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Abstract
In this work, we present a complete system to produce an automatic linguistic reporting
about the customer activity patterns inside open malls, a mixed distribution of classical malls
joined with the shops on the street. These reports can assist to design marketing campaigns
by means of identifying the best places to catch the attention of customers. Activity pat-
terns are estimated with process mining techniques and the key information of localization.
Localization is obtained with a parallelized solution based on WiFi fingerprint system to
speed up the solution. In agreement with the best practices for human evaluation of natural
language generation systems, the linguistic quality of the generated report was evaluated by
41 experts who filled in an online questionnaire. Results are encouraging, since the average
global score of the linguistic quality dimension is 6.17 (0.76 of standard deviation) in a 7-
point Likert scale. This expresses a high degree of satisfaction of the generated reports and
validates the adequacy of automatic natural language textual reports as a complementary
tool to process model visualization.

Keywords Social workflows · Localization · Data mining techniques ·
Parallelization strategies · Automatic linguistic reporting

1 Introduction

SOcial Workflows (SOW) coordinate the activities carried out by a group of users [15] who
either individually or in cooperation try to achieve a certain objective. The SOW are unstruc-
tured flows in which a large number of users carry out activities of a very diverse nature
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that they spread over time and typically consume few computing resources. An example of
processes that are modeled through these types of workflows are the marketing campaigns
that have the objective to motivate and persuade potential customers in the consumption
of a certain product or service. However, from a technological point of view, the charac-
teristics of the SOW are: (i) they model unstructured processes where users have multiple
options and/or paths, and where they can even carry out additional activities to those ini-
tially planned in the workflow; (ii) a large number of users; and (iii) depending on the
skill or motivation of each user, the same activity can be performed immediately or have a
temporary duration much higher (in the order of hours or even days).

These characteristics add a series of challenges when managing and monitoring the exe-
cution of SOW. On the one hand, the management of this type of workflow requires the
handling of a large number of simultaneous executions whose duration extends over time.
On the other hand, the analysis of the execution of the workflow requires the use of pro-
cess mining techniques [44] to obtain the real workflow followed by the users and, in this
way, understanding what really happens in the execution of the process, thereby allowing
the improvement of the process and its (dynamic) adaptation to the needs of users. How-
ever, for unstructured processes with a huge number of executions, the results of the current
process discovery algorithms are workflows that have a structure in spaghetti and therefore
very difficult, if not impossible, to interpret. Therefore, it is necessary to develop techniques
to extract valuable information about the discovered workflow. Furthermore, this informa-
tion should be conveyed to the users who will consume it in an understandable way. To
this aim, we combine in our reports both graphical information about the process as well as
automatically generated linguistic reports which summarize the relevant information about
the processes. This is the first axis around which pivots the project Business (Artificial)
Intelligence for Social Workflows (BAI4SOW).

Furthermore, the BAI4SOW project adds another dimension to the SOW: the activities
to be carried out by users take place in geographic locations (e.g., an open shopping center,
an area of tourist interest, an area where some activity is carried out or, in general, any area
of a city) and they are also geolocated activities that users carry out through mobile devices
(e.g., activities in a marketing campaign). Therefore, it is necessary to capture the events
related to the execution of this type of activities and, for this, it is required the development
of localization techniques and detection of the behavior of users in a given geographic area.
This is the second axis of the project BAI4SOW.

In addition, given the high number of users who can potentially participate in this type of
flow, is necessary to run the algorithms in grid computing, cluster, and cloud infrastructures,
minimizing the cost that this computation could have in business clouds like Amazon and
Google. This constitutes the third axis of the BAI4SOW project.

In this article, we present the complete system implemented in the project BAI4SOW,
which enhances the proposal made in [26]. This system consists of a localization system to
locate the customers and identify the activities that they are carrying out, and of the appli-
cation of process mining and natural language generation techniques to this information
in order to analyze the behavior of the customers to extract insights and linguistic reports
from it. We present the results obtained in BAI4SOW project, whose objective is in the
development of both process mining algorithms for the analysis of SOW containing geolo-
cated activities, and automatic linguistic reports that can be helpful for marketing campaign
design.

The rest of this manuscript is organized as follows. Section 2 presents the main structure
of the BAI4SOW project and its framework. Then, the three main parts of the presented
framework are described: Section 3 introduces the localization system and its paralleliza-
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tion; Section 4 gives an overview of process mining and its application to this project; and
Section 5 describes the followed natural language generation approach. Finally, Section 7
presents the conclusions of the publication, and sketches some insights for future work.

2 BAI4SOWproject

The main objective of the BAI4SOW project is the development of intelligent techniques
for automatic extraction and analysis of user behavior in processes modeled through social
workflows. In particular, the target processes are those involving users moving around an
outdoor area and carrying out the activities of the social workflow through their mobile
devices. Figure 1 depicts the conceptual framework which is developed to achieve this
objective. It includes the following components:

– Localization and behavior detection algorithms. To analyze social workflows is neces-
sary to record the events generated by the activities that each user carries out. For each
instance of the process —an execution of the process from start to end—, a sequence
composed of these events is generated. In those processes involving users moving
around a geographic area, this activities’ model when a user arrives at a certain point
(to, for instance, make a purchase or take a photo), sits and moves inside an establish-
ment, etc. Therefore, it is mandatory to locate the users in the geographic area where
they are moving, as well as to detect users’ behavior of interest once they are in a
given location. To record the execution of these activities, a set of algorithms have been
developed using the information given by the users’ mobile devices such as the Global
Positioning System (GPS) and Wi-Fi signals sensors.

– Parallelization techniques. These techniques are used to design a technological infras-
tructure based on the integration of cloud resources that support the efficient and
large-scale processing of the algorithms developed during the project. This infrastruc-
ture facilitates making a decision on what computation and storage resources are more
appropriate for the execution of the algorithms.

– Process Mining Algorithms. This set of algorithms allow to automatically discover
the workflow —also referred to as process model— that has been actually executed
by the users and, also, to extract relevant information about the process such as: i)
frequent activity patterns, which indicate patterns of frequent user behavior; and ii)
the hierarchical organization of unstructured and spaghetti workflows, which ease the
visualization of the process reducing its complexity at different levels of abstraction.

– Natural Language Generation Techniques. This set of techniques take as input the
workflows and frequent activity patterns, as long as other analytics from the recorded
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Fig. 1 Conceptual framework of BAI4SOW project
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behavior, and automatically generate textual descriptions providing textual information
in natural language about their most relevant characteristics. This is an additional tool
for conveying information to users, complementary to the visualization of workflows.

