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LAYERED CYLINDRICAL ALGEBRAIC DECOMPOSITION

DAVID JOHN WILSON AND MATTHEW ENGLAND

Abstract. In this report the idea of a Layered CAD is introduced: a trun-
cation of a CAD to cells of dimension higher than a prescribed value. Limiting
to full-dimensional cells has already been investigated in the literature, but
including more levels is shown to also be beneficial for applications. Alongside
a direct algorithm, a recursive algorithm is provided. A related topological
property is defined and related to robot motion planning. The distribution of

cell dimensions in a CAD is investigated and layered CAD ideas are combined
with other research. All research is fully implemented within a freely available
Maple package, and all results are corroborated with experimental results.
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1. Background

It is a well-established problem to study the behaviour of a system of polyno-
mials over the real numbers. Initially devised by Collins ([Col75]) as a tool for
real quantifier elimination, Cylindrical Algebraic Decomposition (CAD) is also a
practical method of analysing such systems.

Definition 1.
Let F ⊂ Z[x1, . . . , xn] be a finite set of polynomials. An F -invariant Cylindrical
Algebraic Decomposition of Rn is a finite partition of Rn into cells such that:

• each cell is algebraic: can be described by a sequence of polynomial equal-
ities and inequalities
• the cells are arranged cylindrically: the projections of any two cells onto

the first k coordinates (for k = 1, . . . , n− 1) are equal or disjoint
• each cell is F -invariant: for each f ∈ F and cell D, f is uniformly positive,

negative or zero across D.

Whilst other methods ([CMXY09]) have been devised to construct CADs, we
will concentrate on Collins’ original algorithm, and its extensions. The algorithm
consists of three main stages: projection, base case, and lifting.

Projection: A projection operator, PROJ, is used to repeatedly project out
variables from the set of polynomials F . These polynomials are constructed
to be delineable over lower dimensional CADs.

Base Case: After applying the projection operator n−1 times, the univariate
polynomials are used to decompose R1 according to their real roots.

Lifting: We lift over a k-dimensional CAD to a (k+ 1)-dimensional CAD by
taking a cell, D′, and decomposing its cylinder, D′ × R, according to the

polynomials in PROJ(n−(k+1))(F ).

Rather than use use Collins’ original projection operator, we will consider an
improvement by McCallum (discussed in detail in [McC98]). Whilst all the theory
which follows also holds for Collins’ operator, using McCallum’s allows for more
efficient implementation (although a little care is needed to avoid ‘non well-oriented’
examples).

Whilst CAD is a very useful tool, it was shown in [BD07] that it has doubly-
exponential complexity in the number of variables, both for computation time and
output size. Indeed, the doubly-exponential complexity appears in the base case
and is therefore inherent to the problem.

In an effort to compensate for this complexity, and make CAD construction
more feasible, various techniques have been investigated to improve the CAD al-
gorithm. For example, partial CAD ([CH91]) truncates the lifting stage of CAD
construction, preconditioning by Gröbner bases ([BH91], [WBD12b]) reformulates
the question, and truth table invariant CAD ([BDE+13]) asks a different question
altogether. Singly-exponential algorithms exist for analysis of semi-algebraic sets
and quantifier elimination over the real numbers but it was shown in [Hon91] that,
in general, implementations of CAD are much more feasible, althought in special
cases alternative algorithms can be used to great effect.

In this paper we investigate a new method to look at CAD: layered CADs. These
concentrate on only cells of high dimension within a CAD and we give examples
of applications where layered CADs are useful. We define a related topological
property and also combine layered CADs with the ideas of [BDE+13]. All of this
research is corroborated with experimental results.
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2. Full-dimensional Cells

Let D be a CAD of Kn defined by the polynomials F ⊂ k[x1, . . . , xn].
There are certain applications of CAD where lower-dimensional cells are of lesser

importance than full-dimensional cells, such as branch cut analysis and robot mo-
tion planning (see Section 8 for a full discussion). For convenience we will refer to
full-dimensional cells as full, and less than full-dimensional cells as deficient.

A simple way to obtain only full cells in a CAD is to only lift over full cells,
discarding any deficient cells at each level during the lifting stage. This is described
in Algorithm 1 and was implemented by the author in the LayeredCAD package in
Maple which is described in further detail in Appendix A.

Algorithm 1: Basic generic CAD algorithm: CADOneLayered(F,vars)

Input : A set of polynomials F , a list of variables vars
Output: A generic CAD, D, for F

D ← [ ], P← [F ];

for i = 1, . . . , n− 1 do
P[i+ 1]← Proj(P[i]);

D[1]← SplitR(P[n]);

for i = 2, . . . , n do
D[i]← [ ];

for D ∈ D[i− 1] do
dim←∑

α∈D.index (α mod 2);

if dim == i then
D[i].append(GenerateStack(P[n+ 1− i], D));

D′ ← [ ];

for D ∈ D[n] do
dim←∑

α∈D.index (α mod 2);

if dim == n then
D′.append(D);

return D′;

This idea has already been considered by McCallum ([McC93]), Strzebonski
([Str94] and further in [Str00]), and Brown ([Bro13]). It is referred to by a multitude
of names in the literature: CADMD (CAD of Maximal Dimension), open CAD,
and generic CAD. We will initially refer to these as generic CADs in this paper
(although later we will use the new terminology: 1-layered).

In both [McC93] and [Str94] the authors describe an algorithm similiar in essence
to Algorithm 1. Their main motivation is solving systems of strict inequalities where
any solution set must be, by necessity, full dimensional and therefore a generic CAD
suffices. Another nice property of a generic CAD is that all sample points computed
can be rational numbers: picking a point from an interval during each lifting stage
does not require costly calculations involving algebraic numbers.

Asymptotically, computing a generic CAD is much faster than computing a full
CAD (for very small examples the cost of checking dimensionality may outweigh
the benefit), but it was pointed out in [McC93] that it is still worst-case doubly-
exponential: the doubly-exponential complexity can appear in the base case of
splitting R1. A deeper complexity analysis is given in Section 2.2.
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2.1. Order Invariance.
We note a simple, but useful consequence of a generic CAD. The following lemma
is needed.

Lemma 1.
Let f ∈ R[x1, . . . , xn] vanish identically on a cell, D, of dimension n. Then f is
identically zero on the whole of Rn.

Proof.
We proceed by induction.

Let n = 1, and D ⊂ R1 an interval. As f vanishes on the whole of D, there
exists at least deg(f) + 1 points αi such that f(αi) = 0 (there are infinitely many
such points). Then by the Fundamental Theorem of Algebra, f must be the zero
polynomial.

Now let n > 1. We view f as a univariate polynomial in xn with coefficients
in R[x1, . . . , xn−1]. As D is an n-dimensional cell, it must be in the cylinder of an
n − 1-dimensional cell D′ in Rn−1. Using the Fundamental Theorem of Algebra
we can see that for every point α′ ∈ D′ every coefficient in f vanishes. But by
induction, these coefficients must be zero on the whole of Rn−1 and so f ≡ 0 on all
of Rn.

