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Abstract

The contributions of the first half of this thesis are on the computational and
algebraic aspects of convexity in polynomial optimization. We show that unless
P=NP, there exists no polynomial time (or even pseudo-polynomial time) algo-
rithm that can decide whether a multivariate polynomial of degree four (or higher
even degree) is globally convex. This solves a problem that has been open since
1992 when N. Z. Shor asked for the complexity of deciding convexity for quartic
polynomials. We also prove that deciding strict convexity, strong convexity, qua-
siconvexity, and pseudoconvexity of polynomials of even degree four or higher is
strongly NP-hard. By contrast, we show that quasiconvexity and pseudoconvexity
of odd degree polynomials can be decided in polynomial time.

We then turn our attention to sos-convexity—an algebraic sum of squares
(sos) based sufficient condition for polynomial convexity that can be efficiently
checked with semidefinite programming. We show that three natural formulations
for sos-convexity derived from relaxations on the definition of convexity, its first
order characterization, and its second order characterization are equivalent. We
present the first example of a convex polynomial that is not sos-convex. Our main
result then is to prove that the cones of convex and sos-convex polynomials (resp.
forms) in n variables and of degree d coincide if and only if n = 1 or d = 2 or
(n, d) = (2, 4) (resp. n = 2 or d = 2 or (n, d) = (3, 4)). Although for disparate
reasons, the remarkable outcome is that convex polynomials (resp. forms) are sos-
convex exactly in cases where nonnegative polynomials (resp. forms) are sums of
squares, as characterized by Hilbert in 1888.

The contributions of the second half of this thesis are on the development
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and analysis of computational techniques for certifying stability of uncertain and
nonlinear dynamical systems. We show that deciding asymptotic stability of ho-
mogeneous cubic polynomial vector fields is strongly NP-hard. We settle some of
the converse questions on existence of polynomial and sum of squares Lyapunov
functions. We present a globally asymptotically stable polynomial vector field
with no polynomial Lyapunov function. We show via an explicit counterexample
that if the degree of the polynomial Lyapunov function is fixed, then sos pro-
gramming can fail to find a valid Lyapunov function even though one exists. By
contrast, we show that if the degree is allowed to increase, then existence of a
polynomial Lyapunov function for a planar or a homogeneous polynomial vec-
tor field implies existence of a polynomial Lyapunov function that can be found
with sos programming. We extend this result to develop a converse sos Lyapunov
theorem for robust stability of switched linear systems.

In our final chapter, we introduce the framework of path-complete graph Lya-
punov functions for approximation of the joint spectral radius. The approach is
based on the analysis of the underlying switched system via inequalities imposed
between multiple Lyapunov functions associated to a labeled directed graph. In-
spired by concepts in automata theory and symbolic dynamics, we define a class
of graphs called path-complete graphs, and show that any such graph gives rise
to a method for proving stability of switched systems. The semidefinite programs
arising from this technique include as special case many of the existing methods
such as common quadratic, common sum of squares, and maximum/minimum-of-
quadratics Lyapunov functions. We prove approximation guarantees for analysis
via several families of path-complete graphs and a constructive converse Lyapunov
theorem for maximum/minimum-of-quadratics Lyapunov functions.

Thesis Supervisor: Pablo A. Parrilo
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

With the advent of modern computers in the last century and the rapid increase
in our computing power ever since, more and more areas of science and engineer-
ing are being viewed from a computational and algorithmic perspective—the field
of optimization and control is no exception. Indeed, what we often regard nowa-
days as a satisfactory solution to a problem in this field—may it be the optimal
allocation of resources in a power network or the planning of paths of minimum
fuel consumption for a group of satellites—is an efficient algorithm that when fed
with an instance of the problem as input, returns in a reasonable amount of time
an output that is guaranteed to be optimal or near optimal.

Fundamental concepts from theory of computation, such as the notions of a
Turing machine, decidability, polynomial time solvability, and the theory of NP-
completeness, have allowed us to make precise what it means to have an (efficient)
algorithm for a problem and much more remarkably to even be able to prove
that for certain problems such algorithms do not exist. The idea of establishing
“hardness results” to provide rigorous explanations for why progress on some
problems tends to be relatively unsuccessful is commonly used today across many
disciplines and rightly so. Indeed, when a problem is resisting all attempts for an
(efficient) algorithm, little is more valuable to an unsatisfied algorithm designer
than the ability to back up the statement “I cannot do it” with the claim that
“it cannot be done”.

Over the years, the line between what can or cannot be efficiently computed
has shown to be a thin one. There are many examples in optimization and control
where complexity results reveal that two problems that on the surface appear
quite similar have very different structural properties. Consider for example the
problem of deciding given a symmetric matrix Q, whether xTQx is nonnegative
for all x ∈ Rn, and contrast this to the closely related problem of deciding whether
xTQx is nonnegative for all x’s in Rn that are elementwise nonnegative. The first
problem, which is at the core of semidefinite programming, can be answered in
polynomial time (in fact in O(n3)), whereas the second problem, which forms
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16 CHAPTER 1. INTRODUCTION

the basis of copositive programming, is NP-hard and can easily encode many
hard combinatorial problems [109]. Similar scenarios arise in control theory. An
interesting example is the contrast between the problems of deciding stability of
interval polynomials and interval matrices. If we are given a single univariate
polynomial of degree n or a single n × n matrix, then standard classical results
enable us to decide in polynomial time whether the polynomial or the matrix
is (strictly) stable, i.e, has all of its roots (resp. eigenvalues) in the open left
half complex plane. Suppose now that we are given lower and upper bounds
on the coefficients of the polynomial or on the entries of the matrix and we are
asked to decide whether all polynomials or matrices in this interval family are
stable. Can the answer still be given in polynomial time? For the case of interval
polynomials, Kharitonov famously demonstrated [87] that it can: stability of
an interval polynomial can be decided by checking whether four polynomials
obtained from the family via some simple rules are stable. One may naturally
speculate whether such a wonderful result can also be established for interval
matrices, but alas, NP-hardness results [110] reveal that unless P=NP, this cannot
happen.

Aside from ending the quest for exact efficient algorithms, an NP-hardness
result also serves as an insightful bridge between different areas of mathematics.
Indeed, when we give a reduction from an NP-hard problem to a new problem of
possibly different nature, it becomes apparent that the computational difficulties
associated with the first problem are intrinsic also to the new problem. Con-
versely, any algorithm that has been previously developed for the new problem
can now readily be applied also to the first problem. This concept is usually par-
ticularly interesting when one problem is in the domain of discrete mathematics
and the other in the continuous domain, as will be the case for problems con-
sidered in this thesis. For example, we will give a reduction from the canonical
NP-complete problem of 3SAT to the problem of deciding stability of a certain
class of differential equations. As a byproduct of the reduction, it will follow that
a certificate of unsatisfiability of instances of 3SAT can always be given in form
of a Lyapunov function.

In general, hardness results in optimization come with a clear practical im-
plication: as an algorithm designer, we either have to give up optimality and be
content with finding suboptimal solutions, or we have to work with a subclass
of problems that have more tractable attributes. In view of this, it becomes ex-
ceedingly relevant to identify structural properties of optimization problems that
allow for tractability of finding optimal solutions.

One such structural property, which by and large is the most fundamental one
that we know of, is convexity. As a geometric property, convexity comes with
many attractive consequences. For instance, every local minimum of a convex
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problem is also a global minimum. Or for example, if a point does not belong to
a convex set, this nonmembership can be certified through a separating hyper-
plane. Due in part to such special attributes, convex problems generally allow for
efficient algorithms for solving them. Among other approaches, a powerful theory
of interior-point polynomial time methods for convex optimization was developed
in [111]. At least when the underlying convex cone has an efficiently computable
so-called “barrier function”, these algorithms are efficient both in theory and in
practice.

Extensive and greatly successful research in the applications of convex opti-
mization over the last couple of decades has shown that surprisingly many prob-
lems of practical importance can be cast as convex optimization problems. More-
over, we have a fair number of rules based on the calculus of convex functions
that allow us to design—whenever we have the freedom to do so—problems that
are by construction convex. Nevertheless, in order to be able to exploit the po-
tential of convexity in optimization in full, a very basic question is to understand
whether we are even able to recognize the presence of convexity in optimization
problems. In other words, can we have an efficient algorithm that tests whether
a given optimization problem is convex?

We will show in this thesis—answering a longstanding question of N.Z. Shor—
that unfortunately even for the simplest classes of optimization problems where
the objective function and the defining functions of the feasible set are given by
polynomials of modest degree, the question of determining convexity is NP-hard.
We also show that the same intractability result holds for essentially any well-
known variant of convexity (generalized convexity). These results suggest that as
significant as convexity may be in optimization, we may not be able to in general
guarantee its presence before we can enjoy its consequences.

Of course, NP-hardness of a problem does not stop us from studying it, but
on the contrary stresses the need for finding good approximation algorithms that
can deal with a large number of instances efficiently. Towards this goal, we will
devote part of this thesis to a study of convexity from an algebraic viewpoint.
We will argue that in many cases, a notion known as sos-convexity, which is an
efficiently checkable algebraic counterpart of convexity, can be a viable substi-
tute for convexity of polynomials. Aside from its computational implications,
sos-convexity has recently received much attention in the area of convex algebraic
geometry [26],[55],[75],[89],[90],[91], mainly due to its role in connecting the geo-
metric and algebraic aspects of convexity. In particular, the name “sos-convexity”
comes from the work of Helton and Nie on semidefinite representability of convex
sets [75].

The basic idea behind sos-convexity is nothing more than a simple extension of
the concept of representation of nonnegative polynomials as sums of squares. To
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demonstrate this idea on a concrete example, suppose we are given the polynomial

p(x) = x4
1 − 6x3

1x2 + 2x3
1x3 + 6x2

1x
2
3 + 9x2

1x
2
2 − 6x2

1x2x3 − 14x1x2x
2
3 + 4x1x

3
3

+5x4
3 − 7x2

2x
2
3 + 16x4

2,
(1.1)

and we are asked to decide whether it is nonnegative, i.e, whether p(x) ≥ 0 for all
x := (x1, x2, x3) in R3. This may seem like a daunting task (and indeed it is as
deciding nonnegativity of quartic polynomials is also NP-hard), but suppose that
we could “somehow” come up with a decomposition of the polynomial a sum of
squares (sos):

p(x) = (x2
1 − 3x1x2 + x1x3 + 2x2

3)2 + (x1x3 − x2x3)2 + (4x2
2 − x2

3)2. (1.2)

Then, we have at our hands an explicit certificate of nonnegativity of p(x), which
can be easily checked (simply by multiplying the terms out).

It turns out (see e.g. [118], [119]) that because of several interesting connections
between real algebra and convex optimization discovered in recent years and quite
well-known by now, the question of existence of an sos decomposition can be cast
as a semidefinite program, which can be solved efficiently e.g. by interior point
methods. As we will see more formally later, the notion of sos-convexity is based
on an appropriately defined sum of squares decomposition of the Hessian matrix
of a polynomial and hence it can also be checked efficiently with semidefinite
programming. Just like sum of squares decomposition is a sufficient condition for
polynomial nonnegativity, sos-convexity is a sufficient condition for polynomial
convexity.

An important question that remains here is the obvious one: when do nonneg-
ative polynomials admit a decomposition as a sum of squares? The answer to this
question comes from a classical result of Hilbert. In his seminal 1888 paper [77],
Hilbert gave a complete characterization of the degrees and dimensions in which
all nonnegative polynomials can be written as sums of squares. In particular, he
proved that there exist nonnegative polynomials with no sum of squares decom-
position, although explicit examples of such polynomials appeared only 80 years
later. One of the main contributions of this thesis is to establish the counterpart
of Hilbert’s results for the notions of convexity and sos-convexity. In particular,
we will give the first example of a convex polynomial that is not sos-convex, and
by the end of the first half of this thesis, a complete characterization of the de-
grees and dimensions in which convexity and sos-convexity are equivalent. Some
interesting and unexpected connections to Hilbert’s results will also emerge in the
process.

In the second half of this thesis, we will turn to the study of stability in
dynamical systems. Here too, we will take a computational viewpoint with our
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goal will being the development and analysis of efficient algorithms for proving
stability of certain classes of nonlinear and hybrid systems.

Almost universally, the study of stability in systems theory leads to Lyapunov’s
second method or one of its many variants. An outgrowth of Lyapunov’s 1892
doctoral dissertation [99], Lyapunov’s second method tells us, roughly speaking,
that if we succeed in finding a Lyapunov function—an energy-like function of the
state that decreases along trajectories—then we have proven that the dynamical
system in question is stable. In the mid 1900s, a series of converse Lyapunov
theorems were developed which established that any stable system indeed has a
Lyapunov function (see [72, Chap. 6] for an overview). Although this is encour-
aging, except for the simplest classes of systems such as linear systems, converse
Lyapunov theorems do not provide much practical insight into how one may go
about finding a Lyapunov function.

In the last few decades however, advances in the theory and practice of con-
vex optimization and in particular semidefinite programming (SDP) have reju-
venated Lyapunov theory. The approach has been to parameterize a class of
Lyapunov functions with restricted complexity (e.g., quadratics, pointwise maxi-
mum of quadratics, polynomials, etc.) and then pose the search for a Lyapunov
function as a convex feasibility problem. A widely popular example of this frame-
work which we will revisit later in this thesis is the method of sum of squares
Lyapunov functions [118],[121]. Expanding on the concept of sum of squares
decomposition of polynomials described above, this technique allows one to for-
mulate semidefinite programs that search for polynomial Lyapunov functions for
polynomial dynamical systems. Sum of squares Lyapunov functions, along with
many other SDP based techniques, have also been applied to systems that un-
dergo switching; see e.g. [136],[131],[122]. The analysis of these types of systems
will also be a subject of interest in this thesis.

An algorithmic approach to Lyapunov theory naturally calls for new converse
theorems. Indeed, classical converse Lyapunov theorems only guarantee existence
of Lyapunov functions within very broad classes of functions (e.g. the class of
continuously differentiable functions) that are a priori not amenable to compu-
tation. So there is the need to know whether Lyapunov functions belonging to
certain more restricted classes of functions that can be computationally searched
over also exist. For example, do stable polynomial systems admit Lyapunov func-
tions that are polynomial? What about polynomial functions that can be found
with sum of squares techniques? Similar questions arise in the case of switched
systems. For example, do stable linear switched systems admit sum of squares
Lyapunov functions? How about Lyapunov functions that are the pointwise max-
imum of quadratics? If so, how many quadratic functions are needed? We will
answer several questions of this type in this thesis.



20 CHAPTER 1. INTRODUCTION

This thesis will also introduce a new class of techniques for Lyapunov analysis
of switched systems. The novel component here is a general framework for formu-
lating Lyapunov inequalities between multiple Lyapunov functions that together
guarantee stability of a switched system under arbitrary switching. The relation
between these inequalities has interesting links to concepts from automata theory.
Furthermore, the technique is amenable to semidefinite programming.

Although the main ideas behind our approach directly apply to broader classes
of switched systems, our results will be presented in the more specific context of
switched linear systems. This is mainly due to our interest in the notion of the
joint spectral radius of a set of matrices which has intimate connections to stabil-
ity of switched linear systems. The joint spectral radius is an extensively studied
quantity that characterizes the maximum growth rate obtained by taking arbi-
trary products from a set of matrices. Computation of the joint spectral radius,
although notoriously hard [35],[161], has a wide range of applications including
continuity of wavelet functions, computation of capacity of codes, convergence
of consensus algorithms, and combinatorics, just to name a few. Our techniques
provide several hierarchies of polynomial time algorithms that approximate the
JSR with guaranteed accuracy.

A more concrete account of the contributions of this thesis will be given in the
following section. We remark that although the first half of the thesis is mostly
concerned with convexity in polynomial optimization and the second half with
Lyapunov analysis, a common theme throughout the thesis is the use of algorithms
that involve algebraic methods in optimization and semidefinite programming.

� 1.1 Outline and contributions of the thesis

The remainder of this thesis is divided into two parts each containing two chap-
ters. The first part includes our complexity results on deciding convexity in
polynomial optimization (Chapter 2) and our study of the relationship between
convexity and sos-convexity (Chapter 3). The second part includes new results on
Lyapunov analysis of polynomial differential equations (Chapter 4) and a novel
framework for proving stability of switched systems (Chapter 5). A summary of
our contributions in each chapter is as follows.

Chapter 2. The main result of this chapter is to prove that unless P=NP, there
cannot be a polynomial time algorithm (or even a pseudo-polynomial time al-
gorithm) that can decide whether a quartic polynomial is globally convex. This
answers a question of N.Z. Shor that appeared as one of seven open problems in
complexity theory for numerical optimization in 1992 [117]. We also show that
deciding strict convexity, strong convexity, quasiconvexity, and pseudoconvexity
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of polynomials of even degree four or higher is strongly NP-hard. By contrast, we
show that quasiconvexity and pseudoconvexity of odd degree polynomials can be
decided in polynomial time.

Chapter 3. Our first contribution in this chapter is to prove that three natu-
ral sum of squares (sos) based sufficient conditions for convexity of polynomials
via the definition of convexity, its first order characterization, and its second or-
der characterization are equivalent. These three equivalent algebraic conditions,
which we will refer to as sos-convexity, can be checked by solving a single semidef-
inite program. We present the first known example of a convex polynomial that
is not sos-convex. We explain how this polynomial was found with tools from sos
programming and duality theory of semidefinite optimization. As a byproduct
of this numerical procedure, we obtain a simple method for searching over a re-
stricted family of nonnegative polynomials that are not sums of squares that can
be of independent interest.

If we denote the set of convex and sos-convex polynomials in n variables of
degree d with C̃n,d and Σ̃Cn,d respectively, then our main contribution in this
chapter is to prove that C̃n,d = Σ̃Cn,d if and only if n = 1 or d = 2 or (n, d) = (2, 4).
We also present a complete characterization for forms (homogeneous polynomials)
except for the case (n, d) = (3, 4) which will appear elsewhere [2]. Our result states
that the set Cn,d of convex forms in n variables of degree d equals the set ΣCn,d
of sos-convex forms if and only if n = 2 or d = 2 or (n, d) = (3, 4). To prove these
results, we present in particular explicit examples of polynomials in C̃2,6 \ Σ̃C2,6

and C̃3,4\Σ̃C3,4 and forms in C3,6\ΣC3,6 and C4,4\ΣC4,4, and a general procedure
for constructing forms in Cn,d+2 \ΣCn,d+2 from nonnegative but not sos forms in
n variables and degree d.

Although for disparate reasons, the remarkable outcome is that convex polyno-
mials (resp. forms) are sos-convex exactly in cases where nonnegative polynomials
(resp. forms) are sums of squares, as characterized by Hilbert.

Chapter 4. This chapter is devoted to converse results on (non)-existence of poly-
nomial and sum of squares polynomial Lyapunov functions for systems described
by polynomial differential equations. We present a simple, explicit example of a
two-dimensional polynomial vector field of degree two that is globally asymptot-
ically stable but does not admit a polynomial Lyapunov function of any degree.
We then study whether existence of a polynomial Lyapunov function implies ex-
istence of one that can be found with sum of squares techniques. We show via an
explicit counterexample that if the degree of the polynomial Lyapunov function
is fixed, then sos programming can fail to find a valid Lyapunov function even
though one exists. On the other hand, if the degree is allowed to increase, we
prove that existence of a polynomial Lyapunov function for a planar vector field
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(under an additional mild assumption) or for a homogeneous vector field implies
existence of a polynomial Lyapunov function that is sos and that the negative of
its derivative is also sos. This result is extended to prove that asymptotic stability
of switched linear systems can always be proven with sum of squares Lyapunov
functions. Finally, we show that for the latter class of systems (both in discrete
and continuous time), if the negative of the derivative of a Lyapunov function
is a sum of squares, then the Lyapunov function itself is automatically a sum of
squares.

This chapter also includes some complexity results. We prove that deciding
asymptotic stability of homogeneous cubic polynomial vector fields is strongly NP-
hard. We discuss some byproducts of the reduction that establishes this result,
including a Lyapunov-inspired technique for proving positivity of forms.

Chapter 5. In this chapter, we introduce the framework of path-complete graph
Lyapunov functions for approximation of the joint spectral radius. The approach
is based on the analysis of the underlying switched system via inequalities imposed
between multiple Lyapunov functions associated to a labeled directed graph. The
nodes of this graph represent Lyapunov functions, and its directed edges that
are labeled with matrices represent Lyapunov inequalities. Inspired by concepts
in automata theory and symbolic dynamics, we define a class of graphs called
path-complete graphs, and show that any such graph gives rise to a method for
proving stability of the switched system. This enables us to derive several asymp-
totically tight hierarchies of semidefinite programming relaxations that unify and
generalize many existing techniques such as common quadratic, common sum of
squares, and maximum/minimum-of-quadratics Lyapunov functions.

We compare the quality of approximation obtained by certain families of path-
complete graphs including all path-complete graphs with two nodes on an alpha-
bet of two matrices. We argue that the De Bruijn graph of order one on m
symbols, with quadratic Lyapunov functions assigned to its nodes, provides good
estimates of the JSR of m matrices at a modest computational cost. We prove
that the bound obtained via this method is invariant under transposition of the
matrices and always within a multiplicative factor of 1/ 4

√
n of the true JSR (in-

dependent of the number of matrices).
Approximation guarantees for analysis via other families of path-complete

graphs will also be provided. In particular, we show that the De Bruijn graph of
order k, with quadratic Lyapunov functions as nodes, can approximate the JSR
with arbitrary accuracy as k increases. This also proves that common Lyapunov
functions that are the pointwise maximum (or minimum) of quadratics always
exist. Moreover, the result gives a bound on the number of quadratic functions
needed to achieve a desired level of accuracy in approximation of the JSR, and
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also demonstrates that these quadratic functions can be found with semidefinite
programming.

A list of open problems for future research is presented at the end of each chapter.

� 1.1.1 Related publications

The material presented in this thesis is in the most part based on the following
papers.

Chapter 2.

A. A. Ahmadi, A. Olshevsky, P. A. Parrilo, and J. N. Tsitsiklis. NP-hardness
of deciding convexity of quartic polynomials and related problems. Mathemat-
ical Programming, 2011. Accepted for publication. Online version available at
arXiv:.1012.1908.

Chapter 3.

A. A. Ahmadi and P. A. Parrilo. A convex polynomial that is not sos-convex.
Mathematical Programming, 2011. DOI: 10.1007/s10107-011-0457-z.

A. A. Ahmadi and P. A. Parrilo. A complete characterization of the gap between
convexity and sos-convexity. In preparation, 2011.

A. A. Ahmadi, G. Blekherman, and P. A.Parrilo. Convex ternary quartics are
sos-convex. In preparation, 2011.

Chapter 4.

A. A. Ahmadi and P. A. Parrilo. Converse results on existence of sum of squares
Lyapunov functions. In Proceedings of the 50th IEEE Conference on Decision
and Control, 2011.

A. A. Ahmadi, M. Krstic, and P. A. Parrilo. A globally asymptotically stable
polynomial vector field with no polynomial Lyapunov function. In Proceedings of
the 50th IEEE Conference on Decision and Control, 2011.

Chapter 5.

A. A. Ahmadi, R. Jungers, P. A. Parrilo, and M. Roozbehani. Analysis of the
joint spectral radius via Lyapunov functions on path-complete graphs. In Hybrid
Systems: Computation and Control 2011, Lecture Notes in Computer Science.
Springer, 2011.
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Chapter 2

Complexity of Deciding Convexity

In this chapter, we characterize the computational complexity of deciding convex-
ity and many of its variants in polynomial optimization. The material presented
in this chapter is based on the work in [5].

� 2.1 Introduction

The role of convexity in modern day mathematical programming has proven to be
remarkably fundamental, to the point that tractability of an optimization problem
is nowadays assessed, more often than not, by whether or not the problem benefits
from some sort of underlying convexity. In the famous words of Rockafellar [143]:

“In fact the great watershed in optimization isn’t between linearity and non-
linearity, but convexity and nonconvexity.”

But how easy is it to distinguish between convexity and nonconvexity? Can we
decide in an efficient manner if a given optimization problem is convex?

A class of optimization problems that allow for a rigorous study of this question
from a computational complexity viewpoint is the class of polynomial optimiza-
tion problems. These are optimization problems where the objective is given by a
polynomial function and the feasible set is described by polynomial inequalities.
Our research in this direction was motivated by a concrete question of N. Z. Shor
that appeared as one of seven open problems in complexity theory for numerical
optimization put together by Pardalos and Vavasis in 1992 [117]:

“Given a degree-4 polynomial in n variables, what is the complexity of de-
termining whether this polynomial describes a convex function?”

As we will explain in more detail shortly, the reason why Shor’s question is specif-
ically about degree 4 polynomials is that deciding convexity of odd degree poly-
nomials is trivial and deciding convexity of degree 2 (quadratic) polynomials can
be reduced to the simple task of checking whether a constant matrix is positive

27
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semidefinite. So, the first interesting case really occurs for degree 4 (quartic) poly-
nomials. Our main contribution in this chapter (Theorem 2.1 in Section 2.2.3) is
to show that deciding convexity of polynomials is strongly NP-hard already for
polynomials of degree 4.

The implication of NP-hardness of this problem is that unless P=NP, there
exists no algorithm that can take as input the (rational) coefficients of a quar-
tic polynomial, have running time bounded by a polynomial in the number of
bits needed to represent the coefficients, and output correctly on every instance
whether or not the polynomial is convex. Furthermore, the fact that our NP-
hardness result is in the strong sense (as opposed to weakly NP-hard problems
such as KNAPSACK) implies, roughly speaking, that the problem remains NP-
hard even when the magnitude of the coefficients of the polynomial are restricted
to be “small.” For a strongly NP-hard problem, even a pseudo-polynomial time
algorithm cannot exist unless P=NP. See [61] for precise definitions and more
details.

There are many areas of application where one would like to establish con-
vexity of polynomials. Perhaps the simplest example is in global minimization
of polynomials, where it could be very useful to decide first whether the poly-
nomial to be optimized is convex. Once convexity is verified, then every local
minimum is global and very basic techniques (e.g., gradient descent) can find
a global minimum—a task that is in general NP-hard in the absence of con-
vexity [124], [109]. As another example, if we can certify that a homogeneous
polynomial is convex, then we define a gauge (or Minkowski) norm based on
its convex sublevel sets, which may be useful in many applications. In several
other problems of practical relevance, we might not just be interested in checking
whether a given polynomial is convex, but to parameterize a family of convex
polynomials and perhaps search or optimize over them. For example we might
be interested in approximating the convex envelope of a complicated nonconvex
function with a convex polynomial, or in fitting a convex polynomial to a set of
data points with minimum error [100]. Not surprisingly, if testing membership to
the set of convex polynomials is hard, searching and optimizing over that set also
turns out to be a hard problem.

We also extend our hardness result to some variants of convexity, namely, the
problems of deciding strict convexity, strong convexity, pseudoconvexity, and qua-
siconvexity of polynomials. Strict convexity is a property that is often useful to
check because it guarantees uniqueness of the optimal solution in optimization
problems. The notion of strong convexity is a common assumption in conver-
gence analysis of many iterative Newton-type algorithms in optimization theory;
see, e.g., [38, Chaps. 9–11]. So, in order to ensure the theoretical convergence
rates promised by many of these algorithms, one needs to first make sure that
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the objective function is strongly convex. The problem of checking quasiconvex-
ity (convexity of sublevel sets) of polynomials also arises frequently in practice.
For instance, if the feasible set of an optimization problem is defined by poly-
nomial inequalities, by certifying quasiconvexity of the defining polynomials we
can ensure that the feasible set is convex. In several statistics and clustering
problems, we are interested in finding minimum volume convex sets that contain
a set of data points in space. This problem can be tackled by searching over the
set of quasiconvex polynomials [100]. In economics, quasiconcave functions are
prevalent as desirable utility functions [92], [18]. In control and systems theory,
it is useful at times to search for quasiconvex Lyapunov functions whose convex
sublevel sets contain relevant information about the trajectories of a dynamical
system [44], [8]. Finally, the notion of pseudoconvexity is a natural generalization
of convexity that inherits many of the attractive properties of convex functions.
For example, every stationary point or every local minimum of a pseudoconvex
function must be a global minimum. Because of these nice features, pseudoconvex
programs have been studied extensively in nonlinear programming [101], [48].

As an outcome of close to a century of research in convex analysis, numerous
necessary, sufficient, and exact conditions for convexity and all of its variants
are available; see, e.g., [38, Chap. 3], [104], [60], [49], [92], [102] and references
therein for a by no means exhaustive list. Our results suggest that none of the
exact characterizations of these notions can be efficiently checked for polynomials.
In fact, when turned upside down, many of these equivalent formulations reveal
new NP-hard problems; see, e.g., Corollary 2.6 and 2.8.

� 2.1.1 Related Literature

There are several results in the literature on the complexity of various special
cases of polynomial optimization problems. The interested reader can find many
of these results in the edited volume of Pardalos [116] or in the survey papers of
de Klerk [54], and Blondel and Tsitsiklis [36]. A very general and fundamental
concept in certifying feasibility of polynomial equations and inequalities is the
Tarski–Seidenberg quantifier elimination theory [158], [154], from which it follows
that all of the problems that we consider in this chapter are algorithmically decid-
able. This means that there are algorithms that on all instances of our problems
of interest halt in finite time and always output the correct yes–no answer. Un-
fortunately, algorithms based on quantifier elimination or similar decision algebra
techniques have running times that are at least exponential in the number of
variables [24], and in practice can only solve problems with very few parameters.

When we turn to the issue of polynomial time solvability, perhaps the most
relevant result for our purposes is the NP-hardness of deciding nonnegativity of
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quartic polynomials and biquadratic forms (see Definition 2.2); the main reduc-
tion that we give in this chapter will in fact be from the latter problem. As we
will see in Section 2.2.3, it turns out that deciding convexity of quartic forms is
equivalent to checking nonnegativity of a special class of biquadratic forms, which
are themselves a special class of quartic forms. The NP-hardness of checking non-
negativity of quartic forms follows, e.g., as a direct consequence of NP-hardness
of testing matrix copositivity, a result proven by Murty and Kabadi [109]. As
for the hardness of checking nonnegativity of biquadratic forms, we know of two
different proofs. The first one is due to Gurvits [70], who proves that the en-
tanglement problem in quantum mechanics (i.e., the problem of distinguishing
separable quantum states from entangled ones) is NP-hard. A dual reformulation
of this result shows directly that checking nonnegativity of biquadratic forms is
NP-hard; see [59]. The second proof is due to Ling et al. [97], who use a theo-
rem of Motzkin and Straus to give a very short and elegant reduction from the
maximum clique problem in graphs.

The only work in the literature on the hardness of deciding polynomial con-
vexity that we are aware of is the work of Guo on the complexity of deciding
convexity of quartic polynomials over simplices [69]. Guo discusses some of the
difficulties that arise from this problem, but he does not prove that deciding con-
vexity of polynomials over simplices is NP-hard. Canny shows in [40] that the
existential theory of the real numbers can be decided in PSPACE. From this, it
follows that testing several properties of polynomials, including nonnegativity and
convexity, can be done in polynomial space. In [112], Nie proves that the related
notion of matrix convexity is NP-hard for polynomial matrices whose entries are
quadratic forms.

