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Abstract. Cylindrical algebraic decomposition (CAD) is a key tool for
solving problems in real algebraic geometry and beyond. In recent years
a new approach has been developed, where regular chains technology is
used to first build a decomposition in complex space. We consider the lat-
est variant of this which builds the complex decomposition incrementally
by polynomial and produces CADs on whose cells a sequence of formu-
lae are truth-invariant. Like all CAD algorithms the user must provide a
variable ordering which can have a profound impact on the tractability
of a problem. We evaluate existing heuristics to help with the choice for
this algorithm, suggest improvements and then derive a new heuristic
more closely aligned with the mechanics of the new algorithm.

1 Introduction

A cylindrical algebraic decomposition (CAD) is: a decomposition of Rn, meaning
a collection of cells which do not intersect and whose union is Rn; cylindrical,
meaning the projections of any pair of cells with respect to a given variable
ordering are either equal or disjoint; and, (semi)-algebraic, meaning each cell can
be described using a finite sequence of polynomial relations. The original CAD
by Collins [1] was introduced as a tool for quantifier elimination over the reals.
Since then CAD has also been applied to problems including epidemic modelling
[9], parametric optimisation [18], theorem proving [22], motion planning [23] and
reasoning with multi-valued functions and their branch cuts [14].

Traditionally, a CAD is built sign-invariant with respect to a set of poly-
nomials such that each one has constant sign in each cell, meaning only one
sample point per cell need be tested to determine behaviour. Collins’ algorithm
works in two phases. In the projection phase an operator is repeatedly applied to
polynomials each time producing a set in one fewer variables. Then in the lifting
phase CADs of real space are built incrementally by dimension according to the
real roots of these polynomials. A full description is in [1] and [13] summarises
improvements from the first 20 years ([4] references more recent developments).

In 2009 an approach to CAD was introduced which broke with the projection
and lifting framework [12]. Instead, a complex cylindrical decomposition (CCD)
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of Cn is built using triangular decomposition by regular chains, and then real
root isolation is applied to move to a CAD of Rn. We can view the CCD as
an enhanced projection since gcds are calculated as well as resultants. It means
the second phase is less expensive than lifting since case distinction can avoid
identifying unnecessary roots. We use PL-CAD for CADs built by projection and
lifting and RC-CAD for CADs built with the new approach. The initial work
was improved in [11] by introducing purpose-built algorithms to refine a CCD
incrementally by constraint whilst maintaining cylindricity and recycling subre-
sultant calculations. A modification of the incremental algorithm to work with
relations instead of polynomials then allowed for simplification in the presence
of equational constraints (ECs): equations whose satisfaction is logically implied
by the input. The output was no longer sign-invariant for polynomials but truth-
invariant for a formula (the conjunction of relations). Similar ideas had been
developed for PL-CAD [21] but were difficult to generalise to multiple ECs.

In [2], a new variant of RC-CAD was presented. Here, instead of building a CAD
for a set of polynomials or relations we build one for a sequence of quantifier free
formulae (QFFs) such that each formula has constant truth value on each cell: a
truth-table invariant CAD or TTICAD. It followed the development of TTICAD
theory for PL-CAD (see [4], [5]) and combined it with the benefits of RC-CAD. The
CCD is built using a tree structure incrementally refined by constraint. ECs are
dealt with first, with branches refined for other constraints in a formula only if
the EC is satisfied. Further, when there are multiple ECs in a formula branches
can be removed when the constraints are not all satisfied. See [2] and [11] for full
details. Building a TTICAD is often the best way to obtain a truth-invariant
CAD for a single formula (if the formula has disjunctions then treating each
conjunctive clause as a subformula allows simplification in the presence of any
ECs) but is also the object required for applications like simplification of complex
functions via branch cut analysis (see [3] [17]). The implementation of [2] in the
RegularChains Library [24] (denoted RC-TTICAD) is our topic here.

All CAD algorithms require the user to specify an ordering on the variables.
For PL-CAD this determines the order of projection and thus the sequence of
Euclidean spaces considered en-route to Rn. For RC-CAD if determines both the
triangular decompositions performed and the refinement to Rn. Depending on
the application there may be a free or constrained choice. For example, in quan-
tifier elimination we must order the variables as they are quantified but may
change the ordering within quantifier blocks. Problems easy in one variable or-
dering can be infeasible in another, with [8] giving problems where one ordering
leads to a cell count constant in the number of variables and another to one
doubly exponential (irrespective of the algorithm used). Hence any choice must
be made intelligently. We write y � x if y is greater than x in an ordering (noting
that PL-CAD eliminates variables from greatest to lowest in the ordering).