The computational solution proposed in this project, which is depicted in Fig. 1, is mainly
deployed in a cloud-based architecture. The mobile devices record the WiFi signals from
the mall and send the data to the cloud-based localization system. This system processes
the data and produces the event log with the activities that each customer carried out. The
process mining and natural language generation algorithms, which are also deployed in a
cloud system, access the event log to work with it. Process mining techniques produce the
process model and the frequent activity patterns, and then the natural language generation
techniques create the linguistic report. All these outputs are generated in the cloud to be
accessible by an analyst from a client application, in order to analyze the behavior of the
customers.

It is worth noting that this conceptual framework is applicable to SOW containing activ-
ities related to the location and behavior of the users taking part in them. However, process
mining algorithms and parallelization techniques are directly applicable to any workflow in
general, and particularly to unstructured processes with many users taking part in them.

In the following sections we will describe the three main blocks of this analysis: i) the
implemented localization system, and its parallelization, to obtain the activities that the
users are carrying out; ii) the process mining techniques used to discover the behavior of
the customers; and iii) the natural language generation approaches applied to automatically
generate linguistic reports.

3 Localization system

In this project, we consider the customers’ behavior in the mall as a process, and the actions
they carry out as the activities of the process. In this context, an execution of the process is
the sequence of activities that a customer carries out in the mall, from the entrance to the
end. For this reason, in order to analyze the behavior of the customers, it is mandatory to
register the activities that they carry out while in the mall. This information is stored in what
is called an event log, which constitutes the foundation of process mining analyses (as we
will introduce in Section 4). For this reason, the process to locate the customers and identify
what are they doing is crucial, so it must be ubiquitous, accurate, and in real-time. This
section describes the localization system developed in this project and the parallelization
techniques applied to increase its efficiency.

3.1 IndoorWiFi-based system

Outdoor localization is usually obtained through the use of GPS but, unfortunately, it is
not suitable for indoor environments – such as the environment of this analysis – due to
the Non-Line-Of-Sight (NLOS) effect. To solve this issue, the proposed method uses a
fingerprint WiFi-based localization as a highly-available, no-installation, no-cost solution:
there are WiFi Access Points (APs) in almost every shop, almost every smartphone has a
WiFi interface and there is no need to be connected to WiFi networks to measure WiFi
signal, so it is free of charge even for private networks.

This kind of methods relies on a two-stage approach: (1) the training stage, when the
environment is divided into cells where real WiFi measurements are collected and stored
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to build the localization system; and (2) the localization stage, when new measurements
collected at an unknown location are compared with the stored ones to estimate the location
of the device.

Our localization system is based on the work proposed in [17]. It implements a method
to increase the localization resolution without the need of increasing the number of cells to
site-survey at the cost of a higher computational cost. Of course, real-time is a requirement
for our system, so we have implemented a new version using parallel techniques (as will be
explained in Section 3.2).

Figure 2 shows the general architecture of the system. As it can be seen, during the train-
ing stage a Support Vector Regresion (SVR) algorithm is used to extrapolate virtual WiFi
measurements at positions where no real samples were collected using the real collected
information from each existing WiFi AP. The trained localization system will be composed
of all these surfaces.

Then, during the localization stage, customers will collect new measurements in real-
time at their unknown locations. These new measurements will be compared with the values
stored in the corresponding surfaces to find their location inside the environment. This way,
the coordinates where the difference between the Received Signal Strength (RSS) from an
AP and the stored RSS for that coordinate is low will be marked with higher scores than the
coordinates with greater differences. Finally, the scores for each coordinate will be summed
up, to obtain a resulting surface where the coordinate with the highest score is the most
likely location of the customer.

In [17], this localization method was evaluated for determining the optimal size of cells
when it is applied in a medium-size indoor scenario (around 2.500 m2). The results proved
that 15 cm side cells are an efficient option using all the detected APs. With this config-
uration, and the size of the open mall (see Section 6), the execution time is 44.4 hours to
compute all the surfaces during the training stage and 325 seconds to determine the cur-
rent location of a customer. The experiments were conducted using a server with 8 Intel
i7-4790K CPUs at 4.00GHz, a local SSD disk, and 32GB of RAM. Obviously, these per-
formance results show the necessity of accelerating the training and location algorithms in
order to be used in large real scenarios.
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Fig. 2 General architecture of the WiFi-based indoor localization system [17]
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3.2 A parallel version of the location algorithms

In order to improve the performance of the previous process, new training and location algo-
rithms have been programmed using parallelization techniques. The goal is to reduce the
execution time of these algorithms in order to locate efficiently customers in a real scenario
in a suitable way. The new version is based on a master-worker architecture [3], which has
been developed to be deployed on a high-performance computing environment, specifically,
in a set of cloud computing resources with the flexibility to support the dimensions and
large-scale requirements of the scenario.

The master-worker architecture follows a high-level design pattern that facilitates the
parallel execution of applications composed of a set of independent tasks. The pattern con-
sists of two kinds of processes: a master, and a pool of workers. The former is responsible
for assigning tasks to workers and guaranteeing that all of them are correctly completed.
On the other hand, the workers execute the assigned tasks provided by the master. The cor-
rect execution of these tasks is monitored and coordinated by the master, which also checks
the termination status and the logs resulting from each process. If required, the master can
execute a task again or even reassign it to a different node for its completion.

The scenario of the problem depicted in this work requires a high level of flexibility when
dealing with computing resources. This architectural model is highly scalable by increasing
(or decreasing) the size of the pool of workers according to the execution requirements.
On the other hand, the master and the workers usually interact among themselves using
an asynchronous communication mechanism. Message brokers are usually used for this
purpose, demonstrating their adaptability and effectiveness in this model of architectural
solutions.

The parallelization of the algorithms is separated into two different stages. First, a generic
master-worker architecture has been developed in Java using RabbitMQ as the message
broker [29]. Then, the training and location algorithms have been split into a set of inde-
pendent tasks that can be executed in parallel using the master-worker implementation. The
process of creating a continuous reference surface as part of the training algorithm has
been programmed as independent tasks that can be computed from RSS measures. This
way, the generation of the different surfaces can be easily parallelized. The location algo-
rithm requires checking the sample of the customer’s unknown position against each of the
reference surfaces. Each of these checks has been also developed as an independent task.

Additionally, as part of the parallelization process, the MATLAB code used to create
and process the reference surfaces was refactored and programmed using Octave [25]. This
decision is based on economic criteria: the use of MATLAB in different cloud computing
resources requires locating a license configured for cloud for each node or deploying a
MATLAB Parallel Server, which represents an additional cost that would increase as the
execution requirements did as well [23].