On the algorithmic side, several techniques have been proposed both for testing
convexity of sets and convexity of functions. Rademacher and Vempala present
and analyze randomized algorithms for testing the relaxed notion of approximate
convexity [135]. In [91], Lasserre proposes a semidefinite programming hierarchy
for testing convexity of basic closed semialgebraic sets; a problem that we also
prove to be NP-hard (see Corollary 2.8). As for testing convexity of functions, an
approach that some convex optimization parsers (e.g., CVX [66]) take is to start
with some ground set of convex functions and then check whether the desired
function can be obtained by applying a set of convexity preserving operations
to the functions in the ground set [50], [38, p. 79]. Techniques of this type that
are based on the calculus of convex functions are successful for a large range of
applications. However, when applied to general polynomial functions, they can
only detect a subclass of convex polynomials.

Related to convexity of polynomials, a concept that has attracted recent at-
tention is the algebraic notion of sos-convexity (see Definition 2.4) [75], [89], [90],
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[8], [100], [44], [11]. This is a powerful sufficient condition for convexity that relies
on an appropriately defined sum of squares decomposition of the Hessian matrix,
and can be efficiently checked by solving a single semidefinite program. The study
of sos-convexity will be the main focus of our next chapter. In particular, we will
present explicit counterexamples to show that not every convex polynomial is sos-
convex. The NP-hardness result in this chapter certainly justifies the existence
of such counterexamples and more generally suggests that any polynomial time
algorithm attempted for checking polynomial convexity is doomed to fail on some
hard instances.

� 2.1.2 Contributions and organization of this chapter

The main contribution of this chapter is to establish the computational complex-
ity of deciding convexity, strict convexity, strong convexity, pseudoconvexity, and
quasiconvexity of polynomials for any given degree. (See Table 2.1 in Section 2.5
for a quick summary.) The results are mainly divided in three sections, with Sec-
tion 2.2 covering convexity, Section 2.3 covering strict and strong convexity, and
Section 2.4 covering quasiconvexity and pseudoconvexity. These three sections
follow a similar pattern and are each divided into three parts: first, the defini-
tions and basics, second, the degrees for which the questions can be answered in
polynomial time, and third, the degrees for which the questions are NP-hard.

Our main reduction, which establishes NP-hardness of checking convexity of
quartic forms, is given in Section 2.2.3. This hardness result is extended to strict
and strong convexity in Section 2.3.3, and to quasiconvexity and pseudoconvexity
in Section 2.4.3. By contrast, we show in Section 2.4.2 that quasiconvexity and
pseudoconvexity of odd degree polynomials can be decided in polynomial time. A
summary of the chapter and some concluding remarks are presented in Section 2.5.

� 2.2 Complexity of deciding convexity

� 2.2.1 Definitions and basics

A (multivariate) polynomial p(x) in variables x := (x1, . . . , xn)T is a function from
Rn to R that is a finite linear combination of monomials:

p(x) =
∑
α

cαx
α =

∑
α1,...,αn

cα1,...,αnx
α1
1 · · ·xαnn , (2.1)

where the sum is over n-tuples of nonnegative integers αi. An algorithm for
testing some property of polynomials will have as its input an ordered list of
the coefficients cα. Since our complexity results are based on models of digital
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computation, where the input must be represented by a finite number of bits, the
coefficients cα for us will always be rational numbers, which upon clearing the
denominators can be taken to be integers. So, for the remainder of the chapter,
even when not explicitly stated, we will always have cα ∈ Z.

The degree of a monomial xα is equal to α1 + · · · + αn. The degree of a
polynomial p(x) is defined to be the highest degree of its component monomials.
A simple counting argument shows that a polynomial of degree d in n variables
has

(
n+d
d

)
coefficients. A homogeneous polynomial (or a form) is a polynomial

where all the monomials have the same degree. A form p(x) of degree d is a
homogeneous function of degree d (since it satisfies p(λx) = λdp(x)), and has(
n+d−1

d

)
coefficients.

A polynomial p(x) is said to be nonnegative or positive semidefinite (psd) if
p(x) ≥ 0 for all x ∈ Rn. Clearly, a necessary condition for a polynomial to be psd
is for its degree to be even. We say that p(x) is a sum of squares (sos), if there exist
polynomials q1(x), . . . , qm(x) such that p(x) =

∑m
i=1 q

2
i (x). Every sos polynomial

is obviously psd. A polynomial matrix P (x) is a matrix with polynomial entries.
We say that a polynomial matrix P (x) is PSD (denoted P (x) � 0) if it is positive
semidefinite in the matrix sense for every value of the indeterminates x. (Note
the upper case convention for matrices.) It is easy to see that P (x) is PSD if and
only if the scalar polynomial yTP (x)y in variables (x; y) is psd.

We recall that a polynomial p(x) is convex if and only if its Hessian matrix,
which will be generally denoted by H(x), is PSD.

� 2.2.2 Degrees that are easy

The question of deciding convexity is trivial for odd degree polynomials. Indeed, it
is easy to check that linear polynomials (d = 1) are always convex and that polyno-
mials of odd degree d ≥ 3 can never be convex. The case of quadratic polynomials
(d = 2) is also straightforward. A quadratic polynomial p(x) = 1

2
xTQx+ qTx+ c

is convex if and only if the constant matrix Q is positive semidefinite. This can
be decided in polynomial time for example by performing Gaussian pivot steps
along the main diagonal of Q [109] or by computing the characteristic polynomial
of Q exactly and then checking that the signs of its coefficients alternate [79, p.
403].

Unfortunately, the results that come next suggest that the case of quadratic
polynomials is essentially the only nontrivial case where convexity can be effi-
ciently decided.
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� 2.2.3 Degrees that are hard

The main hardness result of this chapter is the following theorem.

Theorem 2.1. Deciding convexity of degree four polynomials is strongly NP-hard.
This is true even when the polynomials are restricted to be homogeneous.

We will give a reduction from the problem of deciding nonnegativity of bi-
quadratic forms. We start by recalling some basic facts about biquadratic forms
and sketching the idea of the proof.

Definition 2.2. A biquadratic form b(x; y) is a form in the variables
x = (x1, . . . , xn)T and y = (y1, . . . , ym)T that can be written as

b(x; y) =
∑

i≤j, k≤l

αijklxixjykyl. (2.2)

Note that for fixed x, b(x; y) becomes a quadratic form in y, and for fixed y,
it becomes a quadratic form in x. Every biquadratic form is a quartic form, but
the converse is of course not true. It follows from a result of Ling et al. [97] that
deciding nonnegativity of biquadratic forms is strongly NP-hard. This claim is
not precisely stated in this form in [97]. For the convenience of the reader, let
us make the connection more explicit before we proceed, as this result underlies
everything that follows.

The argument in [97] is based on a reduction from CLIQUE (given a graph
G(V,E) and a positive integer k ≤ |V |, decide whether G contains a clique of
size k or more) whose (strong) NP-hardness is well-known [61]. For a given graph
G(V,E) on n nodes, if we define the biquadratic form bG(x; y) in the variables
x = (x1, . . . , xn)T and y = (y1, . . . , yn)T by

bG(x; y) = −2
∑

(i,j)∈E

xixjyiyj,

then Ling et al. [97] use a theorem of Motzkin and Straus [108] to show

min
||x||=||y||=1

bG(x; y) = −1 +
1

ω(G)
. (2.3)

Here, ω(G) denotes the clique number of the graph G, i.e., the size of a maximal
clique.1 From this, we see that for any value of k, ω(G) ≤ k if and only if

min
||x||=||y||=1

bG(x; y) ≥ 1− k
k

,

1Equation (2.3) above is stated in [97] with the stability number α(G) in place of the clique
number ω(G). This seems to be a minor typo.
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which by homogenization holds if and only if the biquadratic form

b̂G(x; y) = −2k
∑

(i,j)∈E

xixjyiyj − (1− k)

(
n∑
i=1

x2
i

)(
n∑
i=1

y2
i

)

is nonnegative. Hence, by checking nonnegativity of b̂G(x; y) for all values of
k ∈ {1, . . . , n− 1}, we can find the exact value of ω(G). It follows that deciding
nonnegativity of biquadratic forms is NP-hard, and in view of the fact that the
coefficients of b̂G(x; y) are all integers with absolute value at most 2n − 2, the
NP-hardness claim is in the strong sense. Note also that the result holds even
when n = m in Definition 2.2. In the sequel, we will always have n = m.

It is not difficult to see that any biquadratic form b(x; y) can be written in the
form

b(x; y) = yTA(x)y (2.4)

(or of course as xTB(y)x) for some symmetric polynomial matrix A(x) whose
entries are quadratic forms. Therefore, it is strongly NP-hard to decide whether
a symmetric polynomial matrix with quadratic form entries is PSD. One might
hope that this would lead to a quick proof of NP-hardness of testing convexity
of quartic forms, because the Hessian of a quartic form is exactly a symmetric
polynomial matrix with quadratic form entries. However, the major problem that
stands in the way is that not every polynomial matrix is a valid Hessian. Indeed,
if any of the partial derivatives between the entries of A(x) do not commute (e.g.,

if ∂A11(x)
∂x2

6= ∂A12(x)
∂x1

), then A(x) cannot be the matrix of second derivatives of some
polynomial. This is because all mixed third partial derivatives of polynomials
must commute.

Our task is therefore to prove that even with these additional constraints
on the entries of A(x), the problem of deciding positive semidefiniteness of such
matrices remains NP-hard. We will show that any given symmetric n× n matrix
A(x), whose entries are quadratic forms, can be embedded in a 2n×2n polynomial
matrix H(x, y), again with quadratic form entries, so that H(x, y) is a valid
Hessian and A(x) is PSD if and only ifH(x, y) is. In fact, we will directly construct
the polynomial f(x, y) whose Hessian is the matrix H(x, y). This is done in the
next theorem, which establishes the correctness of our main reduction. Once this
theorem is proven, the proof of Theorem 2.1 will become immediate.

Theorem 2.3. Given a biquadratic form b(x; y), define the the n× n polynomial
matrix C(x, y) by setting

[C(x, y)]ij :=
∂b(x; y)

∂xi∂yj
, (2.5)
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and let γ be the largest coefficient, in absolute value, of any monomial present in
some entry of the matrix C(x, y). Let f be the form given by

f(x, y) := b(x; y) +
n2γ

2

( n∑
i=1

x4
i +

n∑
i=1

y4
i +

∑
i,j=1,...,n

i<j

x2
ix

2
j +

∑
i,j=1,...,n

i<j

y2
i y

2
j

)
. (2.6)

Then, b(x; y) is psd if and only if f(x, y) is convex.

Proof. Before we prove the claim, let us make a few observations and try to
shed light on the intuition behind this construction. We will use H(x, y) to
denote the Hessian of f . This is a 2n × 2n polynomial matrix whose entries are
quadratic forms. The polynomial f is convex if and only if zTH(x, y)z is psd. For
bookkeeping purposes, let us split the variables z as z := (zx, zy)

T , where zx and
zy each belong to Rn. It will also be helpful to give a name to the second group
of terms in the definition of f(x, y) in (2.6). So, let

g(x, y) :=
n2γ

2

( n∑
i=1

x4
i +

n∑
i=1

y4
i +

∑
i,j=1,...,n

i<j

x2
ix

2
j +

∑
i,j=1,...,n

i<j

y2
i y

2
j

)
. (2.7)

We denote the Hessian matrices of b(x, y) and g(x, y) with Hb(x, y) and Hg(x, y)
respectively. Thus, H(x, y) = Hb(x, y) + Hg(x, y). Let us first focus on the
structure of Hb(x, y). Observe that if we define

[A(x)]ij =
∂b(x; y)

∂yi∂yj
,

then A(x) depends only on x, and

1

2
yTA(x)y = b(x; y). (2.8)

Similarly, if we let

[B(y)]ij =
∂b(x; y)

∂xi∂xj
,

then B(y) depends only on y, and

1

2
xTB(y)x = b(x; y). (2.9)

From Eq. (2.8), we have that b(x; y) is psd if and only if A(x) is PSD; from Eq.
(2.9), we see that b(x; y) is psd if and only if B(y) is PSD.
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Putting the blocks together, we have

Hb(x, y) =

[
B(y) C(x, y)

CT (x, y) A(x)

]
. (2.10)

The matrix C(x, y) is not in general symmetric. The entries of C(x, y) consist
of square-free monomials that are each a multiple of xiyj for some i, j, with
1 ≤ i, j ≤ n; (see (2.2) and (2.5)).

The Hessian Hg(x, y) of the polynomial g(x, y) in (2.7) is given by

Hg(x, y) =
n2γ

2

[
H11
g (x) 0
0 H22

g (y)

]
, (2.11)

where

H11
g (x) =



12x2
1 + 2

∑
i=1,...,n
i 6=1

x2
i 4x1x2 · · · 4x1xn

4x1x2 12x2
2 + 2

∑
i=1,...,n
i 6=2

x2
i · · · 4x2xn

...
...

. . .
...

4x1xn · · · 4xn−1xn 12x2
n + 2

∑
i=1,...,n
i 6=n

x2
i


,

(2.12)
and

H22
g (y) =



12y2
1 + 2

∑
i=1,...,n
i 6=1

y2
i 4y1y2 · · · 4y1yn

4y1y2 12y2
2 + 2

∑
i=1,...,n
i 6=2

y2
i · · · 4y2yn

...
...

. . .
...

4y1yn · · · 4yn−1yn 12y2
n + 2

∑
i=1,...,n
i 6=n

y2
i


.

(2.13)
Note that all diagonal elements of H11

g (x) and H22
g (y) contain the square of every

variable x1, . . . , xn and y1, . . . , yn respectively.
We fist give an intuitive summary of the rest of the proof. If b(x; y) is not psd,

then B(y) and A(x) are not PSD and hence Hb(x, y) is not PSD. Moreover, adding
Hg(x, y) to Hb(x, y) cannot help make H(x, y) PSD because the dependence of
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the diagonal blocks of Hb(x, y) and Hg(x, y) on x and y runs backwards. On
the other hand, if b(x; y) is psd, then Hb(x, y) will have PSD diagonal blocks.
In principle, Hb(x, y) might still not be PSD because of the off-diagonal block
C(x, y). However, the squares in the diagonal elements of Hg(x, y) will be shown
to dominate the monomials of C(x, y) and make H(x, y) PSD.

Let us now prove the theorem formally. One direction is easy: if b(x; y) is not
psd, then f(x, y) is not convex. Indeed, if there exist x̄ and ȳ in Rn such that
b(x̄; ȳ) < 0, then

zTH(x, y)z
∣∣∣
zx=0,x=x̄,y=0,zy=ȳ

= ȳTA(x̄)ȳ = 2b(x̄; ȳ) < 0.

For the converse, suppose that b(x; y) is psd; we will prove that zTH(x, y)z is
psd and hence f(x, y) is convex. We have

zTH(x, y)z = zTy A(x)zy + zTxB(y)zx + 2zTxC(x, y)zy

+n2γ
2
zTxH

11
g (x)zx + n2γ

2
zTy H

22
g (y)zy.

Because zTy A(x)zy and zTxB(y)zx are psd by assumption (see (2.8) and (2.9)), it
suffices to show that zTH(x, y)z − zTy A(x)zy − zTxB(y)zx is psd. In fact, we will
show that zTH(x, y)z − zTy A(x)zy − zTxB(y)zx is a sum of squares.

After some regrouping of terms we can write

zTH(x, y)z − zTy A(x)zy − zTxB(y)zx = p1(x, y, z) + p2(x, zx) + p3(y, zy), (2.14)

where

p1(x, y, z) = 2zTxC(x, y)zy + n2γ
( n∑
i=1

z2
x,i

)( n∑
i=1

x2
i

)
+ n2γ

( n∑
i=1

z2
y,i

)( n∑
i=1

y2
i

)
,

(2.15)

p2(x, zx) = n2γzTx


5x2

1 2x1x2 · · · 2x1xn
2x1x2 5x2

2 · · · 2x2xn
...

...
. . .

...
2x1xn · · · 2xn−1xn 5x2

n

 zx, (2.16)

and

p3(y, zy) = n2γzTy


5y2

1 2y1y2 · · · 2y1yn
2y1y2 5y2

2 · · · 2y2yn
...

...
. . .

...
2y1yn · · · 2yn−1yn 5y2

n

 zy. (2.17)
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We show that (2.14) is sos by showing that p1, p2, and p3 are each individually
sos. To see that p2 is sos, simply note that we can rewrite it as

p2(x, zx) = n2γ

[
3

n∑
k=1

z2
x,kx

2
k + 2

( n∑
k=1

zx,kxk

)2
]
.

The argument for p3 is of course identical. To show that p1 is sos, we argue as
follows. If we multiply out the first term 2zTxC(x, y)zy, we obtain a polynomial
with monomials of the form

± 2βi,j,k,lzx,kxiyjzy,l, (2.18)

where 0 ≤ βi,j,k,l ≤ γ, by the definition of γ. Since

± 2βi,j,k,lzx,kxiyjzy,l + βi,j,k,lz
2
x,kx

2
i + βi,j,k,ly

2
j z

2
y,l = βi,j,k,l(zx,kxi ± yjzy,l)2, (2.19)

by pairing up the terms of 2zTxC(x, y)zy with fractions of the squared terms
z2
x,kx

2
i and z2

y,ly
2
j , we get a sum of squares. Observe that there are more than

enough squares for each monomial of 2zTxC(x, y)zy because each such monomial
±2βi,j,k,lzx,kxiyjzy,l occurs at most once, so that each of the terms z2

x,kx
2
i and

z2
y,ly

2
j will be needed at most n2 times, each time with a coefficient of at most γ.

Therefore, p1 is sos, and this completes the proof.

We can now complete the proof of strong NP-hardness of deciding convexity
of quartic forms.

Proof of Theorem 2.1. As we remarked earlier, deciding nonnegativity of biquadratic
forms is known to be strongly NP-hard [97]. Given such a biquadratic form b(x; y),
we can construct the polynomial f(x, y) as in (2.6). Note that f(x, y) has degree
four and is homogeneous. Moreover, the reduction from b(x; y) to f(x, y) runs in
polynomial time as we are only adding to b(x; y) 2n + 2

(
n
2

)
new monomials with

coefficient n2γ
2

, and the size of γ is by definition only polynomially larger than
the size of any coefficient of b(x; y). Since by Theorem 2.3 convexity of f(x, y)
is equivalent to nonnegativity of b(x; y), we conclude that deciding convexity of
quartic forms is strongly NP-hard.

An algebraic version of the reduction. Before we proceed further with our results,
we make a slight detour and present an algebraic analogue of this reduction,
which relates sum of squares biquadratic forms to sos-convex polynomials. Both
of these concepts are well-studied in the literature, in particular in regards to
their connection to semidefinite programming; see, e.g., [97], [11], and references
therein.
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Definition 2.4. A polynomial p(x), with its Hessian denoted by H(x), is sos-
convex if the polynomial yTH(x)y is a sum of squares in variables (x;y).2

Theorem 2.5. Given a biquadratic form b(x; y), let f(x, y) be the quartic form
defined as in (2.6). Then b(x; y) is a sum of squares if and only if f(x, y) is
sos-convex.

Proof. The proof is very similar to the proof of Theorem 2.3 and is left to the
reader.

We will revisit Theorem 2.5 in the next chapter when we study the connection
between convexity and sos-convexity.

Some NP-hardness results, obtained as corollaries. NP-hardness of checking convexity
of quartic forms directly establishes NP-hardness3 of several problems of interest.
Here, we mention a few examples.

Corollary 2.6. It is NP-hard to decide nonnegativity of a homogeneous polyno-
mial q of degree four, of the form

q(x, y) =
1

2
p(x) +

1

2
p(y)− p

(
x+y

2

)
,

for some homogeneous quartic polynomial p.

Proof. Nonnegativity of q is equivalent to convexity of p, and the result follows
directly from Theorem 2.1.

Definition 2.7. A set S ⊂ Rn is basic closed semialgebraic if it can be written
as

S = {x ∈ Rn| fi(x) ≥ 0, i = 1, . . . ,m}, (2.20)

for some positive integer m and some polynomials fi(x).

Corollary 2.8. Given a basic closed semialgebraic set S as in (2.20), where at
least one of the defining polynomials fi(x) has degree four, it is NP-hard to decide
whether S is a convex set.

Proof. Given a quartic polynomial p(x), consider the basic closed semialgebraic
set

Ep = {(x, t) ∈ Rn+1| t− p(x) ≥ 0},
describing the epigraph of p(x). Since p(x) is convex if and only if its epigraph is
a convex set, the result follows.4

2Three other equivalent definitions of sos-convexity are presented in the next chapter.
3All of our NP-hardness results in this chapter are in the strong sense. For the sake of

brevity, from now on we refer to strongly NP-hard problems simply as NP-hard problems.
4Another proof of this corollary is given by the NP-hardness of checking convexity of sublevel

sets of quartic polynomials (Theorem 2.24 in Section 2.4.3).
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Convexity of polynomials of even degree larger than four. We end this section by
extending our hardness result to polynomials of higher degree.

Corollary 2.9. It is NP-hard to check convexity of polynomials of any fixed even
degree d ≥ 4.

Proof. We have already established the result for polynomials of degree four.
Given such a degree four polynomial p(x) := p(x1, . . . , xn) and an even degree
d ≥ 6, consider the polynomial

q(x, xn+1) = p(x) + xdn+1

in n+1 variables. It is clear (e.g., from the block diagonal structure of the Hessian
of q) that p(x) is convex if and only if q(x) is convex. The result follows.

� 2.3 Complexity of deciding strict convexity and strong convexity

� 2.3.1 Definitions and basics

Definition 2.10. A function f : Rn → R is strictly convex if for all x 6= y and
all λ ∈ (0, 1), we have

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y). (2.21)

Definition 2.11. A twice differentiable function f : Rn → R is strongly convex
if its Hessian H(x) satisfies

H(x) � mI, (2.22)

for a scalar m > 0 and for all x.

We have the standard implications

strong convexity =⇒ strict convexity =⇒ convexity, (2.23)

but none of the converse implications is true.

� 2.3.2 Degrees that are easy

From the implications in (2.23) and our previous discussion, it is clear that odd
degree polynomials can never be strictly convex or strongly convex. We cover the
case of quadratic polynomials in the following straightforward proposition.

Proposition 2.12. For a quadratic polynomial p(x) = 1
2
xTQx + qTx + c, the

notions of strict convexity and strong convexity are equivalent, and can be decided
in polynomial time.
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Proof. Strong convexity always implies strict convexity. For the reverse direction,
assume that p(x) is not strongly convex. In view of (2.22), this means that the
matrix Q is not positive definite. If Q has a negative eigenvalue, p(x) is not
convex, let alone strictly convex. If Q has a zero eigenvalue, let x̄ 6= 0 be the
corresponding eigenvector. Then p(x) restricted to the line from the origin to x̄
is linear and hence not strictly convex.

To see that these properties can be checked in polynomial time, note that
p(x) is strongly convex if and only if the symmetric matrix Q is positive definite.
By Sylvester’s criterion, positive definiteness of an n × n symmetric matrix is
equivalent to positivity of its n leading principal minors, each of which can be
computed in polynomial time.

� 2.3.3 Degrees that are hard

With little effort, we can extend our NP-hardness result in the previous section
to address strict convexity and strong convexity.

Proposition 2.13. It is NP-hard to decide strong convexity of polynomials of
any fixed even degree d ≥ 4.

Proof. We give a reduction from the problem of deciding convexity of quartic
forms. Given a homogenous quartic polynomial p(x) := p(x1, . . . , xn) and an
even degree d ≥ 4, consider the polynomial

q(x, xn+1) := p(x) + xdn+1 + 1
2
(x2

1 + · · ·+ x2
n + x2

n+1) (2.24)

in n + 1 variables. We claim that p is convex if and only if q is strongly convex.
Indeed, if p(x) is convex, then so is p(x) + xdn+1. Therefore, the Hessian of p(x) +
xdn+1 is PSD. On the other hand, the Hessian of the term 1

2
(x2

1 + · · ·+ x2
n + x2

n+1)
is the identity matrix. So, the minimum eigenvalue of the Hessian of q(x, xn+1) is
positive and bounded below by one. Hence, q is strongly convex.

Now suppose that p(x) is not convex. Let us denote the Hessians of p and q
respectively by Hp and Hq. If p is not convex, then there exists a point x̄ ∈ Rn

such that
λmin(Hp(x̄)) < 0,

where λmin here denotes the minimum eigenvalue. Because p(x) is homogenous
of degree four, we have

λmin(Hp(cx̄)) = c2λmin(Hp(x̄)),

for any scalar c ∈ R. Pick c large enough such that λmin(Hp(cx̄)) < 1. Then it
is easy to see that Hq(cx̄, 0) has a negative eigenvalue and hence q is not convex,
let alone strongly convex.
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Remark 2.3.1. It is worth noting that homogeneous polynomials of degree d > 2
can never be strongly convex (because their Hessians vanish at the origin). Not
surprisingly, the polynomial q in the proof of Proposition 2.13 is not homogeneous.

Proposition 2.14. It is NP-hard to decide strict convexity of polynomials of any
fixed even degree d ≥ 4.

Proof. The proof is almost identical to the proof of Proposition 2.13. Let q be
defined as in (2.24). If p is convex, then we established that q is strongly convex
and hence also strictly convex. If p is not convex, we showed that q is not convex
and hence also not strictly convex.

� 2.4 Complexity of deciding quasiconvexity and pseudoconvexity

� 2.4.1 Definitions and basics

Definition 2.15. A function f : Rn → R is quasiconvex if its sublevel sets

S(α) := {x ∈ Rn | f(x) ≤ α}, (2.25)

for all α ∈ R, are convex.

Definition 2.16. A differentiable function f : Rn → R is pseudoconvex if the
implication

∇f(x)T (y − x) ≥ 0 =⇒ f(y) ≥ f(x) (2.26)

holds for all x and y in Rn.

The following implications are well-known (see e.g. [25, p. 143]):

convexity =⇒ pseudoconvexity =⇒ quasiconvexity, (2.27)

but the converse of neither implication is true in general.

� 2.4.2 Degrees that are easy

As we remarked earlier, linear polynomials are always convex and hence also
pseudoconvex and quasiconvex. Unlike convexity, however, it is possible for poly-
nomials of odd degree d ≥ 3 to be pseudoconvex or quasiconvex. We will show in
this section that somewhat surprisingly, quasiconvexity and pseudoconvexity of
polynomials of any fixed odd degree can be decided in polynomial time. Before
we present these results, we will cover the easy case of quadratic polynomials.
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Proposition 2.17. For a quadratic polynomial p(x) = 1
2
xTQx + qTx + c, the

notions of convexity, pseudoconvexity, and quasiconvexity are equivalent, and can
be decided in polynomial time.

Proof. We argue that the quadratic polynomial p(x) is convex if and only if it
is quasiconvex. Indeed, if p(x) is not convex, then Q has a negative eigenvalue;
letting x̄ be a corresponding eigenvector, we have that p(tx̄) is a quadratic poly-
nomial in t, with negative leading coefficient, so p(tx̄) is not quasiconvex, as a
function of t. This, however, implies that p(x) is not quasiconvex.

We have already argued in Section 2.2.2 that convexity of quadratic polyno-
mials can be decided in polynomial time.

Quasiconvexity of polynomials of odd degree

In this subsection, we provide a polynomial time algorithm for checking whether
an odd-degree polynomial is quasiconvex. Towards this goal, we will first show
that quasiconvex polynomials of odd degree have a very particular structure
(Proposition 2.20).

Our first lemma concerns quasiconvex polynomials of odd degree in one vari-
able. The proof is easy and left to the reader. A version of this lemma is provided
in [38, p. 99], though there also without proof.

Lemma 2.18. Suppose that p(t) is a quasiconvex univariate polynomial of odd
degree. Then, p(t) is monotonic.

Next, we use the preceding lemma to characterize the complements of sublevel
sets of quasiconvex polynomials of odd degree.

Lemma 2.19. Suppose that p(x) is a quasiconvex polynomial of odd degree d.
Then the set {x | p(x) ≥ α} is convex.

Proof. Suppose not. In that case, there exist x, y, z such that z is on the line
segment connecting x and y, and such that p(x), p(y) ≥ α but p(z) < α. Consider
the polynomial

q(t) = p(x+ t(y − x)).

This is, of course, a quasiconvex polynomial with q(0) = p(x), q(1) = p(y), and
q(t′) = p(z), for some t′ ∈ (0, 1). If q(t) has degree d, then, by Lemma 2.18, it
must be monotonic, which immediately provides a contradiction.

Suppose now that q(t) has degree less than d. Let us attempt to perturb x to
x+ x′, and y to y + y′, so that the new polynomial

q̂(t) = p (x+ x′ + t(y + y′ − x− x′))
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has the following two properties: (i) q̂(t) is a polynomial of degree d, and (ii)
q̂(0) > q̂(t′), q̂(1) > q̂(t′). If such perturbation vectors x′, y′ can be found, then
we obtain a contradiction as in the previous paragraph.

To satisfy condition (ii), it suffices (by continuity) to take x′, y′ with ‖x′‖, ‖y′‖
small enough. Thus, we only need to argue that we can find arbitrarily small x′, y′

that satisfy condition (i). Observe that the coefficient of td in the polynomial
q̂(t) is a nonzero polynomial in x + x′, y + y′; let us denote that coefficient as
r(x + x′, y + y′). Since r is a nonzero polynomial, it cannot vanish at all points
of any given ball. Therefore, even when considering a small ball around (x, y) (to
satisfy condition (ii)), we can find (x+x′, y+y′) in that ball, with r(x+x′, y+y′) 6=
0, thus establishing that the degree of q̂ is indeed d. This completes the proof.

We now proceed to a characterization of quasiconvex polynomials of odd de-
gree.

Proposition 2.20. Let p(x) be a polynomial of odd degree d. Then, p(x) is
quasiconvex if and only if it can be written as

p(x) = h(ξTx), (2.28)

for some nonzero ξ ∈ Rn, and for some monotonic univariate polynomial h(t) of
degree d. If, in addition, we require the nonzero component of ξ with the smallest
index to be equal to unity, then ξ and h(t) are uniquely determined by p(x).

Proof. It is easy to see that any polynomial that can be written in the above
form is quasiconvex. In order to prove the converse, let us assume that p(x)
is quasiconvex. By the definition of quasiconvexity, the closed set S(α) = {x |
p(x) ≤ α} is convex. On the other hand, Lemma 2.19 states that the closure
of the complement of S(α) is also convex. It is not hard to verify that, as a
consequence of these two properties, the set S(α) must be a halfspace. Thus, for
any given α, the sublevel set S(α) can be written as {x | ξ(α)Tx ≤ c(α)} for some
ξ(α) ∈ Rn and c(α) ∈ R. This of course implies that the level sets {x | p(x) = α}
are hyperplanes of the form {x | ξ(α)Tx = c(α)}.

We note that the sublevel sets are necessarily nested: if α < β, then S(α) ⊆
S(β). An elementary consequence of this property is that the hyperplanes must
be collinear, i.e., that the vectors ξ(α) must be positive multiples of each other.
Thus, by suitably scaling the coefficients c(α), we can assume, without loss of
generality, that ξ(α) = ξ, for some ξ ∈ Rn, and for all α. We then have that
{x | p(x) = α} = {x | ξTx = c(α)}. Clearly, there is a one-to-one correspondence
between α and c(α), and therefore the value of p(x) is completely determined by
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ξTx. In particular, there exists a function h(t) such that p(x) = h(qTx). Since
p(x) is a polynomial of degree d, it follows that h(t) is a univariate polynomial
of degree d. Finally, we observe that if h(t) is not monotonic, then p(x) is not
quasiconvex. This proves that a representation of the desired form exists. Note
that by suitably scaling ξ, we can also impose the condition that the nonzero
component of ξ with the smallest index is equal to one.

