6,293 research outputs found

    Automatic linguistic reporting of customer activity patterns in open malls

    Get PDF
    In this work, we present a complete system to produce an automatic linguistic reporting about the customer activity patterns inside open malls, a mixed distribution of classical malls joined with the shops on the street. These reports can assist to design marketing campaigns by means of identifying the best places to catch the attention of customers. Activity patterns are estimated with process mining techniques and the key information of localization. Localization is obtained with a parallelized solution based on WiFi fingerprint system to speed up the solution. In agreement with the best practices for human evaluation of natural language generation systems, the linguistic quality of the generated report was evaluated by 41 experts who filled in an online questionnaire. Results are encouraging, since the average global score of the linguistic quality dimension is 6.17 (0.76 of standard deviation) in a 7-point Likert scale. This expresses a high degree of satisfaction of the generated reports and validates the adequacy of automatic natural language textual reports as a complementary tool to process model visualization. © 2021, The Author(s)

    Person monitoring with Bluetooth tracking

    Get PDF

    A Machine Learning Approach to Indoor Localization Data Mining

    Get PDF
    Indoor positioning systems are increasingly commonplace in various environments and produce large quantities of data. They are used in industrial applications, robotics, asset and employee tracking just to name a few use cases. The growing amount of data and the accelerating progress of machine learning opens up many new possibilities for analyzing this data in ways that were not conceivable or relevant before. This paper introduces connected concepts and implementations to answer question how this data can be utilized. Data gathered in this thesis originates from an indoor positioning system deployed in retail environment, but the discussed methods can be applied generally. The issue will be approached by first introducing the concept of machine learning and more generally, artificial intelligence, and how they work on a general level. A deeper dive is done to subfields and algorithms that are relevant to the data mining task at hand. Indoor positioning system basics are also shortly discussed to create a base understanding on the realistic capabilities and constraints that these kinds of systems encase. These methods and previous knowledge from literature are put to test with the freshly gathered data. An algorithm based on existing example from literature was tested and improved upon with the new data. A novel method to cluster and classify movement patterns was introduced, utilizing deep learning to create embedded representations of the trajectories in a more complex learning pipeline. This type of learning is often referred to as deep clustering. The results are promising and both of the methods produce useful high level representations of the complex dataset that can help a human operator to discern the relevant patterns from raw data and to be used as an input for subsequent supervised and unsupervised learning steps. Several factors related to optimizing the learning pipeline, such as regularization were also researched and the results presented as visualizations. The research found that pipeline consisting of CNN-autoencoder followed by a classic clustering algorithm such as DBSCAN produces useful results in the form of trajectory clusters. Regularization such as L1 regression improves this performance. The research done in this paper presents useful algorithms for processing raw, noisy localization data from indoor environments that can be used for further implementations in both industrial applications and academia

    The Evolution of Corporate Location Planning: A Survey Approach

    Get PDF
    The unprecedented growth of big data has provided opportunities for the enhancement of retail location decision-making (RLDM) activities. Through a survey of Canadian retail location decision makers, this study examines the current state and progress in: (1) the type and scale of location decisions that retail firms undertake; and (2) the availability and use of geospatial big data and analytics within the decision-making process. The study finds significant increases in the usage of geospatial big data and analytics within corporate location planning. RLDM approaches have expanded to include new data sources, such as social media and mobile location data. With technology redefining consumption behaviors, the retail sector is looking to better understand how best to serve consumers in a market experiencing significant changes to the ways consumers shop. With granular level data being integrated into RLDM a skills gap is emerging in terms of handling and analyzing geospatial big data

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Augmented Reality in Smart Cities: A Multimedia Approach

    Get PDF
    Intro: This paper presents an advance overview of utilizing Augmented Reality (AR) in smart cities. Although, Smart cities contain six major aspects (mobility, economy, government, environment, living, and people), this paper focuses on three of them that have more potentiality in using virtual assistant (mobility, environment, and living). Methodology: Presenting a state-of-the-art review studies undertake between 2013 and 2017, which is driven from highlighted libraries is the aim of this research. After exact examine, 15 emphasized studies are chosen to divide the main aspects while 120 selective articles are supporting them. These categorizes have been critically compared with an aim, method and chronological perspectives. Results: First of All, Environmental issues (Museums industry) attract the most attention of researchers while the living issues (maintenance) have lower significant compare t latter and mobility (indoor-outdoor navigation) attract the least. Moreover, a close connection between academic and industry fields is going to be created. Conclusions: it has been concluded that, because of economic advantages, utilizing AR technology has improved in the tourism and maintenance. Moreover, until now, most of studies try to prove their concept rather than illustrate well stablished analytic approach. Because of hardware and software improvement, it is essential for the future studies to evaluate their hypothesis in a real urban context