�

Using this lemma we can prove that any sign-invariant generic CAD is, auto-
matically, order-invariant.

Theorem 1.
Let F ⊂ k[x1, . . . , xn] and let D be a F -invariant generic CAD of Kn. Then D is
order-invariant.

Proof.
We will prove that the order of every polynomial in F on every cell in D is zero,
and therefore D is trivially order-invariant.

For a non-zero polynomial f ∈ F to have a non-zero order on a cell it must
vanish in that cell and, as D is sign invariant with respect to F , it must vanish
identically on that cell. For a cell D ∈ D this means that f vanishes identically on
a cell of dimension n and so, by Lemma 1, f is the zero polynomial.

�

2.2. Complexity.
Extending the work of [Col75], [McC93] gave a thorough analysis on the computa-
tional complexity for constructing a generic CAD using the algorithm CADMD
(similar to Algorithm 1 but using Collins’ full projection operator).

Let F be a set of polynomials in n variables, let |F | = m, let d be the maximum
degree of any polynomial in F in any variable, and let l be the maximum norm
length (sum of the absolute values of its integer coefficients) of any such polynomial.

Theorem 2 ([Col75]).
The computational complexity of constructing an F -invariant CAD using the orig-
inal Collins algorithm is dominated by:

(1) (2d)2
2n+8

m2n+6

l3.

Therefore for fixed n this is a polynomial in d,m and l with degrees 4n+4,2n+6

and 3, respectively.

Theorem 3 ([McC93]).
The computational complexity of constructing an F -invariant generic CAD using
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the algorithm CADMD is dominated by:

(2) (2d)3
n+4

m2n+4

l3.

Therefore for fixed n this is a polynomial in d,m and l with degrees 3n+4,2n+4

and 3, respectively.

Proofs for both of these bounds start in the same way: let Ak := PROJ(k−1)(F ),
letmk := |Ak|, dk be the maximum degree for Ak, and lk the norm length maximum
for Ak. Then the following bounds ([Col75]) hold:

(3) mk ≤ (2d)3
k

m2k−1

dk ≤
1

2
(2d)2

k−1

lk ≤ (2d)2
k

l.

These can then be extended to show that the projection phase of CAD (un-
changed between full and generic CADs) is dominated by

(4) (2d)3
n+1

m2n l2

and the base case (also unchanged between full and generic CADs) is dominated
by

(5) (2d)3
n+3

m2n+2

l3.

Part of the following saving in complexity for a generic CAD arises from the fact
that sample points generated will be rational points from within intervals defining
each cell. This saves the need to work with algebraic numbers which can be costly.

The high complexity in the base case shows that it is futile to consider break-
ing the doubly-exponential complexity barrier when using a projection and lifting
method. However for a fixed n, there is a hope to improve the degree of the poly-
nomial in d, m and l.

3. Layered CADs

There is an obvious extension to the idea of a generic CAD where you produce
not only the maximal dimensional cells but also those of one dimension lower, and
so forth. We formalise this idea:

Definition 2.
Let F ⊂ k[x1, . . . , xn] be a finite set of polynomials and let l be an integer with
1 ≤ l ≤ n + 1. An F -invariant l-layered CAD is the subset of an F -invariant
CAD consisting of all cells of dimension n− i for 0 ≤ i < l.

We refer to a standard, non-layered CAD (consisting of all cells of all dimensions),
as a complete CAD.

Remark 1.
Thus a 1-layered CAD is a generic CAD, and an (n+ 1)-layered CAD is a complete
CAD.

A simple generalisation of Algorithm 1 can be used to compute an l-layered
CAD: during the lifting process if a cell at a given level has too low a dimension to
result in an l-dimensional (or higher-dimensional) cell then it is discarded. This is
shown in Algorithm 2 and implemented in the LayeredCADMaple package (further
details in Appendix A).

3.1. Order-Invariance of 2-Layered CADs.
In Theorem 1 it was shown that one-layered CADs are, trivially, order-invariant.
We show that dropping only one layer also provides order-invariance.

Theorem 4.
Let F ⊂ Z[x1, . . . , xn] and let D be a F -invariant two-layered CAD of Rn. Then D
is order-invariant.
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Algorithm 2: l-Layered CAD algorithm: CADNLayered(F,l,vars)

Input : A set of polynomials F , an integer l, a list of variables vars
Output: An l-layered CAD, D, for F

D ← [ ], P← [F ];

for i = 1, . . . , n− 1 do
P[i+ 1]← Proj(P[i]);

D[1]← SplitR(P[n]);

for i = 2, . . . , n do
D[i]← [ ];

for D ∈ D[i− 1] do
dim←∑

α∈D.index (α mod 2);

if dim > i− l then
D[i].append(GenerateStack(P[n+ 1− i], D));

D′ ← [ ];

for D ∈ D[n] do
dim←∑

α∈D.index (α mod 2);

if dim > n− l then
D′.append(D);

return D′;

Proof.
Applying Theorem 1 we see immediately that each f ∈ F is order-invariant on all
n-dimensional cells in D.

Now let D′ be an (n − 1)-dimensional cell, let xi be the dimension for which it
is deficient and assume f ≡ 0 on the whole of D′, but not identically zero on Rn.
We will show that f cannot be identically zero, and therefore its order is trivially
zero. View f as univariate in xi and factor into its content and primitive part:
contxi

(f) · ppxi
(f). Then if f ≡ 0 on D′ then contxi

(f) must be identically zero
on D′ (as ppxi

(f) can only be zero at a finite set of points). But contxi
(f) is a

polynomial in n− 1 variables that vanishes on an (n− 1)-dimensional cell and so,
by Lemma 1, it must be identically zero on R(n−1). Therefore f ≡ 0 on Rn and we
have the desired contradiction.

�

3.2. Complexity.
We would wish to give a dominating complexity for Algorithm 2 in terms of the
number of variables, n, the number of polynomials in F , denoted by m, the max-
imum degree, d, of any polynomial in any variable, the maximum norm length, l,
of any such polynomial along with N , the number of layers needed.

As in Section 2.2, we have a doubly exponential bound on then projection phase:

(6) (2d)3
n+1

m2n l2,

and the base case:

(7) (2d)3
n+3

m2n+2

l3.

We cannot therefore escape the double exponential complexity in the worst case,
and we cannot hope for a huge saving on the exponents of d, m and l for fixed n.
Further, any N -layered CAD for N > 1 will necessitate the need for working with
algebraic numbers which is known to be costly. Therefore it is likely a bound on
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Example Full-CAD 1-layered 2-layered
Cells Time Cells Time Cells Time

CMXY 1 115 0.549 28 0.028 80 0.472
CMXY 2 895* 3.753 156 0.376 512 2.141
CMXY 3 333 2.770 64 0.097 204 1.030
CMXY 4 509 4.645 104 0.923 324 3.358
CMXY 5 55 0.192 18 0.026 45 0.100
CMXY 6 41 0.292 14 0.078 34 0.161
CMXY 7 897* 6.149 168 0.915 540 3.692
CMXY 8 365 3.137 66 0.507 218 1.543
CMXY 9 1099 6.094 228 1.288 712 4.304
CMXY 10 3673 38.008 680 9.086 2246 27.547
CMXY 13 4949 18.096 760 2.930 2684 12.537
Other 1 4569 132.487 778 9.922 2674 40.965
Other 2 41 0.130 13 0.035 33 0.084

Table 1. Results of Layered CADs (an ∗ indicates that the CAD
produced is not guaranteed to be order invariant)

the complexity for any N -layered CAD with N > 1 will be close to that of a full
CAD; for example, Collins’ bound of:

(8) (2d)2
2n+8

m2n+6

l3.