Suppose that now that p(x) can also be represented in the form p(x) = h̄(ξ̄Tx)
for some other polynomial h̄(t) and vector ξ̄. Then, the gradient vector of p(x)
must be proportional to both ξ and ξ̄. The vectors ξ and ξ̄ are therefore collinear.
Once we impose the requirement that the nonzero component of ξ with the small-
est index is equal to one, we obtain that ξ = ξ̄ and, consequently, h = h̄. This
establishes the claimed uniqueness of the representation.

Remark. It is not hard to see that if p(x) is homogeneous and quasiconvex, then
one can additionally conclude that h(t) can be taken to be h(t) = td, where d is
the degree of p(x).

Theorem 2.21. For any fixed odd degree d, the quasiconvexity of polynomials of
degree d can be checked in polynomial time.

Proof. The algorithm consists of attempting to build a representation of p(x) of
the form given in Proposition 2.20. The polynomial p(x) is quasiconvex if and
only if the attempt is successful.

Let us proceed under the assumption that p(x) is quasiconvex. We differentiate
p(x) symbolically to obtain its gradient vector. Since a representation of the form
given in Proposition 2.20 exists, the gradient is of the form ∇p(x) = ξh′(ξTx),
where h′(t) is the derivative of h(t). In particular, the different components of
the gradient are polynomials that are proportional to each other. (If they are not
proportional, we conclude that p(x) is not quasiconvex, and the algorithm termi-
nates.) By considering the ratios between different components, we can identify
the vector ξ, up to a scaling factor. By imposing the additional requirement
that the nonzero component of ξ with the smallest index is equal to one, we can
identify ξ uniquely.

We now proceed to identify the polynomial h(t). For k = 1, . . . , d + 1, we
evaluate p(kξ), which must be equal to h(ξT ξk). We thus obtain the values of
h(t) at d+ 1 distinct points, from which h(t) is completely determined. We then
verify that h(ξTx) is indeed equal to p(x). This is easily done, in polynomial
time, by writing out the O(nd) coefficients of these two polynomials in x and
verifying that they are equal. (If they are not all equal, we conclude that p(x) is
not quasiconvex, and the algorithm terminates.)
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Finally, we test whether the above constructed univariate polynomial h is
monotonic, i.e., whether its derivative h′(t) is either nonnegative or nonpositive.
This can be accomplished, e.g., by quantifier elimination or by other well-known
algebraic techniques for counting the number and the multiplicity of real roots of
univariate polynomials; see [24]. Note that this requires only a constant number
of arithmetic operations since the degree d is fixed. If h fails this test, then p(x)
is not quasiconvex. Otherwise, our attempt has been successful and we decide
that p(x) is indeed quasiconvex.

Pseudoconvexity of polynomials of odd degree

In analogy to Proposition 2.20, we present next a characterization of odd degree
pseudoconvex polynomials, which gives rise to a polynomial time algorithm for
checking this property.

Corollary 2.22. Let p(x) be a polynomial of odd degree d. Then, p(x) is pseu-
doconvex if and only if p(x) can be written in the form

p(x) = h(ξTx), (2.29)

for some ξ ∈ Rn and some univariate polynomial h of degree d such that its
derivative h′(t) has no real roots.

Remark. Observe that polynomials h with h′ having no real roots comprise a
subset of the set of monotonic polynomials.

Proof. Suppose that p(x) is pseudoconvex. Since a pseudoconvex polynomial is
quasiconvex, it admits a representation h(ξTx) where h is monotonic. If h′(t) = 0
for some t, then picking a = t · ξ/‖ξ‖2

2, we have that ∇p(a) = 0, so that by
pseudoconvexity, p(x) is minimized at a. This, however, is impossible since an
odd degree polynomial is never bounded below. Conversely, suppose p(x) can be
represented as in Eq. (2.29). Fix some x, y, and define the polynomial u(t) =
p(x+ t(y − x)). Since u(t) = h(ξTx+ tξT (y − x)), we have that either (i) u(t) is
constant, or (ii) u′(t) has no real roots. Now if ∇p(x)(y− x) ≥ 0, then u′(0) ≥ 0.
Regardless of whether (i) or (ii) holds, this implies that u′(t) ≥ 0 everywhere, so
that u(1) ≥ u(0) or p(y) ≥ p(x).

Corollary 2.23. For any fixed odd degree d, the pseudoconvexity of polynomials
of degree d can be checked in polynomial time.

Proof. This is a simple modification of our algorithm for testing quasiconvexity
(Theorem 2.21). The first step of the algorithm is in fact identical: once we
impose the additional requirement that the nonzero component of ξ with the
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smallest index should be equal to one, we can uniquely determine the vector ξ
and the coefficients of the univariate polynomial h(t) that satisfy Eq. (2.29) . (If
we fail, p(x) is not quasiconvex and hence also not pseudoconvex.) Once we have
h(t), we can check whether h′(t) has no real roots e.g. by computing the signature
of the Hermite form of h′(t); see [24].

Remark 2.4.1. Homogeneous polynomials of odd degree d ≥ 3 are never pseu-
doconvex. The reason is that the gradient of these polynomials vanishes at the
origin, but yet the origin is not a global minimum since odd degree polynomials
are unbounded below.

� 2.4.3 Degrees that are hard

The main result of this section is the following theorem.

Theorem 2.24. It is NP-hard to check quasiconvexity/pseudoconvexity of degree
four polynomials. This is true even when the polynomials are restricted to be
homogeneous.

In view of Theorem 2.1, which established NP-hardness of deciding convexity
of homogeneous quartic polynomials, Theorem 2.24 follows immediately from the
following result.

Theorem 2.25. For a homogeneous polynomial p(x) of even degree d, the notions
of convexity, pseudoconvexity, and quasiconvexity are all equivalent.5

We start the proof of this theorem by first proving an easy lemma.

Lemma 2.26. Let p(x) be a quasiconvex homogeneous polynomial of even degree
d ≥ 2. Then p(x) is nonnegative.

Proof. Suppose, to derive a contradiction, that there exist some ε > 0 and x̄ ∈ Rn

such that p(x̄) = −ε. Then by homogeneity of even degree we must have p(−x̄) =
p(x̄) = −ε. On the other hand, homogeneity of p implies that p(0) = 0. Since the
origin is on the line between x̄ and −x̄, this shows that the sublevel set S(−ε) is
not convex, contradicting the quasiconvexity of p.

5The result is more generally true for differentiable functions that are homogeneous of even
degree. Also, the requirements of homogeneity and having an even degree both need to be
present. Indeed, x3 and x4 − 8x3 + 18x2 are both quasiconvex but not convex, the first being
homogeneous of odd degree and the second being nonhomogeneous of even degree.
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Proof of Theorem 2.25. We show that a quasiconvex homogeneous polynomial of
even degree is convex. In view of implication (2.27), this proves the theorem.

Suppose that p(x) is a quasiconvex polynomial. Define S = {x ∈ Rn | p(x) ≤
1}. By homogeneity, for any a ∈ Rn with p(a) > 0, we have that

a

p(a)1/d
∈ S.

By quasiconvexity, this implies that for any a, b with p(a), p(b) > 0, any point on
the line connecting a/p(a)1/d and b/p(b)1/d is in S. In particular, consider

c =
a+ b

p(a)1/d + p(b)1/d
.

Because c can be written as

c =

(
p(a)1/d

p(a)1/d + p(b)1/d

)(
a

p(a)1/d

)
+

(
p(b)1/d

p(a)1/d + p(b)1/d

)(
b

p(b)1/d

)
,

we have that c ∈ S, i.e., p(c) ≤ 1. By homogeneity, this inequality can be restated
as

p(a+ b) ≤ (p(a)1/d + p(b)1/d)d,

and therefore

p
(a+ b

2

)
≤
(
p(a)1/d + p(b)1/d

2

)d
≤ p(a) + p(b)

2
, (2.30)

where the last inequality is due to the convexity of xd.
Finally, note that for any polynomial p, the set {x | p(x) 6= 0} is dense in

Rn (here we again appeal to the fact that the only polynomial that is zero on
a ball of positive radius is the zero polynomial); and since p is nonnegative due
to Lemma 2.26, the set {x | p(x) > 0} is dense in Rn. Using the continuity
of p, it follows that Eq. (2.30) holds not only when a, b satisfy p(a), p(b) > 0,
but for all a, b. Appealing to the continuity of p again, we see that for all a, b,
p(λa + (1− λ)b) ≤ λp(a) + (1− λ)p(b), for all λ ∈ [0, 1]. This establishes that p
is convex.

Quasiconvexity/pseudoconvexity of polynomials of even degree larger than four.

Corollary 2.27. It is NP-hard to decide quasiconvexity of polynomials of any
fixed even degree d ≥ 4.
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Proof. We have already proved the result for d = 4. To establish the result
for even degree d ≥ 6, recall that we have established NP-hardness of deciding
convexity of homogeneous quartic polynomials. Given such a quartic form p(x) :=
p(x1, . . . , xn), consider the polynomial

q(x1, . . . , xn+1) = p(x1, . . . , xn) + xdn+1. (2.31)

We claim that q is quasiconvex if and only if p is convex. Indeed, if p is convex,
then obviously so is q, and therefore q is quasiconvex. Conversely, if p is not
convex, then by Theorem 2.25, it is not quasiconvex. So, there exist points
a, b, c ∈ Rn, with c on the line connecting a and b, such that p(a) ≤ 1, p(b) ≤ 1, but
p(c) > 1. Considering points (a, 0), (b, 0), (c, 0), we see that q is not quasiconvex.
It follows that it is NP-hard to decide quasiconvexity of polynomials of even degree
four or larger.

Corollary 2.28. It is NP-hard to decide pseudoconvexity of polynomials of any
fixed even degree d ≥ 4.

Proof. The proof is almost identical to the proof of Corollary 2.27. Let q be
defined as in (2.31). If p is convex, then q is convex and hence also pseudocon-
vex. If p is not convex, we showed that q is not quasiconvex and hence also not
pseudoconvex.

� 2.5 Summary and conclusions

In this chapter, we studied the computational complexity of testing convexity and
some of its variants, for polynomial functions. The notions that we considered
and the implications among them are summarized below:

strong convexity =⇒ strict convexity =⇒ convexity =⇒ pseudoconvexity =⇒ quasiconvexity.

Our complexity results as a function of the degree of the polynomial are listed
in Table 2.1. We gave polynomial time algorithms for checking pseudoconvexity
and quasiconvexity of odd degree polynomials that can be useful in many ap-
plications. Our negative results, on the other hand, imply (under P 6=NP) the
impossibility of a polynomial time (or even pseudo-polynomial time) algorithm
for testing any of the properties listed in Table 2.1 for polynomials of even degree
four or larger. Although the implications of convexity are very significant in op-
timization theory, our results suggest that unless additional structure is present,
ensuring the mere presence of convexity is likely an intractable task. It is therefore
natural to wonder whether there are other properties of optimization problems
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property vs. degree 1 2 odd ≥ 3 even ≥ 4

strong convexity no P no strongly NP-hard
strict convexity no P no strongly NP-hard
convexity yes P no strongly NP-hard
pseudoconvexity yes P P strongly NP-hard
quasiconvexity yes P P strongly NP-hard

Table 2.1. Summary of our complexity results. A yes (no) entry means that the question is
trivial for that particular entry because the answer is always yes (no) independent of the input.
By P, we mean that the problem can be solved in polynomial time.

that share some of the attractive consequences of convexity, but are easier to
check.

The hardness results of this chapter also lay emphasis on the need for finding
good approximation algorithms for recognizing convexity that can deal with a
large number of instances. This is our motivation for the next chapter as we
turn our attention to the study of algebraic counterparts of convexity that can be
efficiently checked with semidefinite programming.



Chapter 3

Convexity and SOS-Convexity

The overall contribution of this chapter is a complete characterization of the
containment of the sets of convex and sos-convex polynomials in every degree and
dimension. The content of this chapter is mostly based on the work in [9], but
also includes parts of [11] and [2].

� 3.1 Introduction

� 3.1.1 Nonnegativity and sum of squares

One of the cornerstones of real algebraic geometry is Hilbert’s seminal paper in
1888 [77], where he gives a complete characterization of the degrees and dimen-
sions in which nonnegative polynomials can be written as sums of squares of
polynomials. In particular, Hilbert proves in [77] that there exist nonnegative
polynomials that are not sums of squares, although explicit examples of such
polynomials appeared only about 80 years later and the study of the gap between
nonnegative and sums of squares polynomials continues to be an active area of
research to this day.

Motivated by a wealth of new applications and a modern viewpoint that em-
phasizes efficient computation, there has also been a great deal of recent interest
from the optimization community in the representation of nonnegative polyno-
mials as sums of squares (sos). Indeed, many fundamental problems in applied
and computational mathematics can be reformulated as either deciding whether
certain polynomials are nonnegative or searching over a family of nonnegative
polynomials. It is well-known however that if the degree of the polynomial is four
or larger, deciding nonnegativity is an NP-hard problem. (As we mentioned in
the last chapter, this follows e.g. as an immediate corollary of NP-hardness of
deciding matrix copositivity [109].) On the other hand, it is also well-known that
deciding whether a polynomial can be written as a sum of squares can be reduced
to solving a semidefinite program, for which efficient algorithms e.g. based on
interior point methods is available. The general machinery of the so-called “sos
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relaxation” has therefore been to replace the intractable nonnegativity require-
ments with the more tractable sum of squares requirements that obviously provide
a sufficient condition for polynomial nonnegativity.

Some relatively recent applications that sum of squares relaxations have found
span areas as diverse as control theory [118], [76], quantum computation [59],
polynomial games [120], combinatorial optimization [71], geometric theorem prov-
ing [123], and many others.

� 3.1.2 Convexity and sos-convexity

Aside from nonnegativity, convexity is another fundamental property of poly-
nomials that is of both theoretical and practical significance. In the previous
chapter, we already listed a number of applications of establishing convexity of
polynomials including global optimization, convex envelope approximation, Lya-
punov analysis, data fitting, defining norms, etc. Unfortunately, however, we
also showed that just like nonnegativity, convexity of polynomials is NP-hard to
decide for polynomials of degree as low as four. Encouraged by the success of
sum of squares methods as a viable substitute for nonnegativity, our focus in this
chapter will be on the analogue of sum of squares for polynomial convexity: a
notion known as sos-convexity.

As we mentioned in our previous chapters in passing, sos-convexity (which
gets its name from the work of Helton and Nie in [75]) is a sufficient condition
for convexity of polynomials based on an appropriately defined sum of squares
decomposition of the Hessian matrix; see the equivalent Definitions 2.4 and 3.4.
The main computational advantage of sos-convexity stems from the fact that
the problem of deciding whether a given polynomial is sos-convex amounts to
solving a single semidefinite program. We will explain how this is exactly done
in Section 3.2 of this chapter where we briefly review the well-known connection
between sum of squares decomposition and semidefinite programming.

Besides its computational implications, sos-convexity is an appealing concept
since it bridges the geometric and algebraic aspects of convexity. Indeed, while
the usual definition of convexity is concerned only with the geometry of the epi-
graph, in sos-convexity this geometric property (or the nonnegativity of the Hes-
sian) must be certified through a “simple” algebraic identity, namely the sum
of squares factorization of the Hessian. The original motivation of Helton and
Nie for defining sos-convexity was in relation to the question of semidefinite rep-
resentability of convex sets [75]. But this notion has already appeared in the
literature in a number of other settings [89], [90], [100], [44]. In particular, there
has been much recent interest in the role of convexity in semialgebraic geometry
[89], [26], [55], [91] and sos-convexity is a recurrent figure in this line of research.
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� 3.1.3 Contributions and organization of this chapter

The main contribution of this chapter is to establish the counterpart of Hilbert’s
characterization of the gap between nonnegativity and sum of squares for the
notions of convexity and sos-convexity. We start by presenting some background
material in Section 3.2. In Section 3.3, we prove an algebraic analogue of a classical
result in convex analysis, which provides three equivalent characterizations for sos-
convexity (Theorem 3.5). This result substantiates the fact that sos-convexity is
the right sos relaxation for convexity. In Section 3.4, we present two explicit
examples of convex polynomials that are not sos-convex, one of them being the
first known such example. In Section 3.5, we provide the characterization of
the gap between convexity and sos-convexity (Theorem 3.8 and Theorem 3.9).
Subsection 3.5.1 includes the proofs of the cases where convexity and sos-convexity
are equivalent and Subsection 3.5.2 includes the proofs of the cases where they
are not. In particular, Theorem 3.16 and Theorem 3.17 present explicit examples
of convex but not sos-convex polynomials that have dimension and degree as low
as possible, and Theorem 3.18 provides a general construction for producing such
polynomials in higher degrees. Some concluding remarks and an open problem
are presented in Section 3.6.

This chapter also includes two appendices. In Appendix A, we explain how
the first example of a convex but not sos-convex polynomial was found with
software using sum of squares programming techniques and the duality theory of
semidefinite optimization. As a byproduct of this numerical procedure, we obtain
a simple method for searching over a restricted family of nonnegative polynomials
that are not sums of squares. In Appendix B, we give a formal (computer assisted)
proof of validity of one of our minimal convex but not sos-convex polynomials.

� 3.2 Preliminaries

� 3.2.1 Background on nonnegativity and sum of squares

For the convenience of the reader, we recall some basic concepts from the previous
chapter and then introduce some new ones. We will be concerned throughout
this chapter with polynomials with real coefficients. The ring of polynomials
in n variables with real coefficients is denoted by R[x]. A polynomial p is said
to be nonnegative or positive semidefinite (psd) if p(x) ≥ 0 for all x ∈ Rn.
We say that p is a sum of squares (sos), if there exist polynomials q1, . . . , qm
such that p =

∑m
i=1 q

2
i . We denote the set of psd (resp. sos) polynomials in n

variables and degree d by P̃n,d (resp. Σ̃n,d). Any sos polynomial is clearly psd,
so we have Σ̃n,d ⊆ P̃n,d. Recall that a homogeneous polynomial (or a form) is a
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polynomial where all the monomials have the same degree. A form p of degree d is
a homogeneous function of degree d since it satisfies p(λx) = λdp(x) for any scalar
λ ∈ R. We say that a form p is positive definite if p(x) > 0 for all x 6= 0 in Rn.
Following standard notation, we denote the set of psd (resp. sos) homogeneous
polynomials in n variables and degree d by Pn,d (resp. Σn,d). Once again, we
have the obvious inclusion Σn,d ⊆ Pn,d. All of the four sets Σn,d, Pn,d, Σ̃n,d, P̃n,d
are closed convex cones. The closedness of the sum of squares cone may not be
so obvious. This fact was first proved by Robinson [141]. We will make crucial
use of it in the proof of Theorem 3.5 in the next section.

Any form of degree d in n variables can be “dehomogenized” into a polynomial
of degree ≤ d in n − 1 variables by setting xn = 1. Conversely, any polynomial
p of degree d in n variables can be “homogenized” into a form ph of degree d in
n+ 1 variables, by adding a new variable y, and letting

ph(x1, . . . , xn, y) := yd p (x1/y, . . . , xn/y) .

The properties of being psd and sos are preserved under homogenization and
dehomogenization [138].

A very natural and fundamental question that as we mentioned earlier was
answered by Hilbert is to understand in what dimensions and degrees nonnegative
polynomials (or forms) can be represented as sums of squares, i.e, for what values
of n and d we have Σ̃n,d = P̃n,d or Σn,d = Pn,d. Note that because of the argument
in the last paragraph, we have Σ̃n,d = P̃n,d if and only if Σn+1,d = Pn+1,d. Hence,
it is enough to answer the question just for polynomials or just for forms and the
answer to the other one comes for free.

Theorem 3.1 (Hilbert, [77]). Σ̃n,d = P̃n,d if and only if n = 1 or d = 2 or
(n, d) = (2, 4). Equivalently, Σn,d = Pn,d if and only if n = 2 or d = 2 or
(n, d) = (3, 4).

The proofs of Σ̃1,d = P̃1,d and Σ̃n,2 = P̃n,2 are relatively simple and were
known before Hilbert. On the other hand, the proof of the fairly surprising
fact that Σ̃2,4 = P̃2,4 (or equivalently Σ3,4 = P3,4) is rather involved. We refer
the interested reader to [130], [128], [46], and references in [138] for some modern
expositions and alternative proofs of this result. Hilbert’s other main contribution
was to show that these are the only cases where nonnegativity and sum of squares
are equivalent by giving a nonconstructive proof of existence of polynomials in
P̃2,6 \ Σ̃2,6 and P̃3,4 \ Σ̃3,4 (or equivalently forms in P3,6 \Σ3,6 and P4,4 \Σ4,4). From
this, it follows with simple arguments that in all higher dimensions and degrees
there must also be psd but not sos polynomials; see [138]. Explicit examples
of such polynomials appeared in the 1960s starting from the celebrated Motzkin
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form [107]:
M(x1, x2, x3) = x4

1x
2
2 + x2

1x
4
2 − 3x2

1x
2
2x

2
3 + x6

3, (3.1)

which belongs to P3,6 \ Σ3,6, and continuing a few years later with the Robinson
form [141]:

R(x1, x2, x3, x4) = x2
1(x1−x4)2+x2

2(x2−x4)2+x2
3(x3−x4)2+2x1x2x3(x1+x2+x3−2x4),

(3.2)
which belongs to P4,4 \ Σ4,4.

Several other constructions of psd polynomials that are not sos have appeared
in the literature since. An excellent survey is [138]. See also [139] and [27].

� 3.2.2 Connection to semidefinite programming and matrix generalizations

As we remarked before, what makes sum of squares an appealing concept from a
computational viewpoint is its relation to semidefinite programming. It is well-
known (see e.g. [118], [119]) that a polynomial p in n variables and of even degree
d is a sum of squares if and only if there exists a positive semidefinite matrix Q
(often called the Gram matrix) such that

p(x) = zTQz,

where z is the vector of monomials of degree up to d/2

z = [1, x1, x2, . . . , xn, x1x2, . . . , x
d/2
n ]. (3.3)

The set of all such matrices Q is the feasible set of a semidefinite program (SDP).
For fixed d, the size of this semidefinite program is polynomial in n. Semidefinite
programs can be solved with arbitrary accuracy in polynomial time. There are
several implementations of semidefinite programming solvers, based on interior
point algorithms among others, that are very efficient in practice and widely
used; see [162] and references therein.

The notions of positive semidefiniteness and sum of squares of scalar polyno-
mials can be naturally extended to polynomial matrices, i.e., matrices with entries
in R[x]. We say that a symmetric polynomial matrix U(x) ∈ R[x]m×m is positive
semidefinite if U(x) is positive semidefinite in the matrix sense for all x ∈ Rn, i.e,
if U(x) has nonnegative eigenvalues for all x ∈ Rn. It is straightforward to see
that this condition holds if and only if the polynomial yTU(x)y in m + n vari-
ables [x; y] is psd. A homogeneous polynomial matrix U(x) is said to be positive
definite, if it is positive definite in the matrix sense, i.e., has positive eigenvalues,
for all x 6= 0 in Rn. The definition of an sos-matrix is as follows [88], [62], [152].
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Definition 3.2. A symmetric polynomial matrix U(x) ∈ R[x]m×m, x ∈ Rn, is an
sos-matrix if there exists a polynomial matrix V (x) ∈ R[x]s×m for some s ∈ N,
such that U(x) = V T (x)V (x).

It turns out that a polynomial matrix U(x) ∈ R[x]m×m, x ∈ Rn, is an
sos-matrix if and only if the scalar polynomial yTU(x)y is a sum of squares in
R[x; y]; see [88]. This is a useful fact because in particular it gives us an easy way
of checking whether a polynomial matrix is an sos-matrix by solving a semidef-
inite program. Once again, it is obvious that being an sos-matrix is a sufficient
condition for a polynomial matrix to be positive semidefinite.

� 3.2.3 Background on convexity and sos-convexity

A polynomial p is (globally) convex if for all x and y in Rn and all λ ∈ [0, 1], we
have

p(λx+ (1− λ)y) ≤ λp(x) + (1− λ)p(y). (3.4)

Since polynomials are continuous functions, the inequality in (3.4) holds if and
only if it holds for a fixed value of λ ∈ (0, 1), say, λ = 1

2
. In other words, p is

convex if and only if
p
(

1
2
x+ 1

2
y
)
≤ 1

2
p(x) + 1

2
p(y) (3.5)

for all x and y; see e.g. [148, p. 71]. Recall from the previous chapter that except
for the trivial case of linear polynomials, an odd degree polynomial is clearly never
convex.

For the sake of direct comparison with a result that we derive in the next
section (Theorem 3.5), we recall next a classical result from convex analysis on
the first and second order characterization of convexity. The proof can be found
in many convex optimization textbooks, e.g. [38, p. 70]. The theorem is of course
true for any twice differentiable function, but for our purposes we state it for
polynomials.

Theorem 3.3. Let p := p(x) be a polynomial. Let ∇p := ∇p(x) denote its
gradient and let H := H(x) be its Hessian, i.e., the n × n symmetric matrix of
second derivatives. Then the following are equivalent.

(a) p
(

1
2
x+ 1

2
y
)
≤ 1

2
p(x) + 1

2
p(y), ∀x, y ∈ Rn; (i.e., p is convex).

(b) p(y) ≥ p(x) +∇p(x)T (y − x), ∀x, y ∈ Rn.
(c) yTH(x)y ≥ 0, ∀x, y ∈ Rn; (i.e., H(x) is a positive semidefinite polyno-

mial matrix).

Helton and Nie proposed in [75] the notion of sos-convexity as an sos relaxation
for the second order characterization of convexity (condition (c) above).
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Definition 3.4. A polynomial p is sos-convex if its Hessian H := H(x) is an
sos-matrix.

With what we have discussed so far, it should be clear that sos-convexity
is a sufficient condition for convexity of polynomials that can be checked with
semidefinite programming. In the next section, we will show some other natural
sos relaxations for polynomial convexity, which will turn out to be equivalent to
sos-convexity.

We end this section by introducing some final notation: C̃n,d and Σ̃Cn,d will
respectively denote the set of convex and sos-convex polynomials in n variables
and degree d; Cn,d and ΣCn,d will respectively denote set of convex and sos-
convex homogeneous polynomials in n variables and degree d. Again, these four
sets are closed convex cones and we have the obvious inclusions Σ̃Cn,d ⊆ C̃n,d and
ΣCn,d ⊆ Cn,d.

� 3.3 Equivalent algebraic relaxations for convexity of polynomials

An obvious way to formulate alternative sos relaxations for convexity of polyno-
mials is to replace every inequality in Theorem 3.3 with its sos version. In this
section we examine how these relaxations relate to each other. We also comment
on the size of the resulting semidefinite programs.

Our result below can be thought of as an algebraic analogue of Theorem 3.3.

Theorem 3.5. Let p := p(x) be a polynomial of degree d in n variables with its
gradient and Hessian denoted respectively by ∇p := ∇p(x) and H := H(x). Let
gλ, g∇, and g∇2 be defined as

gλ(x, y) = (1− λ)p(x) + λp(y)− p((1− λ)x+ λy),
g∇(x, y) = p(y)− p(x)−∇p(x)T (y − x),
g∇2(x, y) = yTH(x)y.

(3.6)

Then the following are equivalent:
(a) g 1

2
(x, y) is sos1.

(b) g∇(x, y) is sos.
(c) g∇2(x, y) is sos; (i.e., H(x) is an sos-matrix).

Proof. (a)⇒(b): Assume g 1
2

is sos. We start by proving that g 1

2k
will also be sos

for any integer k ≥ 2. A little bit of straightforward algebra yields the relation

g 1

2k+1
(x, y) = 1

2
g 1

2k
(x, y) + g 1

2

(
x, 2k−1

2k
x+ 1

2k
y
)
. (3.7)

1The constant 1
2 in g 1

2
(x, y) of condition (a) is arbitrary and is chosen for convenience. One

can show that g 1
2

being sos implies that gλ is sos for any fixed λ ∈ [0, 1]. Conversely, if gλ is sos
for some λ ∈ (0, 1), then g 1

2
is sos. The proofs are similar to the proof of (a)⇒(b).
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The second term on the right hand side of (3.7) is always sos because g 1
2

is sos.
Hence, this relation shows that for any k, if g 1

2k
is sos, then so is g 1

2k+1
. Since for

k = 1, both terms on the right hand side of (3.7) are sos by assumption, induction
immediately gives that g 1

2k
is sos for all k.

Now, let us rewrite gλ as

gλ(x, y) = p(x) + λ(p(y)− p(x))− p(x+ λ(y − x)).

We have
gλ(x, y)

λ
= p(y)− p(x)− p(x+ λ(y − x))− p(x)

λ
. (3.8)

Next, we take the limit of both sides of (3.8) by letting λ = 1
2k
→ 0 as k → ∞.

Because p is differentiable, the right hand side of (3.8) will converge to g∇. On
the other hand, our preceding argument implies that gλ

λ
is an sos polynomial

(of degree d in 2n variables) for any λ = 1
2k

. Moreover, as λ goes to zero, the
coefficients of gλ

λ
remain bounded since the limit of this sequence is g∇, which

must have bounded coefficients (see (3.6)). By closedness of the sos cone, we
conclude that the limit g∇ must be sos.

(b)⇒(a): Assume g∇ is sos. It is easy to check that

g 1
2
(x, y) = 1

2
g∇
(

1
2
x+ 1

2
y, x
)

+ 1
2
g∇
(

1
2
x+ 1

2
y, y
)
,

and hence g 1
2

is sos.

(b)⇒(c): Let us write the second order Taylor approximation of p around x:

p(y) = p(x) +∇Tp(x)(y − x)
+1

2
(y − x)TH(x)(y − x) + o(||y − x||2).

After rearranging terms, letting y = x + εz (for ε > 0), and dividing both sides
by ε2 we get:

(p(x+ εz)− p(x))/ε2 −∇Tp(x)z/ε =
1

2
zTH(x)z + 1/ε2o(ε2||z||2). (3.9)

The left hand side of (3.9) is g∇(x, x + εz)/ε2 and therefore for any fixed ε > 0,
it is an sos polynomial by assumption. As we take ε → 0, by closedness of the
sos cone, the left hand side of (3.9) converges to an sos polynomial. On the other
hand, as the limit is taken, the term 1

ε2
o(ε2||z||2) vanishes and hence we have that

zTH(x)z must be sos.
(c)⇒(b): Following the strategy of the proof of the classical case in [160, p.

165], we start by writing the Taylor expansion of p around x with the integral
form of the remainder:

p(y) = p(x)+∇Tp(x)(y−x)+

∫ 1

0

(1− t)(y−x)TH(x+ t(y−x))(y−x)dt. (3.10)
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Since yTH(x)y is sos by assumption, for any t ∈ [0, 1] the integrand

(1− t)(y − x)TH(x+ t(y − x))(y − x)

is an sos polynomial of degree d in x and y. From (3.10) we have

g∇ =

∫ 1

0

(1− t)(y − x)TH(x+ t(y − x))(y − x)dt.

It then follows that g∇ is sos because integrals of sos polynomials, if they exist,
are sos.