The parallel implementation of the localization system and its deployment in the Ama-
zon cloud computing environment is depicted in Fig. 3. As shown, the system exposes
its functionality through two Web-based interfaces as REST APIs. This allows easy and
independent integration with the BAI4SOW applications.

On the one hand, the Surface Creation Service provides a set of operations to sub-
mit training measures and compute the corresponding continuous reference surfaces. The
master-worker version of the corresponding algorithm has been integrated into the logic of
the service and it has been deployed into the Amazon EC2 infrastructure [2]. As will be
detailed later, the flexibility of the master-worker architecture allows us to deploy the ser-
vice over different configurations of virtual instances (used for the execution of workers,

3374 Multimedia Tools and Applications (2022) 81:3369–3395



Fig. 3 Cloud-based implementation of the localization system

mainly). The results are then stored into the Surface database, which has been implemented
using the Amazon S3 service [1]. This allows us to guarantee a robust, reliable, and durable
data storage facility that can be easily scaled as well when required.

On the other hand, the Location Service offers the functionality to estimate users’ loca-
tion. The RSS samples measured by the user’s mobile are aggregated and sent to the service
as input. Then, this information is processed by the master-worker version of the location
algorithm, which checks them against the reference surfaces previously computed. This can
be done because the Amazon S3 data storage is used by both services through the S3 service
interface.

Output The result of this system (as depicted in Fig. 1) is the identification of the activities
the users carry out while in the mall, producing an event log such as the example shown in
Fig. 4a. This information, consisting in the name of the activity being executed, the identifi-
cation of the case —a visit of a customer, from the entrance to the end—, and the timestamp
in which each activity took place, is later used by process mining techniques in order to
perform the behavior analysis.

4 Process mining

With the explosion of process-related data, the behavioral analysis and study of real pro-
cesses have become more popular. Process mining is a research field offering techniques
to discover, monitor, and enhance real processes by extracting knowledge from event logs
recording information of the executed activities [43]. Through this analysis, we can under-
stand what is really happening in a process [42], and improve the process based on this
information.
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Fig. 4 Example of an event log, a trace, a process model and an activity pattern

In this way, we can exploit the process mining potential to study and validate the cus-
tomers’ behavior by taking the information obtained with the localization system explained
in Section 3. This section introduces some basic notions about the process mining field, and
describes the details of the process mining analysis performed in this paper.

4.1 Process discovery

Process discovery plays a dominant role in all the stages of the process mining lifecycle [43].
The starting point is usually an event log recording the execution of the activities in the
process, as formalized below.

Definition 1 (Event, Trace, and Event log) Given a set α ∈ A representing the activities
of a process, an event ε represents a particular execution of the activity, storing information
such as the start and end timestamps, the resource, cost, etc. A trace is a list (sequence)
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τ = 〈 ε1, ..., εn 〉 of events εi occurring at a time index i relative to the other events in τ .
Each trace corresponds to an execution of the process, i.e., a process instance. We define an
event log L = [τ1, ..., τm] as a multiset of traces τi .

Figure 4a shows an example of an event log depicting 20 events of 7 different traces
(trace 01 is depicted in Fig. 4d). With this information, process discovery techniques aim
to build a process model —i.e. a social workflow— depicting the relations between the
activities based on the behavior observed in the log.

Definition 2 (Process model) Given a set α ∈ A representing the activities of a process,
a process model is a tuple M = (N,E) where V ⊆ A

⋃{′Start ′,′ End ′} denotes the set
of nodes in the process model representing the activities in the process, plus two artificial
nodes to centralize the start and end of the process; and E ⊆ N ×N denotes the set of edges
representing a causal relation between two activities.

Figure 4b shows an example of a process model depicting the behavior recorded in the
event log in Fig. 4a. Discovering a good-quality and readable process model is crucial to
maximizing the analysis and improvement of the process in the next stages. Nevertheless, in
some scenarios where the executed activities of the process do not follow a clear structure,
the discovered process model might be too complex to be analyzed directly.

In these cases, post-processing techniques are used to extract as much information as
possible from the process. A common practice is to focus on the parts of the model that are
being executed more frequently, i.e., the frequent activity patterns.

Definition 3 (Activity pattern) Given an event log L and a process model M = (N,E), an
activity pattern P = (N ′, E′) where N ′ ⊆ N , and E′ ⊆ E, is a substructure of the process
model depicting part of its behavior —a subprocess.

Figure 4c depicts an example of an activity pattern of the event log and process model in
Fig. 4. Given a frequency threshold, an activity pattern is said to be frequent when observed
in a percentage of traces of the event log equal or higher than this threshold. For instance, for
an event log of 100 traces, and a frequency threshold of 65%, the frequent activity patterns
are those activity patterns observed in at least 65 traces. In this sense, the optimizations and
improvements can be done w.r.t. the parts that are happening more often.

4.2 Conformance checking

Another main stage of the process mining lifecycle is conformance checking. Conformance
checking takes action once both the event log – recording the observed behavior – and the
process model – either discovered or designed by hand – are available. The aim of con-
formance checking is to relate the events in the event log with the activities in the process
model, and compare them to detect commonalities and discrepancies between them [43].
This conformance analysis is useful to detect if reality, as recorded in the log, conforms
to the model and vice versa [44]. For instance, by applying conformance checking tech-
niques, a path designed in the process model not being observed in the event log can be
detected. This detection allows the managers to inspect why this expected behavior is not
being recorded, and act accordingly. Conversely, a conformance analysis can also detect a
path observed in the event log but not modeled by the process model. This phenomenon can
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hint at a deviation in the real behavior that might be undesired – and hence, corrected –, or
desired but unpredicted – and hence, added to the process model.

For instance, by applying conformance checking techniques to the process model
depicted in Fig. 4b, we can confirm that it represents properly the behavior observed in the
event log in Fig. 4a. The process model supports all the observed traces. Nevertheless, we
can also detect that the process model allows for behavior not observed in the event log,
e.g., the path 〈 Start, Go Cinema, Buy Shop 2, End 〉. As we can see, conformance
checking improves the information about the process that can be extracted with the process
model.

4.3 Process mining usage

As said before, for the context of this paper, we want to analyze the behavior of customers
in the mall. Thus, we consider as the process’ activities those activities that each user carries
out while in the mall. In this sense, each full interaction of a customer in the mall, from the
entrance to the end, represents a trace in the process. The event log consists of the collection
of traces recording the itineraries customers have performed in the mall.

We have used conformance checking techniques to validate the recorded data by the
smartphone application w.r.t. the ground truth. With the use of these techniques, a com-
parison of the ground truth process and the recorded data can be made, detecting existent
deviations if any. These deviations have been further analyzed to detect the reason behind
their existence.

