion initially. The system finally
settles for classifying it as a mug or a pot. The new pen
is initially very confidently classified as a pen, but after
10 touches there is growing confusion with the pot model.
This may be due to the rounded edge of the pot having
a similar curvature to the pen. The other three objects are
on average ”correctly” classified. There is some confusion
between the mug and the pot when classifying the new mug,
which is understandable due to the similarity between the two
known objects. These preliminary results show promise that
the system may be generalisable to unseen objects, but are
modest in scale and as such not conclusive: further research
is required. It seems that objects very similar to the known
ones (new book, new ball, new mug, new pen) are classified
”correctly” very quickly, and as such the level of uncertainty
at the beginning of the exploration could be used to inform
a system that predicts new classes.

Fig. 8. Attempting to classify previously untouched objects. Posterior
distribution over the known object classes, when testing is performed on
five objects not sensed during training. Averaged over 100 trials.

D. Timings

All timings provided are for single-threaded, unoptimized,
MATLAB code, running on a Core i7-4700MQ 2.4Ghz with
8Gb DDR3-1600 RAM. Zernike moment calculation took
on an average of 3.7 × 10−3 s per tactile image. Feature
dimensionality was always 21 or 22. For the first experiment
(600 images in training), training took an average of 1.7 ×
10−8 s, and testing 8.6 × 10−4 s per tactile image. For the
second experiment (1200 images in training), training took
an average of 1.7 × 10−8 s, and testing 1.2 × 10−3 s per
tactile image. All these timings are substantially lower than
the average time it takes the robotic arm to take a reading
(approximately 30 seconds).

VI. CONCLUSION

A new inexpensive tactile sensor combined with an au-
tomated simple Bayesian object identity inference system
were presented. They were shown to achieve accuracy in
recognition outperforming state-of-the-art, for single contact,
local appearance based tactile object recognition. The sensor
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was made open source and can has a total material cost
of approximately USD 30, substantially less than any other
commercial or open source tactile sensor available, making
it widely available to experts and hobbyists. A system was
designed to autonomously collect tactile information from a
range of household objects, using this new sensor, mounted
on a robotic arm and aided by a force-torque sensor. These
results are obtained using a very limited number of training,
validation and testing images, about a third of previous
similar work. In addition, preliminary results show potential
for unseen object classification, yet more research is needed.
Recognition is performed in real time.

Inference is performed using a Naive Bayes classifier. As
such, there is a an assumption of independence between
observed features. This assumption is potentially limiting and
a more sophisticated probabilistic model may be needed as
the number of classes grows larger.

At present, exploration takes approximately 30 seconds
per reading, 30 minutes to learn an object’s representation
and 15 minutes to recognise it with 95% confidence. Whilst
attempts were made to create a reactive system, robot control
is relatively rigid. It would be interesting to explore ways
of using machine learning to make the robot control more
efficient and self-adapting. Future work will also include
sensor fusion, attempting to harness the potential shown here
to complement active vision systems.
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Chapter 5

Visuo-tactile object recognition

5.1 Motivation: from tactile recognition to visuo-

tactile recognition

Chapters 3 and 4 corroborated that the simple sensor is capable of both shape

and object recognition, the next step was to test the hypothesis that a proba-

bilistic visuo-tactile fusion model would provide higher accuracy than individual

modalities, and to find out under which conditions this would be most marked.

Recall that the motivation for a fusion system stems from the belief that, for

humans, object representations are multi-modal [67, 68], with efforts to attempt

to combine these modalities in robotics stemming from the 1980s [3] . In consid-

ering multi-modal robotic perception, the aims of this stage of the project were

to attempt to answer the following questions:

1. Does the BathTip tactile sensor provide information that can complement

visual input?

2. Under what circumstances is this most marked?

3. What sort of fusion method is most effective and efficient (in terms of

recognition of objects) to achieve this multi-modal object representation?

5.2 Summary: visuo-tactile models compared

A similar set of 10 household objects as the one described in Chapter 4 was used.

The tactile model and the tactile data collection procedure remained the same.
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5.2. Summary: visuo-tactile models compared

The choice of visual model was guided by the following considerations: prob-

abilistic output, simplicity, quick to implement, limited power. Reviewing the

options covered in Section 2.3.3, bag-of-features [28] was identified as a poten-

tial approach. More sophisticated approaches were available and relatively easily

deployable (e.g. convolutional neural networks, [120]), but the model devised

by Csurka et al. [28] was already achieving such high performance as to dom-

inate over the tactile model in some contexts. If one modality were allowed to

dominate overmuch, multi-modal fusion would not be justified or desirable. In

fact, the visual effectiveness would occasionally be so high, it inspired the idea of

artificially impairing vision.

Three multi-modal fusion systems were compared:

1. A baseline heuristic model based on an average between the probability

posteriors predicted by the visual model and the tactile model.

2. A nearest-neighbour system that concatenates visual and tactile feature

vectors (replicating the work of Yang et al. [127]).

3. A proposed system based on the product of the posterior distribution of

the tactile and the visual models.

The first approach is based on the assumption that how much a modality is

‘trusted’ (the weight parameter) is linearly dependent on the number of training

samples for such a modality. There are some complications with this assumption.

Additional training for a specific class in vision does not necessarily result in bet-

ter vision performance for all classes. The linear assumption is also problematic:

accuracy and consistency of a classifier need not improve linearly with the number

of training samples. Finally, it is difficult to quantify whether one tactile training

sample should be given the same importance as one visual training sample. For

these reasons, this approach should only be considered as a baseline heuristic for

comparison to the other two.

In order to evaluate and compare these systems, and to begin to answer the

aforementioned questions, several experiments were carried out involving object

recognition. In particular, attention was paid to the matter of learning efficiency

(how to maximise accuracy while minimising the number training samples), using

a novel metric to assess it.
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Chapter 5. Visuo-tactile object recognition

5.3 Results: when does multi-modal sensing mat-

ter?

In all cases, vision and touch combined improved accuracy over either modality

alone. Of the three models compared, the proposed posterior product model

produced the best results. The improvement was most marked when neither

modality dominates. Learning efficiency (accuracy versus number of training

samples) was not higher in general but did show improvements when vision was

artificially impaired.

5.4 Paper: Object recognition combining vision

and touch

The visual model, visuo-tactile fusion system, experiments and results, were pub-

lished in the Journal for Robotics and Biomimetics [26]. The Statement of Au-

thorship Form and the paper are found next.
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Object Recognition Combining Vision and Touch

Tadeo Corradi, Peter Hall and Pejman Iravani

Abstract— This paper explores ways of combining vision and

touch for the purpose of object recognition. In particular it

focuses on scenarios when there are few tactile training samples

(as these are usually costly to obtain) and when vision is

artificially impaired. Whilst machine vision is a widely studied

field, and machine touch has received some attention recently,

the fusion of both modalities remains a relatively unexplored

area. It has been suggested that, in the human brain, there exist

shared multi-sensorial representations of objects. This provides

robustness when one or more senses are absent or unreliable.

Modern robotics systems can benefit from multi-sensorial input,

in particular in contexts where one or more of the sensors

performs poorly. In this paper, a recently proposed tactile

recognition model was extended by integrating a simple vision

system in three different ways: vector concatenation (vision

feature vector and tactile feature vector), object label posterior

averaging and object label posterior product. A comparison

is drawn in terms of overall accuracy of recognition and in

terms of how quickly (number of training samples) learning

occurs. The conclusions reached are: (i) the most accurate

system is ’posterior product’, (ii) multi-modal recognition has

higher accuracy to either modality alone if all visual and

tactile training data is pooled together and, (iii) in the case of

visual impairment, multi-modal recognition “learns faster”, i.e.

requires fewer training samples to achieve the same accuracy

as either other modality.

I. KEYWORDS

Object recognition, Sensor fusion, Tactile sensors, Robotic

vision.

II. LIST OF ABBREVIATIONS

• PCA: Principal Component Analysis

• SVM: Support Vector Machine

III. INTRODUCTION

It seems evident that the presence of multiple sensors,

capable of capturing complementary information about the

environment, is a desirable feature of modern robots [18],

[11]. Indeed, there are indications that humans use similar

mechanisms to process sensory information from vision and

touch and that memories are multi-sensorial in nature [19],

[38], [20]. In the field of Machine Vision, Object Recognition

has been so well understood that, in some cases, artificial

systems have surpassed human accuracy [13]. Machine touch

has also received a great deal of attention recently. Whilst

most commonly focused on texture recognition [9], [15],

[21], [33], substantial efforts have been made to design

object recognition systems using touch [27], [34], [26].

The question of how these modalities are to be used in

conjunction remains, however, largely unanswered. Early

attempts involved building geometric models of objects [3].

More recently, the field has received a lot more attention,

consistently showing that sensor fusion outperforms either

modality alone [18], [14], [12], [40]. Only [18], [40] specif-

ically consider object recognition with a direct fusion of

touch and vision, and this is done with grasping approaches.

In this paper, a complete sensor fusion model is proposed

for vision and touch, demonstrating its potential in object

recognition with a small number of training samples. Unlike

the aforementioned studies, which use grasping, a single-

touch approach is used here, using a biologically inspired

tactile ‘finger’ (see Fig. 1). In particular, for the cases where
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Fig. 1. Tactile data is collected autonomously by the tactile sensor
developed in [7], mounted on a KUKA KR-650.

both modalities perform poorly independently (e.g. when

vision is impaired), benefits are highlighted. It is also shown

that, under certain conditions, the multi-modal systems are

“faster learners” than vision and touch, i.e. they require fewer

training samples to achieve comparable accuracy.