We conclude that conditions (a), (b), and (c) are equivalent sufficient condi-
tions for convexity of polynomials, and can each be checked with a semidefinite
program as explained in Subsection 3.2.2. It is easy to see that all three polynomi-
als g 1

2
(x, y), g∇(x, y), and g∇2(x, y) are polynomials in 2n variables and of degree d.

(Note that each differentiation reduces the degree by one.) Each of these polyno-
mials have a specific structure that can be exploited for formulating smaller SDPs.
For example, the symmetries g 1

2
(x, y) = g 1

2
(y, x) and g∇2(x,−y) = g∇2(x, y) can

be taken advantage of via symmetry reduction techniques developed in [62].
The issue of symmetry reduction aside, we would like to point out that formu-

lation (c) (which was the original definition of sos-convexity) can be significantly
more efficient than the other two conditions. The reason is that the polynomial
g∇2(x, y) is always quadratic and homogeneous in y and of degree d−2 in x. This
makes g∇2(x, y) much more sparse than g∇(x, y) and g∇2(x, y), which have degree
d both in x and in y. Furthermore, because of the special bipartite structure of
yTH(x)y, only monomials of the form xki yj will appear in the vector of monomials
(3.3). This in turn reduces the size of the Gram matrix, and hence the size of the
SDP. It is perhaps not too surprising that the characterization of convexity based
on the Hessian matrix is a more efficient condition to check. After all, this is a
local condition (curvature at every point in every direction must be nonnegative),
whereas conditions (a) and (b) are both global.

Remark 3.3.1. There has been yet another proposal for an sos relaxation for
convexity of polynomials in [44]. However, we have shown in [8] that the condition
in [44] is at least as conservative as the three conditions in Theorem 3.5 and also
significantly more expensive to check.

Remark 3.3.2. Just like convexity, the property of sos-convexity is preserved un-
der restrictions to affine subspaces. This is perhaps most directly seen through
characterization (a) of sos-convexity in Theorem 3.5, by also noting that sum of
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squares is preserved under restrictions. Unlike convexity however, if a polynomial
is sos-convex on every line (or even on every proper affine subspace), this does
not imply that the polynomial is sos-convex.

As an application of Theorem 3.5, we use our new characterization of sos-
convexity to give a short proof of an interesting lemma of Helton and Nie.

Lemma 3.6. (Helton and Nie [75, Lemma 8]). Every sos-convex form is sos.

Proof. Let p be an sos-convex form of degree d. We know from Theorem 3.5 that
sos-convexity of p is equivalent to the polynomial g 1

2
(x, y) = 1

2
p(x) + 1

2
p(y) −

p
(

1
2
x+ 1

2
y
)

being sos. But since sos is preserved under restrictions and p(0) = 0,
this implies that

g 1
2
(x, 0) = 1

2
p(x)− p(1

2
x) =

(
1
2
− (1

2
)d
)
p(x)

is sos.

Note that the same argument also shows that convex forms are psd.

� 3.4 Some constructions of convex but not sos-convex polynomials

It is natural to ask whether sos-convexity is not only a sufficient condition for
convexity of polynomials but also a necessary one. In other words, could it be
the case that if the Hessian of a polynomial is positive semidefinite, then it must
factor? To give a negative answer to this question, one has to prove existence
of a convex polynomial that is not sos-convex, i.e, a polynomial p for which one
(and hence all) of the three polynomials g 1

2
, g∇, and g∇2 in (3.6) are psd but not

sos. Note that existence of psd but not sos polynomials does not imply existence
of convex but not sos-convex polynomials on its own. The reason is that the
polynomials g 1

2
, g∇, and g∇2 all possess a very special structure.2 For example,

yTH(x)y has the structure of being quadratic in y and a Hessian in x. (Not every
polynomial matrix is a valid Hessian.) The Motzkin or the Robinson polynomials
in (3.1) and (3.2) for example are clearly not of this structure.

2There are many situations where requiring a specific structure on polynomials makes psd
equivalent to sos. As an example, we know that there are forms in P4,4 \ Σ4,4. However, if we
require the forms to have only even monomials, then all such nonnegative forms in 4 variables
and degree 4 are sums of squares [57].
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� 3.4.1 The first example

In [11],[7], we presented the first example of a convex polynomial that is not
sos-convex3:

p(x1, x2, x3) = 32x8
1 + 118x6

1x
2
2 + 40x6

1x
2
3 + 25x4

1x
4
2 − 43x4

1x
2
2x

2
3 − 35x4

1x
4
3

+3x2
1x

4
2x

2
3 − 16x2

1x
2
2x

4
3 + 24x2

1x
6
3 + 16x8

2 + 44x6
2x

2
3 + 70x4

2x
4
3

+60x2
2x

6
3 + 30x8

3.
(3.11)

As we will see later in this chapter, this form which lives in C3,8 \ ΣC3,8 turns
out to be an example in the smallest possible number of variables but not in the
smallest degree.

In Appendix A, we will explain how the polynomial in (3.11) was found. The
proof that this polynomial is convex but not sos-convex is omitted and can be
found in [11]. However, we would like to highlight an idea behind this proof that
will be used again in this chapter. As the following lemma demonstrates, one
way to ensure a polynomial is not sos-convex is by enforcing one of the principal
minors of its Hessian matrix to be not sos.

Lemma 3.7. If P (x) ∈ R[x]m×m is an sos-matrix, then all its 2m − 1 principal
minors4 are sos polynomials. In particular, det(P ) and the diagonal elements of
P must be sos polynomials.

Proof. We first prove that det(P ) is sos. By Definition 3.2, we have P (x) =
MT (x)M(x) for some s×m polynomial matrix M(x). If s = m, we have

det(P ) = det(MT ) det(M) = (det(M))2

and the result is immediate. If s > m, the result follows from the Cauchy-Binet

3Assuming P 6=NP, and given the NP-hardness of deciding polynomial convexity proven in the
previous chapter, one would expect to see convex polynomials that are not sos-convex. However,
we found the first such polynomial before we had proven the NP-hardness result. Moreover,
from complexity considerations, even assuming P 6=NP, one cannot conclude existence of convex
but not sos-convex polynomials for any fixed finite value of the number of variables n.

4The principal minors of an m×m matrix A are the determinants of all k × k (1 ≤ k ≤ m)
sub-blocks whose rows and columns come from the same index set S ⊂ {1, . . . ,m}.
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formula5. We have

det(P ) =
∑

S det(MT )S det(MS)

=
∑

S det(MS)T det(MS)

=
∑

S(det(MS))2.

Finally, when s < m, det(P ) is zero which is trivially sos. In fact, the Cauchy-
Binet formula also holds for s = m and s < m, but we have separated these cases
for clarity of presentation.

Next, we need to prove that the minors corresponding to smaller principal
blocks of P are also sos. Define M = {1, . . . ,m}, and let I and J be nonempty
subsets of M. Denote by PIJ a sub-block of P with row indices from I and
column indices from J . It is easy to see that

PJJ = (MT )JMMMJ = (MMJ)TMMJ .

Therefore, PJJ is an sos-matrix itself. By the proceeding argument det(PJJ) must
be sos, and hence all the principal minors are sos.

Remark 3.4.1. Interestingly, the converse of Lemma 3.7 does not hold. A coun-
terexample is the Hessian of the form f in (3.15) that we will present in the next
section. All 7 principal minors of the 3× 3 Hessian this form are sos polynomials,
even though the Hessian is not an sos-matrix. This is in contrast with the fact
that a polynomial matrix is positive semidefinite if and only if all its principal
minors are psd polynomials. The latter statement follows immediately from the
well-known fact that a constant matrix is positive semidefinite if and only if all
its principal minors are nonnegative.

� 3.4.2 A “clean” example

We next present another example of a convex but not sos-convex form whose
construction is in fact related to our proof of NP-hardness of deciding convexity
of quartic forms from Chapter 2. The example is in C6,4 \ ΣC6,4 and by contrast

5Given matrices A and B of size m × s and s ×m respectively, the Cauchy-Binet formula
states that

det(AB) =
∑
S

det(AS) det(BS),

where S is a subset of {1, . . . , s} with m elements, AS denotes the m×m matrix whose columns
are the columns of A with index from S, and similarly BS denotes the m ×m matrix whose
rows are the rows of B with index from S.
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to the example of the previous subsection, it will turn out to be minimal in the
degree but not in the number of variables. What is nice about this example is
that unlike the other examples in this chapter it has not been derived with the
assistance of a computer and semidefinite programming:

q(x1, . . . , x6) = x4
1 + x4

2 + x4
3 + x4

4 + x4
5 + x4

6

+2(x2
1x

2
2 + x2

1x
2
3 + x2

2x
2
3 + x2

4x
2
5 + x2

4x
2
6 + x2

5x
2
6)

+1
2
(x2

1x
2
4 + x2

2x
2
5 + x2

3x
2
6) + x2

1x
2
6 + x2

2x
2
4 + x2

3x
2
5

−(x1x2x4x5 + x1x3x4x6 + x2x3x5x6).

(3.12)

The proof that this polynomial is convex but not sos-convex can be extracted
from Theorems 2.3 and 2.5 of Chapter 2. The reader can observe that these two
theorems put together give us a general procedure for producing convex but not
sos-convex quartic forms from any example of a psd but not sos biquadratic form6.
The biquadratic form that has led to the form above is that of Choi in [45].

The example in (3.12) also shows that convex forms that possess strong sym-
metry properties can still fail to be sos-convex. The symmetries in this form
are inherited from the rich symmetry structure of the biquadratic form of Choi
(see [62]). In general, symmetries are of interest in the study of positive semidef-
inite and sums of squares polynomials because the gap between psd and sos can
often behave very differently depending on the symmetry properties; see e.g. [28].

� 3.5 Characterization of the gap between convexity and sos-convexity

Now that we know there exist convex polynomials that are not sos-convex, our
final and main goal is to give a complete characterization of the degrees and
dimensions in which such polynomials can exist. This is achieved in the next
theorem.

Theorem 3.8. Σ̃Cn,d = C̃n,d if and only if n = 1 or d = 2 or (n, d) = (2, 4).

We would also like to have such a characterization for homogeneous polynomi-
als. Although convexity is a property that is in some sense more meaningful for
nonhomogeneous polynomials than for forms, one motivation for studying con-
vexity of forms is in their relation to norms [140]. Also, in view of the fact that

6The reader can refer to Definition 2.2 of the previous chapter to recall the definition of a
biquadratic form.



64 CHAPTER 3. CONVEXITY AND SOS-CONVEXITY

we have a characterization of the gap between nonnegativity and sums of squares
both for polynomials and for forms, it is very natural to inquire the same result
for convexity and sos-convexity. The next theorem presents this characterization
for forms.

Theorem 3.9. ΣCn,d = Cn,d if and only if n = 2 or d = 2 or (n, d) = (3, 4).

The result ΣC3,4 = C3,4 of this theorem is to be presented in full detail in [2].
The remainder of this chapter is solely devoted to the proof of Theorem 3.8 and
the proof of Theorem 3.9 except for the case (n, d) = (3, 4). Before we present
these proofs, we shall make two important remarks.

Remark 3.5.1. Difficulty with homogenization and dehomogenization.
Recall from Subsection 3.2.1 and Theorem 3.1 that characterizing the gap between
nonnegativity and sum of squares for polynomials is equivalent to accomplishing
this task for forms. Unfortunately, the situation is more complicated for convex-
ity and sos-convexity and that is the reason why we are presenting Theorems 3.8
and 3.9 as separate theorems. The difficulty arises from the fact that unlike
nonnegativity and sum of squares, convexity and sos-convexity are not always
preserved under homogenization. (Or equivalently, the properties of being not
convex and not sos-convex are not preserved under dehomogenization.) In fact,
any convex polynomial that is not psd will no longer be convex after homogeniza-
tion. This is because convex forms are psd but the homogenization of a non-psd
polynomial is a non-psd form. Even if a convex polynomial is psd, its homoge-
nization may not be convex. For example the univariate polynomial 10x4

1−5x1+2
is convex and psd, but its homogenization 10x4

1 − 5x1x
3
2 + 2x4

2 is not convex.7 To
observe the same phenomenon for sos-convexity, consider the trivariate form p
in (3.11) which is convex but not sos-convex and define p̃(x2, x3) = p(1, x2, x3).
Then, one can check that p̃ is sos-convex (i.e., its 2 × 2 Hessian factors) even
though its homogenization which is p is not sos-convex [11].

Remark 3.5.2. Resemblance to the result of Hilbert. The reader may have
noticed from the statements of Theorem 3.1 and Theorems 3.8 and 3.9 that the
cases where convex polynomials (forms) are sos-convex are exactly the same cases
where nonnegative polynomials are sums of squares! We shall emphasize that
as far as we can tell, our results do not follow (except in the simplest cases)
from Hilbert’s result stated in Theorem 3.1. Note that the question of convexity
or sos-convexity of a polynomial p(x) in n variables and degree d is about the
polynomials g 1

2
(x, y), g∇(x, y), or g∇2(x, y) defined in (3.6) being psd or sos. Even

though these polynomials still have degree d, it is important to keep in mind that

7What is true however is that a nonnegative form of degree d is convex if and only if the
d-th root of its dehomogenization is a convex function [140, Prop. 4.4].
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they are polynomials in 2n variables. Therefore, there is no direct correspondence
with the characterization of Hilbert. To make this more explicit, let us consider
for example one particular claim of Theorem 3.9: ΣC2,4 = C2,4. For a form p
in 2 variables and degree 4, the polynomials g 1

2
, g∇, and g∇2 will be forms in 4

variables and degree 4. We know from Hilbert’s result that in this situation psd
but not sos forms do in fact exist. However, for the forms in 4 variables and
degree 4 that have the special structure of g 1

2
, g∇, or g∇2 , psd turns out to be

equivalent to sos.

The proofs of Theorems 3.8 and 3.9 are broken into the next two subsections.
In Subsection 3.5.1, we provide the proofs for the cases where convexity and sos-
convexity are equivalent. Then in Subsection 3.5.2, we prove that in all other
cases there exist convex polynomials that are not sos-convex.

� 3.5.1 Proofs of Theorems 3.8 and 3.9: cases where Σ̃Cn,d = C̃n,d,
ΣCn,d = Cn,d

When proving equivalence of convexity and sos-convexity, it turns out to be more
convenient to work with the second order characterization of sos-convexity, i.e.,
with the form g∇2(x, y) = yTH(x)y in (3.6). The reason for this is that this
form is always quadratic in y, and this allows us to make use of the following key
theorem, henceforth referred to as the “biform theorem”.

Theorem 3.10 (e.g. [47]). Let f := f(u1, u2, v1, . . . , vm) be a form in the variables
u := (u1, u2)T and v := (v1, , . . . , vm)T that is a quadratic form in v for fixed u
and a form (of however large degree) in u for fixed v. Then f is psd if and only
if it is sos.8

The biform theorem has been proven independently by several authors. See [47]
and [20] for more background on this theorem and in particular [47, Sec. 7] for a
an elegant proof and some refinements. We now proceed with our proofs which
will follow in a rather straightforward manner from the biform theorem.

Theorem 3.11. Σ̃C1,d = C̃1,d for all d. ΣC2,d = C2,d for all d.

Proof. For a univariate polynomial, convexity means that the second derivative,
which is another univariate polynomial, is psd. Since Σ̃1,d = P̃1,d, the second
derivative must be sos. Therefore, Σ̃C1,d = C̃1,d. To prove ΣC2,d = C2,d, suppose
we have a convex bivariate form p of degree d in variables x := (x1, x2)T . The
Hessian H := H(x) of p is a 2 × 2 matrix whose entries are forms of degree
d − 2. If we let y := (y1, y2)T , convexity of p implies that the form yTH(x)y is

8Note that the results Σ2,d = P2,d and Σn,2 = Pn,2 are both special cases of this theorem.
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psd. Since yTH(x)y meets the requirements of the biform theorem above with
(u1, u2) = (x1, x2) and (v1, v2) = (y1, y2), it follows that yTH(x)y is sos. Hence, p
is sos-convex.

Theorem 3.12. Σ̃Cn,2 = C̃n,2 for all n. ΣCn,2 = Cn,2 for all n.

Proof. Let x := (x1, . . . , xn)T and y := (y1, . . . , yn)T . Let p(x) = 1
2
xTQx+ bTx+ c

be a quadratic polynomial. The Hessian of p in this case is the constant symmetric
matrix Q. Convexity of p implies that yTQy is psd. But since Σn,2 = Pn,2, yTQy
must be sos. Hence, p is sos-convex. The proof of ΣCn,2 = Cn,2 is identical.

Theorem 3.13. Σ̃C2,4 = C̃2,4.

Proof. Let p(x) := p(x1, x2) be a convex bivariate quartic polynomial. Let
H := H(x) denote the Hessian of p and let y := (y1, y2)T . Note that H(x) is
a 2 × 2 matrix whose entries are (not necessarily homogeneous) quadratic poly-
nomials. Since p is convex, yTH(x)y is psd. Let H̄(x1, x2, x3) be a 2 × 2 matrix
whose entries are obtained by homogenizing the entries of H. It is easy to see
that yT H̄(x1, x2, x3)y is then the form obtained by homogenizing yTH(x)y and
is therefore psd. Now we can employ the biform theorem (Theorem 3.10) with
(u1, u2) = (y1, y2) and (v1, v2, v3) = (x1, x2, x3) to conclude that yT H̄(x1, x2, x3)y
is sos. But upon dehomogenizing by setting x3 = 1, we conclude that yTH(x)y is
sos. Hence, p is sos-convex.

Theorem 3.14 (Ahmadi, Blekherman, Parrilo [2]). ΣC3,4 = C3,4.

Unlike Hilbert’s results Σ̃2,4 = P̃2,4 and Σ3,4 = P3,4 which are equivalent
statements and essentially have identical proofs, the proof of ΣC3,4 = C3,4 is
considerably more involved than the proof of Σ̃C2,4 = C̃2,4. Here, we briefly point
out why this is the case and refer the reader to [2] for more details.

If p(x) := p(x1, x2, x3) is a ternary quartic form, its Hessian H(x) is a 3 × 3
matrix whose entries are quadratic forms. In this case, we can no longer apply
the biform theorem to the form yTH(x)y. In fact, the matrix

C(x) =


x2

1 + 2x2
2 −x1x2 −x1x3

−x1x2 x2
2 + 2x2

3 −x2x3

−x1x3 −x2x3 x2
3 + 2x2

1

 , (3.13)

due to Choi [45] serves as an explicit example of a 3×3 matrix with quadratic form
entries that is positive semidefinite but not an sos-matrix; i.e., the biquadratic
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form yTC(x)y is psd but not sos. However, the matrix C(x) above is not a valid
Hessian, i.e., it cannot be the matrix of the second derivatives of any polynomial.
If this was the case, the third partial derivatives would commute. On the other
hand, we have in particular

∂C1,1(x)

∂x3

= 0 6= −x3 =
∂C1,3(x)

∂x1

.

A biquadratic Hessian form is a biquadratic form yTH(x)y where H(x) is the
Hessian of some quartic form. Biquadratic Hessian forms satisfy a special sym-
metry property. Let us call a biquadratic form b(x; y) symmetric if it satisfies
the symmetry relation b(y;x) = b(x; y). It is an easy exercise to show that bi-
quadratic Hessian forms satisfy yTH(x)y = xTH(y)x and are therefore symmetric
biquadratic forms. This symmetry property is a rather strong condition that is
not satisfied e.g. by the Choi biquadratic form yTC(x)y in (3.13).

A simple dimension counting argument shows that the vector space of bi-
quadratic forms, symmetric biquadratic forms, and biquadratic Hessian forms in
variables (x1, x2, x3; y1, y2, y3) respectively have dimensions 36, 21, and 15. Since
the symmetry requirement drops the dimension of the space of biquadratic forms
significantly, and since sos polynomials are known to generally cover much larger
volume in the set of psd polynomials in presence of symmetries (see e.g. [28]),
one may initially suspect (as we did) that the equivalence between psd and sos
ternary Hessian biquadratic forms is a consequence of the symmetry property.
Our next theorem shows that interestingly enough this is not the case.

Theorem 3.15. There exist symmetric biquadratic forms in two sets of three
variables that are positive semidefinite but not a sum of squares.
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Proof. We claim that the following biquadratic form has the required properties:

b(x1, x2, x3; y1, y2, y3) = 4y1y2x
2
1 + 4x1x2y

2
1 + 9y1y3x

2
1 + 9x1x3y

2
1 − 10y2y3x

2
1

−10x2x3y
2
1 + 12y2

1x
2
1 + 12y2

2x
2
1 + 12x2

2y
2
1 + 6y2

3x
2
1

+6x2
3y

2
1 + 23x2

2y1y2 + 23y2
2x1x2 + 13x2

2y1y3 + 13x1x3y
2
2

+13y2y3x
2
2 + 13x2x3y

2
2 + 12x2

2y
2
2 + 12x2

2y
2
3 + 12y2

2x
2
3

+5x2
3y1y2 + 5y2

3x1x2 + 12x2
3y

2
3 + 3x2

3y1y3 + 3y2
3x1x3

+7x2
3y2y3 + 7y2

3x2x3 + 31y1y2x1x2 − 10x1x3y1y3

−11x1x3y2y3 − 11y1y3x2x3 + 5x1x2y2y3 + 5y1y2x2x3

+3x1x3y1y2 + 3y1y3x1x2 − 5x2x3y2y3.
(3.14)

The fact that b(x; y) = b(y;x) can readily be seen from the order in which we
have written the monomials. The proof that b(x; y) is psd but not sos is given
in [2] and omitted from here.

In view of the above theorem, it is rather remarkable that all positive semidef-
inite biquadratic Hessian forms in (x1, x2, x3; y1, y2, y3) turn out to be sums of
squares, i.e., that ΣC3,4 = C3,4.

� 3.5.2 Proofs of Theorems 3.8 and 3.9: cases where Σ̃Cn,d ⊂ C̃n,d,

ΣCn,d ⊂ Cn,d

The goal of this subsection is to establish that the cases presented in the previ-
ous subsection are the only cases where convexity and sos-convexity are equiv-
alent. We will first give explicit examples of convex but not sos-convex polyno-
mials/forms that are “minimal” jointly in the degree and dimension and then
present an argument for all dimensions and degrees higher than those of the min-
imal cases.

Minimal convex but not sos-convex polynomials/forms

The minimal examples of convex but not sos-convex polynomials (resp. forms)
turn out to belong to C̃2,6 \ Σ̃C2,6 and C̃3,4 \ Σ̃C3,4 (resp. C3,6 \ ΣC3,6 and C4,4 \
ΣC4,4). Recall from Remark 3.5.1 that we lack a general argument for going from
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convex but not sos-convex forms to polynomials or vice versa. Because of this,
one would need to present four different polynomials in the sets mentioned above
and prove that each polynomial is (i) convex and (ii) not sos-convex. This is a
total of eight arguments to make which is quite cumbersome. However, as we
will see in the proof of Theorem 3.16 and 3.17 below, we have been able to find
examples that act “nicely” with respect to particular ways of dehomogenization.
This will allow us to reduce the total number of claims we have to prove from
eight to four.

The polynomials that we are about to present next have been found with the
assistance of a computer and by employing some “tricks” with semidefinite pro-
gramming similar to those presented in Appendix A.9 In this process, we have
made use of software packages YALMIP [98], SOSTOOLS [132], and the SDP
solver SeDuMi [157], which we acknowledge here. To make the chapter relatively
self-contained and to emphasize the fact that using rational sum of squares cer-
tificates one can make such computer assisted proofs fully formal, we present the
proof of Theorem 3.16 below in the Appendix B. On the other hand, the proof
of Theorem 3.17, which is very similar in style to the proof of Theorem 3.16, is
largely omitted to save space. All of the proofs are available in electronic form
and in their entirety at http://aaa.lids.mit.edu/software.

Theorem 3.16. Σ̃C2,6 is a proper subset of C̃2,6. ΣC3,6 is a proper subset of C3,6.

Proof. We claim that the form

f(x1, x2, x3) = 77x6
1 − 155x5

1x2 + 445x4
1x

2
2 + 76x3

1x
3
2 + 556x2

1x
4
2 + 68x1x

5
2

+240x6
2 − 9x5

1x3 − 1129x3
1x

2
2x3 + 62x2

1x
3
2x3 + 1206x1x

4
2x3

−343x5
2x3 + 363x4

1x
2
3 + 773x3

1x2x
2
3 + 891x2

1x
2
2x

2
3 − 869x1x

3
2x

2
3

+1043x4
2x

2
3 − 14x3

1x
3
3 − 1108x2

1x2x
3
3 − 216x1x

2
2x

3
3 − 839x3

2x
3
3

+721x2
1x

4
3 + 436x1x2x

4
3 + 378x2

2x
4
3 + 48x1x

5
3 − 97x2x

5
3 + 89x6

3

(3.15)
belongs to C3,6 \ ΣC3,6, and the polynomial10

f̃(x1, x2) = f(x1, x2, 1−
1

2
x2) (3.16)

9The approach of Appendix A, however, does not lead to examples that are minimal. But
the idea is similar.

10The polynomial f(x1, x2, 1) turns out to be sos-convex, and therefore does not do the
job. One can of course change coordinates, and then in the new coordinates perform the
dehomogenization by setting x3 = 1.
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belongs to C̃2,6 \ Σ̃C2,6. Note that since convexity and sos-convexity are both
preserved under restrictions to affine subspaces (recall Remark 3.3.2), it suffices
to show that the form f in (3.15) is convex and the polynomial f̃ in (3.16) is not
sos-convex. Let x := (x1, x2, x2)T , y := (y1, y2, y3)T , x̃ := (x1, x2)T , ỹ := (y1, y2)T ,
and denote the Hessian of f and f̃ respectively by Hf and Hf̃ . In Appendix B,
we provide rational Gram matrices which prove that the form

(x2
1 + x2

2) · yTHf (x)y (3.17)

is sos. This, together with nonnegativity of x2
1 + x2

2 and continuity of yTHf (x)y,
implies that yTHf (x)y is psd. Therefore, f is convex. The proof that f̃ is not
sos-convex proceeds by showing that Hf̃ is not an sos-matrix via a separation
argument. In Appendix B, we present a separating hyperplane that leaves the
appropriate sos cone on one side and the polynomial

ỹTHf̃ (x̃)ỹ (3.18)

on the other.

Theorem 3.17. Σ̃C3,4 is a proper subset of C̃3,4. ΣC4,4 is a proper subset of C4,4.

Proof. We claim that the form

h(x1, . . . , x4) = 1671x4
1 − 4134x3

1x2 − 3332x3
1x3 + 5104x2

1x
2
2 + 4989x2

1x2x3

+3490x2
1x

2
3 − 2203x1x

3
2 − 3030x1x

2
2x3 − 3776x1x2x

2
3

−1522x1x
3
3 + 1227x4

2 − 595x3
2x3 + 1859x2

2x
2
3 + 1146x2x

3
3

+1195728x4
4 − 1932x1x

3
4 − 2296x2x

3
4 − 3144x3x

3
4 + 1465x2

1x
2
4

−1376x3
1x4 − 263x1x2x

2
4 + 2790x2

1x2x4 + 2121x2
2x

2
4 + 979x4

3

−292x1x
2
2x4 − 1224x3

2x4 + 2404x1x3x
2
4 + 2727x2x3x

2
4

−2852x1x
2
3x4 − 388x2x

2
3x4 − 1520x3

3x4 + 2943x2
1x3x4

−5053x1x2x3x4 + 2552x2
2x3x4 + 3512x2

3x
2
4

(3.19)
belongs to C4,4 \ ΣC4,4, and the polynomial

h̃(x1, x2, x3) = h(x1, x2, x3, 1) (3.20)
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belongs to C̃3,4 \ Σ̃C3,4. Once again, it suffices to prove that h is convex and h̃
is not sos-convex. Let x := (x1, x2, x3, x4)T , y := (y1, y2, y3, y4)T , and denote the
Hessian of h and h̃ respectively by Hh and Hh̃. The proof that h is convex is done
by showing that the form

(x2
2 + x2

3 + x2
4) · yTHh(x)y (3.21)

is sos.11 The proof that h̃ is not sos-convex is done again by means of a separating
hyperplane.

Convex but not sos-convex polynomials/forms in all higher degrees and dimensions

Given a convex but not sos-convex polynomial (form) in n variables , it is very
easy to argue that such a polynomial (form) must also exist in a larger number
of variables. If p(x1, . . . , xn) is a form in Cn,d \ ΣCn,d, then

p̄(x1, . . . , xn+1) = p(x1, . . . , xn) + xdn+1

belongs to Cn+1,d \ΣCn+1,d. Convexity of p̄ is obvious since it is a sum of convex
functions. The fact that p̄ is not sos-convex can also easily be seen from the block
diagonal structure of the Hessian of p̄: if the Hessian of p̄ were to factor, it would
imply that the Hessian of p should also factor. The argument for going from
C̃n,d \ Σ̃Cn,d to C̃n+1,d \ Σ̃Cn+1,d is identical.

Unfortunately, an argument for increasing the degree of convex but not sos-
convex forms seems to be significantly more difficult to obtain. In fact, we have
been unable to come up with a natural operation that would produce a from in
Cn,d+2\ΣCn,d+2 from a form in Cn,d\ΣCn,d. We will instead take a different route:
we are going to present a general procedure for going from a form in Pn,d \Σn,d to
a form in Cn,d+2 \ΣCn,d+2. This will serve our purpose of constructing convex but
not sos-convex forms in higher degrees and is perhaps also of independent interest
in itself. For instance, it can be used to construct convex but not sos-convex forms
that inherit structural properties (e.g. symmetry) of the known examples of psd
but not sos forms. The procedure is constructive modulo the value of two positive
constants (γ and α below) whose existence will be shown nonconstructively.

Although the proof of the general case is no different, we present this con-
struction for the case n = 3. The reason is that it suffices for us to construct
forms in C3,d \ΣC3,d for d even and ≥ 8. These forms together with the two forms
in C3,6 \ΣC3,6 and C4,4 \ΣC4,4 presented in (3.15) and (3.19), and with the simple
procedure for increasing the number of variables cover all the values of n and d
for which convex but not sos-convex forms exist.

11The choice of multipliers in (3.17) and (3.21) is motivated by a result of Reznick in [137]
explained in Appendix A.
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For the remainder of this section, let x := (x1, x2, x3)T and y := (y1, y2, y3)T .

Theorem 3.18. Let m := m(x) be a ternary form of degree d (with d necessarily
even and ≥ 6) satisfying the following three requirements:

R1: m is positive definite.

R2: m is not a sum of squares.

R3: The Hessian Hm of m is positive definite at the point (1, 0, 0)T .

Let g := g(x2, x3) be any bivariate form of degree d+ 2 whose Hessian is positive
definite.
Then, there exists a constant γ > 0, such that the form f of degree d+ 2 given by

f(x) =

∫ x1

0

∫ s

0

m(t, x2, x3)dtds+ γg(x2, x3) (3.22)

is convex but not sos-convex.

Before we prove this theorem, let us comment on how one can get examples
of forms m and g that satisfy the requirements of the theorem. The choice of g
is in fact very easy. We can e.g. take

g(x2, x3) = (x2
2 + x2

3)
d+2
2 ,

which has a positive definite Hessian. As for the choice of m, essentially any psd
but not sos ternary form can be turned into a form that satisfies requirements
R1, R2, and R3. Indeed if the Hessian of such a form is positive definite at just
one point, then that point can be taken to (1, 0, 0)T by a change of coordinates
without changing the properties of being psd and not sos. If the form is not
positive definite, then it can made so by adding a small enough multiple of a
positive definite form to it. For concreteness, we construct in the next lemma a
family of forms that together with the above theorem will give us convex but not
sos-convex ternary forms of any degree ≥ 8.