We have used the tools provided by the InVerbis Analytics service [18] for process min-
ing and visualization. These tools let us visualize graphs generated with the ProDiGen [38]
algorithm to compute the process model depicting the customers’ behavior recorded by the
smartphone application and analyze it. ProDiGen is a genetic discovery algorithm1 search-
ing for complete, precise, and simple process models. Given an event log, ProDiGen first
computes a simple heuristics-based process model and applies mutation operations to create
the first population of the genetic procedure. Then, iteration by iteration, a new population
is created by applying crossover and mutation operations to some selected process models
from the previous population. This evolutionary procedure is repeated until a fixed num-
ber of populations is reached, or until a process model with enough quality is discovered.
The result of the evolutionary process is the process model with the best quality measures
among those created.

To further analyze the customers’ behavior, and to extract activity patterns being executed
frequently to focus on the most common behavior, we have used WoMine [5]. WoMine
is an algorithm to extract frequent activity patterns – i.e., subprocesses that are executed
frequently – from a process model, measuring their frequency in the instances of the log.
One of the advantages of WoMine is that it can detect activity patterns with all types of
structures: sequences, concurrency, choices, and loops. Furthermore, it can also ensure in
which traces the frequent activity pattern is being executed. Given an event log and a process
model, WoMine performs an a priori search starting with the activities of the process, and
expanding them by adding relations and other activities to form subprocesses. On each

1A genetic algorithm is a metaheuristic based on the natural selection process. The process of a genetic
algorithm starts with an initial population of individuals. Iteratively, some of the individuals in the current
population are selected to breed the next one by applying mutation and crossover operations to them. After a
fixed number of populations, the best quality individual is selected as the result.

3378 Multimedia Tools and Applications (2022) 81:3369–3395



iteration, the frequency of the computed subprocesses is calculated – using conformance
techniques – to retain only the frequent ones, and optimize in this way the search. As a
result, WoMine obtains the subprocesses of the process model with maximum size, ensuring
that they have been executed by a number of users higher than a predefined threshold.

Output One of the outputs of the multiple process mining analyses applied (as can be
seen in Fig. 1) is the process model depicting the behavior of the customers. This pro-
cess model is obtained by the discovery algorithm, and allows the analysts to inspect the
overall behavior of the customers. Furthermore, this process model is also used by other pro-
cess mining techniques to discover the frequent activity patterns —patterns of customers’
frequent behavior—, which constitutes the other output. In addition, these analyses also pro-
duce insights about the process such as the verification of the recorded activities, which is
obtained by applying conformance checking techniques, and the information given by the
process model and the frequent activity patterns.

5 Automatic linguistic reporting

In this section, we first introduce the field of Natural Language Generation (NLG). Then,
we go in depth regarding how to automatically produce linguistic reports in the application
context described in previous sections.

5.1 Revisiting NLG approaches

NLG [33] provides models and methods for generating insights on data through natural
language, producing textual descriptions that summarize the most relevant information of
the data that is described. Natural language is an effective way of conveying information to
humans because (1) it does not rely solely on the human capacity to identify or understand
visual patterns or trends and (2) it may include uncertain terms or expressions, which are
very effective for communication either alone or combined with other modalities [32].

Since the early developments in the 1980s, the complexity of NLG systems has notably
increased and there are now several techniques and methodologies which guide the build-
ing of these solutions [14]. Also, different sub-fields have emerged within this area, such
as generation of coherent texts from other texts, (interactive) dialog systems, computational
creativity, or Data-to-Text systems [33], where texts are generated from numerical or sym-
bolic data sets or series. Although the design of NLG systems is an open field, there exists
some consensus about the basic tasks that NLG systems perform, being the traditional
generic pipeline description in [34] the most commonly accepted. In general terms, the task
of converting some input data into an output text can be divided into the following three
sequential stages which convert step by step the (numerical) input data into natural language
texts (see Fig. 5):

– Text planning, where the information to be conveyed in the text is identified (content
determination), as well as some order and general structure of the text is planned.

– Sentence planning, which includes grouping of messages when needed (sentence aggre-
gation), and decisions about the words/expressions to be used (referring expressions
generation and/or lexicalization).

– Surface text realization, which consists of generating a syntactically, morphologically,
and orthographically correct text.
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Fig. 5 Generic NLG system pipeline as depicted in [34]

Among these traditional approaches, template-based systems merge (part of) the previ-
ously described stages, and directly map the non-linguistic input to the final surface text
realization. In [37] it is argued that, although template-based systems were initially deemed
as inferior to standard NLG systems (mostly in terms of maintainability, or variation) they
are able to perform all NLG tasks in a linguistically well-founded way. Furthermore, many
successful template-based systems deviate from the prototypical fill-in-the blank template
basic approaches, whilst there are examples of standard NLG systems which perform some
tasks in a “less than well-founded fashion”. Nowadays, considering the different levels
of complexity of NLG approaches and applications, this template-based vs standard NLG
dichotomy is considered to be outdated and there is a preference to focus on the existing
“different levels of sophistication in texts generation [12]”.

Following a different approach, recent deep neural models for data-to-text generation are
becoming popular as end-to-end approaches, which produce natural language texts from
data without explicit intermediate representations in between [4, 14]. For some specific
tasks, neural end-to-end models have proved to generate complex and rich outputs by learn-
ing from datasets [9], in spite of being affected by some undesired effects (e.g. hallucination,
repetitions or lack of explainability and generalization when addressing unknown situa-
tions). It is also worth noting that traditional pipeline-based approaches usually generalize
better to inputs which are not present in the datasets.

5.2 Linguistic reports for process mining

As we have seen in Section 4, processes can be modeled and resultant models are usually
represented in a graphical manner, by means of nodes and arrows which represent the activ-
ities that take place in a process as well as the dependencies among them. Sometimes, other
properties of the process, such as temporal properties, the use and creation of data, deci-
sions, and resources involved in the execution of the process, and so on, are also included
in the models. These graphic representations are the common way to communicate relevant
information about processes to users. Also visual analytics (or data visualization) [41] tech-
niques are popular, focusing on data analysis. These approaches ultimately rely on human
capabilities to understand and identify valuable information from the data. However, pro-
cess models are often very complex, and both process models and visual analytics may be
very difficult to be understood by non-trained users. Within this context, natural language
descriptions can be a good approach to enable or enhance the understanding of process
models and visual analytics, as they can summarize, combine and communicate information
in ways it would not be possible only with visual representations. Since natural language
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is the inherent way of communicating for humans, this modality of information conveying
is likely to be more easily understood and consumed by users. In this way, conveying use-
ful process models information would not only rely on the user capabilities to identify or
understand patterns, trends, and so on, from visual representations.