We start in Section 2 by evaluating (with respect to RC-TTICAD) existing
heuristics for choosing the variable ordering. Then in Section 3 we suggest some
extensions to improve their use before developing our own heuristic more closely
aligned to RC-TTICAD. We give our conclusions in Section 4.
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2 Evaluating existing heuristics

In what follows we assume f is a polynomial, v a variable and P the set of
polynomials defining the input to RC-TTICAD. Let deg(f, v) be the degree of f
in v, tdeg(f) the total degree of f and lcoeff(f, v) the leading coefficient of
f when considered as a univariate polynomial in v. For a set let max be the
maximum value, sum the sum of values and # the number of values. We start
by considering two heuristics already in use for choosing the variable ordering
in algorithms from the RegularChains Library [24].

Triangular: Start with the first criteria, breaking ties with successive ones.
1. Let v[1] = max({deg(f, v), | f ∈ P}). Then set y � x if y[1] < x[1].
2. Let v[2] = max({tdeg(lcoeff(f, v)), | f ∈ P (containing v)}).

Then set y � x if y[2] < x[2].
3. Let v[3] = sum({deg(f, v), | f ∈ P}). Then set y � x if y[3] < x[3].

Brown: Start with the first criteria, breaking ties with successive ones.
1. Set y � x if y[1] < x[1] (as defined in the heuristic above).
2. Let v[4] = max({tdeg(t), | t is a monomial (containing v) from a

polynomial in P}). Then set y � x if y[4] < x[4].
3. Let v[5] = #({t, | t is a monomial (containing v) from a polynomial

in P}). Then set y � x if y[5] < x[5].

These use only simple measures on the input. The first was implemented for [10]
(although not detailed there) and is used for various algorithms in the Regu-
larChains Library (being the default for SuggestVariableOrder). The second
was first described in the CAD tutorial notes [7] and in [19] was shown to do
well in choosing a variable ordering for Qepcad (an implementation of PL-CAD).

The next two heuristics were developed for PL-CAD and work by running
the projection phase for each possible variable ordering and picking an optimal
ordering using a measure of the projection set. Our implementations use the
projection polynomials generated by McCallum’s operator [20] on P .

Sotd: Select the variable ordering with the lowest sum of total degrees for each
of the monomials in each of the polynomials in the projection set.

Ndrr: Select the variable ordering with the lowest number of distinct real roots
of the univariate projection polynomials

Sotd was suggested in [15] where it was found to be a good heuristic for CAD
in Redlog (another implementation of PL-CAD). Ndrr was suggested in [6] as
a means to identify differences occurring only in real space and thus missed by
measures on degree. These heuristics are clearly more expensive but note that
the lifting phase does the bulk of the work for PL-CAD, with the projection phase
often trivial (and if not then the lifting phase is likely infeasible).

To evaluate the heuristics we generated 600 random examples, each with
two QFFs themselves a conjunction of two constraints. There were 100 for each
of six system types: 00, 10, 20, 11, 12, 22. Each digit in these labels refers
to the number of those constraints which are equalities (with the others strict



4 England-Bradford-Davenport-Wilson

inequalities). The polynomials defining the constraints were sparse and in three
variables, generated using Maple’s randpoly function. RC-TTICAD was applied
to build CADs for the problems using each of the six possible variable orderings.
A time out of 12 minutes a problem was used affecting only six examples (one
with system type 20, two with 10 and three with 00). For the others, the cell
count and computation time (in seconds) for each CAD was recorded.

Table 1 summarises this data, showing the average and median values for
each system. As expected RC-TTICAD does better in the presence of ECs. We
note the anomaly between system types 10 and 20: it seems the savings from
truncating branches where ECs are not simultaneously satisfied are wiped out
by the costs of doing so. The savings would probably be restored in the QFFs
contained further non-ECs requiring more processing per branch.

Next we note that the median cell counts and timings are considerably less
than the mean average for every system type, indicating the presence of outliers.
We provided a third piece of data: the median of the values for each problem when
averaged over the six possible orderings. This will still avoid outlier problems but
not outlier orderings. In every case this value is much closer to the mean average,
indicating that most outlying data comes from bad orderings rather than bad
problems, and thus highlighting the practical importance of the ordering.