IV. RELATED WORK

A. Tactile Object recognition

Kappassov et al. [16] distinguish between three types of

tactile object recognition approaches: texture recognition,

object identification (by which they mean using multiple

tactile data types, such as temperature, pressure, etc. to

identify objects based on their physical properties), and

pattern recognition. This work falls within the last category.

Most tactile recognition systems are based on recognition

from grasping, i.e. using robotic hands or grippers equipped

with multiple tactile sensors, where, often, the position

of the fingers (proprioception) is also used as input. For

example, using Self-Organising Maps and neural nets for

household object recognition [27], using gaussian kernels

to attain online learning of new objects [34], hierarchical

feature learning (including temporal information) for object

recognition [26], and multi-finger joint space sparse coding

[22], all of which obtain near perfect accuracy. Recognition

from grasping, however, requires the ability to grasp the

object, whose identity is yet unknown, a non-trivial task.

Alternatively, it is possible to recognise the object by means

of individual contacts with a single tactile sensor. Some

approaches involve volumetric reconstruction [10], [1] such

as point-clouds or voxel space representation. Accuracy in

these studies reaches 80% in some cases for 45 objects and

only 10 touches, but 3D models of the objects are required

in advance. Furthermore, there are technical challenges with

scaling point-could and voxel representations. This paper

focuses on this particular scope: single touch (non-grasping)

object recognition. Schneider et al. [32] performed two-

fingered grasps on a set of household objects, using a gripper

equipped with tactile array sensors. From the resulting tactile

images, a bag-of-tactile features approach was implemented

to achieve over 84% accuracy in recognition. Their work uses

information about the object relative position to the gripper.

Pezzementi et al. [30] apply a predefined exploration routine

with a single finger contact, to learn object models based

on histograms of features (thus being the closest in data

collection methodology to the work presented in this paper).

Real object testing is limited to a set of 5 objects, achieving

in excess of 90% accuracy for their best performing method.

Recently, it was shown that single touch object recognition

is possible even with a low resolution sensor [7]. Here,
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that model is extended to account for visual information,

comparing three different approaches to such multi-modal

integration.

B. Visuo-tactile integration

Early attempts at integrating vision and touch were con-

ducted by [3], using geometric models of objects and touch

to complement unseen parts and again to estimate the param-

eters of a kinematic model for hand-object interactions [4].

Later, neural nets were used to fuse visual data and pressure

data, showing that this sensor fusion was faster at learning

and more accurate than either modality alone [18]. Recent

work included fusion of RGB-D data and tactile data using

an invariant extended Kalman filter to discover and refine 3D

models of unseen objects [14]. It has been shown that fusion

of vision and touch can be used to recognise the content of

squeezed bottles [12], where the fusion of modalities outper-

forms either modality alone. Recently, Sun et al. [37] showed

that sensing objects using vision and touch independently

helps in identifications of suitable grasping plans. Visuo-

tactile integration has also benefited the field of surface

classification [36], where the variety of textures and patterns

create difficulties for either modality alone. Most closely

related to this paper are the works of Yang et al. [40] and of

Liu et al. [23]. In [40], visuo-tactile integration shows great

promise, demonstrating an improvement in accuracy using a

simple weighted k-nearest-neighbour classifier to adjudicate

a class label given vectors representing the tactile and visual

input, obtaining a higher accuracy when both are combined

rather than either used alone. [23] provides a visuo-tactile

fusion model (using grasping) involving an innovative sparse

coding algorithm for object instance recognition in a set of

18 objects, with similar results. This work is particularly

impressive, as the sparse kernel encoding is robust to the

inherently weak pairing between tactile and visual data. The

Fig. 2. The new tactile sensor design (left) first reported in [6]. The
main body is 3D printed in ABS. The tip is a 1mm thick silicone
rubber hemisphere. At the base (not visible) there is a USB eSecure web-
cam with 8 LEDs illuminating the inside of the silicone hemisphere. As
the tip makes contact with an object, it deforms resulting in a specific
shading pattern (right). Schematics and part details openly available at:
https://github.com/Exhor/bathtip.

work presented in this paper contributes in four key aspects:

a) Tactile data is collected with single touches (no grasping,

no grippers) and the poses of the sensor and the object are

ignored (no spatial information is used). b) Visual and tactile

models developed are probabilistic, c) the main fusion model

presented is both simple and grounded, and d) an analysis

of arbitrarily impaired visual data is presented with a novel

focus (learning efficiency).

V. TACTILE AND VISUAL MODELS

A. Tactile model

The tactile sensor used here was first introduced in [6].

It comprises a camera inside a 3D-printed ABS enclosure,

filming the shading pattern resulting from the deformation

of an internally illuminated silicone rubber membrane, as

it makes contact with an object (see Fig. 2). An extensive

comparison of encodings and classifiers to best process the

output of this sensor for shape and object recognition were

covered in recent work [6], [7]. The algorithm devised in

that work involves computing the Zernike moments [41]

of a given normalised image (as read by the camera), and

using PCA for dimensionality reduction. Zernike moments
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Fig. 3. Three examples of Zernike polynomials (using Noll’s indices [29])
evaluated over a unit disk, depicted as modulus (left) and phase (right).

are obtained by computing the modulus of the inner product

of Zernike polynomials (evaluated on a unit disk) with a

given tactile image’s intensity values (Fig. 3 shows a few

sample Zernike polynomials). Using Zernike moments bears

some immediate advantages: they provide a direct way of

encoding images whose domain is the unit disk and they can

provide rotational invariance [17] , which is ideal considering

how the sensor works. Furthermore, they had already been

used for basic visual shape recognition [39]. For more details,

and comparisons to other encodings, see [7].

Each object is therefore represented by n vectors of size

d, each containing the first d principal components of the

Zernike-PCA descriptor of a tactile image captured during

training. These n vectors are stored. A d-dimensional gaus-

sian is centered at each one of these vectors, with covariance

matrix obtained from the complete training dataset. The

normalised sum of all these gaussians is the p.d.f. of the

likelihood model, i.e. the model assigns a probability of

observing a certain Zernike-PCA vector, for any given object:

P (tactile vector|object label).

Formally, let the training set of vectors be called Xc =

{Xc,i, i = 1, ..., n}, were Xi is the Zernike-PCA moment

vector the ith tactile image of object c, which was observed

n times during training.

Let W be the covariance matrix of Xc
1. Let t = {tj , j =

1, ...,m} be the sequence of Zernike-PCA moments (where

the PCA reduction is performed using the dimensionality

reduction matrix obtained from the training data), where

tj represents the Zernike-PCA moments of the jth tactile

image of the object being sensed, and whose label is being

preducted. Then, the likelihood of tj for a given object label

C is modelled as:

P (tj |C) =
1

nC

nC∑

i=1

N (ti|XC,i,W )

Where,

N (ti|XC,i,W ) =
e−

1
2 (tj−XC,i)

TW−1(tj−XC,i)

√
‖W‖(2π)d

Where d is the dimensionality of the feature vector. Assum-

ing subsequent observations of the object are independent,

and applying Bayes’ Rule, the probability of each object

label, C, given the set of observations t, is given by:

P (C|t) = α
m∏

j=1

P (tj |C)P (C) (1)

Where α is a normalizing constant, and P (C) can be

estimated from the number of times each object is observed

during training, which, in all cases covered here, forms a

uniform prior distribution. Therefore, for touch-only recog-

nition, object label inference is:

Ctouch = argmax
C

P (C|t) (2)

B. Visual model

The visual model is a simple bag-of-words model, using

SURF [5] as features. K-means is used on the SURF de-

1In practice, this is very close to being the diagonal matrix of variances,
since Xc is the scores matrix resulting from PCA.

62



scriptors of a pre-training dataset of unrelated images, for the

purpose of dictionary creation. Each SURF feature descriptor

of each object image is assigned a label (word), the closest

k-means centre to it. Each image is thereafter represented

by the histogram of these labels (words). During training, a

one-vs-all r.b.f.-kernel support vector machine (SVM) is used

on the normalised histograms corresponding to each object.

During testing, a single visual image is used. The image’s

histogram is presented to all the SVMs, and a posterior

distribution over object labels is computed using Platt scaling

[31]. Specifically, let s(v) be the score given by the SVM

corresponding to label C to the visual histogram v of an

object’s image. Then the probability of label C is estimated

as:

P (C|v) = 1

1 + exp(As(v) +B)
(3)

Where A and B are two constants estimated by maximising

the log likelihood of the training data (for details, see [31]).

The predicted label for vision only is therefore:

Cvision = argmax
C

P (C|v) (4)

VI. VISUO-TACTILE INTEGRATION MODELS

While attempting to integrate various modalities, recent

work has focused in either deep learning and other neural

approaches [35], [42], [28], probabilistic [24] or direct vector

concatenation [40]. The first group has advantages in their

ability to recognise relationship between input data at various

levels of abstraction. However, they do require more data,

which is a limitation in tactile robotics. In this paper,

three approaches are compared, summarised in Fig. 4, and

described below.

A. Posterior product

A straightforward approach to predicting an object label

is to pick the label, C, that maximises the likelihood of ob-

Concatenate

Cprod = max { P(C|v)P(C|t) }

Cavg = max { trVP(C|v) + trT P(C|t) }

Cconcat  

Photos Tactile
Images

Feature 
histograms

P(C|v)
∀C

P(C|t)
∀C

Joint
features

Zernike +
PCA 

reduction

SVM + 
Platt 

smoothing

Sum of 
Gaussians 
N. Bayes

Tactile
features

Nearest 
neighbour

trV: number of 
visual training 
samples
trT: number of 
tactile training 
samples
P(C|.): probability 
of object label C, 
given some test 
sample.