Moreover, research in other areas suggests that knowledge and expertise are required
to understand graphical information [28] and domain experts can make better decisions
when graphical displays are combined with textual descriptions [19, 27]. In this regard,
transforming process models into textual descriptions has been identified [39] as one of the
recent challenges for the application of Natural Language Processing in the field of process
mining and analytics.

Although NLG has shown its scientific and technological maturity in many fields of
application, only recently NLG has been applied to process mining, for generating insights
on process data through natural language. The approaches in the related literature follow
these two perspectives:

– Control-Flow perspective models align the graph-based representation of a process
model with its textual description [21, 27, 35, 36, 40]. In these models, relationships
between the activities of the process model have a textual description, which usually
includes references to the resources that perform these activities.

– Case Description techniques focus on generating textual descriptions about the exe-
cution of single activities or activity sequences [8], therefore considering neither the
process model structure nor the relations between activities.

Another recent proposal [13] presented a framework where three paradigms were inte-
grated: (1) process analytics for extracting temporal and structural information from a
process; (2) fuzzy linguistic protoforms for modeling uncertain terms [30]; and (3) NLG for
building the explanations. We will not consider here other approaches which heavily rely
on classical data mining techniques and only use event log data as their inputs, paying no
attention to the underlying process model.

Our approach for Automatic Linguistic Reporting, associated to process model discov-
ery, is made up of the following stages:

– Content determination: after having discovered the process model, several numerical
indicators are evaluated in order to extract relevant information which will be conveyed
in the textual descriptions. Most of them are temporal data regarding traces, such as the
average duration of the complete process, the most relevant deviations, as well as the
duration of some key activities (e.g., we pay special attention to the longest activities).

– Discourse planning: we have implemented a discourse planning structure which has
proven successful in many other real applications of NLG [31]. Firstly, a general
description is presented, providing quantitative information about the average duration
of the process and the number of cases which conform temporal-related information
about the duration of the activities. This information is relevant in order to provide a
general overview of the complete process duration. Following the general description,
the number of cases that deviate from the average duration are highlighted. Two types
of nuances are quantified here: the number of cases which have a longer duration than
the average and the number of cases which have a shorter duration. The duration of the
cases which correspond to both nuances are linguistically compared to the general case
using relative comparison expressions (e.g., “clearly longer”, “much shorter”, etc.) in
order to provide the reader with an intuition about to what extent cases deviate but,
at the same time, avoiding numerical details. Finally, relevant information for the user
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indicating what aspects he/she should pay attention to is provided: (1) a list of the spe-
cific activities with longer duration or higher temporal deviation from the average; and
(2) a list of the transitions between activities to be revised.

– Linguistic realization: since our approach is a template-based one, all the transforma-
tions described in the Sentence planning stage in Fig. 5 are merged in the surface text
realization.

Among the several technological choices for performing the linguistic realization stage
of the textual reports, we used the InVerbis Analytics service [18], as will be described in
detail in Section 6.4. InVerbis is an integral cloud-based process analytics platform, which
provides several process mining features such as the discovery of process models and vari-
ants, loop detection, and conformance analysis against predefined process models, as well
as a discovery report that includes standard process analytics, such as visualizations of dura-
tion and frequency of process variants, activities, and transitions. Discovery reports include
automatically generated textual narratives that complement the visualizations and suggest
potential bottlenecks within the process from a global perspective and directly produce the
previously indicated text planning structure. A simplified example showing these elements
in a real case is the following one:

The process has an average duration of 10.3 minute(s) with a deviation of ±10.3
minutes. 50 of the analyzed cases conform to this average. The remaining 9 are com-
posed of 3 cases that can be considered clearly shorter, and 6 clearly longer [...]. It
is recommended that at least the following activities are checked, since their duration
and/or temporal duration is excessive: Eating in the Restaurants area at a coffee shop,
... Likewise, the following transitions between activities should be revised: Walking
outdoors - Window shopping outdoors at restaurant, ...

The complete example including the full natural language report of a real process, as well
as the visual information, will be later presented, discussed, and evaluated in Section 6.4
and Fig. 10.

Output Following with the pipeline depicted in Fig. 1, the application of the NLG
techniques commented in this section produces human-friendly linguistic descriptions of
insights about the customers’ behavior analyzed with process mining techniques.

6 Test-bed and results

In this section, we present the use case experimentation performed in this work, which
consists of the customer behavioral analysis in a mall, and the automatic linguistic reporting
of this analysis.

6.1 Test-bed description

We have developed our system in the open mall “C.C. La Dehesa”, located in Alcalá de
Henares (Madrid). This open mall (see Fig. 6) has 36.000m2 of outdoor shopping (green
area; which includes fast food restaurants and shops) and indoor shopping composed by
three big zones: 65 shops (orange area), one big hypermarket (blue area) and 7 restaurants
(yellow area).
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Fig. 6 Open mall “C.C. La Dehesa”

It is worth noting that in the indoor shops’ zone, the ceiling is made by glass, permit-
ting to obtain localization by GPS while in the rest only WiFi localization is available. In
the outdoor area, GPS and WiFi are available. This test-bed was selected because it fits per-
fectly with the definition of open-mall, shops core in indoor-outdoor with mixed localization
available.

We used our previously developed application to train and test the complete system run-
ning in three different mobile devices: two smartphones (Samsung Galaxy S6 and S6 edge)
and one tablet (Samsung Galaxy Tab 2). The application was used in two ways: (1) the train-
ing dataset was collected by means of saving several paths at static places, a path consists
of frames at key points, and frames are formed by sensors’ data and activities at zones and
specific places introduced by an expert user; and (2) the test dataset was collected by means
of saving several paths with the user in movement. The activity, zone and place informa-
tion introduced by the user for the test dataset will be used as ground truth in the validation
stage.

Table 1 shows the 6 paths that we have considered in order to validate our system. Paths
consist of 4 or 5 steps of activities that start in a tuple activity-zone-place or key point and
evolve to the next one.

The different paths were executed several times and on several dates to validate the
results. As a result, we collected data from 17 paths for training (17 static places) and
35 paths for testing (almost 6 times per path in movement). The table also shows the
approximated traveled distance at each test’s path, which ranges from 250m to 410m.

As an illustrative example, Path 00 corresponds to about 300 m of travelled distance in
about 31 minutes. It includes the next activities:

1. Eating (having the breakfast) at Place CoffeeShop in Restaurants zone during 20
minutes.

2. Walking along Restaurants zone during 2 minutes.
3. Walking along Shops zone during 5 minutes.
4. Looking at Shop window of ToyShop Place at Shops zone during 4 minutes.