    Senseable Spaces: from a theoretical perspective to the application in augmented environments

    Get PDF
    openGrazie all’ enorme diffusione di dispositivi senzienti nella vita di tutti i giorni, nell’ ultimo decennio abbiamo assistito ad un cambio definitivo nel modo in cui gli utenti interagiscono con lo spazio circostante. Viene coniato il termine Spazio Sensibile, per descrivere quegli spazi in grado di fornire servizi contestuali agli utenti, misurando e analizzando le dinamiche che in esso avvengono, e di reagire conseguentemente a questo continuo flusso di dati bidirezionale. La ricerca è stata condotta abbracciando diversi domini di applicazione, le cui singole esigenze hanno reso necessario testare il concetto di Spazi Sensibili in diverse declinazioni, mantenendo al centro della ricerca l’utente, con la duplice accezione di end-user e manager. Molteplici sono i contributi rispetto allo stato dell’ arte. Il concetto di Spazio Sensibile è stato calato nel settore dei Beni Culturali, degli Spazi Pubblici, delle Geosciences e del Retail. I casi studio nei musei e nella archeologia dimostrano come l’ utilizzo della Realtà Aumentata possa essere sfruttata di fronte a un dipinto o in outdoor per la visualizzazione di modelli complessi, In ambito urbano, il monitoraggio di dati generati dagli utenti ha consentito di capire le dinamiche di un evento di massa, durante il quale le stesse persone fruivano di servizi contestuali. Una innovativa applicazione di Realtà Aumentata è stata come servizio per facilitare l’ ispezione di fasce tampone lungo i fiumi, standardizzando flussi di dati e modelli provenienti da un Sistema Informativo Territoriale. Infine, un robusto sistema di indoor localization è stato istallato in ambiente retail, per scopi classificazione dei percorsi e per determinare le potenzialità di un punto vendita. La tesi è inoltre una dimostrazione di come Space Sensing e Geomatica siano discipline complementari: la geomatica consente di acquisire e misurare dati geo spaziali e spazio temporali a diversa scala, lo Space Sensing utilizza questi dati per fornire servizi all’ utente precisi e contestuali.Given the tremendous growth of ubiquitous services in our daily lives, during the last few decades we have witnessed a definitive change in the way users' experience their surroundings. At the current state of art, devices are able to sense the environment and users’ location, enabling them to experience improved digital services, creating synergistic loop between the use of the technology, and the use of the space itself. We coined the term Senseable Space, to define the kinds of spaces able to provide users with contextual services, to measure and analyse their dynamics and to react accordingly, in a seamless exchange of information. Following the paradigm of Senseable Spaces as the main thread, we selected a set of experiences carried out in different fields; central to this investigation there is of course the user, placed in the dual roles of end-user and manager. The main contribution of this thesis lies in the definition of this new paradigm, realized in the following domains: Cultural Heritage, Public Open Spaces, Geosciences and Retail. For the Cultural Heritage panorama, different pilot projects have been constructed from creating museum based installations to developing mobile applications for archaeological settings. Dealing with urban areas, app-based services are designed to facilitate the route finding in a urban park and to provide contextual information in a city festival. We also outlined a novel application to facilitate the on-site inspection by risk managers thanks to the use of Augmented Reality services. Finally, a robust indoor localization system has been developed, designed to ease customer profiling in the retail sector. The thesis also demonstrates how Space Sensing and Geomatics are complementary to one another, given the assumption that the branches of Geomatics cover all the different scales of data collection, whilst Space Sensing gives one the possibility to provide the services at the correct location, at the correct time.INGEGNERIA DELL'INFORMAZIONEembargoed_20181001Pierdicca, RobertoPierdicca, Robert

    Senseable Spaces: from a theoretical perspective to the application in augmented environments