Lemma 3.19. For any even degree d ≥ 6, there exists a constant α > 0, such
that the form

m(x) = xd−6
1 (x2

1x
4
2 + x4

1x
2
2 − 3x2

1x
2
2x

2
3 + x6

3) + α(x2
1 + x2

2 + x2
3)

d
2 (3.23)

satisfies the requirements R1, R2, and R3 of Theorem 3.18.
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Proof. The form
x2

1x
4
2 + x4

1x
2
2 − 3x2

1x
2
2x

2
3 + x6

3

is the familiar Motzkin form in (3.1) that is psd but not sos [107]. For any even
degree d ≥ 6, the form

xd−6
1 (x2

1x
4
2 + x4

1x
2
2 − 3x2

1x
2
2x

2
3 + x6

3)

is a form of degree d that is clearly still psd and less obviously still not sos;
see [138]. This together with the fact that Σn,d is a closed cone implies existence
of a small positive value of α for which the form m in (3.23) is positive definite
but not a sum of squares, hence satisfying requirements R1 and R2.

Our next claim is that for any positive value of α, the Hessian Hm of the form
m in (3.23) satisfies

Hm(1, 0, 0) =

c1 0 0
0 c2 0
0 0 c3

 (3.24)

for some positive constants c1, c2, c3, therefore also passing requirement R3. To
see the above equality, first note that since m is a form of degree d, its Hessian Hm

will have entries that are forms of degree d − 2. Therefore, the only monomials
that can survive in this Hessian after setting x2 and x3 to zero are multiples of
xd−2

1 . It is easy to see that an xd−2
1 monomial in an off-diagonal entry of Hm

would lead to a monomial in m that is not even. On the other hand, the form m
in (3.23) only has even monomials. This explains why the off-diagonal entries of
the right hand side of (3.24) are zero. Finally, we note that for any positive value
of α, the form m in (3.23) includes positive multiples of xd1, xd−2

1 x2
2, and xd−2

1 x2
3,

which lead to positive multiples of xd−2
1 on the diagonal of Hm. Hence, c1, c2, and

c3 are positive.

Next, we state a lemma that will be employed in the proof of Theorem 3.18.

Lemma 3.20. Let m be a trivariate form satisfying the requirements R1 and R3
of Theorem 3.18. Let Hm̂ denote the Hessian of the form

∫ x1

0

∫ s
0
m(t, x2, x3)dtds.

Then, there exists a positive constant δ, such that

yTHm̂(x)y > 0

on the set

S := {(x, y) | ||x|| = 1, ||y|| = 1, (x2
2 + x2

3 < δ or y2
2 + y2

3 < δ)}. (3.25)



74 CHAPTER 3. CONVEXITY AND SOS-CONVEXITY

Proof. We observe that when y2
2 + y2

3 = 0, we have

yTHm̂(x)y = y2
1m(x),

which by requirement R1 is positive when ||x|| = ||y|| = 1. By continuity of the
form yTHm̂(x)y, we conclude that there exists a small positive constant δy such
that yTHm̂(x)y > 0 on the set

Sy := {(x, y) | ||x|| = 1, ||y|| = 1, y2
2 + y2

3 < δy}.

Next, we leave it to the reader to check that

Hm̂(1, 0, 0) =
1

d(d− 1)
Hm(1, 0, 0).

Therefore, when x2
2 + x2

3 = 0, requirement R3 implies that yTHm̂(x)y is positive
when ||x|| = ||y|| = 1. Appealing to continuity again, we conclude that there
exists a small positive constant δx such that yTHm̂(x)y > 0 on the set

Sx := {(x, y) | ||x|| = 1, ||y|| = 1, x2
2 + x2

3 < δx}.

If we now take δ = min{δy, δx}, the lemma is established.

We are now ready to prove Theorem 3.18.

Proof of Theorem 3.18. We first prove that the form f in (3.22) is not sos-convex.
By Lemma 3.7, if f was sos-convex, then all diagonal elements of its Hessian would
have to be sos polynomials. On the other hand, we have from (3.22) that

∂f(x)

∂x1∂x1

= m(x),

which by requirement R2 is not sos. Therefore f is not sos-convex.
It remains to show that there exists a positive value of γ for which f becomes

convex. Let us denote the Hessians of f ,
∫ x1

0

∫ s
0
m(t, x2, x3)dtds, and g, by Hf ,

Hm̂, and Hg respectively. So, we have

Hf (x) = Hm̂(x) + γHg(x2, x3).

(Here, Hg is a 3× 3 matrix whose first row and column are zeros.) Convexity of
f is of course equivalent to nonnegativity of the form yTHf (x)y. Since this form
is bi-homogeneous in x and y, it is nonnegative if and only if yTHf (x)y ≥ 0 on
the bi-sphere

B := {(x, y) | ||x|| = 1, ||y|| = 1}.
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Let us decompose the bi-sphere as

B = S ∪ S̄,

where S is defined in (3.25) and

S̄ := {(x, y) | ||x|| = 1, ||y|| = 1, x2
2 + x2

3 ≥ δ, y2
2 + y2

3 ≥ δ}.

Lemma 3.20 together with positive definiteness of Hg imply that yTHf (x)y is
positive on S. As for the set S̄, let

β1 = min
x,y,∈S̄

yTHm̂(x)y,

and
β2 = min

x,y,∈S̄
yTHg(x2, x3)y.

By the assumption of positive definiteness of Hg, we have β2 > 0. If we now let

γ >
|β1|
β2

,

then

min
x,y,∈S̄

yTHf (x)y > β1 +
|β1|
β2

β2 ≥ 0.

Hence yTHf (x)y is nonnegative (in fact positive) everywhere on B and the proof
is completed.

Finally, we provide an argument for existence of bivariate polynomials of de-
gree 8, 10, 12, . . . that are convex but not sos-convex.

Corollary 3.21. Consider the form f in (3.22) constructed as described in The-
orem 3.18. Let

f̃(x1, x2) = f(x1, x2, 1).

Then, f̃ is convex but not sos-convex.

Proof. The polynomial f̃ is convex because it is the restriction of a convex func-
tion. It is not difficult to see that

∂f̃(x1, x2)

∂x1∂x1

= m(x1, x2, 1),

which is not sos. Therefore from Lemma 3.7 f̃ is not sos-convex.

Corollary 3.21 together with the two polynomials in C̃2,6\Σ̃C2,6 and C̃3,4\Σ̃C3,4

presented in (3.16) and (3.20), and with the simple procedure for increasing the
number of variables described at the beginning of Subsection 3.5.2 cover all the
values of n and d for which convex but not sos-convex polynomials exist.
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� 3.6 Concluding remarks and an open problem

Figure 3.1. The tables answer whether every convex polynomial (form) in n variables and of
degree d is sos-convex.

A summary of the results of this chapter is given in Figure 3.1. To conclude,
we would like to point out some similarities between nonnegativity and convexity
that deserve attention: (i) both nonnegativity and convexity are properties that
only hold for even degree polynomials, (ii) for quadratic forms, nonnegativity is
in fact equivalent to convexity, (iii) both notions are NP-hard to check exactly
for degree 4 and larger, and most strikingly (iv) nonnegativity is equivalent to
sum of squares exactly in dimensions and degrees where convexity is equivalent
to sos-convexity. It is unclear to us whether there can be a deeper and more
unifying reason explaining these observations, in particular, the last one which
was the main result of this chapter.

Another intriguing question is to investigate whether one can give a direct
argument proving the fact that Σ̃Cn,d = C̃n,d if and only if ΣCn+1,d = Cn+1,d.
This would eliminate the need for studying polynomials and forms separately,
and in particular would provide a short proof of the result Σ3,4 = C3,4 given in [2].

Finally, an open problem related to the work in this chapter is to find an
explicit example of a convex form that is not a sum of squares. Blekherman [26]
has shown via volume arguments that for degree d ≥ 4 and asymptotically for
large n such forms must exist, although no examples are known. In particular, it
would interesting to determine the smallest value of n for which such a form exists.
We know from Lemma 3.6 that a convex form that is not sos must necessarily
be not sos-convex. Although our several constructions of convex but not sos-
convex polynomials pass this necessary condition, the polynomials themselves are
all sos. The question is particularly interesting from an optimization viewpoint
because it implies that the well-known sum of squares relaxation for minimizing
polynomials [155], [124] may not be exact even for the easy case of minimizing
convex polynomials.
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� 3.7 Appendix A: How the first convex but not sos-convex polynomial was

found

In this appendix, we explain how the polynomial in (3.11) was found by solving a
carefully designed sos-program12. The simple methodology described here allows
one to search over a restricted family of nonnegative polynomials that are not sums
of squares. The procedure can potentially be useful in many different settings and
this is our main motivation for presenting this appendix.

Our goal is to find a polynomial p := p(x) whose Hessian H := H(x) satisfies:

yTH(x)y psd but not sos. (3.26)

Unfortunately, a constraint of type (3.26) that requires a polynomial to be psd
but not sos is a non-convex constraint and cannot be easily handled with sos-
programming. This is easy to see from a geometric viewpoint. The feasible set
of an sos-program, being a semidefinite program, is always a convex set. On the
other hand, for a fixed degree and dimension, the set of psd polynomials that are
not sos is non-convex. Nevertheless, we describe a technique that allows one to
search over a convex subset of the set of psd but not sos polynomials using sos-
programming. Our strategy can simply be described as follows: (i) Impose the
constraint that the polynomial should not be sos by using a separating hyperplane
(dual functional) for the sos cone. (ii) Impose the constraint that the polynomial
should be psd by requiring that the polynomial times a nonnegative multiplier is
sos.

By definition, the dual cone Σ∗n,d of the sum of squares cone Σn,d is the set of
all linear functionals µ that take nonnegative values on it, i.e,

Σ∗n,d := {µ ∈ H∗n,d, 〈µ, p〉 ≥ 0 ∀p ∈ Σn,d}.

Here, the dual space H∗n,d denotes the space of all linear functionals on the space
Hn,d of forms in n variables and degree d, and 〈., .〉 represents the pairing between
elements of the primal and the dual space. If a form is not sos, we can find a
dual functional µ ∈ Σ∗n,d that separates it from the closed convex cone Σn,d. The
basic idea behind this is the well known separating hyperplane theorem in convex
analysis; see e.g. [38, 142].

As for step (ii) of our strategy above, our approach for guaranteeing that of
a form g is nonnegative will be to require g(x) · (

∑
i x

2
i )
r

be sos for some integer
r ≥ 1. Our choice of the multiplier (

∑
i x

2
i )
r

as opposed to any other psd multiplier
is motivated by a result of Reznick [137] on Hilbert’s 17th problem. The 17th

12The term “sos-program” is usually used to refer to semidefinite programs that have sum of
squares constraints.
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problem, which was answered in the affirmative by Artin [19], asks whether every
psd form must be a sum of squares of rational functions. The affirmative answer
to this question implies that if a form g is psd, then there must exist an sos form
s, such that g · s is sos. Reznick showed in [137] that if g is positive definite, one
can always take s(x) = (

∑
i x

2
i )
r, for sufficiently large r. For all polynomials that

we needed prove psd in this chapter, taking r = 1 has been good enough.
For our particular purpose of finding a convex but not sos-convex polynomial,

we apply the strategy outlined above to make the first diagonal element of the
Hessian psd but not sos (recall Lemma 3.7). More concretely, the polynomial in
(3.11) was derived from a feasible solution to the following sos-program:

− Parameterize p ∈ H3,8 and compute its Hessian H = ∂2p
∂x2 .

− Impose the constraints

(x2
1 + x2

2 + x2
3) · yTH(x)y sos, (3.27)

〈µ,H1,1〉 = −1 (3.28)

(for some dual functional µ ∈ Σ∗3,6).

The decision variables of this sos-program are the coefficients of the polynomial
p that also appear in the entries of the Hessian matrix H. (The polynomial H1,1

in (3.28) denotes the first diagonal element of H.) The dual functional µ must be
fixed a priori as explained in the sequel. Note that all the constraints are linear in
the decision variables and indeed the feasible set described by these constraints is
a convex set. Moreover, the reader should be convinced by now that if the above
sos-program is feasible, then the solution p is a convex polynomial that is not
sos-convex.

The reason why we chose to parameterize p as a form in H3,8 is that a minimal
case where a diagonal element of the Hessian (which has 2 fewer degree) can be
psd but not sos is among the forms in H3,6. The role of the dual functional
µ ∈ Σ∗3,6 in (3.28) is to separate the polynomial H1,1 from Σ3,6. Once an ordering
on the monomials of H1,1 is fixed, this constraint can be imposed numerically as

〈µ,H1,1〉 = bT ~H1,1 = −1, (3.29)

where ~H1,1 denotes the vector of coefficients of the polynomial H1,1 and b ∈ R28

represents our separating hyperplane, which must be computed prior to solving
the above sos-program.

There are several ways to obtain a separating hyperplane for Σ3,6. Our ap-
proach was to find a hyperplane that separates the Motzkin form M in (3.1) from
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Σ3,6. This can be done in at least a couple of different ways. For example, we
can formulate a semidefinite program that requires the Motzkin form to be sos.
This program is clearly infeasible. Any feasible solution to its dual semidefinite
program will give us the desired separating hyperplane. Alternatively, we can
set up an sos-program that finds the Euclidean projection Mp := Mp(x) of the
Motzkin form M onto the cone Σ3,6. Since the projection is done onto a convex
set, the hyperplane tangent to Σ3,6 at Mp will be supporting Σ3,6, and can serve
as our separating hyperplane.

To conclude, we remark that in contrast to previous techniques of constructing
examples of psd but not sos polynomials that are usually based on some obstruc-
tions associated with the number of zeros of polynomials (see e.g. [138]), our
approach has the advantage that the resulting polynomials are positive definite.
Furthermore, additional linear or semidefinite constraints can easily be incorpo-
rated in the search process to impose e.g. various symmetry or sparsity patterns
on the polynomial of interest.
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� 3.8 Appendix B: Certificates complementing the proof of Theorem 3.16

Let x := (x1, x2, x2)T , y := (y1, y2, y3)T , x̃ := (x1, x2)T , ỹ := (y1, y2)T , and let
f, f̃ , Hf , and Hf̃ be as in the proof of Theorem 3.16. This appendix proves that

the form (x2
1 + x2

2) · yTHf (x)y in (3.17) is sos and that the polynomial ỹTHf̃ (x̃)ỹ

in (3.18) is not sos, hence proving respectively that f is convex and f̃ is not
sos-convex.

A rational sos decomposition of (x2
1 + x2

2) · yTHf (x)y, which is a form in 6
variables of degree 8, is as follows:

(x2
1 + x2

2) · yTHf (x)y =
1

84
zTQz,

where z is the vector of monomials

z = [x2x
2
3y3, x2x

2
3y2, x2x

2
3y1, x

2
2x3y3, x

2
2x3y2, x

2
2x3y1, x

3
2y3, x

3
2y2, x

3
2y1,

x1x
2
3y3, x1x

2
3y2, x1x

2
3y1, x1x2x3y3, x1x2x3y2, x1x2x3y1, x1x

2
2y3, x1x

2
2y2, x1x

2
2y1,

x2
1x3y3, x

2
1x3y2, x

2
1x3y1, x

2
1x2y3, x

2
1x2y2, x

2
1x2y1, x

3
1y3, x

3
1y2, x

3
1y1]T ,

and Q is the 27× 27 positive definite matrix13 presented on the next page

Q =
[
Q1 Q2

]
,

13Whenever we state a matrix is positive definite, this claim is backed up by
a rational LDLT factorization of the matrix that the reader can find online at
http://aaa.lids.mit.edu/software.



Sec. 3.8. Appendix B: Certificates complementing the proof of Theorem 3.16 81

Q
1

=

                                                2
2
4
2
8
0

−
4
0
7
4
0

2
0
1
6
0

−
8
1
4
8
0

1
3
9
6
9
2

9
3
5
7
6

−
5
0
5
4
0

−
2
7
8
0
4

−
4
8
3
8
4

0
−

2
9
4
0
0

−
3
2
1
7
2

2
1
2
5
2

1
0
3
4
0
4

−
4
0
7
4
0

6
3
5
0
4

3
6
6
2
4

1
1
4
3
2
4
−

2
1
1
4
2
8

−
8
3
1
6

−
6
7
7
0
4

1
5
3
7
2

−
4
7
3
7
6

2
9
4
0
0

0
1
6
6
3
2

7
5
9
3
6

1
5
5
4
0

2
0
1
6
0

3
6
6
2
4

1
2
1
1
2
8

5
2
9
2
0

−
2
7
9
7
2

−
9
3
0
7
2

−
4
2
2
5
2

−
7
7
1
9
6

−
5
8
3
8
0

3
2
1
7
2

−
1
6
6
3
2

0
2
1
4
2
8
4

−
5
7
9
6
0

−
8
1
4
8
0

1
1
4
3
2
4

5
2
9
2
0

4
8
2
1
0
4
−

5
3
8
7
7
6

3
6
2
0
4
−

2
1
1
4
2
8

3
6
2
8
8
0

−
7
0
6
4
4

1
9
0
6
8

1
3
5
2
4

−
5
8
8

1
7
9
5
6
4

2
0
2
5
8

1
3
9
6
9
2
−

2
1
1
4
2
8

−
2
7
9
7
2
−

5
3
8
7
7
6

1
0
2
0
6
0
0

−
9
4
4
1
6

3
3
8
0
1
6
−

2
8
8
1
2
0

1
8
8
7
4
8
−

4
6
3
6
8

−
3
3
6
8
4

−
4
6
6
2
0
−

1
1
3
6
3
8
−

1
1
9
1
1
2

9
3
5
7
6

−
8
3
1
6

−
9
3
0
7
2

3
6
2
0
4

−
9
4
4
1
6

2
6
6
4
4
8

−
7
5
3
4
8

2
1
6
4
6
8

5
2
0
8

3
3
6
0

−
3
3
4
3
2

−
3
1
0
8
0
−

2
2
1
6
0
6

2
5
4
5
3
4

−
5
0
5
4
0

−
6
7
7
0
4

−
4
2
2
5
2
−

2
1
1
4
2
8

3
3
8
0
1
6

−
7
5
3
4
8

1
7
5
2
2
4
−

1
4
4
0
6
0

1
0
1
3
0
4
−

2
0
6
9
2

7
8
2
6

−
4
2
9
8

−
7
7
2
8
0
−

1
0
8
1
9
2

−
2
7
8
0
4

1
5
3
7
2

−
7
7
1
9
6

3
6
2
8
8
0
−

2
8
8
1
2
0

2
1
6
4
6
8
−

1
4
4
0
6
0

6
0
4
8
0
0

2
8
5
6
0
−

3
5
3
5
0

−
8
4
0

−
3
5
4
3
4
−

1
3
2
8
0
4

1
3
4
7
3
6

−
4
8
3
8
4

−
4
7
3
7
6

−
5
8
3
8
0

−
7
0
6
4
4

1
8
8
7
4
8

5
2
0
8

1
0
1
3
0
4

2
8
5
6
0

9
3
4
0
8
−

2
1
0
9
8

2
7
8
6

−
1
1
0
8
8
−

1
0
4
4
9
6

−
2
2
6
8
0

0
2
9
4
0
0

3
2
1
7
2

1
9
0
6
8

−
4
6
3
6
8

3
3
6
0

−
2
0
6
9
2

−
3
5
3
5
0

−
2
1
0
9
8

2
2
4
2
8
0

−
4
0
7
4
0

2
0
1
6
0

3
5
0
2
8

8
9
9
6
4

−
2
9
4
0
0

0
−

1
6
6
3
2

1
3
5
2
4

−
3
3
6
8
4

−
3
3
4
3
2

7
8
2
6

−
8
4
0

2
7
8
6
−

4
0
7
4
0

6
3
5
0
4

3
6
6
2
4

5
1
8
2
8
−

1
9
6
4
7
6

−
3
2
1
7
2

1
6
6
3
2

0
−

5
8
8

−
4
6
6
2
0

−
3
1
0
8
0

−
4
2
9
8

−
3
5
4
3
4

−
1
1
0
8
8

2
0
1
6
0

3
6
6
2
4

1
2
1
1
2
8

2
9
1
4
8

−
9
4
0
8

2
1
2
5
2

7
5
9
3
6

2
1
4
2
8
4

1
7
9
5
6
4
−

1
1
3
6
3
8
−

2
2
1
6
0
6

−
7
7
2
8
0
−

1
3
2
8
0
4
−

1
0
4
4
9
6

3
5
0
2
8

5
1
8
2
8

2
9
1
4
8

7
8
2
9
7
6
−

4
6
3
3
4
4

1
0
3
4
0
4

1
5
5
4
0

−
5
7
9
6
0

2
0
2
5
8
−

1
1
9
1
1
2

2
5
4
5
3
4
−

1
0
8
1
9
2

1
3
4
7
3
6

−
2
2
6
8
0

8
9
9
6
4
−

1
9
6
4
7
6

−
9
4
0
8
−

4
6
3
3
4
4

1
1
6
7
6
2
4

2
6
7
4
5
6

−
4
8
1
3
2

2
7
5
5
2

−
4
9
7
4
2

7
8
4
7
0

1
2
4
2
3
6
−

1
0
0
4
6
4

6
1
4
0
4

−
9
0
3
8
4

5
5
5
2
4

−
5
0
0
6
4
−

1
4
5
9
0
8

4
1
0
1
6

−
1
5
4
5
6

6
0
8
7
2

−
2
5
6
9
0
−

1
4
2
4
7
8

2
2
8
4
8
−

1
1
3
8
2
0

2
5
9
9
8
0

−
7
2
9
9
6

2
3
7
9
7
2

2
0
4
1
2
−

9
5
5
8
0

−
4
7
9
6
4

−
2
7
7
8
0
−

4
3
8
7
3
2

5
1
4
5
0
0

3
7
7
3
0

−
9
9
0
3
6

−
1
0
1
5
0

−
8
3
1
6
0

4
7
3
0
8
8

3
4
1
8
8

1
6
7
2
4
4

5
7
1
2
0

1
5
9
2
6
4

1
0
7
5
2

−
9
3
0
4
8
−

1
8
3
5
4
0

2
3
0
8
3
2

−
4
9
9
8
0

−
1
1
9
2
1
0

9
1
7
0

8
1
6
4
8

2
4
4
3
5
6

−
4
1
6
6
4
−

1
9
4
1
2
4

−
9
9
9
6

2
1
4
3
6
8

1
9
1
5
2
−

8
9
1
8
4

2
9
4
0

−
4
8
4
8
0

2
0
4
7
0
8

−
8
5
3
4
4

−
1
1
6
5
0
8

8
1
5
6
4

2
6
1
2
4

1
5
5
8
3
2
−

3
0
8
2
8
0

−
7
8
1
8
0

−
7
4
0
8
8

1
4
6
1
6

−
4
9
6
4
4

4
0
3
2
0

8
7
1
0
8

2
2
5
4
5
6

1
3
5
7
4
4

8
5
6
8

3
0
6
6
0

−
1
4
9
5
2

1
1
8
4
4

−
2
1
4
2
0

6
2
6
0
4

1
4
3
6
4

1
3
6
0
8

1
1
7
6

5
1
2
4

5
9
3
8
8

−
1
8
1
4
4

−
9
9
6
2
4

3
1
3
3
2
−

1
7
8
2
4
8

3
5
7
0
0

1
1
3
4
0

5
2
8
3
6

−
7
0
7
8
8

8
6
1
8
4

9
3
9
6

1
2
2
6
4
−

1
0
8
0
2
4

−
1
1
2
5
6

2
5
9
0
5
6

−
8
6
5
2
0

−
3
5
2
8

−
1
9
3
3
4

1
4
2
1
2
8

1
0
2
1
5
6

2
8
5
6

6
4
5
3
6

2
2
1
7
6

−
4
2
0
0

7
7
5
3
2

−
7
0
8
9
6

5
4
3
4
8

−
4
9
6
1
6

7
2
7
4
4

−
7
8
8
7
6
−

1
4
4
9
9
8

2
9
3
1
6

2
3
8
5
6

−
8
6
1
0
0

4
7
1
4
8

7
1
8
2
0

2
3
0
9
1
6
−

2
2
3
6
9
2
−

1
3
1
6
2
8

−
7
2
1
5
6

5
9
6
4
0

−
3
1
4
1
6
−

7
5
0
9
6

−
3
9
3
9
6

−
4
4
5
2
0

1
5
8
5
0
8

3
0
8
1
9
6

9
5
3
6
4

−
5
0
4

−
8
4
1
2

−
2
3
1
0
0

2
8
1
4
0

8
1
6
4
8

−
2
6
7
6
8

−
2
5
2
0
0

−
1
3
9
4
4
−

5
1
0
0
2

−
3
9
2
2
8

7
1
2
3
2

1
3
0
2
9
8

2
9
8
9
5
6

1
1
2
5
6

5
2
0
8

3
2
1
5
8

−
3
3
2
6
4

4
5
4
4
4

3
1
2
2

6
8
8
8

−
3
4
4
4
0

−
5
6
2
8

6
1
3
2
0

−
1
9
1
5
2

8
9
8
8

1
8
0
6
0

−
1
9
4
6
7

0
−

1
3
4
4

−
3
6
9
6

−
3
4
6
9
2

3
3
7
6
8

5
9
6
4

9
4
9
2

−
2
0
2
4
4

5
2
0
8
−

3
0
0
7
2

−
9
9
1
2

5
8
8
8
4

−
5
0
8
8
3

1
5
1
9
5
6

−
5
1
4
2
2

4
9
0
5
6

3
2
5
9
2

1
6
0
3
7
0
−

2
2
9
0
6
8

−
3
6
7
9
2

−
6
8
7
9
6

5
7
7
0
8

−
3
9
5
6
4

5
5
9
4
4

3
1
1
6
4

−
8
0
0
8

1
4
1
8
7
6
−

1
2
6
4
8
3

                                                ,

Q
2

=

                                                2
6
7
4
5
6

6
0
8
7
2

3
7
7
3
0
−

1
1
9
2
1
0
−

1
1
6
5
0
8

3
0
6
6
0

3
5
7
0
0

1
0
2
1
5
6

−
8
6
1
0
0

9
5
3
6
4

1
1
2
5
6

0
−

5
1
4
2
2

−
4
8
1
3
2

−
2
5
6
9
0

−
9
9
0
3
6

9
1
7
0

8
1
5
6
4

−
1
4
9
5
2

1
1
3
4
0

2
8
5
6

4
7
1
4
8

−
5
0
4

5
2
0
8

−
1
3
4
4

4
9
0
5
6

2
7
5
5
2
−

1
4
2
4
7
8

−
1
0
1
5
0

8
1
6
4
8

2
6
1
2
4

1
1
8
4
4

5
2
8
3
6

6
4
5
3
6

7
1
8
2
0

−
8
4
1
2

3
2
1
5
8

−
3
6
9
6

3
2
5
9
2

−
4
9
7
4
2

2
2
8
4
8

−
8
3
1
6
0

2
4
4
3
5
6

1
5
5
8
3
2

−
2
1
4
2
0

−
7
0
7
8
8

2
2
1
7
6

2
3
0
9
1
6

−
2
3
1
0
0
−

3
3
2
6
4

−
3
4
6
9
2

1
6
0
3
7
0

7
8
4
7
0
−

1
1
3
8
2
0

4
7
3
0
8
8

−
4
1
6
6
4
−

3
0
8
2
8
0

6
2
6
0
4

8
6
1
8
4

−
4
2
0
0
−

2
2
3
6
9
2

2
8
1
4
0

4
5
4
4
4

3
3
7
6
8
−

2
2
9
0
6
8

1
2
4
2
3
6

2
5
9
9
8
0

3
4
1
8
8
−

1
9
4
1
2
4

−
7
8
1
8
0

1
4
3
6
4

9
3
9
6

7
7
5
3
2
−

1
3
1
6
2
8

8
1
6
4
8

3
1
2
2

5
9
6
4

−
3
6
7
9
2

−
1
0
0
4
6
4

−
7
2
9
9
6

1
6
7
2
4
4

−
9
9
9
6

−
7
4
0
8
8

1
3
6
0
8

1
2
2
6
4

−
7
0
8
9
6

−
7
2
1
5
6

−
2
6
7
6
8

6
8
8
8

9
4
9
2

−
6
8
7
9
6

6
1
4
0
4

2
3
7
9
7
2

5
7
1
2
0

2
1
4
3
6
8

1
4
6
1
6

1
1
7
6
−

1
0
8
0
2
4

5
4
3
4
8

5
9
6
4
0

−
2
5
2
0
0
−

3
4
4
4
0

−
2
0
2
4
4

5
7
7
0
8

−
9
0
3
8
4

2
0
4
1
2

1
5
9
2
6
4

1
9
1
5
2

−
4
9
6
4
4

5
1
2
4

−
1
1
2
5
6

−
4
9
6
1
6

−
3
1
4
1
6

−
1
3
9
4
4

−
5
6
2
8

5
2
0
8

−
3
9
5
6
4

5
5
5
2
4

−
9
5
5
8
0

1
0
7
5
2

−
8
9
1
8
4

4
0
3
2
0

5
9
3
8
8

2
5
9
0
5
6

7
2
7
4
4

−
7
5
0
9
6

−
5
1
0
0
2

6
1
3
2
0

−
3
0
0
7
2

5
5
9
4
4

−
5
0
0
6
4

−
4
7
9
6
4

−
9
3
0
4
8

2
9
4
0

8
7
1
0
8

−
1
8
1
4
4

−
8
6
5
2
0

−
7
8
8
7
6

−
3
9
3
9
6

−
3
9
2
2
8
−

1
9
1
5
2

−
9
9
1
2

3
1
1
6
4

−
1
4
5
9
0
8

−
2
7
7
8
0
−

1
8
3
5
4
0

−
4
8
4
8
0

2
2
5
4
5
6

−
9
9
6
2
4

−
3
5
2
8
−

1
4
4
9
9
8

−
4
4
5
2
0

7
1
2
3
2

8
9
8
8

5
8
8
8
4

−
8
0
0
8

4
1
0
1
6
−

4
3
8
7
3
2

2
3
0
8
3
2

2
0
4
7
0
8

1
3
5
7
4
4

3
1
3
3
2

−
1
9
3
3
4

2
9
3
1
6

1
5
8
5
0
8

1
3
0
2
9
8

1
8
0
6
0

−
5
0
8
8
3

1
4
1
8
7
6

−
1
5
4
5
6

5
1
4
5
0
0

−
4
9
9
8
0

−
8
5
3
4
4

8
5
6
8
−

1
7
8
2
4
8

1
4
2
1
2
8

2
3
8
5
6

3
0
8
1
9
6

2
9
8
9
5
6
−

1
9
4
6
7

1
5
1
9
5
6
−

1
2
6
4
8
3

6
1
0
5
8
4

2
1
8
4
0

1
2
7
9
3
2

−
6
5
1
8
4
−

3
2
3
8
3
4

1
9
5
6
3
6

9
0
9
7
2

3
3
9
7
9
4
−

1
0
0
7
1
6

−
9
6
0
1
2

2
4
8
6
4
−

1
1
4
2
1
9

3
6
8
7
6

2
1
8
4
0

4
6
6
7
0
4
−

1
1
0
6
2
8
−

1
0
6
8
2
0

−
5
4
0
1
2

−
9
0
6
3
6
−

1
1
1
7
9
0

−
1
4
9
5
2

6
3
6
7
2

1
0
7
8
5
6
−

6
7
7
8
8

6
1
4
0
4

−
8
8
2
8
4

1
2
7
9
3
2
−

1
1
0
6
2
8

1
0
4
5
9
6
8

1
4
2
6
3
2
−

4
1
0
5
9
2

1
7
1
0
2
4

8
6
2
6
8

1
7
6
8
2
0

9
6
5
1
6

1
9
9
7
5
2

1
3
5
2
4

−
7
0
7
8
4

−
4
2
7
5
6

−
6
5
1
8
4
−

1
0
6
8
2
0

1
4
2
6
3
2

5
6
9
8
5
6

2
1
5
1
8

−
3
0
1
5
6
−

1
5
9
2
6
4

−
2
3
0
1
6

4
1
0
0
0
4

−
7
1
4
8
4
−

6
2
0
7
6

−
1
3
8
6
0

7
4
0
3
2

−
3
2
3
8
3
4

−
5
4
0
1
2
−

4
1
0
5
9
2

2
1
5
1
8

6
0
4
1
2
8
−

2
2
9
9
9
2

−
7
5
5
1
6
−

2
9
7
2
7
6

1
8
2
3
8
5

7
5
6
8
4

−
3
5
2
8

9
4
5
0
0

1
3
8
4
3
2

1
9
5
6
3
6

−
9
0
6
3
6

1
7
1
0
2
4

−
3
0
1
5
6
−

2
2
9
9
9
2

1
6
9
5
1
2

1
0
4
7
4
8

1
8
7
3
4
1
−

1
3
6
3
3
2
−

1
4
5
7
1
9

3
5
3
6
4

−
9
4
8
3
6

2
4
6
1
2

9
0
9
7
2
−

1
1
1
7
9
0

8
6
2
6
8
−

1
5
9
2
6
4

−
7
5
5
1
6

1
0
4
7
4
8

3
8
1
9
2
0

1
4
7
1
6
8
−

1
8
2
5
9
5

−
3
6
8
7
6

1
0
5
5
0
4

−
2
4
6
1
2

−
7
5
6
0

3
3
9
7
9
4

−
1
4
9
5
2

1
7
6
8
2
0

−
2
3
0
1
6
−

2
9
7
2
7
6

1
8
7
3
4
1

1
4
7
1
6
8

3
4
6
2
4
8

−
5
9
3
0
4
−

1
3
7
9
2
8

6
4
9
3
2

−
9
0
8
8
8

2
8
3
9
2

−
1
0
0
7
1
6

6
3
6
7
2

9
6
5
1
6

4
1
0
0
0
4

1
8
2
3
8
5
−

1
3
6
3
3
2
−

1
8
2
5
9
5

−
5
9
3
0
4

7
7
6
7
7
6

4
8
9
7
2
−

9
8
7
8
4

1
9
1
5
2

1
8
0
8
5
2

−
9
6
0
1
2

1
0
7
8
5
6

1
9
9
7
5
2

−
7
1
4
8
4

7
5
6
8
4
−

1
4
5
7
1
9

−
3
6
8
7
6
−

1
3
7
9
2
8

4
8
9
7
2

4
9
4
5
3
6
−

2
8
3
9
2

1
1
8
1
8
8
−

1
3
0
2
0
0

2
4
8
6
4

−
6
7
7
8
8

1
3
5
2
4

−
6
2
0
7
6

−
3
5
2
8

3
5
3
6
4

1
0
5
5
0
4

6
4
9
3
2

−
9
8
7
8
4

−
2
8
3
9
2

6
0
9
8
4

0
−

3
7
8
0

−
1
1
4
2
1
9

6
1
4
0
4

−
7
0
7
8
4

−
1
3
8
6
0

9
4
5
0
0

−
9
4
8
3
6

−
2
4
6
1
2

−
9
0
8
8
8

1
9
1
5
2

1
1
8
1
8
8

0
7
4
7
6
0

−
6
5
1
0
0

3
6
8
7
6

−
8
8
2
8
4

−
4
2
7
5
6

7
4
0
3
2

1
3
8
4
3
2

2
4
6
1
2

−
7
5
6
0

2
8
3
9
2

1
8
0
8
5
2
−

1
3
0
2
0
0

−
3
7
8
0

−
6
5
1
0
0

1
9
4
0
4
0

                                                .