Exact complexity computations are currently being investigated in the hope to
gain a bond dependent on n, m, d, l and N .

3.3. Experimental Data.
Using the LayeredCAD package for Maple the experimental data given in Table 1
was computed. The examples used were sourced from the CAD Repository detailed
in [WBD12a] (available freely at http://opus.bath.ac.uk/29503).

This table demonstrates the obvious reduction in cells by taking a 1-layered or
2-layered CAD, and the subsequent saving in time. It also demonstrates that a 1-
layered and 2-layered CAD can be order-invariant when a full CAD is not (CMXY
2 and 7).

It seems natural to ask whether it is possible to predict the number of cells in
an l-layered CAD if we know the size of the Full CAD and, perhaps of more use,
conversely. This is investigated in Section 6.

4. Recursive Algorithm

In [CDM+10] an algorithm was given for the decomposition of a semi-algebraic
system into regular chains representing the solutions. A regular chain is a par-
ticularly well-behaved polynomial system that is also used in [CMXY09] to con-
struct CADs. It has been shown that real triangular decomposition, like CAD, has
doubly-exponential complexity in the number of variables. The paper provides an
algorithm for lazy triangular decomposition: outputting only regular chains of full
(complex) dimension.

The true power of the algorithm is that it includes a recursive call to construct the
next ‘layer’ of regular chains (of one less dimension) and a successive recursive call.
This process can be repeated until a full decomposition is obtained. As they are
truly working from full-dimension ‘downwards’ (unlike layered CAD which works
upwards but discards surplus data along the way) this allows them to obtain a
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singly-exponential complexity under certain conditions on the input. The doubly-
exponential complexity still exists if you recurse fully, but the saving for a single
layer is large.

We can adapt Algorithm 1 to produce a similarly recursive procedure. The
general principle behind our method of constructing layered CADs is to stop lifting
over a cell if it is produced as a section of a stack, rather than a sector. For
convenience we will refer to this as full-lifting. Rather than simply discarding
these sections, which we shall call terminating sections, when they are produced
we could store them in a separate output variable.

When constructing a 1-layered CAD these terminating sections will have dimen-
sion m − 1 where m is the number of variables lifted at the point the section is
constructed: deficient by one dimension. Therefore in the final lifting stage the
terminating sections will have dimension n − 1 (and so are part of the 2-layered
CAD). If we take one of these terminating sections and construct a stack over it
by full-lifting we will construct cells that are of dimension n − 1 and terminating
sections that are deficient by two dimensions. Combining these n− 1-dimensional
cells with the 1-layered CAD produces a 2-layered CAD and the terminating sec-
tions can be used for a recursive call to construct a 3-layered CAD. In this manner
we can recursively produce l-layered CADs.

Implementation is not quite as straightforward as Algorithm 1. The method is
given in full in Algorithm 3 and implementation is recorded in Appendix A.

We require four inputs into our algorithm:

• F: The polynomials with which to construct the layered CAD with respect
to.

• vars: The (ordered) variables.
• C: A list of cells corresponding to terminating sections. If C is the empty

list then a 1-layered CAD will be constructed, otherwise if C was produced
computing an l-layered CAD an (l + 1)-layered CAD will be created.

• LD: A layered CAD as produced by this algorithm. If LD is the empty list
than a one-layered CAD will be produced.

The algorithm will then output, for an l-layered CAD as input, both an (l+ 1)-
layered CAD with respect to F and vars and a recursive call to produce an (l+ 2)-
layered CAD if required.

Note the definition of P to be a global variable is a practical measure to prevent
excessive recalculation of the projection polynomials which can sometimes be costly.
A small amount of care is needed to ensure that the user does not try to call the
algorithm with incompatible inputs.

The outputted recursive call should be in an inert form that can be evaluated.
Maple provides this functionality by preceding a command with % which can be
then evaluated using the value command. There is the added issue of finding a
compact way to represent the inputs to the recursive calls but we are looking at
achieving this through the introduction of new data types.

It is worth noting that it is not particularly inefficient to compute a full CAD by
the recursive algorithm. The times given in Table 2 are the total time (including
recursive calls) for producing layered CADs with the polynomials x2 + y2 + z2 − 1
and x+ y+ z−xy with variable order x, y, z. To compute a full CAD with Collins’
original algorithm takes 5.044 seconds, although this includes much more diligent
error checking than the layered algorithms, accounting for the greater computation
time.

The implementation of Algorithm 2 is based on the general procedures of the
ProjectionCAD package and so contains many more error checks which may explain
why the time to compute a full CAD (4-layered CAD) differ. However, the real
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Algorithm 3: Recursive layered CAD algorithm based on Algorithm 1:
CADRecursiveLayered(F, vars, C,LD)

Input : A set of polynomials F ; a list of variables vars; a list of lists of cells,
C, sorted into appropriate dimensions, to lift over (can be empty); a
list of cells of the layered CAD already constructed, LD, sorted into
appropriate dimensions (can be empty).

Output: A layered CAD, D, for F over C of one layer lower than C; a
recursive call to CADOneLayeredRecursive to construct the
consecutive layer.

global P;

if P undefined then
P← [F ];

for i = 1, . . . , n− 1 do
P[i+ 1]← Proj(P[i]);

C′ ← [ ];

if C == ∅ then
D ← [ ];

Base← SplitR(P[n]);

for i = 1, .., length(Base) do
if (i mod 2) == 1 then
D[1].append(Base[i]);

else
C′[1].append(Base[i]);

D′ ← [ ];

else
D ← C;
D′ ← C[n];

for i = 2, . . . , n do
for D ∈ D[i− 1] do

Dstack ← GenerateStack(P[n+ 1− i], D);

for j = 1, . . . , length(Dstack) do
if (j mod 2) == 1 then
D[i].append(Dstack[j]);

else
C′[i].append(Dstack[j]);

D′ ← D′ ∪ LD;

return [D′, CADOneLayeredRecursive(F, vars, C′,D′)];

Layers 1 2 3 4
Algorithm 2 1.822 5.058 4.994 4.937
Algorithm 3 1.334 3.962 4.687 4.701

Table 2. Comparison of timings for Algorithms 2 and 3

power of recursive computation is demonstrated by the fact that if you have already
computed a 3-layered CAD, computing a 4-layered CAD only takes 0.014 seconds
with Algorithm 3 compared to 4.937 seconds using Algorithm 2.
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5. Topology

We attempt to relate the concepts arising within layered CADs to topological
properties. Recall the definition of an l-dimensional ball:

Definition 3.
The l-dimensional ball centered at the point α ∈ Rl of radius ε > 0, denoted by

B
(l)
ε (α), is defined to be:

(9) B(l)
ε (α) :=

{
x ∈ Rl | |x− α| < ε

}

The idea of spaces being connected by paths is well-defined and studied within
Topology.