As you can see, the difference between activities 2 and 3 was the zone, key information
that we obtained from the localization system.
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Table 1 Paths in shopping mall

App waypoint

Path Device Distance Step Activity Zone Place

00 S6 /S6E 300 m 1 Eating Restaurants CoffeeShop

2 Walking Restaurants No Place

3 Walking Shops No Place

4 Shop window Shops ToyShop

01 S6 410 m 1 Eating Restaurants CoffeeShop

2 Walking Restaurants No Place

3 Walking Shops No Place

4 Walking Hypermarket No Place

5 Buying Hypermarket No Place

02 Tab2 250 m 1 Eating Restaurants CoffeeShop

2 Walking Restaurants No Place

3 Walking Outdoor No Place

4 Shop window Outdoor Restaurant

5 Buying Outdoor Restaurant

03 Tab 2 / S6 300 m 1 Shop window Restaurants CoffeeShop

2 Walking Restaurants No Place

3 Walking Shops No Place

4 Shop window Shops ToyShop

04 Tab 2 / S6E 410 m 1 Shop window Restaurants CoffeeShop

2 Walking Restaurants No Place

3 Walking Shops No Place

4 Walking Hypermarket No Place

5 Buying Hypermarket No Place

05 S6 / S6 E 250 m 1 Shop window Restaurants CoffeeShop

2 Walking Restaurants No Place

3 Walking Outdoor No Place

4 Shop window Outdoor Restaurant

5 Buying Outdoor Restaurant

S6: Samsung Galaxy S6

S6 E: Samsung Galaxy S6 Edge

Tab 2: Samsung Galaxy Tab 2

The summary of high-level activities that we have added to the basic activities recognized
by Google’s API are:

– Eating: we suppose that person is eating when he/she is localized at a restaurants’ zone
during a higher time than a threshold.

– Walking: accelerometers and localization are key features to determine that person is
walking.
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– Shop window: this activity means that a person is standing at the front of a shop but
lower time than a threshold.

– Buying: localization is a key feature to determine that person is buying inside a shop or
hypermarket.

6.2 Analysis of the experimentation conducted with the cloud-based
implementation

Due to the fact that the services shown in Fig. 3 are deployed in a cloud infrastructure, it is
necessary to select the computing resources to be provisioned according to the BAI4SOW
applications’ requirements. Let us now briefly analyze the execution times and costs of this
approach.

In order to conduct this evaluation, we have used the data reported in [17] of a user
who has freely walked in the environment described previously (a medium-size indoor sce-
nario of around 2.500 m2). During the walk, the user’s mobile has measured 300 RSS
values in different positions. Also, a location request has been sent for each of these val-
ues to determine her/his location. Previously, 100 reference surfaces with an accuracy of 1
cm were computed to be used by the location method in order to increase significantly the
number of cells to be processed for the same surface (25 million cells in the scenario of
2,500m2). Besides, all the detected APs (a total of 105) and, as consequence, the 105 sur-
faces have been used to perform the localization. Two different trajectories were used to test
the localization system, obtaining mean localization errors around 1,5 meters.

As it was previously detailed, it took 44.4 hours to execute the sequential version of
the algorithms to compute all the surfaces during the training stage, and 325 seconds to
determine the current location of a customer using a server with 8 Intel i7-4790K CPUs at
4.00GHz, a local SSD disk and 32GB of RAM. Note that the experiment had no additional
costs apart from the requirement of owning the required hardware and a correct configura-
tion/administration of the operating system and the software. Now, different deployments
of the architecture depicted in Section 3.2 are going to be configured and analyzed using the
Amazon Elastic Compute Cloud infrastructure (Amazon EC2), which offers a comprehen-
sive and complete elastic Web-Scale computing catalog of computing resources for different
purposes.

The experimentation is composed of two phases. First, the time and costs to create the
surfaces are measured in Phase1. After that, the time and cost to serve the location requests
and complete the experiment for each of the proposed deployments is measured in Phase2.
The time per request can be calculated by dividing Time Phase2 by 300.

Table 2 shows the execution times and costs of the different configuration deployments
using the Amazon EC2 infrastructure. R5 instances have been chosen as the best option
because they are optimized for memory-intensive applications and they can offer good per-
formance for this type of processing problems. Also, R5 instances offer a better relation
between memory per CPU and cost with respect to R4 instances. The on-demand hiring
mechanism has been used for the experiments, and the number of cores, memory, and costs
of the instances used are specified in Table 2 as well for the North Virginia (USA) region.

First, four R5 instances were used to conduct the concurrent execution of the algorithms.
We started with a r5.xlarge instance (4 vCPUs and 32 GiB of memory) and twice the con-
figuration up to a r5.16xlarge instance (64 vCPUs and 512 GiB of memory). As it can be
seen in Table 2, the execution time in these instances presents a linear speedup according
to the configuration of the machines (vCPUs and memory). The best execution time is then
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obtained by the r5.16xlarge instance, which took 120.11 minutes to complete the experi-
mentation. This means that the execution time is improved more than an order of magnitude
with respect to the time of the sequential version (44.4 hours).

The cost of experiments (column Total costs) considers the costs of computing resources
and of storing the data into the Amazon S3 service. This is calculated by multiplying the
cost per hour of the selected instances (column Cost/hour) by the total hours of execution
time (column Total time). The cost of storing the data is the same for all the configurations,
as the size of the used data is around 66 GB and the storage price is 0.023 USD/GB for the
first 50TB/month. Therefore, the cost of the execution is proportional to the configuration
of the instances in terms of the number of cores and memory.

Finally, we also conducted the experimentation using two different distributed environ-
ments. These environments are composed of a pool of three and six r5.16xlarge instances,
respectively. The worker nodes have been distributed between the vCPUs of the differ-
ent instances, getting a maximum of 191/382 workers running simultaneously on the
provisioned instances. The master is deployed on the remaining core.

Table 2 also depicts the results obtained for each configuration in the distributed environ-
ments. As shown, the execution time of the experiment continues following a linear speedup
according to the configuration of the environment. The overhead due to the parallelization
is minimum and the experiment can be completed in less than 25 minutes with a pool of six
instances. However, as the cost of each instance is per hour, the cost of using six instances is
twice the cost of using three (24.19 USD vs 12.01 USD, respectively), as with both config-
urations the experiment can be carried out in less than an hour. Therefore, the relationship
between the need to complete the execution in less than 25 minutes versus the additional
cost it requires must be carefully evaluated.