We performed the following calculations for each problem and each heuristic:

1. Calculate the average cell count and timing for the problem from the six
possible variable orderings.

2. Run and time each heuristic for choosing a variable ordering for the problem.
3. Record the cell count and timing of the heuristic’s choice. If a heuristic

chooses multiple orderings we take the first lexicographically.
4. Calculate the saving from using the heuristic’s choice compared to the prob-

lem average, i.e. (1)− (3) for cell counts and (1)− (2)− (3) for timings.
5. Evaluate the savings as percentages of the problem average, i.e. 100(4)/(1).

Table 2 (the first four rows) shows averages of the values in (5) over problems of
the same system type and the whole problem set. All four existing heuristics offer
significant cell savings and so are making good selections of variable ordering.
Although Sotd offers the highest cell savings overall, its higher costs means the

Table 1. The performance on RC-TTICAD over all variable orderings. Displayed are the
mean and median values and the median of the values after averaging over orderings.

System
Cell Count Computation Time

Mean Median Median of av. Mean Median Median of av.

22 750.13 478 612.67 1.84 1.37 1.58
12 934.42 682 861.50 2.73 2.12 2.47
11 1355.45 839 1212.33 3.41 2.10 2.99
20 3271.51 2193 2918 8.90 6.02 7.92
10 2949.02 1528 2275 8.44 4.71 6.62
00 9838.76 4874 8566.67 34.46 17.05 29.88
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Triangular heuristic is the most time efficient. The heuristics’ costs decrease as
a percentage of the CAD computation time for systems with fewer ECs and so
Sotd can achieve a much higher saving for problems of type 00 than 22. But
there are other differences between systems not explained by running times, such
as Brown generally saving more cells than Triangular but not for systems 20.

3 Extensions, improvements and a new heuristic

Combining measures In [6] Ndrr was developed to help with problems where
Sotd could not due to differences occurring in real space only. Hence a logical
extension is to use their measures in tandem. We have used the same evaluation
for heuristics SN (where Ndrr is used as a tie-break for Sotd) and NS (where
Sotd is the tie-break) with results given in Table 2. In both cases the tie-breaker
gives marginally higher cell savings than using the single heuristic, with NS
giving the highest cell saving so far, but Brown remaining the most efficient
for computation time. The costs of running these heuristics will be higher than
using the single measure (at least for problems where the first measure tied) but
these extra costs are usually less than the extra time savings obtained.

Greedy heuristics A greedy variant of Sotd was also suggested in [15] with
the variable ordering decided alongside the projection phase. At each step the
projection operator is evaluated with respect to all unallocated variables and the
variable whose set has lowest sum of total degree of each monomial of each new
polynomial is fixed in the ordering. We denote this GS in Table 2 where we see
it offers less cell savings than full Sotd (though still competitive) but has lower
costs and so gives more time savings. The cost of Sotd will increase alongside
the number of admissible variable orderings and so for such problems the greedy
variant may offer the only sensible approach. A greedy variant of Ndrr is not
possible since that measure is on the univariate polynomials only.

Using information from PL-TTICAD The projection sets used so far are those
for a sign-invariant PL-CAD, thus considering not the input constraints but the
polynomials defining them. Since RC-TTICAD is building a TTICAD (smaller for
all except systems 00), a sensible extension is to use the projection phase from
PL-TTICAD [5]. However, we cannot match the declared output structure exactly:
PL-TTICAD uses (at most) one declared EC per QFF (with others treated the
same as non-ECs). Hence, for QFFs with 2 ECs we will run the projection phase
with the first of these declared (so for example, systems 20 are treated the same
as 10). We denote the heuristics applying Sotd and Ndrr with this projection
set as S-TTI and N-TTI. From Table 2 we see they offer substantially more
cell savings than their standard versions. They also achieve higher time savings:
both due to the improved choices and lower running costs (since the TTICAD
projection operator is a subset of the sign-invariant one). We can also run the
greedy variant of Sotd with the PL-TTICAD projection phase (denoted GS-TTI
in Table 2) which will lose some of the cell savings but increase the time savings.
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Developing a new heuristic We now aim to develop a new heuristic, which
considers more algebraic information than the input but is tailored to RC-TTICAD

itself rather than a PL-CAD algorithm. The main saving offered by the regular
chains approach is case distinction meaning that not all projection factors are
considered universally. For example, the second coefficient in a polynomial is
only considered when the first vanishes (and then only evaluated modulo that
constraint). Consider a set of polynomials consisting of the following:

– the discriminants, leading coefficients and cross-resultants of the polynomials
forming the first constraint in each QFF;

– if a QFF has no EC then also the (other) discriminants, leading coefficients
and cross resultants of all polynomials defining constraints there;

– if a QFF has more than one EC then also the resultant of the polynomial
defining the first with that of the second.