Definition 4. [Wil04]
A space X is pathwise connected iff for any two points x and y in X, there is a
continuous function f : [0, 1]→ X such that f(0) = x, f(1) = y.

However, path-connectedness can be perhaps deceptive as the following example
shows.

Example 1.
Consider the plane, R2, and the four open quadrants labelled clockwise from the
positive quadrant. Let X be the first quadrant and Y the third quadrant.

The closures, X and Y , are path connected. In particular, X ∩ Y = {(0, 0)} so
any path between points in separate quadrants must pass through the origin.

For practical applications of CAD we often want something stronger. Unaware
of a formal definition in Topology, we create such a definition here:

Definition 5.
A space X is said to be l-dimensionally pathwise connected if for any two

points x and y in X, there is a continuous function f : B
(l)
1 (0) × [0, 1] → X such

that f(0, 0) = x and f(0, 1) = y.

Clearly 0-dimensionally pathwise connected is equivalent to the definition of
pathwise connected given in Definition 4.

Informally, 1-dimensionally and 2-dimensionally path-connected spaces are those
in which you can connect any two points by a deformation of a non-trivial ribbon
or cylinder, respectively.

Consider Example 1. We see that whilst the quadrants are 0-dimensionally path-
connected, they are not 1-dimensionally path connected (unlike the closure of two
adjacent quadrants).

With this definition we can consider connectivity of an l-layered CAD.

Theorem 5.
Let D be an l-layered CAD. Then each path-connected component of D is, at least,
(n− l + 1)-dimensionally path connected.

Proof.
Let x and y be in the same path-connected component of D, say X, and let f :
[0, 1]→ X be a path connecting x and y.

As D is l-layered, X is comprised of a union of a finite number of cells, each with
dimension in the range n − l + 1 ≤ d ≤ n. For each cell Di, let εi be the smallest
distance from a point on the image of f to the boundary of the closure of Di. As
each cell is open this value is non-zero and an (n− l+ 1)-dimensional ball of radius
εi can surround every point of f([0, 1]) in Di without intersecting the boundary of
Di.
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Choosing ε > 0 such that ε < min(ε1, . . . , εm) therefore proves thatX is (n−l+1)-
dimensionally path-connected.

�

6. CAD Dimensional Distribution

The idea of a layered CAD motivates the investigation of the distribution of
dimensions of cells within a given CAD. This seemingly innocuous question hides
a surprisingly tricky problem.

Definition 6.
Let D be a CAD of Rn. Let Dl be the number of cells of D of dimension l, for
l = 0, . . . , n.

6.1. Empirical.
An initial investigation of cell distribution in a collection of examples exhibited very
similar patterns.

Figures 1 and 2 provide graphs of dimensional data for examples in [CMXY09]
and [BH91].

Figure 1. Dimensional distributions for a selection of examples
from [CMXY09] split into 2-6 variables and all examples

Figure 2. Dimensional distributions for a selection of examples
from [BH91] split into 3 and 4 variables and all examples
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There is a clear shape to most of the graphs: similar to a normal distribution
that has been biased towards higher dimension cells. This can be emulated to a
certain extent by a binomial distribution.

Recall that the binomial distribution for n trials and probability p of success
is given by:

(10) P(X = x) :=

{ (
n
x

)
px(1− p)n−x 0 ≤ x ≤ n

0 otherwise

Considering the binomial distribution with a high value of p gives a bias similar to
what has been exhibited in the examples given. Figure 3 shows a binomial distri-
bution with n = 6 and p = 0.8 alongside the 5-variable examples from [CMXY09]
and their clear similarity.

Figure 3. A binomial distribution with n = 6 and p = 0.8 with
5-variable examples from [CMXY09]

The fact that examples with the same number of variables gave similar distri-
butions suggested that the distribution was unrelated to the specific polynomials
used to generate the CAD. This was investigated by creating “random CADs”: a
random number of variables were chosen and each cylinder over a cell was split into
a random number of cells. This was implemented in Maple using its inbuilt rand
command to construct cell indices.

Figure 4 shows the output from 50 random CADs, each with variables chosen
randomly from {0, . . . , 6} and each cylinder being split into a random number of
parts chosen from {0, . . . , 7}. This is given alongside the examples from [CMXY09]
and it is clear that they have a strikingly similar distribution.

Figure 4. The cell distributions of Random(6,7,50) with the cell
distributions from examples in [CMXY09]

It is worth noting that for the examples and random constructions the top two
layers are generally the largest. This is unfortunate as often 2-layered CADs can
be of great use (this will be discussed further Section 8).
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6.2. Theoretical Investigation.
As the problem seemed to be independent of the real algebraic geometry it was
worth considering the underlying combinatorial structure of a CAD. To do this
we strip away the reliance on polynomials to construct a CAD and consider the
following construction.

Lemma 2.
Let D be a partition of Rn constructed by the following:

(1) Decompose R1 using k1 0-cells.
(2) When lifting from the Rm to Rm+1 decompose the cylinder over a cell of

dimension m′ using km (m′)-cells.

Decomposing Rn this way gives:

(11) Dl =
∑

L⊆[n]
|L|=l


∏

i∈L
(ki + 1)

∏

j∈[n]\L
kj


 ,

where [n] is the combinatorial shorthand for {1, . . . , n}.
In particular we have:

D0 =
n∏

i=1

ki(12)

Dn =
n∏

i=1

(ki + 1)(13)

Proof.
The dimension of a cell in D is equal to the sum of the parity of its cell indices.
For a cell to have dimension l, it must therefore have l odd indices and n− l even
indices.

We can characterise an l-dimensional cell by the position of its odd indices. Call
the set of these positions L. For a fixed L there are many cells associated to it. For
level 1, there are a total k1 + 1 choices of 1-cells if 1 ∈ L and k1 choices of 0-cells if
1 /∈ L. Continuing to build the CAD, at level i there are ki + 1 cell choices if i ∈ L
and ki choices if i /∈ L.

Therefore, for a fixed L, the number of cells that have an appropriate cell index
is given by:

(14)
∏

i∈L
(ki + 1)

∏

i∈[n]\L
ki.

All that remains is to sum over all possible subsets L of [n] with cardinality l.
�

This is a gross simplification of the problem at hand, however it does well to
model standard CAD behaviour empirically.

It is very easy to see that if ki = k for all i then the sequence {Dl} is simply
the sequence of binomial coefficients of (k + (k + 1)x)n. In fact, we can state the
following:

Lemma 3.
Let D be as given in Lemma 2. Then the generating function for Dl is given by:

(15) Γ(x) :=
n∏

i=1

(ki + (ki + 1)x).