    Get PDF
    Grazie all’ enorme diffusione di dispositivi senzienti nella vita di tutti i giorni, nell’ ultimo decennio abbiamo assistito ad un cambio definitivo nel modo in cui gli utenti interagiscono con lo spazio circostante. Viene coniato il termine Spazio Sensibile, per descrivere quegli spazi in grado di fornire servizi contestuali agli utenti, misurando e analizzando le dinamiche che in esso avvengono, e di reagire conseguentemente a questo continuo flusso di dati bidirezionale. La ricerca è stata condotta abbracciando diversi domini di applicazione, le cui singole esigenze hanno reso necessario testare il concetto di Spazi Sensibili in diverse declinazioni, mantenendo al centro della ricerca l’utente, con la duplice accezione di end-user e manager. Molteplici sono i contributi rispetto allo stato dell’ arte. Il concetto di Spazio Sensibile è stato calato nel settore dei Beni Culturali, degli Spazi Pubblici, delle Geosciences e del Retail. I casi studio nei musei e nella archeologia dimostrano come l’ utilizzo della Realtà Aumentata possa essere sfruttata di fronte a un dipinto o in outdoor per la visualizzazione di modelli complessi, In ambito urbano, il monitoraggio di dati generati dagli utenti ha consentito di capire le dinamiche di un evento di massa, durante il quale le stesse persone fruivano di servizi contestuali. Una innovativa applicazione di Realtà Aumentata è stata come servizio per facilitare l’ ispezione di fasce tampone lungo i fiumi, standardizzando flussi di dati e modelli provenienti da un Sistema Informativo Territoriale. Infine, un robusto sistema di indoor localization è stato istallato in ambiente retail, per scopi classificazione dei percorsi e per determinare le potenzialità di un punto vendita. La tesi è inoltre una dimostrazione di come Space Sensing e Geomatica siano discipline complementari: la geomatica consente di acquisire e misurare dati geo spaziali e spazio temporali a diversa scala, lo Space Sensing utilizza questi dati per fornire servizi all’ utente precisi e contestuali.Given the tremendous growth of ubiquitous services in our daily lives, during the last few decades we have witnessed a definitive change in the way users' experience their surroundings. At the current state of art, devices are able to sense the environment and users’ location, enabling them to experience improved digital services, creating synergistic loop between the use of the technology, and the use of the space itself. We coined the term Senseable Space, to define the kinds of spaces able to provide users with contextual services, to measure and analyse their dynamics and to react accordingly, in a seamless exchange of information. Following the paradigm of Senseable Spaces as the main thread, we selected a set of experiences carried out in different fields; central to this investigation there is of course the user, placed in the dual roles of end-user and manager. The main contribution of this thesis lies in the definition of this new paradigm, realized in the following domains: Cultural Heritage, Public Open Spaces, Geosciences and Retail. For the Cultural Heritage panorama, different pilot projects have been constructed from creating museum based installations to developing mobile applications for archaeological settings. Dealing with urban areas, app-based services are designed to facilitate the route finding in a urban park and to provide contextual information in a city festival. We also outlined a novel application to facilitate the on-site inspection by risk managers thanks to the use of Augmented Reality services. Finally, a robust indoor localization system has been developed, designed to ease customer profiling in the retail sector. The thesis also demonstrates how Space Sensing and Geomatics are complementary to one another, given the assumption that the branches of Geomatics cover all the different scales of data collection, whilst Space Sensing gives one the possibility to provide the services at the correct location, at the correct time

    Dandelion Diagram: Aggregating Positioning and Orientation Data in the Visualization of Classroom Proxemics

    Get PDF
    In the past two years, an emerging body of HCI work has been focused on classroom proxemics - how teachers divide time and attention over students in the different regions of the classroom. Tracking and visualizing this implicit yet relevant dimension of teaching can benefit both research and teacher professionalization. Prior work has proved the value of depicting teachers' whereabouts. Yet a major opportunity remains in the design of new, synthesized visualizations that help researchers and practitioners to gain more insights in the vast tracking data. We present Dandelion Diagram, a synthesized heatmap technique that combines both teachers' positioning and orientation (heading) data, and affords richer representations in addition to whereabouts - For example, teachers' attention pattern (which directions they were attending to), and their mobility pattern (i.e., trajectories in the classroom). Utilizing various classroom data from a field study, this paper illustrates the design and utility of Dandelion Diagram.Comment: To be published in CHI'20 Extended Abstracts (April 25-30, 2020), 8 pages, 4 figure
    corecore