82 CHAPTER 3. CONVEXITY AND SOS-CONVEXITY

Next, we prove that the polynomial ỹTHf̃ (x̃)ỹ in (3.18) is not sos. Let us first
present this polynomial and give it a name:

t(x̃, ỹ) := ỹTHf̃ (x̃)ỹ = 294x1x2y
2
2 − 6995x4

2y1y2 − 10200x1y1y2 − 4356x2
1x2y

2
1

−2904x3
1y1y2 − 11475x1x

2
2y

2
1 + 13680x3

2y1y2 + 4764x1x2y
2
1

+4764x2
1y1y2 + 6429x2

1x
2
2y

2
1 + 294x2

2y1y2 − 13990x1x
3
2y

2
2

−12123x2
1x2y

2
2 − 3872x2y1y2 + 2143

2
x4

1y
2
2 + 20520x1x

2
2y

2
2

+29076x1x2y1y2 − 24246x1x
2
2y1y2 + 14901x1x

3
2y1y2

+15039x2
1x

2
2y1y2 + 8572x3

1x2y1y2 + 44703
4
x2

1x
2
2y

2
2 + 1442y2

1

−12360x2y
2
2 − 5100x2y

2
1 + 147513

4
x2

2y
2
2 + 7269x2

2y
2
1

+772965
32

x4
2y

2
2 + 14901

8
x4

2y
2
1 − 1936x1y

2
2 − 84x1y

2
1 + 3817

2
y2

2

+7269x2
1y

2
2 + 4356x2

1y
2
1 − 3825x3

1y
2
2 − 180x3

1y
2
1 + 632y1y2

+2310x4
1y

2
1 + 5013x1x

3
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2y

2
2

−1505x4
1y1y2 − 4041x3

2y
2
1 − 3010x3

1x2y
2
1 + 5013x3

1x2y
2
2.

Note that t is a polynomial in 4 variables of degree 6 that is quadratic in ỹ. Let
us denote the cone of sos polynomials in 4 variables (x̃, ỹ) that have degree 6
and are quadratic in ỹ by Σ̂4,6, and its dual cone by Σ̂∗4,6. Our proof will simply

proceed by presenting a dual functional ξ ∈ Σ̂∗4,6 that takes a negative value on
the polynomial t. We fix the following ordering of monomials in what follows:

v = [y2
2, y1y2, y

2
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1]T .

(3.30)
Let ~t represent the vector of coefficients of t ordered according to the list of
monomials above; i.e., t = ~tTv. Using the same ordering, we can represent our
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dual functional ξ with the vector

c = [19338,−2485, 17155, 6219,−4461, 11202, 4290,−5745, 13748, 3304,−5404,
13227, 3594,−4776, 19284, 2060, 3506, 5116, 366,−2698, 6231,−487,−2324,
4607, 369,−3657, 3534, 6122, 659, 7057, 1646, 1238, 1752, 2797,−940, 4608,
−200, 1577,−2030,−513,−3747, 2541, 15261, 220, 7834]T .

We have

〈ξ, t〉 = cT~t = −364547

16
< 0.

On the other hand, we claim that ξ ∈ Σ̂∗4,6; i.e., for any form w ∈ Σ̂4,6, we should
have

〈ξ, w〉 = cT ~w ≥ 0, (3.31)

where ~w here denotes the coefficients of w listed according to the ordering in
(3.30). Indeed, if w is sos, then it can be written in the form

w(x) = z̃T Q̃z̃ = Tr Q̃ · z̃z̃T ,

for some symmetric positive semidefinite matrix Q̃, and a vector of monomials

z̃ = [y2, y1, x2y2, x2y1, x1y2, x1y1, x
2
2y2, x

2
2y1, x1x2y2, x1x2y1, x

2
1y2, x

2
1y1]T .

It is not difficult to see that

cT ~w = Tr Q̃ · (z̃z̃T )|c, (3.32)

where by (z̃z̃T )|c we mean a matrix where each monomial in z̃z̃T is replaced with
the corresponding element of the vector c. This yields the matrix

(z̃z̃
T

)|c =



19338 −2485 6219 −4461 2060 3506 4290 −5745 366 −2698 6122 659
−2485 17155 −4461 11202 3506 5116 −5745 13748 −2698 6231 659 7057

6219 −4461 4290 −5745 366 −2698 3304 −5404 −487 −2324 1646 1238
−4461 11202 −5745 13748 −2698 6231 −5404 13227 −2324 4607 1238 1752

2060 3506 366 −2698 6122 659 −487 −2324 1646 1238 −200 1577
3506 5116 −2698 6231 659 7057 −2324 4607 1238 1752 1577 −2030
4290 −5745 3304 −5404 −487 −2324 3594 −4776 369 −3657 2797 −940
−5745 13748 −5404 13227 −2324 4607 −4776 19284 −3657 3534 −940 4608

366 −2698 −487 −2324 1646 1238 369 −3657 2797 −940 −513 −3747
−2698 6231 −2324 4607 1238 1752 −3657 3534 −940 4608 −3747 2541

6122 659 1646 1238 −200 1577 2797 −940 −513 −3747 15261 220
659 7057 1238 1752 1577 −2030 −940 4608 −3747 2541 220 7834



,

which is positive definite. Therefore, equation (3.32) along with the fact that Q̃
is positive semidefinite implies that (3.31) holds. This completes the proof.
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Chapter 4

Lyapunov Analysis of Polynomial
Differential Equations

In the last two chapters of this thesis, our focus will turn to Lyapunov analysis
of dynamical systems. The current chapter presents new results on Lyapunov
analysis of polynomial vector fields. The content here is based on the works
in [10] and [4], as well as some more recent results.

� 4.1 Introduction

We will be concerned for the most part of this chapter with a continuous time
dynamical system

ẋ = f(x), (4.1)

where f : Rn → Rn is a polynomial and has an equilibrium at the origin, i.e.,
f(0) = 0. Arguably, the class of polynomial differential equations are among
the most widely encountered in engineering and sciences. For stability analysis
of these systems, it is most common (and quite natural) to search for Lyapunov
functions that are polynomials themselves. When such a candidate Lyapunov
function is used, then conditions of Lyapunov’s theorem reduce to a set of poly-
nomial inequalities. For instance, if establishing global asymptotic stability of the
origin is desired, one would require a radially unbounded polynomial Lyapunov
candidate V (x) : Rn → R to vanish at the origin and satisfy

V (x) > 0 ∀x 6= 0 (4.2)

V̇ (x) = 〈∇V (x), f(x)〉 < 0 ∀x 6= 0. (4.3)

Here, V̇ denotes the time derivative of V along the trajectories of (4.1), ∇V (x) is
the gradient vector of V , and 〈., .〉 is the standard inner product in Rn. In some
other variants of the analysis problem, e.g. if LaSalle’s invariance principle is to
be used, or if the goal is to prove boundedness of trajectories of (4.1), then the
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inequality in (4.3) is replaced with

V̇ (x) ≤ 0 ∀x. (4.4)

In any case, the problem arising from this analysis approach is that even though
polynomials of a given degree are finitely parameterized, the computational prob-
lem of searching for a polynomial V satisfying inequalities of the type (4.2), (4.3),
(4.4) is intractable. An approach pioneered in [118] and widely popular by now is
to replace the positivity (or nonnegativity) conditions by the requirement of the
existence of a sum of squares (sos) decomposition:

V sos (4.5)

−V̇ = −〈∇V, f〉 sos. (4.6)

As we saw in the previous chapter, sum of squares decomposition is a suffi-
cient condition for polynomial nonnegativity that can be efficiently checked with
semidefinite programming. For a fixed degree of a polynomial Lyapunov candi-
date V , the search for the coefficients of V subject to the constraints (4.5) and
(4.6) is a semidefinite program (SDP). We call a Lyapunov function satisfying
both sos conditions in (4.5) and (4.6) a sum of squares Lyapunov function. We
emphasize that this is the sensible definition of a sum of squares Lyapunov func-
tion and not what the name may suggest, which is a Lyapunov function that is a
sum of squares. Indeed, the underlying semidefinite program will find a Lyapunov
function V if and only if V satisfies both conditions (4.5) and (4.6).

Over the last decade, the applicability of sum of squares Lyapunov functions
has been explored and extended in many directions and a multitude of sos tech-
niques have been developed to tackle a range of problems in systems and control.
We refer the reader to the by no means exhaustive list of works [76], [41], [43], [83],
[131], [114], [133], [42], [6], [21], [159] and references therein. Despite the wealth
of research in this area, the converse question of whether the existence of a poly-
nomial Lyapunov function implies the existence of a sum of squares Lyapunov
function has remained elusive. This question naturally comes in two variants:

Problem 1: Does existence of a polynomial Lyapunov function of a given
degree imply existence of a polynomial Lyapunov function of the same degree
that satisfies the sos conditions in (4.5) and (4.6)?

Problem 2: Does existence of a polynomial Lyapunov function of a given
degree imply existence of a polynomial Lyapunov function of possibly higher degree
that satisfies the sos conditions in (4.5) and (4.6)?

The notion of stability of interest in this chapter, for which we will study the
questions above, is global asymptotic stability (GAS); see e.g. [86, Chap. 4] for
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a precise definition. Of course, a fundamental question that comes before the
problems mentioned above is the following:

Problem 0: If a polynomial dynamical system is globally asymptotically
stable, does it admit a polynomial Lyapunov function?

� 4.1.1 Contributions and organization of this chapter

In this chapter, we give explicit counterexamples that answer Problem 0 and
Problem 1 in the negative. This is done in Section 4.3 and Subsection 4.4.2
respectively. On the other hand, in Subsection 4.4.3, we give a positive answer to
Problem 2 for the case where the vector field is homogeneous (Theorem 4.8) or
when it is planar and an additional mild assumption is met (Theorem 4.10). The
proofs of these two theorems are quite simple and rely on powerful Positivstellen-
satz results due to Scheiderer (Theorems 4.7 and 4.9). In Section 4.5, we extend
these results to derive a converse sos Lyapunov theorem for robust stability of
switched linear systems. It will be proven that if such a system is stable under
arbitrary switching, then it admits a common polynomial Lyapunov function that
is sos and that the negative of its derivative is also sos (Theorem 4.11). We also
show that for switched linear systems (both in discrete and continuous time), if
the inequality on the decrease condition of a Lyapunov function is satisfied as
a sum of squares, then the Lyapunov function itself is automatically a sum of
squares (Propositions 4.14 and 4.15). We list a number of related open problems
in Section 4.6.

Before these contributions are presented, we establish a hardness result for
the problem of deciding asymptotic stability of cubic homogeneous vector fields
in the next section. We also present some byproducts of this result, including a
Lyapunov-inspired technique for proving positivity of forms.

� 4.2 Complexity considerations for deciding stability of polynomial vector

fields

It is natural to ask whether stability of equilibrium points of polynomial vector
fields can be decided in finite time. In fact, this is a well-known question of Arnold
that appears in [17]:

“Is the stability problem for stationary points algorithmically decidable? The
well-known Lyapounov theorem1 solves the problem in the absence of eigen-
values with zero real parts. In more complicated cases, where the stability

1The theorem that Arnold is referring to here is the indirect method of Lyapunov related to
linearization. This is not to be confused with Lyapunov’s direct method (or the second method),
which is what we are concerned with in sections that follow.
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depends on higher order terms in the Taylor series, there exists no algebraic
criterion.

Let a vector field be given by polynomials of a fixed degree, with rational co-
efficients. Does an algorithm exist, allowing to decide, whether the stationary
point is stable?”

Later in [51], the question of Arnold is quoted with more detail:

“In my problem the coefficients of the polynomials of known degree and
of a known number of variables are written on the tape of the standard
Turing machine in the standard order and in the standard representation.
The problem is whether there exists an algorithm (an additional text for the
machine independent of the values of the coefficients) such that it solves the
stability problem for the stationary point at the origin (i.e., always stops
giving the answer “stable” or “unstable”).

I hope, this algorithm exists if the degree is one. It also exists when the
dimension is one. My conjecture has always been that there is no algorithm
for some sufficiently high degree and dimension, perhaps for dimension 3 and
degree 3 or even 2. I am less certain about what happens in dimension 2. Of
course the nonexistence of a general algorithm for a fixed dimension working
for arbitrary degree or for a fixed degree working for an arbitrary dimension,
or working for all polynomials with arbitrary degree and dimension would
also be interesting.”

To our knowledge, there has been no formal resolution to these questions,
neither for the case of stability in the sense of Lyapunov, nor for the case of
asymptotic stability (in its local or global version). In [51], da Costa and Doria
show that if the right hand side of the differential equation contains elementary
functions (sines, cosines, exponentials, absolute value function, etc.), then there
is no algorithm for deciding whether the origin is stable or unstable. They also
present a dynamical system in [52] where one cannot decide whether a Hopf bi-
furcation will occur or whether there will be parameter values such that a stable
fixed point becomes unstable. In earlier work, Arnold himself demonstrates some
of the difficulties that arise in stability analysis of polynomial systems by pre-
senting a parametric polynomial system in 3 variables and degree 5, where the
boundary between stability and instability in parameter space is not a semialge-
braic set [16]. A relatively larger number of undecidability results are available for
questions related to other properties of polynomial vector fields, such as reach-
ability [73] or boundedness of domain of definition [65], or for questions about
stability of hybrid systems [30], [35], [34], [29]. We refer the interested reader to
the survey papers in [37], [73], [156], [33], [36].
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We are also interested to know whether the answer to the undecidability ques-
tion for asymptotic stability changes if the dynamics is restricted to be homoge-
neous. A polynomial vector field ẋ = f(x) is homogeneous if all entries of f are
homogeneous polynomials of the same degree. Homogeneous systems are exten-
sively studied in the literature on nonlinear control [149], [14], [68], [23], [74], [146],
[106], and some of the results of this chapter (both negative and positive) are de-
rived specifically for this class of systems. A basic fact about homogeneous vector
fields is that for these systems the notions of local and global stability are equiva-
lent. Indeed, a homogeneous vector field of degree d satisfies f(λx) = λdf(x) for
any scalar λ, and therefore the value of f on the unit sphere determines its value
everywhere. It is also well-known that an asymptotically stable homogeneous
system admits a homogeneous Lyapunov funciton [72],[146].

Naturally, questions regarding complexity of deciding asymptotic stability and
questions about existence of Lyapunov functions are related. For instance, if one
proves that for a class of polynomial vector fields, asymptotic stability implies
existence of a polynomial Lyapunov function together with a computable upper
bound on its degree, then the question of asymptotic stability for that class be-
comes decidable. This is due to the fact that given any polynomial system and
any integer d, the question of deciding whether the system admits a polynomial
Lyapunov function of degree d can be answered in finite time using quantifier
elimination.

For the case of linear systems (i.e., homogeneous systems of degree 1), the
situation is particularly nice. If such a system is asymptotically stable, then there
always exists a quadratic Lyapunov function. Asymptotic stability of a linear
system ẋ = Ax is equivalent to the easily checkable algebraic criterion that the
eigenvalues of A be in the open left half complex plane. Deciding this property of
the matrix A can formally be done in polynomial time, e.g. by solving a Lyapunov
equation [36].

Moving up in the degree, it is not difficult to show that if a homogeneous
polynomial vector field has even degree, then it can never be asymptotically stable;
see e.g. [72, p. 283]. So the next interesting case occurs for homogeneous vector
fields of degree 3. We will prove below that determining asymptotic stability for
such systems is strongly NP-hard. This gives a lower bound on the complexity
of this problem. It is an interesting open question to investigate whether in this
specific setting, the problem is also undecidable.

One implication of our NP-hardness result is that unless P=NP, we should
not expect sum of squares Lyapunov functions of “low enough” degree to always
exist, even when the analysis is restricted to cubic homogeneous vector fields. The
semidefinite program arising from a search for an sos Lyapunov function of degree
2d for such a vector field in n variables has size in the order of

(
n+d
d+1

)
. This number
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is polynomial in n for fixed d (but exponential in n when d grows linearly in n).
Therefore, unlike the case of linear systems, we should not hope to have a bound
on the degree of sos Lyapunov functions that is independent of the dimension.

We postpone our study of existence of sos Lyapunov functions to Section 4.4
and proceed for now with the following complexity result.

Theorem 4.1. Deciding asymptotic stability of homogeneous cubic polynomial
vector fields is strongly NP-hard.

The main intuition behind the proof of this theorem is the following idea: We
will relate the solution of a combinatorial problem not to the behavior of the
trajectories of a cubic vector field that are hard to get a handle on, but instead to
properties of a Lyapunov function that proves asymptotic stability of this vector
field. As we will see shortly, insights from Lyapunov theory make the proof of
this theorem quite simple. The reduction is broken into two steps:

ONE-IN-THREE 3SAT
↓

positivity of quartic forms
↓

asymptotic stability of cubic vector fields

In the course of presenting these reductions, we will also discuss some corollar-
ies that are not directly related to our study of asymptotic stability, but are of
independent interest.

� 4.2.1 Reduction from ONE-IN-THREE 3SAT to positivity of quartic forms

As we remarked in Chapter 2, NP-hardness of deciding nonnegativity (i.e., posi-
tive semidefiniteness) of quartic forms is well-known. The proof commonly cited in
the literature is based on a reduction from the matrix copositivity problem [109]:
given a symmetric n × n matrix Q, decide whether xTQx ≥ 0 for all x’s that
are elementwise nonnegative. Clearly, a matrix Q is copositive if and only if the
quartic form zTQz, with zi := x2

i , is nonnegative. The original reduction [109]
proving NP-hardness of testing matrix copositivity is from the subset sum prob-
lem and only establishes weak NP-hardness. However, reductions from the stable
set problem to matrix copositivity are also known [56], [58] and they result in
NP-hardness in the strong sense. Alternatively, strong NP-hardness of deciding
nonnegativity of quartic forms follows immediately from NP-hardness of deciding
convexity of quartic forms (proven in Chapter 2) or from NP-hardness of deciding
nonnegativity of biquadratic forms (proven in [97]).
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For reasons that will become clear shortly, we are interested in showing hard-
ness of deciding positive definiteness of quartic forms as opposed to positive
semidefiniteness. This is in some sense even easier to accomplish. A very straight-
forward reduction from 3SAT proves NP-hardness of deciding positive definiteness
of polynomials of degree 6. By using ONE-IN-THREE 3SAT instead, we will re-
duce the degree of the polynomial from 6 to 4.

Proposition 4.2. It is strongly2 NP-hard to decide whether a homogeneous poly-
nomial of degree 4 is positive definite.

Proof. We give a reduction from ONE-IN-THREE 3SAT which is known to be
NP-complete [61, p. 259]. Recall that in ONE-IN-THREE 3SAT, we are given a
3SAT instance (i.e., a collection of clauses, where each clause consists of exactly
three literals, and each literal is either a variable or its negation) and we are asked
to decide whether there exists a {0, 1} assignment to the variables that makes the
expression true with the additional property that each clause has exactly one true
literal.

To avoid introducing unnecessary notation, we present the reduction on a
specific instance. The pattern will make it obvious that the general construction
is no different. Given an instance of ONE-IN-THREE 3SAT, such as the following

(x1 ∨ x̄2 ∨ x4) ∧ (x̄2 ∨ x̄3 ∨ x5) ∧ (x̄1 ∨ x3 ∨ x̄5) ∧ (x1 ∨ x3 ∨ x4), (4.7)

we define the quartic polynomial p as follows:

p(x) =
∑5

i=1 x
2
i (1− xi)2

+(x1 + (1− x2) + x4 − 1)2 + ((1− x2) + (1− x3) + x5 − 1)2

+((1− x1) + x3 + (1− x5)− 1)2 + (x1 + x3 + x4 − 1)2.
(4.8)

Having done so, our claim is that p(x) > 0 for all x ∈ R5 (or generally for all
x ∈ Rn) if and only if the ONE-IN-THREE 3SAT instance is not satisfiable.
Note that p is a sum of squares and therefore nonnegative. The only possible
locations for zeros of p are by construction among the points in {0, 1}5. If there
is a satisfying Boolean assignment x to (4.7) with exactly one true literal per
clause, then p will vanish at point x. Conversely, if there are no such satisfying
assignments, then for any point in {0, 1}5, at least one of the terms in (4.8) will
be positive and hence p will have no zeros.

It remains to make p homogeneous. This can be done via introducing a new
scalar variable y. If we let

ph(x, y) = y4p(x
y
), (4.9)

2Just like our results in Chapter 2, the NP-hardness results of this section will all be in the
strong sense. From here on, we will drop the prefix “strong” for brevity.
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then we claim that ph (which is a quartic form) is positive definite if and only if
p constructed as in (4.8) has no zeros.3 Indeed, if p has a zero at a point x, then
that zero is inherited by ph at the point (x, 1). If p has no zeros, then (4.9) shows
that ph can only possibly have zeros at points with y = 0. However, from the
structure of p in (4.8) we see that

ph(x, 0) = x4
1 + · · ·+ x4

5,

which cannot be zero (except at the origin). This concludes the proof.

We present a simple corollary of the reduction we just gave on a problem
that is of relevance in polynomial integer programming.4 Recall from Chapter 2
(Definition 2.7) that a basic semialgebraic set is a set defined by a finite number
of polynomial inequalities:

S = {x ∈ Rn| fi(x) ≥ 0, i = 1, . . . ,m}. (4.10)

Corollary 4.3. Given a basic semialgebraic set, it is NP-hard to decide if the set
contains a lattice point, i.e., a point with integer coordinates. This is true even
when the set is defined by one constraint (m = 1) and the defining polynomial has
degree 4.

Proof. Given an instance of ONE-IN-THREE 3SAT, we define a polynomial p of
degree 4 as in (4.8), and let the basic semialgebraic set be given by

S = {x ∈ Rn| − p(x) ≥ 0}.

Then, by Proposition 4.2, if the ONE-IN-THREE 3SAT instance is not satisfiable,
the set S is empty and hence has no lattice points. Conversely, if the instance is
satisfiable, then S contains at least one point belonging to {0, 1}n and therefore
has a lattice point.

By using the celebrated result on undecidability of checking existence of integer
solutions to polynomial equations (Hilbert’s 10th problem), one can show that the
problem considered in the corollary above is in fact undecidable [129]. The same
is true for quadratic integer programming when both the dimension n and the

3In general, homogenization does not preserve positivity. For example, as shown in [138], the
polynomial x2

1+(1−x1x2)2 has no zeros, but its homogenization x2
1y

2+(y2−x1x2)2 has zeros at
the points (1, 0, 0)T and (0, 1, 0)T . Nevertheless, positivity is preserved under homogenization
for the special class of polynomials constructed in this reduction, essentially because polynomials
of type (4.8) have no zeros at infinity.

4We are thankful to Amitabh Basu and Jesús De Loera for raising this question during a
visit at UC Davis, and for later insightful discussions.
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number of constraints m are allowed to grow as part of the input [84]. The
question of deciding existence of lattice points in polyhedra (i.e., the case where
degree of fi in (4.10) is 1 for all i) is also interesting and in fact very well-studied.
For polyhedra, if both n and m are allowed to grow, then the problem is NP-
hard. This can be seen e.g. as a corollary of the NP-hardness of the INTEGER
KNAPSACK problem (though this is NP-hardness in the weak sense); see [61, p.
247]. However, if n is fixed and m grows, it follows from a result of Lenstra [94]
that the problem can be decided in polynomial time. The same is true if m is
fixed and n grows [153, Cor. 18.7c]. See also [115].

� 4.2.2 Reduction from positivity of quartic forms to asymptotic stability

of cubic vector fields

We now present the second step of the reduction and finish the proof of Theo-
rem 4.1.

Proof of Theorem 4.1. We give a reduction from the problem of deciding posi-
tive definiteness of quartic forms, whose NP-hardness was established in Propo-
sition 4.2. Given a quartic form V := V (x), we define the polynomial vector
field

ẋ = −∇V (x). (4.11)

Note that the vector field is homogeneous of degree 3. We claim that the above
vector field is (locally or equivalently globally) asymptotically stable if and only
if V is positive definite. First, we observe that by construction

V̇ (x) = 〈∇V (x), ẋ〉 = −||∇V (x)||2 ≤ 0. (4.12)

Suppose V is positive definite. By Euler’s identity for homogeneous functions,5

we have V (x) = 1
4
xT∇V (x). Therefore, positive definiteness of V implies that

∇V (x) cannot vanish anywhere except at the origin. Hence, V̇ (x) < 0 for all
x 6= 0. In view of Lyapunov’s theorem (see e.g. [86, p. 124]), and the fact that a
positive definite homogeneous function is radially unbounded, it follows that the
system in (4.11) is globally asymptotically stable.

For the converse direction, suppose (4.11) is GAS. Our first claim is that global
asymptotic stability together with V̇ (x) ≤ 0 implies that V must be positive
semidefinite. This follows from the following simple argument, which we have
also previously presented in [12] for a different purpose. Suppose for the sake
of contradiction that for some x̂ ∈ Rn and some ε > 0, we had V (x̂) = −ε < 0.

5Euler’s identity is easily derived by differentiating both sides of the equation
V (λx) = λdV (x) with respect to λ and setting λ = 1.
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Consider a trajectory x(t; x̂) of system (4.11) that starts at initial condition x̂, and
let us evaluate the function V on this trajectory. Since V (x̂) = −ε and V̇ (x) ≤ 0,
we have V (x(t; x̂)) ≤ −ε for all t > 0. However, this contradicts the fact that by
global asymptotic stability, the trajectory must go to the origin, where V , being
a form, vanishes.

To prove that V is positive definite, suppose by contradiction that for some
nonzero point x∗ ∈ Rn we had V (x∗) = 0. Since we just proved that V has to be
positive semidefinite, the point x∗ must be a global minimum of V . Therefore,
as a necessary condition of optimality, we should have ∇V (x∗) = 0. But this
contradicts the system in (4.11) being GAS, since the trajectory starting at x∗

stays there forever and can never go to the origin.

Perhaps of independent interest, the reduction we just gave suggests a method
for proving positive definiteness of forms. Given a form V , we can construct a
dynamical system as in (4.11), and then any method that we may have for proving
stability of vector fields (e.g. the use of various kinds of Lyapunov functions) can
serve as an algorithm for proving positivity of V . In particular, if we use a
polynomial Lyapunov function W to prove stability of the system in (4.11), we
get the following corollary.

Corollary 4.4. Let V and W be two forms of possibly different degree. If W is
positive definite, and 〈∇W,∇V 〉 is positive definite, then V is positive definite.

One interesting fact about this corollary is that its algebraic version with sum
of squares replaced for positivity is not true. In other words, we can have W sos
(and positive definite), 〈∇W,∇V 〉 sos (and positive definite), but V not sos. This
gives us a way of proving positivity of some polynomials that are not sos, using
only sos certificates. Given a form V , since the expression 〈∇W,∇V 〉 is linear in
the coefficients of W , we can use sos programming to search for a form W that
satisfies W sos and 〈∇W,∇V 〉 sos, and this would prove positivity of V . The
following example demonstrates the potential usefulness of this approach.