That is, Dl is the coefficient of xl in the expansion of Γ(x).
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Proof.
Expanding out Γ(x), you obtain xl precisely by choosing x from l different linear
factors. This amounts to selecting l integers from the set [n]. For a given L, each
i ∈ L contributes ki + 1 to the coefficient of the generated monomial, and each
i /∈ L contributes ki. This means the coefficient of the generated xl is:

(16)
∏

i∈L
(ki + 1)

∏

i∈[n]\L
ki.

The coefficient of xl in Γ(x) is precisely the summation of all such coefficients:

(17)
∑

L⊆[n]
|L|=l


∏

i∈L
(ki + 1)

∏

j∈[n]\L
kj


 ,

which was shown in Lemma 2 to be precisely Dl.
�

This lends some credibility to the idea that the dimension of cells in a CAD
roughly obeys a binomial statistical distribution.

It may seem at first like this construction has somehow avoided the doubly-
exponential complexity of CAD. This is not the case: taking a resultant at each
level in projection results in an increase of each degree by a factor of 2n.

6.3. Prediction of CAD size.
This consistency in dimensional distribution can be of great use. As a one-layered
CAD is generally easy to compute we can use it to predict the size of a complete
CAD.

The obvious way to do this is to compute the dimensional distribution for a
collection of examples with the same number of variables and take the average of
the fraction of full cells in each. Multiplying the number of full cells for the layered
CAD in question by the reciprocal of this average should give a reasonable estimate
for a complete CAD.

Note that can also create ‘random’ distribution fractions by using the formulae
obtained in Lemma 2 so that:

(18)
Dl∑n
i=1 Di

=

∑
L⊆[n]
|L|=l

(∏
i∈L(ki + 1)

∏
j∈[n]\L kj

)

∏n
i=1(2ki + 1)

and in particular the fraction the top layer constitutes is given by the simple for-
mula:

(19)
Dn∑n
i=1 Di

=

∏n
i=1(ki + 1)∏n
i=1(2ki + 1)

.

This simplifies even further when all the ki are equal, simply giving:

(20)
Dn∑n
i=1 Di

=

(
k + 1

2k + 1

)n
.

Computing values for examples sourced from [WBD12a] we can also calculate
average fractions of full cells in distributions for a given number of variables. These
results are shown in Table 3.

Variables 2 3 4 5
Fraction 0.334 0.192 0.161 0.181

Table 3. Average distribution of full cells from [WBD12a]
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Obviously using an averaged value to predict the size of a complete CAD will
not work universally but initial results are promising, as shown in the following
example.

Example 2.
Two random polynomials in x, y, z were created, each with total degree 2:

g := 81zy − 3zx− 88yx+ 99x2 − 12y − 48;(21)

h := 80z2 + 40zy − 41y2 + 44yx− 28z + 11.(22)

These were inputted into the CAD algorithms under the two variable orderings:
x ≺ y ≺ z and x � y � z.

With variable ordering x ≺ y ≺ z a 1-layered CAD was produced with 372
cells which give a predicted full CAD of 1941. In reality, a full CAD produced by
McCallum’s projection contains 2057 which is a difference of 116 (around 5%).

With variable ordering x � y � z a 1-layered CAD was produced with 454
cells which give a predicted full CAD of 2368. In reality, a full CAD produced by
McCallum’s projection contains 2373 which is a difference of only 5 cells (around
0.2%).

It would seem, as to be expected, that larger CADs have more accurate predic-
tions. For example when dealing with only a single polynomial with a CAD of at
most 200 cells the results can be inaccurate (up to a factor of 100%) but with more
polynomials and CADs over 1000 cells the predictions seem to mostly be within
5%. Arguably, the larger examples are those for which you would want to have
a prediction (and avoid computing a full CAD if necessary) so this is not a huge
problem.

Indeed, it seems the most appropriate use of this approximation is estimating
feasibility of problems, an example of which is given in Section 8.1.

6.4. Variable Ordering.
It is well known that variable ordering is fundamental to CAD problems. As shown
in [BD07] there are examples for which variable ordering is of key importance: pro-
ducing a constant number of cells (as few as 3) with one ordering and a doubly
exponential (in the number of variables) number of cells with another variable or-
dering. This obviously means that different variable orderings can produce differing
distributions.

We do not take this into account with our estimations and it is quite possible that
for a given problem the estimate with one variable ordering may be highly accurate
whilst another ordering is inaccurate. However averaged out over many problems
we believe that the CAD dimension distributions should be fairly consistent.

Therefore constructing a 1-layered CAD and predicting overall CAD size could
be used as a heuristic for choosing variable ordering. Although much more costly
than existing heuristics (see, for example, [DSS04], [BDEW13], and [Eng13b]) it
could be used as a ‘tie-breaker’ or when a truly accurate prediction is needed.

7. Extension to TTICAD

In [BDE+13] the authors suggested that often in CAD problems we ask the
incorrect question. It is often not the behaviour of specific polynomials that we care
about but rather the truth of Tarski quantifier-free formulae (QFFs) comprised of
them.

Given a sentence Φ comprised of quantifier-free formulae φi they propose that
rather than compute a full CAD for all polynomials in Φ a Truth Table Invariant
CAD (TTICAD) should be computed instead. This is a CAD where the truth
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value of each φi is constant over each cell. Generalising work in [McC99], an algo-
rithm is given for the case that each quantifier free-formula contains a designated
equational constraint (an equation of the form f = 0 which is logically implied
by the rest of the clause).

Example 3.
Consider the following single-clause formula:

(23) (xyz − 1

4
= 0) ∧ (x2 + y2 + z2 − 1 < 0) ∧ (x+ y + z − 1 > 0).

As there is only a single clause, TTICAD works much the same as equational con-
straints here apart from an improvement in the lifting stage described in [Eng13b].
Instead of including x2 + y2 + z2− 1 and x+ y+ z− 1, a CAD is constructed using
xyz − 1

4 (the designated equational constraint) and its resultants with the other
two polynomials. This is sufficient as we only need care about the behaviour of the
inequalities when the first equation is satisfied.

In this case a projection based CAD, using McCallum’s projection operator,
produces 1069 cells, and a CAD using the technology of [CMXY09] produces 1077
cells. Using TTICAD produces just 127 cells, encapsulating the behaviour of the
clause.

Example 4.
Consider the following two-clause formula:

(24)

(
x2 + y2 − 1 = 0 ∧ xy − 1

4
< 0

)
∨

(
(x− 4)2 + (y − 1)2 − 1 = 0 ∧ (x− 4)(y − 1)− 1

4
< 0

)
.

In this example, as the two QFFs are disjuncted together, the traditional theory
of equational constraints seems to not be applicable. In fact, an implicit equational
constraint is present: the product of the two equations. The power of TTICAD
is due to the observation that we can apply the theory of equational constraints
separately to each QFF, worrying only about interaction between the equational
constraints of each QFF.

A classical projection-based CAD, using McCallum’s operator, for this problem
produces 377 cells, as does a CAD using the technology of [CMXY09]. Using
the implicit equational constraint results in 249 cells being produced. Applying
TTICAD reduces the number of cells to 153 while still being able to fully determine
the behaviour of the formula.