Independent of the results shown in the table, the main conclusion of this experiment
is that the master-worker architecture can be easily deployed in a cloud environment by
applying different configurations (we are selected some of these configurations on the basis
of our experience, but other different could be also considered) and that it is a good option to
accelerate the location algorithms proposed in the paper. The architecture allows the process
of location to be decomposed as much as possible and takes the advantage of the scalable
nature of the cloud in order to optimise that process.

6.3 User behavioral analysis

This section describes how we have applied process mining techniques to the activity
and localization data obtained and described in the previous sections. The purpose of this
analysis is twofold. First, to validate the recorded behavior using conformance checking
techniques by comparing it against the ground truth data. Second, to inspect the customers’
behavior by applying process mining algorithms to the recorded event log, and to extract
insights useful to the mall managers.

The first step has been to build the process model (depicted in Fig. 7) describing the six
paths of the ground truth in Table 1. With this model and the recorded event log, we have
executed conformance checking techniques to analyze the deviations between the captured
traces and the expected behavior.

We have found that 79.66% of the recorded traces have shown no deviations w.r.t. the
ground truth model, proving that they have been recorded correctly by the localization sys-
tem and smartphone application. On the other hand, the remaining 20.34% presented some
deviations in the analysis. Two different cases have been detected regarding these traces. On
the one hand, the deviations present in 11.86% of the traces have been detected as missing
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Fig. 7 Process model depicting the behavior of the ground truth

events from the ground truth paths, i.e., the recorded data corresponds to partial paths of the
ground truth. In these cases, the most probable reason is a stop in the WiFi signal, either in
the mall receptors or in the users’ devices, causing them to not record all events in the path.
The remaining 8.48% of the traces have shown a deviation regarding the localization sys-
tem. In these cases, a full path in the ground truth was recorded, but some of the events had
been mislocalized. For instance, one of the traces corresponded with path 05, but record-
ing the event ‘Buying Outdoor Burger’ as ‘Buying Restaurants Burger’, probably due to the
proximity of the locations.

After analyzing the recorded behavior w.r.t. the ground truth, we have discovered the pro-
cess model depicting the users’ recorded behavior to extract insights about their behavior,
and to show the potential of applying process mining techniques to this scenario. Figure 8
shows the process model obtained with ProDiGen [38]. We observe that the behavior of
users doesn’t have a clear structure. Few conclusions can be extracted from an unstructured
process as the one shown in Fig. 8. Nevertheless, this result is not surprising, as the users’
behavior in a broad area such as a mall is expected to be unstructured.

To cope with this shortcoming, a more specific process mining analysis can be run, focus-
ing on the parts of the process that the users are executing more frequently. We have used
WoMine [5] to extract the frequent activity patterns – subprocesses – modeling the behavior
commonly executed by the users. Figure 9 shows two of the more relevant frequent activity
patterns extracted by WoMine. Figure 9a highlights a behavioral pattern with a frequency
of 42%. This behavior has been conducted by the 42% of the recorded customers, who have
started in the shopwindow of the coffee shop, walking through the restaurants’ area, and
later through the shops’ area without buying anything. This pattern can hint at a need in the
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Fig. 8 Process model discovered by ProDiGen [38] depicting the behavior of the customers in the mall

Coffee Shop to make changes in order to engage more customers who are doing window
shopping (i.e, they stop briefly to look at the shop window but leave to other areas with-
out coming in the shop). Figure 9b depicts another behavioral pattern being executed by
37% of the customers. This pattern shows that 1 out of 3 customers pass walking through
the restaurants and shops areas, leaving the mall after staring at the shop window of the
toy shop. This pattern hints that it might also be interesting to work on the ads at the more
frequented areas, Restaurants, and Shops, to deal with those customers who leave the mall
without consuming anything.

In summary, the process mining analysis allows to discover the process model depict-
ing the behavior of the customers, and to inspect in more detail their behavior through
the frequent activity patterns. The behavior modeled by the two reported patterns – which
were conducted by almost half of the customers – was useful to detect possible redesigns

Fig. 9 Frequent patterns (highlighted structures) extracted by WoMine using the event log recording the
activities of the customers in the mall
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in the marketing campaign of some stores to increase the attention of the customers. Fur-
thermore, to improve the knowledge and insights obtained from the analysis, automatic
linguistic reports can be extracted from this discovered behavior, as we will describe in the
next section.

6.4 Automatic linguistic reporting evaluation and results

We applied NLG techniques to automatically generate human-friendly linguistic reports
associated with the previous process mining analysis. It is worth noting that both process
mining (see Section 4) and report generation (see Section 5) were connected with the help
of tools provided by the InVerbis Analytics service [18].

More precisely, we considered a sequential NLG pipeline for linguistic reporting, as
depicted in Fig. 5 in Section 5. We show in Fig. 10 the report generated for the test bed
under consideration.

As indicated in Section 5, this report pays special attention to the most frequent pattern
(see Fig. 9a) extracted from the graph depicted in Fig. 8. The duration analysis in the report
also refers to activities (and transition between activities) that deserve special consideration.

For the first time in the application of NLG to process mining and analytics (at least
to the best of our knowledge), we have conducted a human expert validation of the nat-
ural language reports in a real scenario. We carried out an online survey that follows the
best practices in NLG evaluation, with the aim of evaluating the quality of the generated
linguistic report (see a sketch of the questionnaire in Fig. 11).

The questionnaire is inspired by the so-called Gricean conversational maxims which
were first presented in [16]: (G1) Maxim of Quantity [“Make your contribution as informa-
tive as required for the current purposes of the exchange. Do not make your contribution
more informative than is required”]; (G2) Maxim of Quality [“Do not say what you believe
to be false. Do not say that for which you lack adequate evidence”]; (G3) Maxim of Rela-
tion “Be relevant”]; (G4) Maxim of Manner [“Avoid the obscurity of expressions, avoid
ambiguity, be brief (avoid unnecessary prolixity), be orderly”].

These conversational maxims were studied by Dale and Reiter in the context of NLG
systems [7]. Moreover, they were also considered in previous publications (e.g., [6]) for
evaluating the quality of NLG systems. It is worth noting that, in the context of NLG,
human evaluation is considered as the most suitable evaluation method [45], since it is able
to capture adequacy, correctness, and fluidity of the texts, among other relevant features.

Following the usual methodology in this field, we set up a questionnaire which is made
up of six questions with the aim of covering properly all Gricean maxims. With the aim

Fig. 10 Linguistic report in natural language generated using [18] for the real case considered
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Fig. 11 Sketch of the questionnaire for assessing quality of linguistic reporting

of minimizing the bias effect due to question order, the six questions were presented with
shuffled order to each assessor. In addition, the answer to each question is given on a 7-point
Likert scale [22]. This is a discrete scale where the assessor is expected to select the level

Table 3 Evaluation of linguistic reporting quality (7-point Likert scale)

Gricean

Maxim Question Median Mean Std.