Example 4.2.1. Consider the following form of degree 6:

V (x) = x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2x

2
3 + x6

3 +
1

250
(x2

1 + x2
2 + x2

3)3. (4.13)

One can check that this polynomial is not a sum of squares. (In fact, this is the
Motzkin form presented in equation (3.1) of Chapter 3 slightly perturbed.) On the
other hand, we can use YALMIP [98] together with the SDP solver SeDuMi [157]
to search for a form W satisfying

W sos
〈∇W,∇V 〉 sos.

(4.14)
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If we parameterize W as a quadratic form, no feasible solution will be returned
form the solver. However, when we increase the degree of W from 2 to 4, the
solver returns the following polynomial

W (x) = 9x4
2 + 9x4

1 − 6x2
1x

2
2 + 6x2

1x
2
3 + 6x2

2x
2
3 + 3x4

3 − x3
1x2 − x1x

3
2

−x3
1x3 − 3x2

1x2x3 − 3x1x
2
2x3 − x3

2x3 − 4x1x2x
2
3 − x1x

3
3 − x2x

3
3

that satisfies both sos constrains in (4.14). The Gram matrices in these sos
decompositions are positive definite. Therefore, W and 〈∇W,∇V 〉 are positive
definite forms. Hence, by Corollary 4.4, we have a proof that V in (4.13) is
positive definite. 4

Interestingly, approaches of this type that use gradient information for proving
positivity of polynomials with sum of squares techniques have been studied by
Nie, Demmel, and Sturmfels in [113], though the derivation there is not Lyapunov-
inspired.

� 4.3 Non-existence of polynomial Lyapunov functions

As we mentioned at the beginning of this chapter, the question of global asymp-
totic stability of polynomial vector fields is commonly addressed by seeking a
Lyapunov function that is polynomial itself. This approach has become further
prevalent over the past decade due to the fact that we can use sum of squares
techniques to algorithmically search for such Lyapunov functions. The question
therefore naturally arises as to whether existence of polynomial Lyapunov func-
tions is necessary for global stability of polynomial systems. In this section, we
give a negative answer to this question by presenting a remarkably simple coun-
terexample. In view of the fact that globally asymptotically stable linear systems
always admit quadratic Lyapunov functions, it is quite interesting to observe that
the following vector field that is arguably “the next simplest system” to consider
does not admit a polynomial Lyapunov function of any degree.

Theorem 4.5. Consider the polynomial vector field

ẋ = −x+ xy
ẏ = −y. (4.15)

The origin is a globally asymptotically stable equilibrium point, but the system
does not admit a polynomial Lyapunov function.

Proof. Let us first show that the system is GAS. Consider the Lyapunov function

V (x, y) = ln(1 + x2) + y2,
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Figure 4.1. Typical trajectories of the vector field in (4.15) starting from initial conditions in
the nonnegative orthant.

which clearly vanishes at the origin, is strictly positive for all (x, y) 6= (0, 0), and
is radially unbounded. The derivative of V (x, y) along the trajectories of (4.15)
is given by

V̇ (x, y) = ∂V
∂x
ẋ+ ∂V

∂y
ẏ

= 2x2(y−1)
1+x2 − 2y2

= −x2+2y2+x2y2+(x−xy)2

1+x2 ,

which is obviously strictly negative for all (x, y) 6= (0, 0). In view of Lyapunov’s
stability theorem (see e.g. [86, p. 124]), this shows that the origin is globally
asymptotically stable.

Let us now prove that no positive definite polynomial Lyapunov function (of
any degree) can decrease along the trajectories of system (4.15). The proof will
be based on simply considering the value of a candidate Lyapunov function at
two specific points. We will look at trajectories on the nonnegative orthant, with
initial conditions on the line (k, αk) for some constant α > 0, and then observe
the location of the crossing of the trajectory with the horizontal line y = α. We
will argue that by taking k large enough, the trajectory will have to travel “too
far east” (see Figure 4.1) and this will make it impossible for any polynomial
Lyapunov function to decrease.

To do this formally, we start by noting that we can explicitly solve for the
solution (x(t), y(t)) of the vector field in (4.15) starting from any initial condition
(x(0), y(0)):
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x(t) = x(0)e[y(0)−y(0)e−t−t]

y(t) = y(0)e−t.
(4.16)

Consider initial conditions

(x(0), y(0)) = (k, αk)

parameterized by k > 1 and for some fixed constant α > 0. From the explicit
solution in (4.16) we have that the time t∗ it takes for the trajectory to cross the
line y = α is

t∗ = ln(k),

and that the location of this crossing is given by

(x(t∗), y(t∗)) = (eα(k−1), α).

Consider now any candidate nonnegative polynomial function V (x, y) that de-
pends on both x and y (as any Lyapunov function should). Since k > 1 (and
thus, t∗ > 0), for V (x, y) to be a valid Lyapunov function, it must satisfy
V (x(t∗), y(t∗)) < V (x(0), y(0)), i.e.,

V (eα(k−1), α) < V (k, αk).

However, this inequality cannot hold for k large enough, since for a generic fixed
α, the left hand side grows exponentially in k whereas the right hand side grows
only polynomially in k. The only subtlety arises from the fact that V (eα(k−1), α)
could potentially be a constant for some particular choices of α. However, for
any polynomial V (x, y) with nontrivial dependence on y, this may happen for at
most finitely many values of α. Therefore, any generic choice of α would make
the argument work.

Example of Bacciotti and Rosier. After our counterexample above was submitted
for publication, Christian Ebenbauer brought to our attention an earlier coun-
terexample of Bacciotti and Rosier [22, Prop. 5.2] that achieves the same goal
(though by using irrational coefficients). We will explain the differences between
the two examples below. At the time of submission of our result, we were under
the impression that no such examples were known, partly because of a recent
reference in the controls literature that ends its conclusion with the following
statement [126], [127]:

“Still unresolved is the fundamental question of whether globally stable vector
fields will also admit sum-of-squares Lyapunov functions.”
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In [126], [127], what is referred to as a sum of squares Lyapunov function (in
contrast to our terminology here) is a Lyapunov function that is a sum of squares,
with no sos requirements on its derivative. Therefore, the fundamental question
referred to above is on existence of a polynomial Lyapunov function. If one were
to exist, then we could simply square it to get another polynomial Lyapunov
function that is a sum of squares (see Lemma 4.6).

The example of Bacciotti and Rosier is a vector field in 2 variables and degree
5 that is GAS but has no polynomial (and no analytic) Lyapunov function even
around the origin. Their very clever construction is complementary to our exam-
ple in the sense that what creates trouble for existence of polynomial Lyapunov
functions in our Theorem 4.5 is growth rates arbitrarily far away from the ori-
gin, whereas the problem arising in their example is slow decay rates arbitrarily
close to the origin. The example crucially relies on a parameter that appears as
part of the coefficients of the vector field being irrational. (Indeed, one easily
sees that if that parameter is rational, their vector field does admit a polynomial
Lyapunov function.) In practical applications where computational techniques
for searching over Lyapunov functions on finite precision machines are used, such
issues with irrationality of the input cannot occur. By contrast, the example in
(4.15) is much less contrived and demonstrates that non-existence of polynomial
Lyapunov functions can happen for extremely simple systems that may very well
appear in applications.

In [125], Peet has shown that locally exponentially stable polynomial vector
fields admit polynomial Lyapunov functions on compact sets. The example of
Bacciotti and Rosier implies that the assumption of exponential stability indeed
cannot be dropped.

� 4.4 (Non)-existence of sum of squares Lyapunov functions

In this section, we suppose that the polynomial vector field at hand admits a
polynomial Lyapunov function, and we would like to investigate whether such a
Lyapunov function can be found with sos programming. In other words, we would
like to see whether the constrains in (4.5) and (4.6) are more conservative than the
true Lyapunov inequalities in (4.2) and (4.3). We think of the sos Lyapunov con-
ditions in (4.5) and (4.6) as sufficient conditions for the strict inequalities in (4.2)
and (4.3) even though sos decomposition in general merely guarantees non-strict
inequalities. The reason for this is that when an sos feasibility problem is strictly
feasible, the polynomials returned by interior point algorithms are automatically
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positive definite (see [1, p. 41] for more discussion).6

We shall emphasize that existence of nonnegative polynomials that are not
sums of squares does not imply on its own that the sos conditions in (4.5) and
(4.6) are more conservative than the Lyapunov inequalities in (4.2) and (4.3).
Since Lyapunov functions are not in general unique, it could happen that within
the set of valid polynomial Lyapunov functions of a given degree, there is always
at least one that satisfies the sos conditions (4.5) and (4.6). Moreover, many of the
known examples of nonnegative polynomials that are not sos have multiple zeros
and local minima [138] and therefore cannot serve as Lyapunov functions. Indeed,
if a function has a local minimum other than the origin, then its value evaluated
on a trajectory starting from the local minimum would not be decreasing.

� 4.4.1 A motivating example

The following example will help motivate the kind of questions that we are ad-
dressing in this section.

Example 4.4.1. Consider the dynamical system

ẋ1 = −0.15x7
1 + 200x6

1x2 − 10.5x5
1x

2
2 − 807x4

1x
3
2

+14x3
1x

4
2 + 600x2

1x
5
2 − 3.5x1x

6
2 + 9x7

2

ẋ2 = −9x7
1 − 3.5x6

1x2 − 600x5
1x

2
2 + 14x4

1x
3
2

+807x3
1x

4
2 − 10.5x2

1x
5
2 − 200x1x

6
2 − 0.15x7

2.

(4.17)

A typical trajectory of the system that starts from the initial condition x0 =
(2, 2)T is plotted in Figure 4.2. Our goal is to establish global asymptotic stability
of the origin by searching for a polynomial Lyapunov function. Since the vector
field is homogeneous, the search can be restricted to homogeneous Lyapunov
functions [72], [146]. To employ the sos technique, we can use the software package
SOSTOOLS [132] to search for a Lyapunov function satisfying the sos conditions
(4.5) and (4.6). However, if we do this, we will not find any Lyapunov functions
of degree 2, 4, or 6. If needed, a certificate from the dual semidefinite program
can be obtained, which would prove that no polynomial of degree up to 6 can
satisfy the sos requirements (4.5) and (4.6).

At this point we are faced with the following question. Does the system
really not admit a Lyapunov function of degree 6 that satisfies the true Lyapunov

6We expect the reader to recall the basic definitions and concepts from Subsection 3.2.1 of
the previous chapter. Throughout, when we say a Lyapunov function (or the negative of its
derivative) is positive definite, we mean that it is positive everywhere except possibly at the
origin.
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Figure 4.2. A typical trajectory of the vector filed in Example 4.4.1 (solid), level sets of a
degree 8 polynomial Lyapunov function (dotted).

inequalities in (4.2), (4.3)? Or is the failure due to the fact that the sos conditions
in (4.5), (4.6) are more conservative?

Note that when searching for a degree 6 Lyapunov function, the sos constraint
in (4.5) is requiring a homogeneous polynomial in 2 variables and of degree 6 to be
a sum of squares. The sos condition (4.6) on the derivative is also a condition on
a homogeneous polynomial in 2 variables, but in this case of degree 12. (This is
easy to see from V̇ = 〈∇V, f〉.) Recall from Theorem 3.1 of the previous chapter
that nonnegativity and sum of squares are equivalent notions for homogeneous
bivariate polynomials, irrespective of the degree. Hence, we now have a proof
that this dynamical system truly does not have a Lyapunov function of degree 6
(or lower).

This fact is perhaps geometrically intuitive. Figure 4.2 shows that the tra-
jectory of this system is stretching out in 8 different directions. So, we would
expect the degree of the Lyapunov function to be at least 8. Indeed, when we in-
crease the degree of the candidate function to 8, SOSTOOLS and the SDP solver
SeDuMi [157] succeed in finding the following Lyapunov function:

V (x) = 0.02x8
1 + 0.015x7

1x2 + 1.743x6
1x

2
2 − 0.106x5

1x
3
2

−3.517x4
1x

4
2 + 0.106x3

1x
5
2 + 1.743x2

1x
6
2

−0.015x1x
7
2 + 0.02x8

2.

The level sets of this Lyapunov function are plotted in Figure 4.2 and are clearly
invariant under the trajectory. 4
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� 4.4.2 A counterexample

Unlike the scenario in the previous example, we now show that a failure in find-
ing a Lyapunov function of a particular degree via sum of squares programming
can also be due to the gap between nonnegativity and sum of squares. What
will be conservative in the following counterexample is the sos condition on the
derivative.7

Consider the dynamical system

ẋ1 = −x3
1x

2
2 + 2x3

1x2 − x3
1 + 4x2

1x
2
2 − 8x2

1x2 + 4x2
1

−x1x
4
2 + 4x1x

3
2 − 4x1 + 10x2

2

ẋ2 = −9x2
1x2 + 10x2

1 + 2x1x
3
2 − 8x1x

2
2 − 4x1 − x3

2

+4x2
2 − 4x2.

(4.18)

One can verify that the origin is the only equilibrium point for this system, and
therefore it makes sense to investigate global asymptotic stability. If we search for
a quadratic Lyapunov function for (4.18) using sos programming, we will not find
one. It will turn out that the corresponding semidefinite program is infeasible.
We will prove shortly why this is the case, i.e, why no quadratic function V can
satisfy

V sos

−V̇ sos.
(4.19)

Nevertheless, we claim that

V (x) =
1

2
x2

1 +
1

2
x2

2 (4.20)

is a valid Lyapunov function. Indeed, one can check that

V̇ (x) = x1ẋ1 + x2ẋ2 = −M(x1 − 1, x2 − 1), (4.21)

where M(x1, x2) is the Motzkin polynomial [107]:

M(x1, x2) = x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2 + 1.

This polynomial is just a dehomogenized version of the Motzkin form presented
before, and it has the property of being nonnegative but not a sum of squares.
The polynomial V̇ is strictly negative everywhere, except for the origin and three
other points (0, 2)T , (2, 0)T , and (2, 2)T , where V̇ is zero. However, at each of
these three points we have ẋ 6= 0. Once the trajectory reaches any of these three
points, it will be kicked out to a region where V̇ is strictly negative. Therefore,
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(a) Shifted Motzkin polynomial is
nonnegative but not sos.

(b) Typical trajectories of (4.18)
(solid), level sets of V (dotted).

(c) Level sets of a quartic Lya-
punov function found through
sos programming.

Figure 4.3. The quadratic polynomial 1
2x

2
1 + 1

2x
2
2 is a valid Lyapunov function for the vector

field in (4.18) but it is not detected through sos programming.

by LaSalle’s invariance principle (see e.g. [86, p. 128]), the quadratic Lyapunov
function in (4.20) proves global asymptotic stability of the origin of (4.18).

The fact that V̇ is zero at three points other than the origin is not the reason
why sos programming is failing. After all, when we impose the condition that −V̇
should be sos, we allow for the possibility of a non-strict inequality. The reason
why our sos program does not recognize (4.20) as a Lyapunov function is that the
shifted Motzkin polynomial in (4.21) is nonnegative but it is not a sum of squares.
This sextic polynomial is plotted in Figure 4.3(a). Trajectories of (4.18) starting
at (2, 2)T and (−2.5,−3)T along with level sets of V are shown in Figure 4.3(b).

So far, we have shown that V in (4.20) is a valid Lyapunov function but does
not satisfy the sos conditions in (4.19). We still need to show why no other

7This counterexample has appeared in our earlier work [1] but not with a complete proof.
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quadratic Lyapunov function

U(x) = c1x
2
1 + c2x1x2 + c3x

2
2 (4.22)

can satisfy the sos conditions either.8 We will in fact prove the stronger statement
that V in (4.20) is the only valid quadratic Lyapunov function for this system up
to scaling, i.e., any quadratic function U that is not a scalar multiple of 1

2
x2

1 + 1
2
x2

2

cannot satisfy U ≥ 0 and −U̇ ≥ 0. It will even be the case that no such U can
satisfy −U̇ ≥ 0 alone. (The latter fact is to be expected since global asymptotic
stability of (4.18) together with −U̇ ≥ 0 would automatically imply U ≥ 0;
see [12, Theorem 1.1].)

So, let us show that −U̇ ≥ 0 implies U is a scalar multiple of 1
2
x2

1 + 1
2
x2

2.
Because Lyapunov functions are closed under positive scalings, without loss of
generality we can take c1 = 1. One can check that

−U̇(0, 2) = −80c2,

so to have −U̇ ≥ 0, we need c2 ≤ 0. Similarly,

−U̇(2, 2) = −288c1 + 288c3,

which implies that c3 ≥ 1. Let us now look at

−U̇(x1, 1) = −c2x
3
1 + 10c2x

2
1 + 2c2x1 − 10c2 − 2c3x

2
1

+20c3x1 + 2c3 + 2x2
1 − 20x1.

(4.23)

If we let x1 → −∞, the term −c2x
3
1 dominates this polynomial. Since c2 ≤ 0

and −U̇ ≥ 0, we conclude that c2 = 0. Once c2 is set to zero in (4.23), the
dominating term for x1 large will be (2−2c3)x2

1. Therefore to have −U̇(x1, 1) ≥ 0
as x1 → ±∞ we must have c3 ≤ 1. Hence, we conclude that c1 = 1, c2 = 0, c3 = 1,
and this finishes the proof.

Even though sos programming failed to prove stability of the system in (4.18)
with a quadratic Lyapunov function, if we increase the degree of the candidate
Lyapunov function from 2 to 4, then SOSTOOLS succeeds in finding a quartic
Lyapunov function

W (x) = 0.08x4
1 − 0.04x3

1 + 0.13x2
1x

2
2 + 0.03x2

1x2

+0.13x2
1 + 0.04x1x

2
2 − 0.15x1x2

+0.07x4
2 − 0.01x3

2 + 0.12x2
2,

8Since we can assume that the Lyapunov function U and its gradient vanish at the origin,
linear or constant terms are not needed in (4.22).
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which satisfies the sos conditions in (4.19). The level sets of this function are
close to circles and are plotted in Figure 4.3(c).

Motivated by this example, it is natural to ask whether it is always true that
upon increasing the degree of the Lyapunov function one will find Lyapunov func-
tions that satisfy the sum of squares conditions in (4.19). In the next subsection,
we will prove that this is indeed the case, at least for planar systems such as the
one in this example, and also for systems that are homogeneous.

� 4.4.3 Converse sos Lyapunov theorems

In [126], [127], it is shown that if a system admits a polynomial Lyapunov function,
then it also admits one that is a sum of squares. However, the results there do
not lead to any conclusions as to whether the negative of the derivative of the
Lyapunov function is sos, i.e, whether condition (4.6) is satisfied. As we remarked
before, there is therefore no guarantee that the semidefinite program can find such
a Lyapunov function. Indeed, our counterexample in the previous subsection
demonstrated this very phenomenon.

The proof technique used in [126],[127] is based on approximating the solution
map using the Picard iteration and is interesting in itself, though the actual
conclusion that a Lyapunov function that is sos exists has a far simpler proof
which we give in the next lemma.

Lemma 4.6. If a polynomial dynamical system has a positive definite polynomial
Lyapunov function V with a negative definite derivative V̇ , then it also admits a
positive definite polynomial Lyapunov function W which is a sum of squares.

Proof. Take W = V 2. The negative of the derivative −Ẇ = −2V V̇ is clearly
positive definite (though it may not be sos).

We will next prove a converse sos Lyapunov theorem that guarantees the
derivative of the Lyapunov function will also satisfy the sos condition, though
this result is restricted to homogeneous systems. The proof of this theorem relies
on the following Positivstellensatz result due to Scheiderer.

Theorem 4.7 (Scheiderer, [151]). Given any two positive definite homogeneous
polynomials p and q, there exists an integer k such that pqk is a sum of squares.

Theorem 4.8. Given a homogeneous polynomial vector field, suppose there exists
a homogeneous polynomial Lyapunov function V such that V and −V̇ are positive
definite. Then, there also exists a homogeneous polynomial Lyapunov function W
such that W is sos and −Ẇ is sos.
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Proof. Observe that V 2 and −2V V̇ are both positive definite and homogeneous
polynomials. Applying Theorem 4.7 to these two polynomials, we conclude the
existence of an integer k such that (−2V V̇ )(V 2)k is sos. Let

W = V 2k+2.

Then, W is clearly sos since it is a perfect even power. Moreover,

−Ẇ = −(2k + 2)V 2k+1V̇ = −(k + 1)2V 2kV V̇

is also sos by the previous claim.9

Next, we develop a similar theorem that removes the homogeneity assumption
from the vector field, but instead is restricted to vector fields on the plane. For
this, we need another result of Scheiderer.

Theorem 4.9 (Scheiderer, [150, Cor. 3.12]). Let p := p(x1, x2, x3) and q :=
q(x1, x2, x3) be two homogeneous polynomials in three variables, with p positive
semidefinite and q positive definite. Then, there exists an integer k such that pqk

is a sum of squares.

Theorem 4.10. Given a (not necessarily homogeneous) polynomial vector field
in two variables, suppose there exists a positive definite polynomial Lyapunov
function V, with −V̇ positive definite, and such that the highest order term of V
has no zeros10. Then, there also exists a polynomial Lyapunov function W such
that W is sos and −Ẇ is sos.

Proof. Let Ṽ = V + 1. So, ˙̃V = V̇ . Consider the (non-homogeneous) polynomials

Ṽ 2 and −2Ṽ ˙̃V in the variables x := (x1, x2). Let us denote the (even) degrees of
these polynomials respectively by d1 and d2. Note that Ṽ 2 is nowhere zero and

−2Ṽ ˙̃V is only zero at the origin. Our first step is to homogenize these polynomials
by introducing a new variable y. Observing that the homogenization of products
of polynomials equals the product of homogenizations, we obtain the following
two trivariate forms:

y2d1Ṽ 2(x
y
), (4.24)

− 2yd1yd2Ṽ (x
y
) ˙̃V (x

y
). (4.25)

9Note that W constructed in this proof proves GAS since −Ẇ is positive definite and W
itself being homogeneous and positive definite is automatically radially unbounded.

10This requirement is only slightly stronger than the requirement of radial unboundedness,
which is imposed on V by Lyapunov’s theorem anyway.
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Since by assumption the highest order term of V has no zeros, the form in (4.24)
is positive definite . The form in (4.25), however, is only positive semidefinite.

In particular, since ˙̃V = V̇ has to vanish at the origin, the form in (4.25) has a
zero at the point (x1, x2, y) = (0, 0, 1). Nevertheless, since Theorem 4.9 allows for
positive semidefiniteness of one of the two forms, by applying it to the forms in
(4.24) and (4.25), we conclude that there exists an integer k such that

− 2yd1(2k+1)yd2Ṽ (x
y
) ˙̃V (x

y
)Ṽ 2k(x

y
) (4.26)

is sos. Let W = Ṽ 2k+2. Then, W is clearly sos. Moreover,

−Ẇ = −(2k + 2)Ṽ 2k+1 ˙̃V = −(k + 1)2Ṽ 2kṼ ˙̃V

is also sos because this polynomial is obtained from (4.26) by setting y = 1.11

� 4.5 Existence of sos Lyapunov functions for switched linear systems

The result of Theorem 4.8 extends in a straightforward manner to Lyapunov
analysis of switched systems. In particular, we are interested in the highly-studied
problem of stability analysis of arbitrary switched linear systems:

ẋ = Aix, i ∈ {1, . . . ,m}, (4.27)

Ai ∈ Rn×n. We assume the minimum dwell time of the system is bounded away
from zero. This guarantees that the solutions of (4.27) are well-defined. Existence
of a common Lyapunov function is necessary and sufficient for (global) asymp-
totic stability under arbitrary switching (ASUAS) of system (4.27). The ASUAS
of system (4.27) is equivalent to asymptotic stability of the linear differential
inclusion

ẋ ∈ co{Ai}x, i ∈ {1, . . . ,m},

where co here denotes the convex hull. It is also known that ASUAS of (4.27)
is equivalent to exponential stability under arbitrary switching [15]. A common
approach for analyzing the stability of these systems is to use the sos technique
to search for a common polynomial Lyapunov function [131],[42]. We will prove
the following result.

11Once again, we note that the function W constructed in this proof is radially unbounded,
achieves its global minimum at the origin, and has −Ẇ positive definite. Therefore, W proves
global asymptotic stability.
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Theorem 4.11. The switched linear system in (4.27) is asymptotically stable
under arbitrary switching if and only if there exists a common homogeneous poly-
nomial Lyapunov function W such that

W sos

−Ẇi = −〈∇W (x), Aix〉 sos,

for i = 1, . . . ,m, where the polynomials W and −Ẇi are all positive definite.

To prove this result, we will use the following theorem of Mason et al.

Theorem 4.12 (Mason et al., [103]). If the switched linear system in (4.27)
is asymptotically stable under arbitrary switching, then there exists a common
homogeneous polynomial Lyapunov function V such that

V > 0 ∀x 6= 0

−V̇i(x) = −〈∇V (x), Aix〉 > 0 ∀x 6= 0,

for i = 1, . . . ,m.

The next proposition is an extension of Theorem 4.8 to switched systems (not
necessarily linear).

Proposition 4.13. Consider an arbitrary switched dynamical system

ẋ = fi(x), i ∈ {1, . . . ,m},

where fi(x) is a homogeneous polynomial vector field of degree di (the degrees of
the different vector fields can be different). Suppose there exists a common positive
definite homogeneous polynomial Lyapunov function V such that

−V̇i(x) = −〈∇V (x), fi(x)〉

is positive definite for all i ∈ {1, . . . ,m}. Then there exists a common homoge-
neous polynomial Lyapunov function W such that W is sos and the polynomials

−Ẇi = −〈∇W (x), fi(x)〉,

for all i ∈ {1, . . . ,m}, are also sos.

Proof. Observe that for each i, the polynomials V 2 and −2V V̇i are both positive
definite and homogeneous. Applying Theorem 4.7 m times to these pairs of
polynomials, we conclude the existence of positive integers ki such that

(−2V V̇i)(V
2)ki is sos, (4.28)
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for i = 1, . . . ,m. Let
k = max{k1, . . . , km},

and let
W = V 2k+2.

Then, W is clearly sos. Moreover, for each i, the polynomial

−Ẇi = −(2k + 2)V 2k+1V̇i
= −(k + 1)2V V̇iV

2kiV 2(k−ki)

is sos since (−2V V̇i)(V
2ki) is sos by (4.28), V 2(k−ki) is sos as an even power, and

products of sos polynomials are sos.

The proof of Theorem 4.11 now simply follows from Theorem 4.12 and Propo-
sition 4.13 in the special case where di = 1 for all i.

Analysis of switched linear systems is also of great interest to us in discrete
time. In fact, the subject of the next chapter will be on the study of systems of
the type

xk+1 = Aixk, i ∈ {1, . . . ,m}, (4.29)

where at each time step the update rule can be given by any of the m matrices
Ai. The analogue of Theorem 4.11 for these systems has already been proven by
Parrilo and Jadbabaie in [122]. It is shown that if (4.29) is asymptotically stable
under arbitrary switching, then there exists a homogeneous polynomial Lyapunov
function W such that

W (x) sos
W (x)−W (Aix) sos,

for i = 1, . . . ,m. We will end this section by proving two related propositions of a
slightly different flavor. It will be shown that for switched linear systems, both in
discrete time and in continuous time, the sos condition on the Lyapunov function
itself is never conservative, in the sense that if one of the “decrease inequali-
ties” is sos, then the Lyapunov function is automatically sos. These propositions
are really statements about linear systems, so we will present them that way.
However, since stable linear systems always admit quadratic Lyapunov functions,
the propositions are only interesting in the context where a common polynomial
Lyapunov function for a switched linear system is seeked.

Proposition 4.14. Consider the linear dynamical system xk+1 = Axk in discrete
time. Suppose there exists a positive definite polynomial Lyapunov function V
such that V (x)− V (Ax) is positive definite and sos. Then, V is sos.
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Proof. Consider the polynomial V (x) − V (Ax) that is sos by assumption. If we
replace x by Ax in this polynomial, we conclude that the polynomial V (Ax) −
V (A2x) is also sos. Hence, by adding these two sos polynomials, we get that
V (x)− V (A2x) is sos. This procedure can obviously be repeated to infer that for
any integer k ≥ 1, the polynomial

V (x)− V (Akx) (4.30)

is sos. Since by assumption V and V (x)− V (Ax) are positive definite, the linear
system must be GAS, and hence Ak converges to the zero matrix as k → ∞.
Observe that for all k, the polynomials in (4.30) have degree equal to the degree
of V , and that the coefficients of V (x)−V (Akx) converge to the coefficients of V
as k →∞. Since for a fixed degree and dimension the cone of sos polynomials is
closed [141], it follows that V is sos.

Similarly, in continuous time, we have the following proposition.

Proposition 4.15. Consider the linear dynamical system ẋ = Ax in continuous
time. Suppose there exists a positive definite polynomial Lyapunov function V
such that −V̇ = −〈∇V (x), Ax〉 is positive definite and sos. Then, V is sos.

Proof. The value of the polynomial V along the trajectories of the dynamical
system satisfies the relation

V (x(t)) = V (x(0)) +

∫ t

o

V̇ (x(τ))dτ .

Since the assumptions imply that the system is GAS, V (x(t)) → 0 as t goes to
infinity. (Here, we are assuming, without loss of generality, that V vanishes at
the origin.) By evaluating the above equation at t = ∞, rearranging terms, and
substituting eAτx for the solution of the linear system at time τ starting at initial
condition x, we obtain

V (x) =

∫ ∞
0

−V̇ (eAτx)dτ .

By assumption, −V̇ is sos and therefore for any value of τ , the integrand−V̇ (eAτx)
is an sos polynomial. Since converging integrals of sos polynomials are sos, it
follows that V is sos.

Remark 4.5.1. The previous proposition does not hold if the system is not linear.
For example, consider any positive form V that is not a sum of squares and define
a dynamical system by ẋ = −∇V (x). In this case, both V and −V̇ = ||∇V (x)||2
are positive definite and −V̇ is sos, though V is not sos.
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� 4.6 Some open questions

Some open questions related to the problems studied in this chapter are the fol-
lowing. Regarding complexity, of course the interesting problem is to formally
answer the questions of Arnold on undecidability of determining stability for
polynomial vector fields. Regarding existence of polynomial Lyapunov functions,
Mark Tobenkin asked whether a globally exponentially stable polynomial vector
field admits a polynomial Lyapunov function. Our counterexample in Section 4.3,
though GAS and locally exponentially stable, is not globally exponentially stable
because of exponential growth rates in the large. The counterexample of Bac-
ciotti and Rosier in [22] is not even locally exponentially stable. Another future
direction is to prove that GAS homogeneous polynomial vector fields admit ho-
mogeneous polynomial Lyapunov functions. This, together with Theorem 4.8,
would imply that asymptotic stability of homogeneous polynomial systems can
always be decided via sum of squares programming. Also, it is not clear to us
whether the assumption of homogeneity and planarity can be removed from The-
orems 4.8 and 4.10 on existence of sos Lyapunov functions. Finally, another
research direction would be to obtain upper bounds on the degree of polynomial
or sos polynomial Lyapunov functions. Some degree bounds are known for Lya-
punov analysis of locally exponentially stable systems [127], but they depend on
uncomputable properties of the solution such as convergence rate. Degree bounds
on Positivstellensatz result of the type in Theorems 4.7 and 4.9 are known, but
typically exponential in size and not very encouraging for practical purposes.



Chapter 5

Joint Spectral Radius and
Path-Complete Graph Lyapunov

Functions

In this chapter, we introduce the framework of path-complete graph Lyapunov
functions for analysis of switched systems. The methodology is presented in the
context of approximation of the joint spectral radius. The content of this chapter
is based on an extended version of the work in [3].