A natural idea is to combine TTICAD with layered CAD. This is surprisingly
easy and conducted almost identically to Algorithm 2 but with the TTICAD pro-
jection and lifting operators. A full implementation is given by the author in the
LayeredTTICAD Maple package and is discussed in Appendix A.

Table 4 gives results for using LayeredTTICAD with Example 3 and 4. As is to
be expected, taking a layered TTICAD offers savings over a complete TTICAD.

It is also worth asking if the ideas in Section 6 transfer to TTICADs. In par-
ticular, we can ask if the dimensional distribution of a TTICAD differs from the
distribution of a standard CAD. Random inputs in 2 and 3 variables were con-
sidered: a formula was constructed with a random number of clauses between 1
and 4, each had a random equational constraint (using the randpoly command in
Maple) with a random degree between 1 and 4, and a random number (between 1
and 4) of random non-equational constraints with a random degree between 1 and
4. Running 10 tests for each set of variables gave the average distributions shown
in Table 5.



LAYERED CYLINDRICAL ALGEBRAIC DECOMPOSITION 17

Example 3 Example 4
Cells Time Cells Time

MapleCAD 1077 14.887 377 4.300
CADFull 1069 115.658 377 3.648

2-layerCAD 684 9.558 301 2.377
1-layerCAD 216 2.987 113 1.386

TTICAD 127 0.692 153 0.473
2-layerTTICAD 96 0.642 121 0.528
1-layerTTICAD 36 0.272 45 0.462
Table 4. Various results for Layered TTICAD

Variables 0-cells 1-cells 2-cells 3-cells
x, y 0.183 0.488 0.329 —
x, y, z 0.052 0.256 0.436 0.256

Table 5. TTICAD Distributions

Comparing with the results in Table 3 we can see that although the 2-dimensional
distribution agrees fairly well, the 3-dimensional distribution differs somewhat. In
the standard CAD testing a proportion of 0.192 cells were 3-dimensional, whereas
over a quarter of TTICAD cells are 3-dimensional. This could be a manifestation
of the random nature of this testing, a consequence of the construction method of
TTICAD, or, more likely, a combination of the two factors.

Further research into layered TTICADs and their applications is being con-
ducted.

8. Applications

In [McC93] the author pointed out the most obvious use of 1-layered CADs
(and, their inspiration) for solving systems of strict inequalities (which can only be
satisfied by full cells).

Later, in [Str00] discussed how considering only full cells can be useful for in-
tegration. If two sets, A and B, differ only by a set of n-dimensional Lebesgue
measure zero then:

(25)

∫

A

fdm =

∫

B

fdm.

Therefore integrating only over full cells in a certain region is equivalent to inte-
grating over all cells in that region (as a deficient cell has is Lebesgue-null). The
author also notes that open cells have further use in graphical visualization of sets
defined by strict inequalities.

8.1. Cyclic-n Polynomials.
The Cyclic-n problem defines a set of n polynomials symmetric in n variables as
follows:

x1 + x2 + · · ·+ xn = 0(26)

x1x2 + x2x3 + · · ·+ xn−1xn + xnx1 = 0(27)

...(28)

x1x2 · · ·xn−1xn − 1 = 0.(29)

We consider the Cyclic-4 problem in the following example:
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Example 5.
The Cyclic-4 problem involves the following polynomials:

a+ b+ c+ d(30)

ab+ bc+ cd+ da(31)

abc+ bcd+ cda+ dab(32)

abcd− 1.(33)

Under any variable ordering a 1-layered CAD contains 10,440 cells. Using our
current estimations this predicts a complete CAD with 64,845 cells - well outside
our current feasible computational range.

This is indeed the case, as shown in [WBD12b], where computing a full CAD
timed out after 1000s. It was found to be computable within a minute with pre-
conditioning by Gröbner Bases. Indeed after this preconditioning a 1-layered CAD
contains 252 cells which gives a much more manageable estimate of 1565 cells in
a complete CAD. With McCallum’s projection operator a cell count of 1569 is
obtained showing the accuracy of the prediction. In fact, with better projection op-
erators or the technology of [CMXY09] a cell count of 621 post pre-conditioning can
be obtained.

The following result is known and a proof is given in [Fau00]:

Lemma 4. If n is square free then there are a finite number of solutions to Cyclic-n.
If there exists m > 1 such that m2|n then there are an infinite number of solutions
to Cyclic-n and they have dimension at least m− 1.

Therefore the Cyclic-4 problem has an infinite number of solutions and the solu-
tion set has dimension at least 1. Therefore a full CAD is not necessary to find a set
of solutions: we can construct a 4-layered CAD to only produce cells of dimension
1 and higher. Obviously this is not a great saving, but for larger n (and larger m)
this could constitute a significant saving.

8.2. Intersection of surface and regions. Consider the following problem:

x2 +

(
y − 1

2

)2

+ z2 < 1 ∧ x2 +

(
y +

1

2

)2

+ z2 < 1 ∧ y2 − x3 + z =
1

10

Which is the intersection of a surface with the interior of two spheres shown in R3,
as shown in Figure 5.

We may wish to know if there is a solution to this problem and a description
of the region without worrying about the boundaries and particular points, or we
may wish to integrate over this surface and so need to know the cells of greatest
dimension (as discussed in [Str00]). We can see that any solution region will have
a co-dimension of at least 1, so a 2-layered CAD should be created. We will use
the variable ordering z ≺ y ≺ x.

Cells Time (s)
1-layered CAD 544 44.939
2-layered CAD 1838 479.707
Full CAD 3063 6624.407

Table 6. Results for computing various CADs under the variable
ordering z ≺ y ≺ x

The results of computing a 1-layered, 2-layered, and Full CAD are given in
Table 6. Although the 2-layered CAD contains over half the total number of cells,
computing a full CAD is nearly 14 times slower.
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Figure 5. Intersection of the surface z = x3 − y2 + 1
10 with unit

spheres centered at (0, 12 , 0) and (0,− 1
2 , 0)

As it consists of a conjunction of equations and inequalities, this problem is
a candidate for treatment by equational constraints or TTICAD. As we have only
one clause, TTICAD is in essence working the same as equational constraints (there
are some differences in the particulars related to the lifting but they are relatively
inconsequential). We have to select which of the spheres to designate as the equa-
tional constraint and to do this we can use the measures sotd and ndrr; this idea
is discussed in [BDEW13]. As the problem is essentially symmetric in y, there is
no difference between the choice of equational constraints.

Cells Time (s)
1-layered TTICAD 112 1.949
2-layered TTICAD 363 8.521
Full TTICAD 599 23.707

Table 7. Results for computing various TTICADs under the vari-
able ordering z ≺ y ≺ x

The results of computing layered and full TTICADs are shown in Table 7. A
2-layered TTICAD is the minimal CAD we can currently construct to solve the
problem (this may not be the smallest possible) and so through TTICAD and
layered CADs we have reduced the number of cells produced by a factor of 8 from
3063 to 363, and reduced the time taken by a factor of 777 from nearly two hours
to under 9 seconds.