Quantity Regarding the length of the report:

is it adequate with respect to content? 6 5.51 1.15

Quality Regarding the truthfulness of the report:

are results supported by adequate evidence? 6 5.47 1.45

Relation Regarding the relevance of the report:

is the content relevant to the problem (estimating

customer activity patterns in the mall)? 6 5.66 1.42

Manner Regarding the structure of the report:

is content properly ordered to facilitate comprehension? 6 5.49 1.13

Regarding the clarity of the report:

is the language correctly used? 6 6.10 0.91

Regarding the general linguistic quality of the report:

how good are grammar, syntax, orthography, and punctuation? 6 6.17 0.76
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Fig. 12 Distribution of answers to the question about the general linguistic quality of the report

of agreement with the given statement or question (e.g., from strongly disagree to strongly
agree).

The target audience was made up of people who may be somehow familiar with the prob-
lem under consideration, i.e., intelligent data analysis and linguistic description of estimated
customer activity patterns in open malls. Accordingly, we sent the questionnaire to atten-
dants of the 21st International Workshop of Physical Agents (WAF) where our preliminary
work [26] was presented.

We collected 41 answers to each question. Table 3 summarizes the computed scores. The
first column identifies the correspondence between the questions given in the second column
and the Gricean maxims. There is one question related to each of the three first maxims and
three additional questions to cover the fourth maxim. We included three questions related
to the last Gricean maxim for the sake of completeness, and looking for evaluating exhaus-
tively the use of the “everyday natural language” in the NLG templates used for linguistic
realization. Thus, we asked about the order of the given pieces of information, about the
correct use of vocabulary, and about the general linguistic quality of the report. Results are
encouraging, being 6 the median of answers for all questions. In addition, mean values are
always above 5 and standard deviation (Std.) is below 1.5 in all cases. Even more relevant is
the fact that the assessors globally indicate a very high degree of satisfaction with the gen-
erated report, since the general linguistic quality of the report (see Fig. 12) achieves a value
of 6.17 in mean (with 0.76 std.), as remarked in bold in the last row in Table 3. This is the
best indicator of the high quality of the texts generated automatically from the process data.

7 Conclusions and future work

We have presented a method to estimate the activity patterns associated with customers in
open malls. Such patterns are based on localization data which are provided by a specific
smartphone application for logging information from sensors and process mining techniques
to identify what kind of usual activities are made by customers. We use the localization key
information joined with data mining, parallelization, and monitoring techniques.

Our system has been tested in a challenging real scenario such as an open mall (mixed
classical mall and isolated shops in the street) where location is obtained by mean of GPS
and a WiFi localization system that is helped by a parallel computing method to speed up the
whole process. From these localization data, we apply state of the art process mining tech-
niques to first generate a process model (social workflow) describing the behavior made by
customers in the mall. We have also analyzed the most common activity patterns performed
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by customers. The hints provided by these process mining techniques may help managers
to take specific actions considering the customers’ behavior and the activities they perform
while in the mall.

We have also integrated an automatic linguistic reporting module, which automatically
describes in natural language the most relevant characteristics of the process, providing
complementary information to the one conveyed by the visualization of the process model.
Following the best practices for human evaluation of natural language generation systems,
41 experts validated this approach, with a global score of 6.17 on average (0.76 of stan-
dard deviation) in a 7-point Likert scale. As far as we know, this is the first time that this
type of evaluation is conducted in the field of NLG applied to process mining and analyt-
ics reporting in a real case. These results empirically validated the adequacy of automatic
natural language textual reporting as a useful tool to facilitate understanding of the usual
graphical outputs given by process mining visualization tools. We strongly believe that auto-
matic linguistic reporting and process mining visualization tools can act as complementary
tools to provide managers with valuable and meaningful insights no matter their technical
or mathematical background.

This work has set a base in the analysis of customer behavior in open malls. Nevertheless,
the analyses performed in this publication only take into account the control-flow informa-
tion of the process, i.e. the sequence of activities that each user carries out. More interesting
insights can be extracted if the analyses are performed taking into account other data related
to the users such as age, gender, language, shopping interests, etc. Regarding process min-
ing, many techniques have been proposed to perform analysis taking into account this type
of personal data, known as multi-perspective process mining [20, 24]. However, personal
data must be carefully considered to avoiding bias as well as respecting privacy and ethical
issues [10, 11]. As future work, we plan to extend the mobile app to record properly this
kind of information, and perform more precise analyses taking into account more attributes
about the customers, while complying with legal and ethical issues.
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applying natural language processing in business process management. In: Proceedings of the 27th
International conference on computational linguistics, pp 2791–2801. Association for Computational
Linguistics, Santa Fe, New Mexico, USA. https://www.aclweb.org/anthology/C18-1236

40. van der Aa H, Leopold H, Reijers HA (2015) Detecting inconsistencies between process models and
textual descriptions. In: Proceedings BPM 2015, LNCS, vol 9253. Springer, pp 90–105

41. van der Aalst W (2011) Process mining: discovery, conformance and enhancement of business processes,
vol 136. Springer, Berlin. 1https://doi.org/0.1007/978-3-642-19345-3

42. van der Aalst WMP (2011) Process mining - discovery, conformance and enhancement of business
processes. Springer, Berlin. https://doi.org/10.1007/978-3-642-19345-3

43. van der Aalst WMP (2016) Process mining - data science in action, 1st edn. Springer, Berlin. https://doi.
org/10.1007/978-3-662-49851-4

44. van der Aalst WMP, Adriansyah A, de Medeiros AKA, Arcieri F, Baier T, Blickle T, Bose RPJC, van den
Brand P, Brandtjen R, Buijs JCAM, Burattin A, Carmona J, Castellanos M, Claes J, Cook J, Costantini
N, Curbera F, Damiani E, de Leoni M, Delias P, van Dongen BF, Dumas M, Dustdar S, Fahland D,
Ferreira DR, Gaaloul W, van Geffen F, Goel S, Günther C. W., Guzzo A, Harmon P, ter Hofstede AHM,
Hoogland J, Ingvaldsen JE, Kato K, Kuhn R, Kumar A, Rosa ML, Maggi F, Malerba D, Mans RS,
Manuel A, McCreesh M, Mello P, Mendling J, Montali M, Nezhad HRM, zur Muehlen M, Munoz-
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