SURF + 
nearest 
neighbour

Fig. 4. Three sensor fusion models for multimodal recognition process.

served data P (v, t|C). Assuming conditional independence,

P (v, t|C) = P (v|C)P (t|C). Further assuming a uniform

prior over class labels, applying Bayes’ Rule and noting that

P (v) and P (t) do not depend on C, means that maximising

the product P (v|C)P (t|C) over C is equivalent to maximis-

ing P (C|v)P (C|t) over C.Therefore, the predicted label can

be computed by:

Cprod = argmax
C
{P (C|t)P (C|v)} (5)

Where P (C|t) and P (C|v) are the probabilities that the

object being sensed has label C, given the tactile and the

visual sensed data, respectively, as defined in equations (1)

and (3). The assumption of independence in the above model

is a simplification, since both vision and touch depend on the

geometry of the object.
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B. Vector concatenation

Similar to the work of [40], the second model presented

directly concatenates the feature vectors for vision and touch

and then label prediction is done by just finding the nearest

neighbour in the training dataset. Nearest neighbour classifi-

cation is known to be problematic in high-dimensional data

[2], therefore, following the recommendations of [2], the L0.1

distance metric is chosen. Thus, the label predicted is that for

whom the distance to its closest training vectors is smallest.

Let vC is the nearest neighbour to a test image’s histogram

v of label C. Let tC,1, tC,2, ..., tC,p be the nearest tactile

training vectors of label C to the testing vectors t1, t2, ..., tp.

Then, the predicted label for vector concatenation is:

Cconcat = argmin
C
|v − vC |L0.1 +

1

p

p∑

j=1

|tj − tC,j |L0.1 (6)

C. Weighted average of posteriors

A heuristic alternative is to consider the weighted average

of posteriors, where the weight is set to the number of

training samples for the modality. The rationale for such an

approach is that the more experience (training samples) there

is in a particular modality, the more it should influence a final

decision. Thus, let trT and trV denote the number of training

samples for a given simulation, then the predicted label for

posterior average, Cavg given the input data, is given by:

Cavg = argmax
C
{trTP (c|t) + trV P (c|v)} (7)

This approach would equate to vote counting, where both

vision and touch cast votes for which class label should be

chosen as most likely. The number of votes each casts being

directly proportional to how many samples were used during

their training.

Fig. 5. The 10 household objects used.

VII. EXPERIMENTS AND RESULTS

Training was conducted on images of 10 objects (see

Fig. 5) collected manually and tactile readings of the same

objects, performed autonomously by a robot (illustrated in

Fig. 1). The centre of the object was assumed to be known,

then an angle of approach was chosen at random. The robot

approached pointing the sensor inwards towards the assumed

centre of the object, until there was a contact detected. A

single image is retrieved from the sensor’s camera and stored,

before the arm retracts outwards and the process starts over

(for more details, see [7]). The position and orientation of

the sensor are not used, only the tactile images.

For some tests, vision was corrupted to produce “blotched”

images to simulate visual impairment: images were covered

by a small random number of randomly placed black circles

occluding approximately 20% of the pixels. Images were

resized to 300x300 pixels and set to gray-scale prior to

processing. Some samples of unaltered and blotched images

are depicted in Fig. 6.

Parameter estimation was performed on a validation subset

of the data and the following optimal parameters were

obtained:
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Fig. 6. Sample of visual full images (top row), blotched images (bottom
row). Blotches are in effect black, but are depicted orange for visibility.

• Number of principal components to retain in Zernike-

PCA descriptors: 20

• Optimal feature descriptor from amongst SIFT [25],

SURF, HOG [8]: SURF

• Size of the visual vocabulary for the SURF Bag-of-

words model: 100

The remaining dataset was repeatedly split into training and

testing subsets, each such split is referred to as a “simulation”

(all data is from real robot experiments). The number of

training samples varied in each simulation. During testing,

visual posterior calculation is performed according to equa-

tion (3), with a single image. For tactile recognition, up to

30 tactile images were considered in sequence, to produce a

tactile posterior calculation, as defined in equation (1). Notice

that, at times, only a subset of the 30 tactile images was

considered for testing. With these, Ctouch, Cvision, Cprod,

Cconcat and Cavg were computed as defined in equations (2)-

(7). Each simulation will produce one prediction per visual

photo. Each photo will be randomly paired with up to 30

tactile images from the same object. Accuracy is defined

as the mean average proportion of correct label predictions

over all simulations. Let d be the number of simulations,

assume each simulation has nv testing photos, and let yi,j

be the predicted label for an object whose true label is xi,j ,

corresponding to the jth photo of the ith simulation, then

the accuracy reported is

Accuracy =
1

d

1

nv

d∑

i=1

nv∑

j=1

1{xi,j}(yi,j) (8)

Where the label prediction yi,j is performed according to

equations (2)-(7), and 1 is the indicator function.

Two experiments are reported. The first compared the

accuracies of recognition of uni-modal and multi-modal

approaches using all training data available. For the second

experiment, the total number of training samples (visual plus

tactile) is fixed a priori.

A. Uni-modal and multi-modal recognition accuracy

For the first experiment, 60 visual and 60 tactile training

samples were used. Each simulation represents a different

training/testing data split. A total of 700 simulations were

run. As there are 10 objects, the baseline (random) recogni-

tion accuracy is 0.1.

During test time, for a given object, a single visual image

was used for vision and a sequence of up to 15 tactile images

corresponding to that object were used for touch. Fig. 7

shows mean accuracy as more and more tactile images were

used at test time.

For the case of unaltered images (Fig 7, bottom), vision

achieved 0.86 accuracy. For a single tactile image, touch

only attained 0.43, whilst all multi-modal approaches provide

an improvement over vision alone (albeit small). As more

touches are used at test time, tactile accuracy obviously

improves. As the gap in performance between the modal-

ities narrowed, the relative improvement of multi-modal

approaches seemed more marked.

For the case of blotched images (Fig 7, top), vision’s

accuracy is much lower at 0.5. When only one touch was

allowed at test time, the tactile accuracy was still 0.43, and
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Fig. 7. Accuracy of recognition for 10 objects vs the number touches (tac-
tile images) used at test time. Showing mean average over 700 simulations
for each graph. Comparison of three approaches to multi-modal recognition.

the multi-modal approaches all showed a marked relative

improvement. In this case, the accuracies of vision and touch

started on a similar level, but touch evidently increased as

more and more tactile images were used at test time. Even

so, the multi-modal approaches showed an improvement over

either modality in all cases.

In other words, the improvement in accuracy seemed

smallest where the two modalities differed significantly in

performance, and one dominated over the other. By contrast,

when vision was impaired and few tactile images were

allowed at test time, the improvement was most marked.

B. Learning efficiency: accuracy vs number of training sam-

ples

For the second experiment, the aim was to ascertain

how efficient in terms of number of training samples the

learning process was, with multi-modal representations, in

comparison to each individual modality. The reasoning is

that it may be considered “unfair” to compare a vision-only

system which used 60 training samples against a visuo-tactile

system that used 120 (60 visual and 60 touch). Instead, the

total number of training samples was set to a fixed value and

the accuracy for uni-modal and multi-modal were computed.

For example, when the number of training samples was set

to 40, tactile-only and visual-only recognition was performed

using 40 training samples, but multi-modal recognition was

performed using 20 visual and 20 tactile, or 35 visual and

5 tactile, or any other combination. This is different to all

previous work encountered, where, when it comes to sensor

fusion, all data from both modalities is typically used (such

as in the first experiment).

At test time, a single image was used for vision, and a

sequence of up to 30 tactile images for touch. Fig. 8 shows

mean accuracy against total number of training samples.

Following the findings in the first experiment, the reported

number of tactile images used at test time was chosen so

as to not allow either modality to dominate. That is, when

“blotched” images were considered (top three graphs), only

a few tactile images were needed for this purpose; but, in

the case of full images (bottom three graphs), vision was

stronger, so more tactile images were needed to achieve a

similar degree of accuracy.

Consider the case of “unaltered” images, the lower part of

Fig. 8. When 5 touches are allowed at test time (bottom left),

vision is superior to touch. The accuracy of all multi-modal

approaches fell short of vision’s, namely it provides no im-

provement in this context. Even when 15 or 30 tactile images

were used (bottom middle and bottom right), and there was

no clear disparity in performance between vision and touch,

the multi-modal approaches are not more “efficient” than one

of the modalities alone, i.e. they require the same or more

total training samples to achieve similar accuracy.

Now consider the case of using “blotched” images at test

time (Fig. 8, top). When at least 40 training samples were

used, the product of posteriors approach (Cprod) achieved

higher accuracy than any other. As more touches were

allowed at test time (top centre and right), the touch-only

accuracy improved quickly, and the relative gain from multi-
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Fig. 8. Accuracy of recognition for 10 objects vs the number of
training samples used. Showing mean average over 700 simulations for
each graph. Comparison of the three approaches to multi-modal recognition.
“Ntouches” stands for the number of tactile images used at test time.

modal approaches declined, to the point that only Cprod was

visibly superior for the case of 3 touches at test time (top,

right).

VIII. CONCLUSIONS AND EVALUATION

A system was proposed for the purpose of visuo-tactile

object recognition, by extending a recent tactile recognition

model [7] and integrating it with a simple visual model.

Three alternatives were considered for such integration,

Cconcat, Cavg and Cprod. Visuo-tactile approaches show

considerable performance gains over either individual modal-

ity for the purpose of object recognition. In particular, the

proposed method of posterior product outperforms both the

weighted-average heuristic and the vector concatenation [40].

