275 research outputs found

    Solving Homogeneous Linear Equations over Polynomial Semirings

    Get PDF

    On Undecidable Dynamical Properties of Reversible One-Dimensional Cellular Automata

    Get PDF
    Cellular automata are models for massively parallel computation. A cellular automaton consists of cells which are arranged in some kind of regular lattice and a local update rule which updates the state of each cell according to the states of the cell's neighbors on each step of the computation. This work focuses on reversible one-dimensional cellular automata in which the cells are arranged in a two-way in_nite line and the computation is reversible, that is, the previous states of the cells can be derived from the current ones. In this work it is shown that several properties of reversible one-dimensional cellular automata are algorithmically undecidable, that is, there exists no algorithm that would tell whether a given cellular automaton has the property or not. It is shown that the tiling problem of Wang tiles remains undecidable even in some very restricted special cases. It follows that it is undecidable whether some given states will always appear in computations by the given cellular automaton. It also follows that a weaker form of expansivity, which is a concept of dynamical systems, is an undecidable property for reversible one-dimensional cellular automata. It is shown that several properties of dynamical systems are undecidable for reversible one-dimensional cellular automata. It shown that sensitivity to initial conditions and topological mixing are undecidable properties. Furthermore, non-sensitive and mixing cellular automata are recursively inseparable. It follows that also chaotic behavior is an undecidable property for reversible one-dimensional cellular automata.Siirretty Doriast

    Automorphisms mapping a point into a subvariety

    Get PDF
    The problem of deciding, given a complex variety X, a point x in X, and a subvariety Z of X, whether there is an automorphism of X mapping x into Z is proved undecidable. Along the way, we prove the undecidability of a version of Hilbert's tenth problem for systems of polynomials over Z defining an affine Q-variety whose projective closure is smooth.Comment: 5 page

    From Linear to Additive Cellular Automata

    Get PDF
    This paper proves the decidability of several important properties of additive cellular automata over finite abelian groups. First of all, we prove that equicontinuity and sensitivity to initial conditions are decidable for a nontrivial subclass of additive cellular automata, namely, the linear cellular automata over \u207f, where is the ring \u2124/m\u2124. The proof of this last result has required to prove a general result on the powers of matrices over a commutative ring which is of interest in its own. Then, we extend the decidability result concerning sensitivity and equicontinuity to the whole class of additive cellular automata over a finite abelian group and for such a class we also prove the decidability of topological transitivity and all the properties (as, for instance, ergodicity) that are equivalent to it. Finally, a decidable characterization of injectivity and surjectivity for additive cellular automata over a finite abelian group is provided in terms of injectivity and surjectivity of an associated linear cellular automata over \u207f

    Reachability games and related matrix and word problems

    Get PDF
    In this thesis, we study different two-player zero-sum games, where one player, called Eve, has a reachability objective (i.e., aims to reach a particular configuration) and the other, called Adam, has a safety objective (i.e., aims to avoid the configuration). We study a general class of games, called Attacker-Defender games, where the computational environment can vary from as simple as the integer line to n-dimensional topological braids. Similarly, the moves themselves can be simple vector addition or linear transformations defined by matrices. The main computational problem is to decide whether Eve has a winning strategy to reach the target configuration from the initial configuration, or whether the dual holds, that is, whether Adam can ensure that the target is never reached. The notion of a winning strategy is widely used in game semantics and its existence means that the player can ensure that his or her winning conditions are met, regardless of the actions of the opponent. It general, games provide a powerful framework to model and analyse interactive processes with uncontrollable adversaries. We formulated several Attacker-Defender games played on different mathematical domains with different transformations (moves), and identified classes of games, where the checking for existence of a winning strategy is undecidable. In other classes, where the problem is decidable, we established their computational complexity. In the thesis, we investigate four classes of games where determining the winner is undecidable: word games, where the players' moves are words over a group alphabet together with integer weights or where the moves are pairs of words over group alphabets; matrix games on vectors, where players transform a three-dimensional vector by linear transformations defined by 3×3 integer matrices; braid games, where players braid and unbraid a given braid; and last, but not least, games played on two-dimensional Z-VAS, closing the gap between decidable and undecidable cases and answering an existing open problem of the field. We also identified decidable fragments, such as word games, where the moves are over a single group alphabet, games on one-dimensional Z-VASS. For word games, we provide an upper-bound of EXPTIME , while for games on Z-VASS, tight bounds of EXPTIME-complete or EXPSPACE-complete, depending on the state structure. We also investigate single-player systems such as polynomial iteration and identity problem in matrix semigroups. We show that the reachability problem for polynomial iteration is PSPACE-complete while the identity problem for the Heisenberg group is in PTIME for dimension three and in EXPTIME for higher dimensions

    Open Diophantine Problems

    Full text link
    We collect a number of open questions concerning Diophantine equations, Diophantine Approximation and transcendental numbers. Revised version: corrected typos and added references.Comment: 58 pages. to appear in the Moscow Mathematical Journal vo. 4 N.1 (2004) dedicated to Pierre Cartie

    Algebraic Relaxations and Hardness Results in Polynomial Optimization and Lyapunov Analysis

    Get PDF
    This thesis settles a number of questions related to computational complexity and algebraic, semidefinite programming based relaxations in optimization and control.Comment: PhD Thesis, MIT, September, 201
    • …
    corecore