Here the resultants, discriminants and coefficients are taken with respect to the
first variable in the ordering. These polynomials will all be sign-invariant in the
output: see [2], [11] for the algorithm specifications and [16] for a fuller discussion
and examples (from a study in the context of choosing the constraint ordering).
This set does not contain all polynomials computed by RC-TTICAD, but those
which are considered in their own right rather than modulo others.

We define a new heuristic to pick an orderings in two stages: First variables
are ordered according to maximum degree of the polynomials forming the input
(as with Triangular and Brown). Then ties are broke by calculating the set of
polynomials above for each unallocated variable and ordering according to sum
of degree (in that variable). This is denoted NewH in Table 2 and we see it
achieves almost as many savings as S-TTI despite using fewer polynomials.

We could go further by including some more of the missing information. For
example, we can use the degree of the omitted discriminants, resultants and
leading coefficients as a third tie-break. This heuristic is denoted NewH-ext and
the results of its evaluation are in the final row of Table 2. We see it achieves
even higher cell savings (and the greatest time savings of any heuristic).

4 Conclusions

We have demonstrated that the variable ordering is important for RC-TTICAD

and using any heuristic is advantageous. Simple measures on the input can be
effective, but more cell savings can be obtained by using additional information.
Existing heuristics obtained this from the projection phase of PL-CAD and we
have suggested a new heuristic aligned to RC-TTICAD which identifies polyno-
mials of most importance to the algorithm. It was sufficient for allocating two
variables (and hence ordering three) as required by our problem set. Extending
to problems with more variables is a topic of future work.

The heuristics performance varied with the system classes and so heuristics
that changed along with this performed better. The precise relationships at work
here are not always clear to see. Machine learning on the set of measures used
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Table 2. Comparing the savings (as a percentage of the problem average) in cells (C)
and net timings (NT) from various heuristics.

Heuristic
22 12 11 20 10 00 All

C NT C NT C NT C NT C NT C NT C NT

Triangular 32.6 33.9 33.9 34.0 40.9 41.3 47.9 46.8 47.7 47.2 56.0 58.8 43.0 43.6
Brown 37.6 39.1 39.3 39.8 45.9 47.1 45.0 44.3 51.6 50.9 61.9 64.5 46.8 47.5
Sotd 36.7 23.9 37.9 27.7 49.4 40.4 42.8 39.5 56.3 53.9 59.9 61.8 47.1 41.0
Ndrr 40.1 21.2 44.1 33.0 40.2 30.7 35.7 34.4 54.8 51.3 54.0 54.3 44.9 37.4

SN 37.0 24.3 37.2 27.4 49.2 40.4 42.5 39.6 56.0 53.5 60.4 62.5 47.0 41.1
NS 41.3 22.6 41.2 30.7 47.8 37.1 38.7 36.0 57.1 51.7 58.4 60.2 47.3 39.6

GS 35.0 32.7 33.7 32.5 49.5 46.5 39.8 38.9 52.3 52.1 52.5 55.9 43.8 43.3

S-TTI 42.7 40.4 46.4 43.2 55.0 49.1 48.4 48.1 61.2 60.2 59.9 61.7 52.2 50.3
N-TTI 48.5 37.1 46.8 40.5 48.6 42.3 47.8 46.9 59.0 55.3 54.0 54.3 50.7 46.0
GS-TTI 46.4 47.2 44.9 44.5 56.7 54.7 49.3 50.2 56.7 57.5 52.8 55.9 51.1 51.6

NewH 45.9 45.5 41.8 43.5 51.4 50.8 48.2 47.6 56.4 52.4 67.0 68.5 51.7 51.3
NewH-ext 46.2 45.9 42.2 43.3 51.6 51.4 49.3 49.5 55.9 52.0 67.0 68.5 52.0 51.7

by the heuristics may offer a meta-heuristic greater than the sum of its parts (as
was found to be the case recently when choosing a variable ordering for Qepcad
[19]). Finally, we note that when using RC-TTICAD there are questions of problem
formulation other that the variable ordering to use. As implied in Section 3, the
order the constraints are presented affects the output. Advice on making this
choice intelligently was recently derived in [16].
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