A novel comparison metric was proposed, fixing the total

number of training samples a priori, so that, for example, a

visuo-tactile approach using 30 visual and 30 touch training

samples is compared to visual-only or tactile-only systems

using 60 training samples. Under this new metric, the su-

periority of multimodal approaches (and of poterior-product

in particular) was only found where vision was impaired

artificially. It must be borne in mind that vision presents a

remarkably high accuracy from very few training samples for

unaltered images. Therefore, it is inherently more challeng-

ing to obtain improvements. This highlights a limitation of

this metric, for there may be a fairer comparison. Even under

such consideration, for “blotched” images, higher accuracy

was obtained with N visual plus N tactile training samples,

than 2N visual and than 2N tactile, for all models and values

of N > 20. The artificially introduced visual impairment had

the effect of overall lowering the accuracy of vision, and,

where this was combined with lower accuracy from touch,

the greatest improvement was obtained by the multi-modal

approaches, in particular, by the product of posteriors, Cprod.

Further work will explore the potential of these models for

object class recognition and fine-grained recognition, using

multiple instances of each class and thus the extension to a

larger dataset.
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Chapter 6

Bayesian Visuo-tactile object

classification and instance

recognition

6.1 Motivation: verifying scalability and attempt-

ing classification

Chapter 5 validated the viability of the fusion model for object recognition in a

small data set. Questions remained about its scalability, i.e. whether it would

continue to accurately recognise objects if the data set was enlarged. Further-

more, the conclusions of the work presented in Chapter 4 included the potential

for tactile classification, that is, the ability to predict the known class (mug, bowl,

bottle, etc.) of a new object, not present during training.

6.2 Summary: larger data set and object clas-

sification

With the aforementioned considerations in mind, the next stage of the project

aimed to:

• Collect and make available the largest visuo-tactile household object database

to date, including 60 objects, 6 of each class: shoe, can, box, bottle-empty,

bottle-full, bowl, ball, mug, stapler, soft-toy.

70



Chapter 6. Bayesian Visuo-tactile object classification and instance recognition

• Test the fusion model’s scalability, i.e. its ability to recognise any of the

60 objects. This is rendered even more challenging by the close similarity

between objects of the same class.

• Attempt tactile and visuo-tactile object classification. This has never been

achieved to date.

• Explore potential real-life applications of the technology by means of a

preliminary experiment: classification of 10 objects, submerged in murky

water.

6.3 Results: object classification using touch and

vision

For the first time in reported literature, tactile object classification was achieved,

obtaining an accuracy of between 0.3 and 0.65, depending on the number of tactile

images considered at test time. In all cases, accuracy was higher for the sensor

fusion model, from 0.65 to 0.82 depending on the number of tactile images and

whether or not the images were blotched. Once again, the largest improvements

were seen were neither modality dominated (where their independent accuracies

were close).

6.4 Paper: Bayesian object classification and

instance recognition combining vision and

touch

The database description, experiment details and results are currently in draft

format and will soon be submitted for publication. The Statement of Authorship

Form and the manuscript can be found next.
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Bayesian object classification and instance recognition

combining vision and touch

Tadeo Corradi, Peter Hall, Pejman Iravani

Abstract

The first example of tactile and visuo-tactile object class recognition is presented.

The largest visuo-tactile household object database to date is made available,

comprising 60 objects (10 classes, 6 instances). A Bayesian sensor fusion sys-

tem involving vision and touch is deployed in both Object Class Recognition

and Object Instance Recognition. Furthermore its potential is exemplified with

an underwater object classification experiment. Recognising objects and object

classes using multiple senses brings a number of benefits, including robustness to

sensor failure, adverse conditions, ability to capture a wider range of object prop-

erties (e.g. stiffness, roughness). The model is validated by performing object

instance recognition (identifying individual objects, e.g. “mug-04” in a database

where other similar objects are present, such as mug-01, mug-02...) and object

class recognition (correctly predicting an unseen object’s class, e.g. “mug”). The

results support sensor fusion as consistently more accurate in both problems (es-

pecially when vision is impaired). The database is made available so this baseline

result can be improved.

1 Introduction

Combining multiple sensors, and thus perceiving a wider range of features, pro-

vides advantages for robotics systems [62, 45]. Humans are believed to use a

multi-sensorial representation of objects for the purposes of object recognition

[67, 119, 68]. While machine vision has been subject to substantial research (to

the point that its accuracy is comparable or exceeding that of humans [50]), ma-

chine touch is less well understood. In part this is due to the lack of a standarised

approach. Vision is largely standarised both in the sensors used and the format

of the input, there is no such consensus in tactile robotics [29]. Tactile sensing
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research focused initially mostly on texture classification [30, 55, 74, 107], and

later on object recognition [85, 109, 81]. Combining vision and touch is still an

open problem. Recent efforts show that the idea of multi-modal representations

has merits in increasing recognition accuracy, with respect to either modality

alone [62, 54, 49, 127], yet only [62, 127] consider the context of vision and touch.

Recent work also shows that combining vision and touch has the potential to

increase accuracy in recognition significantly if both modalities have low inde-

pendent performance [26].

In this paper, visuo-tactile classification and instance recognition for a large

object database are demonstrated. The first is defined as the ability to correctly

predict the class of unseen objects (the object itself was not present during train-

ing, but other objects of its class were). The second is defined as the ability

to correctly recognise a particular known object, where multiple similar objects

exist in the database (the other objects of the same class).

The first problem has never been tackled using touch only nor using a fu-

sion of vision and touch. The potential of the system for practical contexts is

demonstrated with a further experiment involving classification of unseen objects

submerged in murky water.

2 Related Work

In this work, two related problems are tackled: instance recognition (recognising

an object which was sensed during training) and object classification (recognising

the class of an object, where the object itself was not sensed during training, but

other objects of the same class were).

2.1 Tactile Object Instance Recognition

The problem of Tactile Object Recognition is often tackled by means of grasping

robotic hands or grippers, equipped with multiple tactile sensors of various types

and configurations. Such configurations being the advantage of using (either ex-

plicitly or implicitly) information about the location of the sensors grasping an

object (proprioception). For example, Self-Organising Maps and neural nets have

been used for household object recognition [85] concatenating proprioception and

tactile features. Gaussian Kernels have been designed to model the dynamic tac-

tile sensations as perceived by a closing anthropomorphic hand, achieving on-line
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learning of new objects [109], and recently [108] a variation thereof which is able to

distinguish between full, half-full, and empty bottles. More recently, Hierarchical

Feature Learning (including temporal information) has been used to learn tactile

features in an unsupervised manner, again for the purpose of object recognition

[81], obtaining near perfect accuracy. Simple features using pressure sensors only,

when combined with proprioception, can achieve near perfect accuracy amongst

11 household objects some of which are very similar [110].

Recognition from grasping, however, requires the choice and configuration of

a robotic hand, and the ability to grasp the -as of yet unknown- object, which

is sometimes a complex problem. Instead, it is possible to perform object recog-

nition using individual contacts with a single tactile sensor. This has been done

with approaches that involve the 3D reconstruction of objects [44, 1, 121], using

point-clouds or voxel space. These bring other complications, such as difficulty

with scaling to large databases, and the computational complexity of volumetric

registration/matching. Recently, a mixed approach was proposed which com-

bines point clouds with feature-based recognition, achieving excellent results for

tactile object recognition [79]. An alternative to volumetric approaches are bag-

of-features methods, i.e. those which discard the geometric information (the

location of the sensor during contact), and merely consider the tactile features

extracted. One example is the work of Pezzementi et al. [91], which uses simula-

tions to compare various methods of feature extraction, obtaining close-to-perfect

recognition accuracy in a small set of objects. Drimus et al. [31] use tactile im-

ages’ pixel intensity mean and standard deviation as features in a time series (dy-

namic touch), compared using dynamic time warping, over 10 objects, achieving

in excess of 90% accuracy with a single sensor. Recently, it has been shown that

bag-of-feature approaches are capable of tactile-only object recognition [25].

2.2 Visuo-tactile Instance Recognition

In the 1980s, pioneering the field of visuo-tactile integration, Allen [2] used geo-

metric models of objects and used touch to fill in the invisible parts of objects.

Later, his work was extended to estimate the parameters of a kinematic model

for hand-object interactions [4], again combining vision and touch. In the 2000s,

artificial neural nets were designed to combine visual input with pressure (one-

dimensional tactile) input, displaying a faster learning cycle for the sensor-fusion

model when compared to either modality alone [62]. More recently, Ilonen et al.

75



6.4. Paper: Bayesian object classification and instance recognition combining vision and touch

[54] have shown that Invariant Extended Kalman Filters can be used to fuse vi-

sion and touch to incrementally refine the 3D model of an unknown object. This

same ideas has been realised by Bjorkman et al. [12] using Gaussian Processes

over Zernike and curvature features. Guler et al. [49] conducted an experiment

where the combination of vision and touch outperforms the independent modal-

ities when recognising the contents of bottles by squeezing them. Combining

vision and touch can also be of use for the purpose of planning grasps of un-

known objects by means of classifying them into broad categories [113]. Yang et

al. [127] combine vision and touch by means of concatenating the feature vec-

tors extracted with each modality and use a nearest neighbour classifier with a

weighted distance metric. In their work there are 18 objects, each represented

by 10 photos and 10 grasp-touch sequences, using tactile sensors placed on the

fingers of a 3-finger hand). Many of the objects can be considered very similar

to one another (different sized cylinders, different coloured bottles). Recent work

[26] shows the advantages of sensor-fusion for Object Instance Recognition with

a database of 10 distinct objects, especially when both sensors were performing

poorly independently. Recently, a visuo-tactile fusion model (using grasping) in-

volving an innovative sparse coding algorithm for object instance recognition has

been shown to achieve high accuracy in a set of 18 objects split over 5 classes,

where most of the confusion in recognition arose within-class [73].