8.3. Branch Cut Analysis.
Many elementary functions on the complex numbers are multi-valued; for example
the natural logarithm function produces a set of valid answers for a complex number
z:

(34) log(z) = {log(|z|) + 2πik | k ∈ Z}.
Most computer algebra systems deal with this by defining a single valued counter-
part for the function along with choosing a set of branch cuts defining where the
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function is discontinous. Whilst the cuts for the elementary functions are simple
(for the logarithm and square root the standard choice is the negative real axis)
an expression involving multiple, possibly nested, functions can have complicated
branch cuts.

CAD can be used to analyse the branch cuts for an expression and deduce
where it holds in complex space. This was discussed in [BDPB07] and has recently
been implemented in Maple 17 [EBDW13]. The method takes an expression in n
complex variables and, by separating real and imaginary parts, considers it as an
expression in 2n real variables.

Recall the following definition:

Definition 7.
Two functions, f1 and f2, defined on a domain X are said to be equal almost
everywhere with respect to a measure µ if the subset E ⊆ X of values where f1
and f2 differ is a null set (i.e. µ(E) = 0).

Note that with respect to the Lebesgue measure (the standard measure on Eu-
clidean space) any subset of Rn of deficient dimension has null measure.

We can therefore use layered CADs to decide if a complex expression is valid
almost everywhere in complex space. Note that if we want a formula to hold
almost everywhere with respect to complex dimension we would need to construct
a 2-layered real CAD to correspond to a 1-layered complex CAD. However we only
need to construct a 1-layered CAD of real space as a 2n − 1-real-dimensional cell
cannot represent an n-complex-dimensional cell.

It is possible to use layered CADs to do better than just equality almost every-
where. In [BBDP05] the concept of adherence was investigated within the context
of branch cut analysis.

Definition 8 ([BBDP05]). Suppose that we have a CAD for B(h) (a set of branch
cuts for h) and c is a section of a stack representing part of, or all of, a particular
branch cut. Let s be an adjacent sector cell to c. Then we say that the branch cut
c adheres to s if c belongs to the same sheet of RS(H) (the associated Riemann
surface) as does s.

If c adheres to s, then the validity of a given identity is the same on c and s. As
it is easier to work on a cell of higher dimension (especially full dimension, thanks
to rational sample points and no risk of computational errors) this can be of great
advantage.

Therefore, it would seem that the full dimensional cells are of greatest impor-
tance, and 2-layered cells can be analysed through adherence. However, it should
be noted that computing adherences is highly non-trivial: the sub-procedure of
computing interstack adjacencies alone is rather complicated.

8.4. Motion Planning Examples.
Consider the problem of moving a 3m ladder along a hallway of width 1m that has
a 90◦ bend, as shown in Figure 6.

As shown in [Dav86] we can describe this problem by cosidering the configuration
space of the two endpoints (x, y) and (x′, y′) in the following manner:
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A

B

Figure 6. Is it possible to move the ladder from position A to
position B?

(35)
[

[(x− x′)2 + (y − y′)2 − 9 = 0] ∧
[[yy′ ≥ 0] ∨ [x(y − y′)2 + y(x′ − x)(y − y′) ≥ 0]] ∧

[[(y − 1)(y′ − 1) ≥ 0] ∨ [(x+ 1)(y − y′)2 + (y − 1)(x′ − x)(y − y′) ≥ 0]] ∧
[[xx′ ≥ 0] ∨ [y(x− x′)2 + x(y′ − y)(x− x′) ≥ 0]] ∧

[[(x+ 1)(x′ + 1) ≥ 0] ∨ [(y − 1)(x− x′)2 + (x+ 1)(y′ − y)(x− x′) ≥ 0]]
]
.

This problem is infeasible with all of the current implementations. Even con-
structing a 1-layered CAD is still infeasible with current work. An alternative
reformulation of the problem that is feasible with current technology is the topic of
a future paper.

However, this is a useful example to demonstrate how layered CADs can be useful
for motion planning. Moving a 2-dimensional object through a 1-dimensional cell
is, in reality, impossible; it is akin to walking along an infinitely thin tightrope.

In fact, l-dimensional path connectedness is the appropriate property needed.
Consider moving a sphere through 3-dimensional space. Certainly a hole the size of
the “shadow” of the sphere (i.e. a circle) is need to pass the sphere between regions.
This can be generalised into a necessary condition: to move an (l+ 1)-dimensional
object between two regions they must be l-dimensionally path connected. Obviously
it still may not be possible to move the object between regions (you cannot pass a
sphere of radius 10m through a gap that is only 1cm wide!) but this condition is
still very useful.

It is worth noting that it may not be obvious how many layers of a CAD are
needed to correspond to a given dimension issue. For motion planning problems we
generally work in a configuration space rather than the physical space which may
be of higher dimension. In the ladder problem above, we work in a four-dimensional
space (in the variables x, y, x′, y′) although we consider a subspace of co-dimension
1 (due to the equation defining the ladder’s length).

9. Conclusions and Further Work

Although the idea of looking at just the full-dimensional cells of a CAD has
been investigated before, we have shown that constructing multiple layers can also
be of benefit. Trivially, 1-layered CADs are order-invariant, but the same can be
said for 2-layered CADs as well. Algorithms have been given to compute l-layered
CADs both directly and recursively: both are fully implemented in the LayeredCAD
package for Maple described in Appendix A.
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A new topological concept of l-dimensional path connectedness was introduced,
motivated by motion planning where this property is necessary (although not suf-
ficient). An l-layered CAD can be used to decide whether cells are (n − l + 1)-
dimensionally path connected. This can save the need to construct a complete
CAD.

Layered CADs can also be used to predict the size of the equivalent complete
CAD. There is evidence that the distribution of dimensions of cells within a CAD
is approximately binomial (with a high p value) and this can be used as a crude
estimate. This can be used as an important test for the feasability of problems.

The idea behind a layered CAD can also be combined with the recent idea of
TTICAD (which, itself, extends the theory of equational constraints). A major
application of TTICAD is in branch cut analysis, for which layered CADs can be
used to prove expressions almost everywhere. The concept of adherence can also
be used to determine the validity of identities on the branch cuts from a 1-layered
CAD.

Future work will further investigate properties and applications of layered CADs
and a large aim is to construct them in a more efficient way. It may be possible to
construct layered CADs from the algorithm given in [CMXY09] and emulate the
work of [CDM+10] to produce 1-layered CADs in singly-exponential time under
certain conditions.
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Appendix A. Implementation

The ideas contained in this paper have been implemented by the first author in
the Maple package LayeredCAD, available freely for download alongside this paper
or from the author’s website1.

The LayeredCAD package is an extension for the ProjectionCAD package (version
2.0+) created by the second author for the University of Bath Real Geometry and
Connectedness research group. The original package allows users to construct CADs
with a range of projection operators and is described in [Eng13a] and [Eng13b]. The
package is also freey available on the author’s website.

The LayeredCAD package contains eleven new top-level functions for constructing
layered CADs:

• CADOneLayered(F,vars), CADNLayered(F,N,vars);
• CADRecursiveLayered(F,vars,C,LD),
CADRecursiveLayeredLR(F,vars,C,LD);

• CADDisplayLayered(CAD);
• TTICADOneLayered(PHI,vars), TTICADNLayered(PHI,N,vars);
• CADDistribution(F,vars), CADNormDist(F,vars);
• TTICADDistribution(PHI,vars), TTICADNormDist(PHI,vars);

These functions and their implementations are described in this Appendix along
with an interactive Maple worksheet freely available with the package.

