10 research outputs found

    Using the Regular Chains Library to build cylindrical algebraic decompositions by projecting and lifting

    Get PDF
    Cylindrical algebraic decomposition (CAD) is an important tool, both for quantifier elimination over the reals and a range of other applications. Traditionally, a CAD is built through a process of projection and lifting to move the problem within Euclidean spaces of changing dimension. Recently, an alternative approach which first decomposes complex space using triangular decomposition before refining to real space has been introduced and implemented within the RegularChains Library of Maple. We here describe a freely available package ProjectionCAD which utilises the routines within the RegularChains Library to build CADs by projection and lifting. We detail how the projection and lifting algorithms were modified to allow this, discuss the motivation and survey the functionality of the package

    Choosing a variable ordering for truth-table invariant cylindrical algebraic decomposition by incremental triangular decomposition

    Get PDF
    Cylindrical algebraic decomposition (CAD) is a key tool for solving problems in real algebraic geometry and beyond. In recent years a new approach has been developed, where regular chains technology is used to first build a decomposition in complex space. We consider the latest variant of this which builds the complex decomposition incrementally by polynomial and produces CADs on whose cells a sequence of formulae are truth-invariant. Like all CAD algorithms the user must provide a variable ordering which can have a profound impact on the tractability of a problem. We evaluate existing heuristics to help with the choice for this algorithm, suggest improvements and then derive a new heuristic more closely aligned with the mechanics of the new algorithm

    Truth Table Invariant Cylindrical Algebraic Decomposition by Regular Chains

    Get PDF
    A new algorithm to compute cylindrical algebraic decompositions (CADs) is presented, building on two recent advances. Firstly, the output is truth table invariant (a TTICAD) meaning given formulae have constant truth value on each cell of the decomposition. Secondly, the computation uses regular chains theory to first build a cylindrical decomposition of complex space (CCD) incrementally by polynomial. Significant modification of the regular chains technology was used to achieve the more sophisticated invariance criteria. Experimental results on an implementation in the RegularChains Library for Maple verify that combining these advances gives an algorithm superior to its individual components and competitive with the state of the art

    Cylindrical Algebraic Sub-Decompositions

    Full text link
    Cylindrical algebraic decompositions (CADs) are a key tool in real algebraic geometry, used primarily for eliminating quantifiers over the reals and studying semi-algebraic sets. In this paper we introduce cylindrical algebraic sub-decompositions (sub-CADs), which are subsets of CADs containing all the information needed to specify a solution for a given problem. We define two new types of sub-CAD: variety sub-CADs which are those cells in a CAD lying on a designated variety; and layered sub-CADs which have only those cells of dimension higher than a specified value. We present algorithms to produce these and describe how the two approaches may be combined with each other and the recent theory of truth-table invariant CAD. We give a complexity analysis showing that these techniques can offer substantial theoretical savings, which is supported by experimentation using an implementation in Maple.Comment: 26 page

    Truth table invariant cylindrical algebraic decomposition

    Get PDF
    When using cylindrical algebraic decomposition (CAD) to solve a problem with respect to a set of polynomials, it is likely not the signs of those polynomials that are of paramount importance but rather the truth values of certain quantifier free formulae involving them. This observation motivates our article and definition of a Truth Table Invariant CAD (TTICAD). In ISSAC 2013 the current authors presented an algorithm that can efficiently and directly construct a TTICAD for a list of formulae in which each has an equational constraint. This was achieved by generalising McCallum's theory of reduced projection operators. In this paper we present an extended version of our theory which can be applied to an arbitrary list of formulae, achieving savings if at least one has an equational constraint. We also explain how the theory of reduced projection operators can allow for further improvements to the lifting phase of CAD algorithms, even in the context of a single equational constraint. The algorithm is implemented fully in Maple and we present both promising results from experimentation and a complexity analysis showing the benefits of our contributions.Comment: 40 page

    Layered Cylindrical Algebraic Decomposition

    Get PDF

    Layered Cylindrical Algebraic Decomposition

    Get PDF
    In this report the idea of a Layered CAD is introduced: atruncation of a CAD to cells of dimension higher than a prescribedvalue. Limiting to full-dimensional cells has already beeninvestigated in the literature, but including more levels is shown toalso be beneficial for applications. Alongside a direct algorithm, arecursive algorithm is provided. A related topological property isdefined and related to robot motion planning. The distribution of celldimensions in a CAD is investigated and layered CAD ideas are combinedwith other research. All research is fully implemented within a freelyavailable Maple package, and all results are corroborated withexperimental results

    Using Machine Learning to Improve Cylindrical Algebraic Decomposition

    Get PDF
    Cylindrical Algebraic Decomposition (CAD) is a key tool in computational algebraic geometry, best known as a procedure to enable Quantifier Elimination over real-closed fields. However, it has a worst case complexity doubly exponential in the size of the input, which is often encountered in practice. It has been observed that for many problems a change in algorithm settings or problem formulation can cause huge differences in runtime costs, changing problem instances from intractable to easy. A number of heuristics have been developed to help with such choices, but the complicated nature of the geometric relationships involved means these are imperfect and can sometimes make poor choices. We investigate the use of machine learning (specifically support vector machines) to make such choices instead. Machine learning is the process of fitting a computer model to a complex function based on properties learned from measured data. In this paper we apply it in two case studies: the first to select between heuristics for choosing a CAD variable ordering; the second to identify when a CAD problem instance would benefit from Groebner Basis preconditioning. These appear to be the first such applications of machine learning to Symbolic Computation. We demonstrate in both cases that the machine learned choice outperforms human developed heuristics.This work was supported by EPSRC grant EP/J003247/1; the European Union’s Horizon 2020 research and innovation programme under grant agreement No 712689 (SC2); and the China Scholarship Council (CSC)

    Advances in Cylindrical Algebraic Decomposition

    Get PDF

    Understanding Branch Cuts of Expressions

    Get PDF
    We assume some standard choices for the branch cuts of a group of functions and consider the problem of then calculating the branch cuts of expressions involving those functions. Typical examples include the addition formulae for inverse trigonometric functions. Understanding these cuts is essential for working with the single-valued counterparts, the common approach to encoding multi-valued functions in computer algebra systems. While the defining choices are usually simple (typically portions of either the real or imaginary axes) the cuts induced by the expression may be surprisingly complicated. We have made explicit and implemented techniques for calculating the cuts in the computer algebra programme Maple. We discuss the issues raised, classifying the different cuts produced. The techniques have been gathered in the BranchCuts package, along with tools for visualising the cuts. The package is included in Maple 17 as part of the FunctionAdvisor tool.Comment: To appear in: Proceedings of Conferences on Intelligent Computer Mathematics (CICM '13) - Mathematical Knowledge Management (MKM) stran
    corecore