2.3 Visuo-tactile Object Class Recognition

Interest is growing in exploring multi-sensory object representations [61] and

soon we may see the first large-scale visuo-tactile database [14]. A tactile-only

attempt at object classification is reported by Gu et al. [48], who focus on shape

recognition to distinguish between cuboids, cones, spheres, prisms and cylinders.

This is a form of class recognition based on geometry. They capture point-clouds

of 30 objects (6 for each shape) and use k-means clustering and random forests for

classification, obtaining an accuracy of 87%. Similarly, in [112], context specific

feature extraction and fusion to recognise materials is presented achieving 74%

when combining all modalities, higher than any subset of them.

A closely related problem is that of binary adjective prediction [22] (e.g. de-

termining if an object is smooth, coarse, soft...). For example, Gao et al. [41] use

deep learning (one net for vision and one for touch, plus a fusion layer) to obtain

state-of-the-art results over 24 adjectives in the PHAC-2 database [22]. Adjective
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prediction can be interpreted as a form of non-exclusive binary classification.

The closest work to this paper is that of Sanchez-Fibla et al. [102], which

combines visual and tactile information for curvature prediction; their work hints

at its potential for object categorization, yet does not explore this fully.

This paper presents the first example of tactile object class recognition and

visuo-tactile class recognition, as well as making public the largest visuo-tactile

household object database to date (10 classes, 6 instances per class, totaling 60

objects). The Bayesian sensor-fusion model is further validated by performing

object instance recognition within the database.

Furthermore, a proof-of-concept for class recognition of objects in a realistic

context is presented: classification of objects submerged under murky water. For

each of these scenarios, a comparison is drawn between the multi-modal system

and each modality alone, highlighting accuracy gains.

3 Tactile and Visual models

This section describes how tactile and visual data are processed and stored during

training and how they are combined to obtain probabilities for each known class

of objects during testing. The recognition pipeline for tactile and visual input

are showing in Fig. 6-1 and Fig. 6-2, respectively. Where instance recognition

is being attempted, an object “label” refers to its instance (e.g. mug-4), while

if class recognition is being attempted, the object label refers to its class (e.g.

“mug”).

3.1 Tactile model

The tactile object model used here was first introduced in [24]. It involves cap-

turing tactile images using an optics-based tactile sensor [24], which takes photos

of a deformable rubber membrane as it makes contact with an object (See Fig.

6-3).

Such images are then reduced in dimensionality using Zernike moments [132]

and Principal Component Analysis, resulting in a vector of size 20. So, if during

training, 54 tactile images are used to learn the representation of an object, the

object model is a matrix of size 54 by 20.

Formally, for each object of label, c, let the training set of vectors be Xc =

{Xc,1, Xc,2, ...Xc,nc}, were Xc,i is the Zernike-PCA moment vector the ith tactile
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Figure 6-1: Tactile data likelihood model. First proposed by
[25].
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Figure 6-2: Visual data pipeline. A single image is used
during testing. The result is a probability distribution over
labels.
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Figure 6-3: The tactile sensor, mounted on a kuka robotic
arm, automatically records tactile sensations at random con-
tact points in each of the 60 objects. The tactile sensor used
(bottom, left), first reported in [24]. The main body is 3D
printed in ABS. The tip is a 1mm thick silicone rubber hemi-
sphere. At the base (not visible) there is a USB web-cam with
8 LEDs illuminating the inside of the silicone hemisphere. As
the tip makes contact with an object, it deforms resulting in a
specific shading pattern (bottom, right). Schematics and part
details are available at: https://github.com/Exhor/bathtip.
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image, which was observed nc times during training. Let W be the covariance

matrix of Xc.

During testing, Let t = {t1, t2, ..., tN} be the sequence of Zernike-PCA mo-

ments of the N tactile images of the object being sensed (PCA reduction is

performed using the dimensionality reduction matrix obtained from the training

data), and whose label (instance or class) is being predicted. The marginal like-

lihood of the observed tactile vector, tk, given the object label, c, is modelled

by:

P (T = tk|C = c) =
1

nC

nC∑

i=1

N (tk|Xc,i,W )

That is, a sum of Gaussian densities centered at the training vectors (Xc,i), with

covariance determined by the covariance of the training vectors, evaluated at the

testing vector, tk,

N (tk|Xc,i,W ) :=
exp(−1

2
(tk −Xc,i)

TW−1(tk −Xc,i))√
‖W‖(2π)d

Here, d is the dimensionality of the feature vector (d = 20). Assuming subse-

quent observations of the object are independent, and applying Bayes’ Rule, the

probability of each object label, c, given the set of observations t, is given by:

P (C = c|T1 = t1, ..., TN = tN) = α
N∏

k=1

P (Tk = tk|C = c)P (C = c) (6.1)

Where α is a normalizing constant, and P (C = c) can be estimated from the

number of times each object label is observed during training. Therefore, touch-

only object label prediction is performed by:

Ctouch = argmax
c

N∏

k=1

P (Tk = tk|C = c)P (C = c) (6.2)

3.2 Visual model

The visual model uses a bag-of-features approach based on SIFT features [77].

Dictionary learning is performed by applying kmeans to the SIFT descriptors of

a set of images which are substantially different to any image in the database.

Nearest neighbour is used to turn the set of SIFT descriptors of each image in

the database into a histogram of visual ‘words’, which is also normalised so that
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its sum is one. Histograms are used to train an one-vs-all gaussian SVM. During

testing, the posterior over labels is predicted applying Platt scaling [92].

Formally, let s(v) be the score given by the SVM corresponding to label c to

the visual histogram v of an object’s image. Then the probability of label c is

estimated as:

P (C = c|V = v) =
1

1 + exp(As(v) +B)
(6.3)

Where A and B are two constants estimated by maximising the log likelihood

of the training data (for details, see [92]). The predicted label for vision only is

therefore:

Cvision = argmax
c

P (C = c|V = v) (6.4)

3.3 Bayesian visuo-tactile integration model

The visuo-tactile integration model (see Fig. 6-4 assumes that Tk (k = 1, ..., N),

the events of sensing a given tactile vector t at the kth touch, and V , the event of

seeing a photo histogram v, are conditionally independent, given a label C = c is

known. Using shortened notation for clarity (read P (Xi) as P (Xi = xi)), this is

P (V, T1, ..., TN |C) = P (V |C)
N∏

k=1

P (Tk|C) (6.5)

Therefore in order to find the object label, c, that maximises P (C|V, T ), apply

Bayes’s rule,

Cpvpt = argmax
c

P (C|V, T1, T2, ..., TN)

= argmax
c

P (V, T1, T2, ..., TN |C)P (C)

P (V, T1, T2, ..., TN)

= argmax
c

P (V, T1, T2, ..., TN |C)P (C)
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Figure 6-4: The visuo-tactile integration model. Assume
that, given an object label, visual and tactile input marginal
likelihoods are conditionally independent. N is the number
of tactile images received during testing, i.e. the number of
touches.

And, by using equation (6.5),

Cpvpt = argmax
c

P (V |C)P (C)
N∏

k=1

P (Tk|C)

= argmax
c

P (C|V )P (V )
N∏

k=1

P (Tk|C)

= argmax
c

P (C|V )
N∏

k=1

P (Tk|C) (6.6)

Where P (C) is estimated by the relative frequency of each label in the training

set, P (Tk|C) is obtained from equation (6.4), and P (C|V ) is calculated as defined

in equation (6.3).

4 The VT-60 database

The visuo-tactile database introduced here consists of 60 household objects, split

between 10 classes (See Fig. 6-5).

For each object, photos were taken from 40 viewpoints manually. Tactile

images were collected using an open-source inexpensive tactile sensor mounted

on a KUKA robotic arm. Each object was automatically explored and touched
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Figure 6-5: Images of each of the objects in the VT-60
visuo-tactile database, from top to bottom: shoe, can, box,
bottle empty, bowl, bottle full, ball, mug, stapler, soft toy.
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Figure 6-6: Samples of database objects, showing (a) raw
photo, (b) “blotched” photo, (c-d) sample tactile images.

at 120 randomly chosen points, by means of approaching the object pointing the

sensor inwards towards the object’s assumed centre (See Fig. 6-3).

When the sensor made contact with the object, a tactile image (the photo of

the deformed rubber membrane) was stored, but information about the sensor’s

location and orientation was discarded. The intention was to obtain a model

that would be pose-invariant. Indeed, the orientation of the object was altered

periodically during data collection and sometimes even affected by the robot

itself. Examples of some objects’ photos, “blotched” photos1 and sample tactile

images are shown in Fig. 6-6.

4.1 Experiment 1: Class Recognition

In the first experiment, the aim was to correctly classify an unseen/untouched

object. 50 objects (5 instances for each class) were used for training and the

remaining 10 (one instance per class) for testing. During training, 40 photos and

60 tactile images of the 50 objects were used. Thus, the prior probability of each

object class, P (C), is uniform and set to 1
10

.

During testing, a single photo and up to 30 tactile images of the test object

were used to compute the posterior probabilities for each class, according to

equation (6.6) and the class label with highest probability was chosen. The

disparity between the number of photos and the number of tactile images is

due to the fact that photos display the complete object, whilst tactile images

correspond to the tactile sensation of just a small portion of the object.

This data split (50/10) was repeated so all objects were tested using 10 dif-

1photos where 20% of the pixels were obscured by randomly placed disks

85



6.4. Paper: Bayesian object classification and instance recognition combining vision and touch

Figure 6-7: Class recognition (unknown objects) accuracy over 60 trials, as more
touches are used at test time, using complete photos (left) and “blotched” photos (right).
The bars represent one standard deviation. 54 Tactile images and 9 photos used during
training. A single photo and up to 20 tactile images (touches) used during testing. The
fusion model outperforms both modalities in all cases.

ferent photographic viewpoints (for a total of 60 trials). The reported accuracy

is the mean proportion of correct class predictions over these 60 trials (base-

line random accuracy 1
10

). Fig 6-7 shows mean accuracy for class recognition,

as more and more touches are used at test time. Both in the case of unaltered

and blotched images, the sensor fusion model outperforms each modality alone

significantly. Fig 6-8 shows the confusion matrix for each one of the 60 objects’

predicted class, demonstrating clear gains by using the fusion model.