A.1. CADOneLayered and CADNLayered.
These functions compute their respective layered CADs using Algorithms 1 and 2
and output them as a list of cells represented by a list of indices and a regular chain
representation. They take a list or set of polynomials, an (ordered) list of variables,
and (for CADNLayered) a positive integer between 1 and n+ 1.

Further functionality can be provided with additional input specifiers. Pro-
viding output=listwithrep can request the output in a listwithrep format which
provides for each cell a readable representation. Providing method=McCallum or
method=Collins will specifiy the respective projection operator to be used.

The algorithms use the following simple test procedure:

IsCellNLayeredDim:=proc(cell::list,N::int) :: boolean:

local cellindex, modtot, n, i:

n:=nops(cellindex):

modtot:=add(i mod 2, i in cellindex):

if modtot >= (n+1-N) then

return(true):

elif modtot<(n+1-N) then

return(false):

fi:

end proc:

The simple idea behind IsCellNLayeredDim is that a cell’s dimension can be easily
determined by the parity of its indices:

(36) dim(D) =
∑

i∈Ind(D)

(i mod 2) .

Therefore a cell is a valid cell for a N -layered CAD if this dimension is greater than
or equal to n+ 1−N , where n is the number of indices of the cell (i.e. its maximal
dimension).

1http://www.cs.bath.ac.uk/~djw42/triangular
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A.2. CADRecursiveLayered and CADRecursiveLayeredLR.
Algorithm 3, and the ideas of Section 4, have been implemented in the two given
procedures.

The two functions have the same specifications but differ in how the CADs are
represented: the former as a list of cells (index and sample point), the latter also
provides representations for each cell (equations and inequalities describing the
cell). The input is a set or list of polynomials, an ordered list of variables along
with a list of cells C and layered CAD LD - both of these can be empty lists. The
list C should be those cells where the algorithm had terminated for the previous
layer and the layered CAD LD should be the previous decomposition. It is intended
that the user should never manually enter these but they should be automatically
generated by previous calls to the algorithm.

The algorithms then propogate the next layer of the CAD from the cells in C

and give a pair of outputs:

> A,B:= CADRecursiveLayered(F,vars,C,LD);

LD’, %CADRecursiveLayered(F,vars,C’,LD’)

The first output, LD’, is a layered CAD for F and vars of precisely one layer
more than LD. The second output is a recursive call that can be used to produce a
layered CAD with one more layer (and another recursive call). This recursive call
is rendered inert by the Maple identifier %, but can be evaluated using the value

command.

> A’,B’:= value(B);

LD’’, %CADRecursiveLayered(F,vars,C’’,LD’’)

In the current implementation the recursive call, B, is given in full detail, with C’

and LD’ explicitly printed. This is less than ideal, as the cells and layered CADs are
often very large and complicated lists. To this extent it is recommended to assign
the call ‘quietly’ (using : to terminate the statement rather than ;) and then eval-
uate separately. It is hoped in future versions of the package this will be avoided
through explicit type declaration (as is planned for the whole ProjectionCAD pack-
age).

A.3. CADDisplayLayered.
If a layered CAD has been constructed using the listwithrep formulation then it
can be displayed in an informative tree-like structure using CADDisplayLayered.
This outputs a Maple piecewise structure that gives an intuitive description of
the layered CAD. Whenever a branch has been terminated a placeholder is given.

A simple example is given in Figure 7. This can be compared to Figure 8
which shows the equivalent full CAD in piecewise format. We see that the layered
CAD displayed omits all information regarding the cylinder above y = 0 as this is
unnecessary for a 1-layered CAD, along with the sections x = 1− y when y > 0 or
y < 0.

A.4. (TTI)CADDistribution and (TTI)CADNormDist. ,
The package contains four analytical tools to generate the cell distributions of a
Full CAD as used in Section 6. CADDistribution outputs a list with the number
of cells for each dimension at its appropriate index in the list (regarding the list
indices as starting at 0). CADNormDist returns a similar list but with each entry
normed by dividing by the total number of cells to allow easy comparisons between
problems. TTICADDistribution and TTICADNormDist perform the same tasks but
for a TTICAD.
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> LD,RLD:=CADRecursiveLayeredLR({x+y-1,y},[x,y],[],[]):

> CADDisplayLayered(LD);

{{ [regular_chain, [[-1, -1],[1, 1]]] x < -y + 1

{{

{{ ["*********"] branch = truncated y < 0

{{

{{ [regular_chain, [[-1, -1],[3, 3]]] -y + 1 < x

{

{ ["*********"] branch = truncated

{

{{ [regular_chain, [[1, 1],[-1, -1]]] x < -y + 1

{{

{{ ["*********"] branch = truncated 0 < y

{{

{{ [regular_chain, [[1, 1],[1, 1]]] -y + 1 < x

Figure 7. Usage of CADDisplayLayered for a piecewise layered CAD

> CADFull({x y-1,y},[x,y],method=McCallum,output=piecewise);

{{ [regular_chain, [[-1, -1],[1, 1]]] x < -y + 1

{{

{{ [regular_chain, [[-1, -1],[2, 2]]] x = -y + 1 y < 0

{{

{{ [regular_chain, [[-1, -1],[3, 3]]] -y + 1 < x

{

{ { [regular_chain, [[0, 0],[0, 0]]] x < 1

{ {

{ { [regular_chain, [[0, 0],[1, 1]]] x = 1 y = 0

{ {

{ { [regular_chain, [[0, 0],[2, 2]]] 1 < x

{

{{ [regular_chain, [[1, 1],[-1, -1]]] x < -y + 1

{{

{{ [regular_chain, [[1, 1],[0, 0]]] x = -y + 1 0 < y

{{

{{ [regular_chain, [[1, 1],[1, 1]]] -y + 1 < x

Figure 8. Full piecewise CAD

A.5. TTICADOneLayered and TTICADNLayered.
The ideas discussed in Section 7 are implemented within LayeredCAD with the
folllowing five functions:

• TTICADOneLayered(PHI,vars)

• TTICADTwoLayered(PHI,vars)

• TTICADNLayered(PHI,N,vars)

• TTICADDistribution(PHI,vars)

• TTICADNormDist(PHI,vars)

These are built over the TTICAD procedures within the ProjectionCAD package
and work in an almost identical way to the other LayeredCAD procedures. No recur-
sive layered TTICAD algorithms are currently implemented - partly as TTICAD
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works differently for the first projection (and therefore the final lifting) so recursion
would be a bit trickier.

A.6. Distribution of the LayeredCAD package.
The LayeredCAD package is freely available alongside this paper or from the author’s
website: http://www.cs.bath.ac.uk/~djw42/triangular. Any corrections, sug-
gestions or comments would be gratefully received and should be sent to the author
on D.J.Wilson@bath.ac.uk.
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