4.2 Experiment 2: Instance Recognition

In this experiment, the aim was to correctly label a previously seen/touched ob-

ject, considering there are very similar objects in the database. During training,

36 of the 40 photos and 54 tactile images of each object were used. Thus, the

prior probability for each object label, P (C), was assumed uniform and set to
1
60

. During testing, 1 of the remaining 4 photos and between 1 and 20 of the re-

maining 36 tactile images of each object were used to compute the posterior label

probabilities, according to equation (6.6). 60 such randomised training/testing

splits were run. The reported accuracy is the mean correct object instance predic-

tions over these 60 trials (baseline random accuracy 1
60

). Fig. 6-9 shows accuracy

for class recognition, as more and more touches are used at test time. Both in

the case of unaltered and blotched images, the sensor fusion model outperforms
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Figure 6-8: Confusion matrix for class recognition of un-
seen objects. Each row represents the true identity of the
object (grouped by class, 6 of each) and each column rep-
resents the predicted class for it. Using Vision-only (top),
Touch-only (middle), and the fusion model (PVPT, bottom).
Comparison between unaltered photos (left) and “blotched”
photos (right). Individual object names removed for clar-
ity. In both contexts, the fusion model reduces uncertainty
for most classes.
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Figure 6-9: Instance recognition (known objects) accuracy over 60 trials, as more
touches are used at test time, using complete photos (left) and “blotched” photos (right).
The bars represent one standard deviation. 54 Tactile images and 9 photos used during
training. A single photo and up to 20 tactile images (touches) used during testing. The
sensor fusion model outperforms vision and touch.

each modality alone significantly. The confusion matrices for each one of the 60

objects’ predicted label are shown in Fig. 6-10 (unaltered photos) and Fig. 6-11

(blotched photos). In all cases, most of the confusion happens within-class and

between full and empty bottles.

5 Real-life Application: Underwater Object Class

Recognition

Underwater object class recognition is a topic of interest for the law enforce-

ment and defence departments. In order to assess the potential of our system

in real-life scenarios, this experiment aims to classify unseen objects (similarly

to experiment 1) when the object in question is submerged in murky water (See

Fig. 6-12). Training was performed using the “dry” database (VT-60, described

above). Testing was performed on 10 unseen objects (one from each class), which

were submerged in a tank of water mixed with soil. 30 photos and 30 tactile

readings were collected manually for each using a waterproof camera. Each test-

ing trial was performed on a randomly chosen photo and a subset of up to 10

randomly chosen tactile images for each one of these 10 objects. Fig. 6-13 shows

the mean accuracy (proportion of correctly classified objects), as more touches

are used at test time. The vision accuracy is notably lower than in the “dry”
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Figure 6-10: Confusion matrices showing the predicted in-
stance label for each one of the 60 objects in the database, us-
ing unaltered photos, after 5 touches. Most of the confusion
arises within-class (red squares for emphasis) and between
the full and empty versions of each bottle (top-left corner in
each matrix).
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Figure 6-11: Confusion matrices showing the predicted in-
stance label for each one of the 60 objects in the database,
using “blotched” photos, after 5 touches. Again, most of the
confusion arises within-class (red squares for emphasis) and
between the full and empty versions of each bottle (top-left
corner in each matrix). Touch is omitted as it identical to
Fig. 6-10 (middle)
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experiment, both using unaltered or “blotched” photos. Tactile classification

outperforms vision after 4 touches. The fusion model achieves higher accuracy

than either modality alone initially. After 7 touches, there is no significant im-

provements using the fusion model. Fig. 6-14 shows the confusion matrices after

5 touches, detailing how most of the confusion in tactile classification seems to

arise from a tendency towards predicting the soft toys class.

6 Discussion and Conclusions

In the first experiment (classification), both vision and touch struggle to differ-

entiate between empty and full bottles (the content is clear water), in fact full

bottles are the poorest performing class. The remarkable misclassification is that

pertaining to one of the balls (ball multicolouredanimal), which is consistently

classified as “soft toy” by touch, and presents ambiguity between “soft toy” and

“ball” for vision. The pliability of this ball is more on par of that of soft toys

in the database, whilst all other balls are much more stiff; furthermore, its mul-

ticoloured surface and imperfect roundness may be factors confusing the vision

system. In fact it is arguably a more accurate classification to label it as a soft

toy. The vision system, in general, performs poorly classifying balls, perhaps

due to their uniform images resulting in few SIFT descriptors. This confusion

is usually resolved by touch, with the exception of the two largest balls, which

are sometimes misclassified as boxes, which may be linked to their low curvature,

becoming indistinguishable from a flat surface.

One noticeable exception is ball yellowbeachball, which vision classifies con-

fidently as a ball, yet touch classifies it as a box (perhaps due to its large size,

it may appear similar to the flatness of boxes), to the point that it confuses the

fusion model sufficiently away from the correct class label.

The second experiment demonstrates the ability of the system to perform

traditional object recognition for a large database, even when several objects are

similar (belong to the same class). The confusion matrices in Fig. 6-10 and Fig.

6-11 show that confusion mostly arises within-class and between bottles (there is

almost no distinction between empty and full bottles). In most cases, the sensor

fusion reduces uncertainty, as evidenced also by the mean accuracy, shown in Fig.

6-9.

The underwater experiment is a demonstration of the potential practical appli-

cations of this approach, attempting to classify unseen objects. Vision is here ac-
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Tactile Sensor

Object

Muddy Water

Camera

Figure 6-12: Photos and tactile reading procedure diagram of an object submerged in
muddy water. Both tactile readings and photos were collected manually.
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Figure 6-13: Mean accuracy of classification for objects submerged in muddy wa-
ter, compared to the number of touches used at test time, over 300 trials (distinct
photo+touches combinations). The bars represent one standard deviation. Sensor fu-
sion provides higher accuracy in most cases.

Figure 6-14: Confusion matrix for objects submerged in muddy water, after 5 touches
used at test time, over 300 trials (distinct photo+touches combinations).
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tually impaired by the presence of water, debris and mud, which results in a very

low base visual recognition accuracy (0.27). Tactile accuracy is also marginally

lower than in the “dry” experiment. The confusion matrix (Fig. 6-14) shows

a tendency to classify objects as “soft toys” as a main source of uncertainty,

this may be due to the irregular pressure applied during data collection (since

it was manual). Even under these unfavourable conditions, at all points, the

multi-modal fusion system outperforms individual modalities.

In all experiments, distinction between empty bottles and those full of water

proves particularly difficult (in the underwater experiment, no credible discern-

ment was achieved by either vision, touch or the fusion model).

Visuo-tactile object class and instance recognition were shown to achieve high

accuracy using an inexpensive tactile sensor and a simple Bayesian sensor fusion

model. This is the first time class recognition is attempted using individual

touches and visuo-tactile fusion. The model demonstrates the advantages of

multi-modal object representation in both contexts. The underwater experiment

results should be considered as preliminary, as only one object per class was

tested. It serves as a proof-of-concept, highlighting the potential of the approach,

and it warrants further research. The database is made available with this paper

so further attempts may improve on these results.

Future work will compare this probabilistic model to discriminative and gen-

erative neural models (such as deep learning). There is scope to improve the

underwater experiment by extending the model to consider the context as a fac-

tor to be identified, or perhaps by using domain adaptation [9].
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6.5 Further Results: visuo-tactile object classi-

fication with deep-learning computer vision

The previous section established the gains to be made by using visuo-tactile

sensor fusion in terms of accuracy of recognition and classification. The visual

model employed was sufficient for the specific context and question, but was by

no means a state-of-the-art vision system. Therefore the question arises, is the

visuo-tactile fusion model beneficial even for the best vision models available

today?

To date, deep learning models consistently achieve the highest scores in var-

ious well-known competitions (e.g. [50]). Of those publicly available, the choice

made here was to use VGG16 [76] as it achieves very high scores in image clas-

sification, it is simple enough to be usable in consumer-grade GPUs (NVIDIA

GTX 765M), and is readily deployable with the Keras high-level interface libraries

[19]. Training the complete net (from random initial weights) would require vast

amounts of computing power, memory and data. A simpler approach is to fix

most layers of the net (thus using them as a feature extractor). Two alternatives

are then possible: either fine-tune (initialise to the pre-trained weights and allow

for small changes) the topmost N layers with new data or to train a classifier net

on top of the last convolutional layer. The first option is suitable for fine-grained

recognition (e.g. learning to distinguish between subspecies of fish) and requires

a larger amount of data than it is available in this context. The aim here is not

to perform fine-grained recognition but to deploy a classifier that can rapidly

learn to distinguish between fairly distinct classes from few samples. The second

option is therefore chosen.

The version of VGG used was obtained already pre-trained on the Imagenet

data set [100], as available in the Keras software library [19]. All except the top

fully connected layers of the model were kept and fixed, and three dense layers

were stacked on top: 256, 32, and 10 units respectively, all fully connected, using

regularised linear activation for the first two, and softmax activation for the final

layer (See Fig. 6-15). Training was performed using the Adadelta optimiser [131].

For the purposes of sensor fusion, the net’s final layer (a softmax layer) units’

responses were interpreted as the posterior probability for each class. Training

and testing were performed using the same procedure as described in the previous

sections: multiple 50/10 object data splits, and computing the average accuracy

of classification.
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_________________________________________________________________
Layer (type)             Output Shape          Param #   Trainable
=================================================================
input_1 (InputLayer)     (None, 224, 224, 3)   0 No
_________________________________________________________________
block1_conv1 (Conv2D)    (None, 224, 224, 64)  1792 No  
_________________________________________________________________
block1_conv2 (Conv2D)    (None, 224, 224, 64)  36928 No  
_________________________________________________________________
block1_pool (MaxPooling2D) (None, 112, 112, 64)  0 No     
_________________________________________________________________
block2_conv1 (Conv2D)    (None, 112, 112, 128) 73856 No  
_________________________________________________________________
block2_conv2 (Conv2D)    (None, 112, 112, 128) 147584 No    
_________________________________________________________________
block2_pool (MaxPooling2D)   (None, 56, 56, 128)   0 No   
_________________________________________________________________
block3_conv1 (Conv2D)    (None, 56, 56, 256)   295168 No    
_________________________________________________________________
block3_conv2 (Conv2D)    (None, 56, 56, 256)   590080  No  
_________________________________________________________________
block3_conv3 (Conv2D)    (None, 56, 56, 256)   590080 No   
_________________________________________________________________
block3_pool (MaxPooling2D) (None, 28, 28, 256)   0        No  
_________________________________________________________________
block4_conv1 (Conv2D)    (None, 28, 28, 512)   1180160   No
_________________________________________________________________
block4_conv2 (Conv2D)    (None, 28, 28, 512)   2359808   No
_________________________________________________________________
block4_conv3 (Conv2D)    (None, 28, 28, 512)   2359808   No
_________________________________________________________________
block4_pool (MaxPooling2D) (None, 14, 14, 512)   0     No
_________________________________________________________________
block5_conv1 (Conv2D)    (None, 14, 14, 512)   2359808   No
_________________________________________________________________
block5_conv2 (Conv2D)    (None, 14, 14, 512)   2359808   No
_________________________________________________________________
block5_conv3 (Conv2D)    (None, 14, 14, 512)   2359808   No
_________________________________________________________________
block5_pool (MaxPooling2D) (None, 7, 7, 512)     0     No
_________________________________________________________________
flatten (Flatten)        (None, 25088)         0     No
_________________________________________________________________
fc1 (Dense)              (None, 256)          6422784 Yes
_________________________________________________________________
do1 (Dropout, 0.25)              (None, 256)       0 Yes
_________________________________________________________________
fc2 (Dropout, 0.25)              (None, 32)          8224 Yes
_________________________________________________________________
do2 (Dropout, 0.25)              (None, 32)       0 Yes
_________________________________________________________________
predictions (Dense)      (None, 10)          330    Yes
=================================================================
Total params: 21,146,026
Trainable params: 6,431,338
Non-trainable params: 14,714,688
_________________________________________________________________

Figure 6-15: Architecture of the deep net used for vision classification.
The base net used was VGG16, pretrained on Imagenet. The last 3 layers
of VGG-16 were removed and replaced by custom layers (‘fc1’, ‘fc2’, and
‘predictions’).
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Unaltered No touches 1 touch 3 touches 5 touches 10 touches 15 touches 20 touches

Touch-only - 0.27 0.41 0.48 0.59 0.65 0.68
BoW 0.62 0.65 0.73 0.76 0.81 0.84 0.84
VGG16-40 0.95 0.96 0.95 0.95 0.95 0.95 0.96
VGG16-20 0.88 0.87 0.88 0.89 0.91 0.91 0.91
VGG16-10 0.85 0.84 0.85 0.86 0.88 0.89 0.89
VGG16-5 0.71 0.76 0.77 0.78 0.79 0.81 0.82

Table 6.1: A comparison of mean accuracies between Touch-only, pure vision using
the Bag-of-Words model presented in Chapter 5 (Vision BoW), and pure vision using a
fine-tuned deep neural net (VGG16-xx), where the suffix indicates the number of photos
used during training, starting with 40 (VGG16-40), the same as the BoW model, and
down to 5 (VGG16-5). Columns 2-7 represent the accuracies using the sensor fusion
model presented in this chapter, with more and more touches allowed during test time.

Blotched No touches 1 touch 3 touches 5 touches 10 touches 15 touches 20 touches

Touch-only - 0.27 0.41 0.48 0.59 0.65 0.68
BoW 0.47 0.55 0.63 0.67 0.75 0.77 0.77
VGG16-40 0.69 0.72 0.74 0.76 0.78 0.80 0.81
VGG16-20 0.52 0.57 0.61 0.65 0.70 0.74 0.76
VGG16-10 0.45 0.48 0.55 0.58 0.63 0.66 0.66
VGG16-5 0.40 0.48 0.55 0.59 0.66 0.71 0.73

Table 6.2: A comparison of mean accuracies between Touch-only, pure vision using
the Bag-of-Words model presented in Chapter 5 (BoW), and pure vision using a fine-
tuned deep neural net (VGG16-xx), where the suffix indicates the number of photos used
during training, starting with 40 (VGG16-40), the same as the BoW model, and down
to 5 (VGG16-5). Columns 2-7 represent the accuracies using the sensor fusion model
presented in this chapter, with more and more touches allowed during test time.

Allowing all 40 photos of each object to be used for training resulted in almost-

perfect accuracy, and was not informative. Therefore, the same experiment was

run, reducing the number of photos used during training. The resulting accuracies

are shown in Table 6.1 for unaltered photos and Table 6.2 for blotched photos.

In the case of unaltered photos (Table 6.1), the deep vision based model

outperforms the basic visual model used in the previous chapters (Vision BoW)

easily even with only 5 photos for training, obtaining an accuracy of 0.71 (bottom

row). In the case of blotched photos (Table 6.2), the deep vision model requires 20

photos at training to beat the BoW model. The deep vision model is performing

noticeably well, as expected.

In terms of the fusion model as applied to the deep vision model, in most

cases, it provides gains. For unaltered photos (Table 6.1), all versions of the

vision model are further improved by the fusion model. The most improved was
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VGG16-5, which presents an error reduction of between 16% and 38% (1 to 20

touches). The notable exception is VGG16-40, whose accuracies are already so

high (0.95) that improvement is difficult. In fact, it is significant that no accuracy

drops are recorded, as there could have been a ‘confusion’ effect if the touch model

was performing particularly poorly. This may be due to the fact that deep nets

are trained with categorical ‘one-hot’ encoding for the output leading to high

certainty for clear classifications. In fact, over 95% of activations of the output

layer for VGG16-40 using unaltered images for correct classifications are within

10−4 of 1, suggesting that the net is producing high certainty predictions (close to

1 probability for the predicted class and close to 0 for all others). Furthermore,

approximately two-thirds of the activations of incorrect classifications are also

virtually 1, making it impossible for the posterior product fusion model to correct

the final prediction. The deep net is overconfident in its predictions.

For blotched photos (Table 6.2), the deep vision model does not perform so

well to begin with (0.69 using 40 training photos), and here the improvements

of the fusion model are much more marked, reducing error by 13-55% (1 to 20

touches) for VGG16-5, and by 10-39% (1 to 20 touches) for VGG16-40.

To conclude, the fusion model is again providing clear gains in accuracy, even

for a powerful deep-learning vision system, and these are most notable when

images are “blotched”.
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Discussion and conclusions

7.1 Hypothesis testing and contributions

Recall that the hypotheses of this thesis (see Section 1.1) read:

1. Non-grasping tactile object classification is feasible with a simple, low cost

tactile sensor.

2. A simple probabilistic graphical model for the integration of tactile and

visual robotic perception is likely to yield higher accuracy object instance

recognition and object classification than either modality alone.

In attempting to address hypothesis 1, a number of experiments were con-

ducted using a novel, open-source, low-cost, optics-based tactile sensor. Using

individual touching contacts (non-grasping), data were collected initially about

tactile shapes (flat, edge, etc.) and then about objects. For the first time in

the literature, such an approach produced significant object classification results

(correctly recognising a new mug, for example, when said mug was not in the

training set, while other mugs were).

In attempting to address hypothesis 2, three competing fusion models were

compared: a basic heuristic, a model from the literature and a proposed model

based on a probabilistic approach. Initially (Chapter 5) object recognition was

attempted using a small data set, on which the superiority of the proposed prob-

abilistic model was established. During this stage, all three models produced

higher accuracy when combining modalities than using each modality alone. The

chosen probabilistic model was then tested on a larger, more challenging data set

both for instance recognition and classification. Once again, accuracy of recog-
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nition was higher for the fusion model than for either modality alone, even in a

test scenario involving objects submerged in dirty waters. Similar results were ob-

tained when the simple vision model was replaced with an advanced deep-learning

vision model, adapted to produce an output that can be used as a probability

distribution over classes.

As a summary, the contributions reported in this thesis are:

• the design and construction of a novel, low-cost tactile sensor based on the

image of the shading pattern of the deformation of a rubber membrane,

• the invention of a tactile object recognition system based on Zernike features

using said sensor,

• the publication of the largest visuo-tactile household object database to

date,

• the first example of tactile and visuo-tactile object classification, using a

simple fusion model based on the assumption of conditional independence

of sensory data, given a label,

• the demonstration of potential for underwater object classification, and

• the demonstration of the fusion model using deep learning based machine

vision.

7.2 Discussion

Technological challenges regarding the replication of the TacTip sensor and the

failure to reproduce the fine papillae in this attempt resulted in the creation of a

simpler, cheaper, tactile sensor, which was named the “BathTip”. The sensor’s

simplicity was not a barrier to its potential, as was demonstrated in the various

experiments outlined in this thesis. Its capability for simple shape recognition

was demonstrated in Chapter 3. The basic tactile sensations proposed (nothing,

flat, edge, flat-to-edge, corner, cylinder) are arbitrary, but the clear clustering

demonstrated and the high classification scores achieved showed the sensor had

potential for shape discrimination on a par (or surpassing) the TacTip itself.

This was sufficient evidence to adopt the use of Zernike-PCA features for the

subsequent stages of the project.
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The tactile object recognition model, introduced in Chapter 4, builds on the

initial findings by using Zernike features and PCA to transform each tactile image

into a vector of 20 numbers. The representation of an object is considerably more

complex than the representation of shapes, as it must combine multiple such

vectors at once. The solution proposed was using a likelihood function based on

a sum of Gaussians, a simple Bayesian approach and Maximum-a-Posteriori, to

recognise objects. The paper reported the highest-to-date non-grasping tactile

accuracy for recognition for a small set of household objects. Given the disparity

between experimental setups, it cannot be claimed that the system is generally

superior to other works compared, as the objects are different. This is a common

problem in the field of tactile recognition, since data collection is expensive and

the data formats are intrinsically linked to the sensors used, so data collection

cannot be crowd-sourced. It is not uncommon to see data sets of between 5 and

20 objects, orders of magnitude smaller than their counterparts in machine vision.

This thesis is a first effort in providing larger data sets to the community, but

other attempts are ongoing [14], and a large dataset for fabrics has been recently

been made available [?].

The tactile model was then extended to incorporate vision, providing a full

sensor fusion system. The vision model chosen combined histograms of SIFT/SURF

features with an SVM (implementing a pipeline similar to [28]), which is simple

and not claiming to be state-of-the-art. Indeed the data sets used are too small

for the world of machine vision and would be overwhelmed by powerful vision

systems. On occasions, the simple vision system deployed needed to be impaired

by introducing artificial “blotches” (occlusion of parts of the image by using black

blobs, emulating visual impairment) so it would not dominate. The fusion model

was based on the assumption that the visual and tactile data observations are

conditionally independent, given an object identity/class. It was then shown that,

in practice, in order to predict an object identity/class, it suffices to maximise a

product of modality posterior probabilities (Chapter 5, or a product of the visual

posterior and the tactile likelihood (6). A comparison was drawn between this

proposed method and two others: a heuristic method which simply calculated

a weighted average of the probabilities of each object for vision and touch, and

a concatenation method combined with a weighted nearest neighbour classifier

(similar to the work in [127]). The proposed model obtained the best highest

accuracy. The paper validated the choice of the proposed probabilistic model,

warranting its continued use in the next stage of the project.
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The tactile model was then shown (Chapter 6) to be able to scale to larger

databases and was the first example of tactile classification reported in the liter-

ature, and the fusion model was the first example of visuo-tactile classification.

The confusion matrices shown give a clear idea that even for the most challenging

of problems (such as distinguishing between empty and full bottles), there were

accuracy gains made by the multi-modal approach. The only scenario where the

fusion model did not provide a significant improvement was when attempting

recognition (i.e. correctly identifying one in 60 objects) with impaired vision (i.e.

“blotched images”). Since the blotches are placed at random locations and are

required to cover 20% of the pixels, it may very well be impossible in some cases

to discern the object at all. Vision performs so poorly in some cases, that tactile

input is likely the only true discerning factor, so their combination is not superior.

A source of error may be the overconfidence of the individual modalities,

i.e. predicting erroneous labels with high probability and giving vanishingly low

probabilities to the correct label. Recall that class prediction can be performed

by maximising the product of the posterior probabilities for vision and touch (see

Chapter 5). Therefore, probabilities close to zero are problematic as the product

will tend to vanish. Fig. 7-1 shows three key examples of predictions from each

modality, using unaltered photos, that may illustrate this point.

In the case of the empty bottle, neither vision nor touch produce an accurate

prediction, mostly due to the confusion with the similar class ‘bottle empty’.

However, the fusion model predicts the class correctly. Notice that in this exam-

ple, touch is producing something close to a uniform posterior (low certainty),

while vision is mostly undecided as to whether it is an empty bottle or a full

bottle. In the case of the orange (‘ball’), the high confidence produced by the

vision model is insufficient to lead to a correct result in the fusion prediction.

The touch model is clearly overconfident in the subset of erroneous predictions

(‘box’, ‘bowl’, ‘can’). However, vision is partly to blame, since it is assigning a

non-trivial probability to the ‘bowl’ class. In the case of the teddy bear (‘soft

toy’), the tactile system has the correct prediction (even after only one contact),

but high uncertainty. Therefore, the overconfidence of the vision system (a com-

bination of a high probability for ‘bottle full’ and a low probability for ‘soft toy’)

results in an inaccurate prediction overall.

Considering potential applications of the multi-modal classification approach,

and following the success of recent work in underwater tactile recognition of

objects given their 3D models [1], the system was tested and shown capable of
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Figure 7-1: Three significant examples of class predictions for objects in the VT-
60 database. An empty bottle (top) is correctly classified by the fusion model, despite
incorrect labels from both modalities. An orange (middle) is incorrectly classified by
the fusion model, despite it being correctly classified by vision. A soft toy (bottom) is
incorrectly classified by the fusion model, despite being correctly classified by touch.
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classifying 10 new objects which were submerged in murky water, providing a

proof-of-concept for a potential practical application of the technology. However,

as the data set was small, this should be considered preliminary only.

Further tests conducted on the data set using an adapted deep neural net

(VGG16) showed (see Section 6.5) the sensor fusion model can provide gains in

accuracy even for these advanced technologies. These gains were most marked

for the worst performing versions of the deep net, possibly highlighting some

limitations of interpreting soft-max layers as probability distributions, if one-hot

encoding is used for training, as the neural net was often overconfident in its

predictions, even for erroneous classifications. Various alternative architectures

are available for image classification, and a coverage of all their merits goes beyond

the scope of this project, the reader is referred to the review by Schmidhuber et

al. [103] for further information. As shown in Table 6.1, the chosen architecture

was able to classify objects with accuracies of 0.71 with only 5 photos used during

training, remarkably superior to the simple visual model used in Chapters 5 and

6. The significant result here is that, even for this advanced machine vision

method, the fusion model proposed shows gains in accuracy.

7.3 Conclusion

Experiments reported in Chapters 3-6 show that an inexpensive, simple tactile

sensor is indeed capable of performing non-grasping tactile shape recognition,

object instance recognition, and object classification in small and medium sized

data sets. The fusion model designed surpasses a baseline heuristic model and

the only other comparable approach found in the literature [127] for this data

set. It also consistently attains a higher accuracy of recognition and classification

than either vision or touch alone, as supported by numerous experiments reported

in Chapters 5-6. Chapter 6 provides evidence of accuracy gains even when the

vision model used is an advanced deep learning net.

In addition to the above, the results discussed in Chapter 5 suggest in cer-

tain circumstances (when both vision and touch perform poorly independently),

learning efficiency is also higher. That is, the number of training samples re-

quired to obtain a similar accuracy is, overall, smaller. Chapters 5 and 6 provide

evidence to conclude that the sensor fusion model provides the highest gains in

accuracy when neither modality dominates.

Overall, visuo-tactile integration is considered to be a promising prospect
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for object representation in robotics, in particular with regards to robustness

to sensor failure or underperformance. If robots are to operate in a manner

that is resilient to these challenges, multi-modal representations are, I conclude,

fundamental. It is my hope that this thesis: the database published, the sensor

and the model formulations provide a step in this direction.

7.4 Limitations and further work

The strengths outlined above should be put in context, and the limitations of

each contribution must be understood to assess the significance of this work and

the potential for further research:

• The sensor size is relatively large, making it unsuitable for mounting on

humanoid hands, for example. Further work could explore opportunities

for miniaturisation, such as was the case for the TacTip [125].

• Details of parts, materials, structure and components is given in full. How-

ever testing pertaining sensor drift or robustness to third factors such as

lighting and varied pressure profiles was not performed. Further work could

explore ways of extracting force vectors from the deformation shading pat-

tern. One possibility would be to aim to reconstruct the 3D shape of the

rubber membrane, as was done by Ferrier et al. [37].

• The conclusions reached here are limited to the given context (household

objects, BathTip sensor, controlled conditions), further work should focus

on extending them to other sensors and conditions, and/or to a general case,

whensoever a more unified approach to robotic tactile sensing is reached.

• Scalability to very large data sets: the tactile model requires maintaining in

memory a small vector (of dimensionality 20) for each tactile contact made

with each known object, amounting to approximately 6Kb per object).

Object label inference, as described in Chapter 4, requires an entire pass

over all known data samples. This may be prohibitive for large-scale data

sets. Since tactile data collection was time-expensive, no attempt was made

to optimise the model for efficiency.

• Limited scope of the vision models: the first visual model employed here is

relatively simple compared to the large number of approaches in the field.
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7.4. Limitations and further work

The conclusions reached should not be interpreted as furthering the field

of machine vision, but instead as testing the potential of machine touch

and machine visuo-tactile sensing. The deep learning approach considered

is one of many possibilities and therefore the conclusions cannot generalise.

Further work could explore if gains can also be made over state-of-the-art

machine vision approaches in general, including the most powerful neu-

ral nets [50], or deformable part models [36]. A completely probabilistic

approach would also be of interest, perhaps using Gaussian Processes [96].

• Only one exploratory procedure used. According to Lederman el at. [70],

humans use six types of interactions with objects when learning their haptic

properties (press, stroke, static contact, enclosure/grasping, weighing, con-

tour following). In this study, only static contact was used. There remains

much work to be done with regards to dynamic tactile responses, which

should be considered for further work.
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