� 5.1 Introduction

Given a finite set of square matrices A := {A1, ..., Am}, their joint spectral radius
ρ(A) is defined as

ρ (A) = lim
k→∞

max
σ∈{1,...,m}k

‖Aσk ...Aσ2Aσ1‖
1/k , (5.1)

where the quantity ρ(A) is independent of the norm used in (5.1). The joint
spectral radius (JSR) is a natural generalization of the spectral radius of a single
square matrix and it characterizes the maximal growth rate that can be obtained
by taking products, of arbitrary length, of all possible permutations of A1, ..., Am.
This concept was introduced by Rota and Strang [147] in the early 60s and has
since been the subject of extensive research within the engineering and the math-
ematics communities alike. Aside from a wealth of fascinating mathematical
questions that arise from the JSR, the notion emerges in many areas of applica-
tion such as stability of switched linear dynamical systems, computation of the
capacity of codes, continuity of wavelet functions, convergence of consensus algo-
rithms, trackability of graphs, and many others. See [85] and references therein
for a recent survey of the theory and applications of the JSR.

Motivated by the abundance of applications, there has been much work on
efficient computation of the joint spectral radius; see e.g. [32], [31], [122], and

113
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references therein. Unfortunately, the negative results in the literature certainly
restrict the horizon of possibilities. In [35], Blondel and Tsitsiklis prove that even
when the set A consists of only two matrices, the question of testing whether
ρ(A) ≤ 1 is undecidable. They also show that unless P=NP, one cannot compute
an approximation ρ̂ of ρ that satisfies |ρ̂−ρ| ≤ ερ, in a number of steps polynomial
in the bit size of A and the bit size of ε [161]. It is not difficult to show that the
spectral radius of any finite product of length k raised to the power of 1/k gives a
lower bound on ρ [85]. However, for reasons that we explain next, our focus will
be on computing upper bounds for ρ.

There is an attractive connection between the joint spectral radius and the
stability properties of an arbitrary switched linear system; i.e., dynamical systems
of the form

xk+1 = Aσ(k)xk, (5.2)

where σ : Z→{1, ...,m} is a map from the set of integers to the set of indices. It
is well-known that ρ < 1 if and only if system (5.2) is absolutely asymptotically
stable (AAS), that is, (globally) asymptotically stable for all switching sequences.
Moreover, it is known [95] that absolute asymptotic stability of (5.2) is equivalent
to absolute asymptotic stability of the linear difference inclusion

xk+1 ∈ coA xk, (5.3)

where coA here denotes the convex hull of the set A. Therefore, any method for
obtaining upper bounds on the joint spectral radius provides sufficient conditions
for stability of systems of type (5.2) or (5.3). Conversely, if we can prove absolute
asymptotic stability of (5.2) or (5.3) for the set Aγ := {γA1, . . . , γAm} for some
positive scalar γ, then we get an upper bound of 1

γ
on ρ(A). (This follows from the

scaling property of the JSR: ρ(Aγ) = γρ(A).) One advantage of working with the
notion of the joint spectral radius is that it gives a way of rigorously quantifying
the performance guarantee of different techniques for stability analysis of systems
(5.2) or (5.3).

Perhaps the most well-established technique for proving stability of switched
systems is the use of a common (or simultaneous) Lyapunov function. The idea
here is that if there is a continuous, positive, and homogeneous (Lyapunov) func-
tion V (x) : Rn → R that for some γ > 1 satisfies

V (γAix) ≤ V (x) ∀i = 1, . . . ,m, ∀x ∈ Rn, (5.4)

(i.e., V (x) decreases no matter which matrix is applied), then the system in (5.2)
(or in (5.3)) is AAS. Conversely, it is known that if the system is AAS, then
there exists a convex common Lyapunov function (in fact a norm); see e.g. [85,
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p. 24]. However, this function is not in general finitely constructable. A popular
approach has been to try to approximate this function by a class of functions that
we can efficiently search for using convex optimization and in particular semidef-
inite programming. As we mentioned in our introductory chapters, semidefinite
programs (SDPs) can be solved with arbitrary accuracy in polynomial time and
lead to efficient computational methods for approximation of the JSR. As an ex-
ample, if we take the Lyapunov function to be quadratic (i.e., V (x) = xTPx),
then the search for such a Lyapunov function can be formulated as the following
SDP:

P � 0
γ2ATi PAi � P ∀i = 1, . . . ,m.

(5.5)

The quality of approximation of common quadratic Lyapunov functions is a
well-studied topic. In particular, it is known [32] that the estimate ρ̂V2 obtained
by this method1 satisfies

1√
n
ρ̂V2(A) ≤ ρ(A) ≤ ρ̂V2(A), (5.6)

where n is the dimension of the matrices. This bound is a direct consequence of
John’s ellipsoid theorem and is known to be tight [13].

In [122], the use of sum of squares (sos) polynomial Lyapunov functions of
degree 2d was proposed as a common Lyapunov function for the switched system
in (5.2). As we know, the search for such a Lyapunov function can again be
formulated as a semidefinite program. This method does considerably better
than a common quadratic Lyapunov function in practice and its estimate ρ̂VSOS,2d
satisfies the bound

1
2d
√
η
ρ̂VSOS,2d(A) ≤ ρ(A) ≤ ρ̂VSOS,2d(A), (5.7)

where η = min{m,
(
n+d−1

d

)
}. Furthermore, as the degree 2d goes to infinity,

the estimate ρ̂VSOS,2d converges to the true value of ρ [122]. The semidefinite
programming based methods for approximation of the JSR have been recently
generalized and put in the framework of conic programming [134].

� 5.1.1 Contributions and organization of this chapter

It is natural to ask whether one can develop better approximation schemes for the
joint spectral radius by using multiple Lyapunov functions as opposed to requiring

1The estimate ρ̂V2 is the reciprocal of the largest γ that satisfies (5.5) and can be found by
bisection.
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simultaneous contractibility of a single Lyapunov function with respect to all the
matrices. More concretely, our goal is to understand how we can write inequalities
among, say, k different Lyapunov functions V1(x), . . . , Vk(x) that imply absolute
asymptotic stability of (5.2) and can be checked via semidefinite programming.

The general idea of using several Lyapunov functions for analysis of switched
systems is a very natural one and has already appeared in the literature (although
to our knowledge not in the context of the approximation of the JSR); see e.g.
[136], [39], [81], [80], [64]. Perhaps one of the earliest references is the work on
“piecewise quadratic Lyapunov functions” in [136]. However, this work is in the
different framework of state dependent switching, where the dynamics switches
depending on which region of the space the trajectory is traversing (as opposed
to arbitrary switching). In this setting, there is a natural way of using several
Lyapunov functions: assign one Lyapunov function per region and “glue them to-
gether”. Closer to our setting, there is a body of work in the literature that gives
sufficient conditions for existence of piecewise Lyapunov functions of the type
max{xTP1x, . . . , x

TPkx}, min{xTP1x, . . . , x
TPkx}, and conv{xTP1x, . . . , x

TPkx},
i.e, the pointwise maximum, the pointwise minimum, and the convex envelope
of a set of quadratic functions [81], [80], [64], [82]. These works are mostly con-
cerned with analysis of linear differential inclusions in continuous time, but they
have obvious discrete time counterparts. The main drawback of these methods
is that in their greatest generality, they involve solving bilinear matrix inequal-
ities, which are non-convex and in general NP-hard. One therefore has to turn
to heuristics, which have no performance guarantees and their computation time
quickly becomes prohibitive when the dimension of the system increases. More-
over, all of these methods solely provide sufficient conditions for stability with no
performance guarantees.

There are several unanswered questions that in our view deserve a more thor-
ough study: (i) With a focus on conditions that are amenable to convex optimiza-
tion, what are the different ways to write a set of inequalities among k Lyapunov
functions that imply absolute asymptotic stability of (5.2)? Can we give a uni-
fying framework that includes the previously proposed Lyapunov functions and
perhaps also introduces new ones? (ii) Among the different sets of inequalities
that imply stability, can we identify some that are less conservative than some
other? (iii) The available methods on piecewise Lyapunov functions solely provide
sufficient conditions for stability with no guarantee on their performance. Can
we give converse theorems that guarantee the existence of a feasible solution to
our search for a given accuracy?

The contributions of this chapter to these questions are as follows. We propose
a unifying framework based on a representation of Lyapunov inequalities with la-
beled graphs and by making some connections with basic concepts in automata
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theory. This is done in Section 5.2, where we define the notion of a path-complete
graph (Definition 5.2) and prove that any such graph provides an approximation
scheme for the JSR (Theorem 5.4). In Section 5.3, we give examples of families of
path-complete graphs and show that many of the previously proposed techniques
come from particular classes of simple path-complete graphs (e.g., Corollary 5.8,
Corollary 5.9, and Remark 5.3.2). In Section 5.4, we characterize all the path-
complete graphs with two nodes for the analysis of the JSR of two matrices. We
determine how the approximations obtained from all of these graphs compare
(Proposition 5.12). In Section 5.5, we study in more depth the approximation
properties of a particular pair of “dual” path-complete graphs that seem to per-
form very well in practice. Subsection 5.5.1 contains more general results about
duality within path-complete graphs and its connection to transposition of ma-
trices (Theorem 5.13). Subsection 5.5.2 gives an approximation guarantee for
the graphs studied in Section 5.5 (Theorem 5.16), and Subsection 5.5.3 contains
some numerical examples. In Section 5.6, we prove a converse theorem for the
method of max-of-quadratics Lyapunov functions (Theorem 5.17) and an approx-
imation guarantee for a new class of methods for proving stability of switched
systems (Theorem 5.18). Finally, some concluding remarks and future directions
are presented in Section 5.7.

� 5.2 Path-complete graphs and the joint spectral radius

In what follows, we will think of the set of matrices A := {A1, ..., Am} as a finite
alphabet and we will often refer to a finite product of matrices from this set as
a word. We denote the set of all words Ait . . . Ai1 of length t by At. Contrary
to the standard convention in automata theory, our convention is to read a word
from right to left. This is in accordance with the order of matrix multiplication.
The set of all finite words is denoted by A∗; i.e., A∗ =

⋃
t∈Z+

At.

The basic idea behind our framework is to represent through a graph all the
possible occurrences of products that can appear in a run of the dynamical system
in (5.2), and assert via some Lyapunov inequalities that no matter what occur-
rence appears, the product must remain stable. A convenient way of representing
these Lyapunov inequalities is via a directed labeled graph G(N,E). Each node of
this graph is associated with a (continuous, positive definite, and homogeneous)
Lyapunov function Vi(x) : Rn → R, and each edge is labeled by a finite product
of matrices, i.e., by a word from the set A∗. As illustrated in Figure 5.1, given
two nodes with Lyapunov functions Vi(x) and Vj(x) and an edge going from node
i to node j labeled with the matrix Al, we write the Lyapunov inequality:

Vj(Alx) ≤ Vi(x) ∀x ∈ Rn. (5.8)
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Figure 5.1. Graphical representation of Lyapunov inequalities. The edge in the graph above
corresponds to the Lyapunov inequality Vj(Alx) ≤ Vi(x). Here, Al can be a single matrix from
A or a finite product of matrices from A.

The problem that we are interested in is to understand which sets of Lyapunov
inequalities imply stability of the switched system in (5.2). We will answer this
question based on the corresponding graph.

For reasons that will become clear shortly, we would like to reduce graphs
whose edges have arbitrary labels from the set A∗ to graphs whose edges have
labels from the set A, i.e, labels of length one. This is explained next.

Definition 5.1. Given a labeled directed graph G(N,E), we define its expanded
graph Ge(N e, Ee) as the outcome of the following procedure. For every edge
(i, j) ∈ E with label Aik . . . Ai1 ∈ Ak, where k > 1, we remove the edge (i, j)
and replace it with k new edges (sq, sq+1) ∈ Ee \ E : q ∈ {0, . . . , k − 1},
where s0 = i and sk = j.2 (These new edges go from node i through k − 1
newly added nodes s1, . . . , sk−1 and then to node j.) We then label the new edges
(i, s1), . . . , (sq, sq+1), . . . , (sk−1, j) with Ai1, . . . , Aik respectively.

Figure 5.2. Graph expansion: edges with labels of length more than one are broken into new
edges with labels of length one.

An example of a graph and its expansion is given in Figure 5.2. Note that if
a graph has only labels of length one, then its expanded graph equals itself. The
next definition is central to our development.

Definition 5.2. Given a directed graph G(N,E) whose edges are labeled with
words from the set A∗, we say that the graph is path-complete, if for all finite

2It is understood that the node index sq depends on the original nodes i and j. To keep the
notation simple we write sq instead of sijq .
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words Aσk . . . Aσ1 of any length k (i.e., for all words in A∗), there is a directed
path in its expanded graph Ge(N e, Ee) such that the labels on the edges of this
path are the labels Aσ1 up to Aσk .

In Figure 5.3, we present seven path-complete graphs on the alphabet A =
{A1, A2}. The fact that these graphs are path-complete is easy to see for graphs
H1, H2, G3, and G4, but perhaps not so obvious for graphs H3, G1, and G2. One
way to check if a graph is path-complete is to think of it as a finite automaton by
introducing an auxiliary start node (state) with free transitions to every node and
by making all the other nodes be accepting states. Then, there are well-known
algorithms (see e.g. [78, Chap. 4]) that check whether the language accepted by
an automaton is A∗, which is equivalent to the graph being path-complete. At
least for the cases where the automata are deterministic (i.e., when all outgoing
edges from any node have different labels), these algorithms are very efficient
and have running time of only O(|N |2). Similar algorithms exist in the symbolic
dynamics literature; see e.g. [96, Chap. 3]. Our interest in path-complete graphs
stems from the Theorem 5.4 below that establishes that any such graph gives a
method for approximation of the JSR. We introduce one last definition before we
state this theorem.

Figure 5.3. Examples of path-complete graphs for the alphabet {A1, A2}. If Lyapunov func-
tions satisfying the inequalities associated with any of these graphs are found, then we get an
upper bound of unity on ρ(A1, A2).

Definition 5.3. Let A = {A1, . . . , Am} be a set of matrices. Given a path-
complete graph G (N,E) and |N | functions Vi(x), we say that {Vi(x)|i = 1, . . . , |N |}
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is a graph Lyapunov function (GLF) associated with G (N,E) if

Vj (L ((i, j))x) ≤ Vi (x) ∀x ∈ Rn, ∀ (i, j) ∈ E,

where L ((i, j)) ∈ A∗ is the label associated with edge (i, j) ∈ E going from node
i to node j.

Theorem 5.4. Consider a finite set of matrices A = {A1, . . . , Am}. For a scalar
γ > 0, let Aγ := {γA1, . . . , γAm}. Let G(N,E) be a path-complete graph whose
edges are labeled with words from A∗γ. If there exist positive, continuous, and
homogeneous3 functions Vi(x), one per node of the graph, such that {Vi(x) | i =
1, . . . , |N |} is a graph Lyapunov function associated with G(N,E), then ρ(A) ≤ 1

γ
.

Proof. We will first prove the claim for the special case where the edge labels of
G(N,E) belong to Aγ and therefore G(N,E) = Ge(N e, Ee). The general case
will be reduced to this case afterwards. Let d be the degree of homogeneity of the
Lyapunov functions Vi(x), i.e., Vi(λx) = λdVi(x) for all λ ∈ R. (The actual value
of d is irrelevant.) By positivity, continuity, and homogeneity of Vi(x), there exist
scalars αi and βi with 0 < αi ≤ βi for i = 1, . . . , |N |, such that

αi||x||d ≤ Vi(x) ≤ βi||x||d, (5.9)

for all x ∈ Rn and for all i = 1, . . . , |N |, where ||x|| here denotes the Euclidean
norm of x. Let

ξ = max
i,j∈{1,...,|N |}2

βi
αj
. (5.10)

Now consider an arbitrary product Aσk . . . Aσ1 of length k. Because the graph is
path-complete, there will be a directed path corresponding to this product that
consists of k edges, and goes from some node i to some node j. If we write the
chain of k Lyapunov inequalities associated with these edges (cf. Figure 5.1), then
we get

Vj(γ
kAσk . . . Aσ1x) ≤ Vi(x),

which by homogeneity of the Lyapunov functions can be rearranged to(
Vj(Aσk . . . Aσ1x)

Vi(x)

) 1
d

≤ 1

γk
. (5.11)

3The requirement of homogeneity can be replaced by radial unboundedness which is implied
by homogeneity and positivity. However, since the dynamical system in (5.2) is homogeneous,
there is no conservatism in asking Vi(x) to be homogeneous.
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We can now bound the spectral norm of Aσk . . . Aσ1 as follows:

||Aσk . . . Aσ1 || ≤ max
x

||Aσk . . . Aσ1x||
||x||

≤
(
βi
αj

) 1
d

max
x

V
1
d
j (Aσk . . . Aσ1x)

V
1
d
i (x)

≤
(
βi
αj

) 1
d 1

γk

≤ ξ
1
d

1

γk
,

where the last three inequalities follow from (5.9), (5.11), and (5.10) respectively.
From the definition of the JSR in (5.1), after taking the k-th root and the limit
k →∞, we get that ρ(A) ≤ 1

γ
and the claim is established.

Now consider the case where at least one edge of G(N,E) has a label of length
more than one and hence Ge(N e, Ee) 6= G(N,E). We will start with the Lyapunov
functions Vi(x) assigned to the nodes of G(N,E) and from them we will explicitly
construct |N e| Lyapunov functions for the nodes of Ge(N e, Ee) that satisfy the
Lyapunov inequalities associated to the edges in Ee. Once this is done, in view
of our preceding argument and the fact that the edges of Ge(N e, Ee) have labels
of length one by definition, the proof will be completed.

For j ∈ N e, let us denote the new Lyapunov functions by V e
j (x). We give the

construction for the case where |N e| = |N | + 1. The result for the general case
follows by iterating this simple construction. Let s ∈ N e\N be the added node in
the expanded graph, and q, r ∈ N be such that (s, q) ∈ Ee and (r, s) ∈ Ee with
Asq and Ars as the corresponding labels respectively. Define

V e
j (x) =

{
Vj (x) , if j ∈ N

Vq (Asqx) , if j = s.
(5.12)

By construction, r and q, and subsequently, Asq and Ars are uniquely defined and
hence,

{
V e
j (x) | j ∈ N e

}
is well defined. We only need to show that

Vq (Asqx) ≤ V e
s (x) (5.13)

V e
s (Arsx) ≤ Vr (x) . (5.14)

Inequality (5.13) follows trivially from (5.12). Furthermore, it follows from (5.12)
that

V e
s (Arsx) = Vq (AsqArsx)

≤ Vr (x) ,
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where the inequality follows from the fact that for i ∈ N , the functions Vi(x)
satisfy the Lyapunov inequalities of the edges of G (N,E) .

Remark 5.2.1. If the matrix Asq is not invertible, the extended function V e
j (x) as

defined in (5.12) will only be positive semidefinite. However, since our goal is to
approximate the JSR, we will never be concerned with invertibility of the matrices
inA. Indeed, since the JSR is continuous in the entries of the matrices [85], we can
always perturb the matrices slightly to make them invertible without changing
the JSR by much. In particular, for any α > 0, there exist 0 < ε, δ < α such that

Âsq =
Asq + δI

1 + ε

is invertible and (5.12)−(5.14) are satisfied with Asq = Âsq.

To understand the generality of the framework of “path-complete graph Lya-
punov funcitons” more clearly, let us revisit the path-complete graphs in Fig-
ure 5.3 for the study of the case where the set A = {A1, A2} consists of only two
matrices. For all of these graphs if our choice for the Lyapunov functions V (x) or
V1(x) and V2(x) are quadratic functions or sum of squares polynomial functions,
then we can formulate the well-established semidefinite programs that search for
these candidate Lyapunov functions.

Graph H1, which is clearly the simplest possible one, corresponds to the well-
known common Lyapunov function approach. Graph H2 is a common Lyapunov
function applied to all products of length two. This graph also obviously implies
stability.4 But graph H3 tells us that if we find a Lyapunov function that decreases
whenever A1, A2

2, and A2A1 are applied (but with no requirement when A1A2 is
applied), then we still get stability. This is a priori not obvious and we believe
this approach has not appeared in the literature before. Graph H3 is also an
example that explains why we needed the expansion process. Note that for the
unexpanded graph, there is no path for any word of the form (A1A2)k or of the
form A2k−1

2 , for any k ∈ N. However, one can check that in the expanded graph
of graph H3, there is a path for every finite word, and this in turn allows us to
conclude stability from the Lyapunov inequalities of graph H3.

The remaining graphs in Figure 5.3 which all have two nodes and four edges
with labels of length one have a connection to the method of min-of-quadratics
or max-of-quadratics Lyapunov functions [81], [80], [64], [82]. If Lyapunov in-
equalities associated with any of these four graphs are satisfied, then either
min{V1(x), V2(x)} or max{V1(x), V2(x)} or both serve as a common Lyapunov

4By slight abuse of terminology, we say that a graph implies stability meaning that the
associated Lyapunov inequalities imply stability.
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function for the switched system. In the next section, we assert these facts in a
more general setting (Corollaries 5.8 and 5.9) and show that these graphs in some
sense belong to “simplest” families of path-complete graphs.

� 5.3 Duality and examples of families of path-complete graphs

Now that we have shown that any path-complete graph introduces a method for
proving stability of switched systems, our next focus is naturally on showing how
one can produce graphs that are path-complete. Before we proceed to some basic
constructions of such graphs, let us define a notion of duality among graphs which
essentially doubles the number of path-complete graphs that we can generate.

Definition 5.5. Given a directed graph G(N,E) whose edges are labeled from
the words in A∗, we define its dual graph G′(N,E ′) to be the graph obtained by
reversing the direction of the edges of G, and changing the labels Aσk . . . Aσ1 of
every edge of G to its reversed version Aσ1 . . . Aσk .

Figure 5.4. An example of a pair of dual graphs.

An example of a pair of dual graphs with labels of length one is given in
Figure 5.4. The following theorem relates dual graphs and path-completeness.

Theorem 5.6. If a graph G(N,E) is path-complete, then its dual graph G′(N,E ′)
is also path-complete.

Proof. Consider an arbitrary finite word Aik . . . Ai1 . By definition of what it
means for a graph to be path-complete, our task is to show that there exists a
path corresponding to this word in the expanded graph of the dual graph G′. It is
easy to see that the expanded graph of the dual graph of G is the same as the dual

graph of the expanded graph of G; i.e, G′e(N e, E ′e) = Ge
′
(N e, Ee

′
). Therefore, we

show a path for Aik . . . Ai1 in Ge
′
. Consider the reversed word Aii . . . Aik . Since G

is path-complete, there is a path corresponding to this reversed word in Ge. Now
if we just trace this path backwards, we get exactly a path for the original word

Aik . . . Ai1 in Ge
′
. This completes the proof.
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The next proposition offers a very simple construction for obtaining a large
family of path-complete graphs with labels of length one.

Proposition 5.7. A graph having any of the two properties below is path-complete.
Property (i): every node has outgoing edges with all the labels in A.
Property (ii): every node has incoming edges with all the labels in A.

Proof. If a graph has Property (i), then it is obviously path-complete. If a graph
has Property (ii), then its dual has Property (i) and therefore by Theorem 5.6 it
is path-complete.

Examples of path-complete graphs that fall in the category of this proposition
include graphs G1, G2, G3, and G4 in Figure 5.3 and all of their dual graphs. By
combining the previous proposition with Theorem 5.4, we obtain the following two
simple corollaries which unify several linear matrix inequalities (LMIs) that have
been previously proposed in the literature. These corollaries also provide a link
to min/max-of-quadratics Lyapunov functions. Different special cases of these
LMIs have appeared in [81], [80], [64], [82], [93], [53]. Note that the framework of
path-complete graph Lyapunov functions makes the proof of the fact that these
LMIs imply stability immediate.

Corollary 5.8. Consider a set of m matrices and the switched linear system in
(5.2) or (5.3). If there exist k positive definite matrices Pj such that

∀(i, k) ∈ {1, . . . ,m}2, ∃j ∈ {1, . . . ,m}
such that γ2ATi PjAi � Pk, (5.15)

for some γ > 1, then the system is absolutely asymptotically stable. Moreover,
the pointwise minimum

min{xTP1x, . . . , x
TPkx}

of the quadratic functions serves as a common Lyapunov function.

Proof. The inequalities in (5.15) imply that every node of the associated graph
has outgoing edges labeled with all the different m matrices. Therefore, by Propo-
sition 5.7 the graph is path-complete, and by Theorem 5.4 this implies absolute
asymptotic stability. The proof that the pointwise minimum of the quadratics is
a common Lyapunov function is easy and left to the reader.

Corollary 5.9. Consider a set of m matrices and the switched linear system in
(5.2) or (5.3). If there exist k positive definite matrices Pj such that

∀(i, j) ∈ {1, . . . ,m}2, ∃k ∈ {1, . . . ,m}
such that γ2ATi PjAi � Pk, (5.16)
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for some γ > 1, then the system is absolutely asymptotically stable. Moreover,
the pointwise maximum

max{xTP1x, . . . , x
TPkx}

of the quadratic functions serves as a common Lyapunov function.

Proof. The inequalities in (5.16) imply that every node of the associated graph has
incoming edges labeled with all the different m matrices. Therefore, by Proposi-
tion 5.7 the graph is path-complete and the proof of absolute asymptotic stability
then follows. The proof that the pointwise maximum of the quadratics is a com-
mon Lyapunov function is again left to the reader.

Remark 5.3.1. The linear matrix inequalities in (5.15) and (5.16) are (convex)
sufficient conditions for existence of min-of-quadratics or max-of-quadratics Lya-
punov functions. The converse is not true. The works in [81], [80], [64], [82]
have additional multipliers in (5.15) and (5.16) that make the inequalities non-
convex but when solved with a heuristic method contain a larger family of min-
of-quadratics and max-of-quadratics Lyapunov functions. Even if the non-convex
inequalities with multipliers could be solved exactly, except for special cases where
the S-procedure is exact (e.g., the case of two quadratic functions), these meth-
ods still do not completely characterize min-of-quadratics and max-of-quadratics
functions.

Remark 5.3.2. The work in [93] on “path-dependent quadratic Lyapunov func-
tions” and the work in [53] on “parameter dependent Lyapunov functions”–when
specialized to the analysis of arbitrary switched linear systems–are special cases
of Corollary 5.8 and 5.9 respectively. This observation makes a connection be-
tween these techniques and min/max-of-quadratics Lyapunov functions which is
not established in [93], [53]. It is also interesting to note that the path-complete
graph corresponding to the LMIs proposed in [93] (see Theorem 9 there) is the
well-known De Bruijn graph [67].

The set of path-complete graphs is much broader than the set of simple family
of graphs constructed in Proposition 5.7. Indeed, there are many graphs that are
path-complete without having outgoing (or incoming) edges with all the labels on
every node; see e.g. graph He

4 in Figure 5.5. This in turn means that there are
several more sophisticated Lyapunov inequalities that we can explore for proving
stability of switched systems. Below, we give one particular example of such
“non-obvious” inequalities for the case of switching between two matrices.
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Figure 5.5. The path-complete graphs corresponding to Proposition 5.10.

Proposition 5.10. Consider the set A = {A1, A2} and the switched linear system
in (5.2) or (5.3). If there exist a positive definite matrix P such that

γ2AT1 PA1 � P,

γ4(A2A1)TP (A2A1) � P,

γ6(A2
2A1)TP (A2

2A1) � P,

γ6A3T

2 PA3
2 � P,

for some γ > 1, then the system is absolutely asymptotically stable.

Proof. The graph H4 associated with the LMIs above and its expanded version
He

4 are drawn in Figure 5.5. We leave it as an exercise for the reader to show (e.g.
by induction on the length of the word) that there is path for every finite word
in He

4 . Therefore, H4 is path-complete and in view of Theorem 5.4 the claim is
established.

Remark 5.3.3. Proposition 5.10 can be generalized as follows: If a single Lyapunov
function decreases with respect to the matrix products

{A1, A2A1, A
2
2A1, . . . , A

k−1
2 A1, A

k
2}

for some integer k ≥ 1, then the arbitrary switched system consisting of the two
matrices A1 and A2 is absolutely asymptotically stable. We omit the proof of
this generalization due to space limitations. We will later prove (Theorem 5.18)
a bound for the quality of approximation of path-complete graphs of this type,
where a common Lyapunov function is required to decrease with respect to prod-
ucts of different lengths.

When we have so many different ways of imposing conditions for stability, it is
natural to ask which ones are better. The answer clearly depends on the combina-
torial structure of the graphs and does not seem to be easy in general. Neverthe-
less, in the next section, we compare the performance of all path-complete graphs
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with two nodes for analysis of switched systems with two matrices. The connec-
tions between the bounds obtained from these graphs are not always obvious. For
example, we will see that the graphs H1, G3, and G4 always give the same bound
on the joint spectral radius; i.e, one graph will succeed in proving stability if and
only if the other will. So, there is no point in increasing the number of decision
variables and the number of constraints and impose G3 or G4 in place of H1. The
same is true for the graphs in H3 and G2, which makes graph H3 preferable to
graph G2. (See Proposition 5.12.)

� 5.4 Path-complete graphs with two nodes

In this section, we characterize the set of all path-complete graphs consisting of
two nodes, an alphabet set A = {A1, A2}, and edge labels of unit length. We will
elaborate on the set of all admissible topologies arising in this setup and compare
the performance—in the sense of conservatism of the ensuing analysis—of different
path-complete graph topologies.

� 5.4.1 The set of path-complete graphs

The next lemma establishes that for thorough analysis of the case of two matrices
and two nodes, we only need to examine graphs with four or fewer edges.

Lemma 5.11. Let G ({1, 2} , E) be a path-complete graph with labels of length one
for A = {A1, A2}. Let {V1, V2} be a graph Lyapunov function for G. If |E| > 4,
then, either

(i) there exists ê ∈ E such that G ({1, 2} , E\ê) is a path-complete graph,
or

(ii) either V1 or V2 or both are common Lyapunov functions for A.

Proof. If |E| > 4, then at least one node has three or more outgoing edges.
Without loss of generality let node 1 be a node with exactly three outgoing edges
e1, e2, e3, and let L (e1) = L (e2) = A1. Let D (e) denote the destination node
of an edge e ∈ E. If D (e1) = D (e2) , then e1 (or e2) can be removed without
changing the output set of words. If D (e1) 6= D (e2) , assume, without loss of
generality, that D (e1) = 1 and D (e2) = 2. Now, if L (e3) = A1, then regardless
of its destination node, e3 can be removed. If L (e3) = A2 and D (e3) = 1, then
V1 is a common Lyapunov function for A. The only remaining possibility is that
L (e3) = A2 and D (e3) = 2. Note that there must be an edge e4 ∈ E from node
2 to node 1, otherwise either node 2 would have two self-edges with the same
label or V2 would be a common Lyapunov function for A. If L(e4) = A2 then it
can be verified that G({1, 2}, {e1, e2, e3, e4}) is path-complete and thus all other
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edge can be removed. If there is no edge from node 2 to node 1 with label A2

then L(e4) = A1 and node 2 must have a self-edge e5 ∈ E with label L(e5) = A2,
otherwise the graph would not be path-complete. In this case, it can be verified
that e2 can be removed without affecting the output set of words.

It can be verified that a path-complete graph with two nodes and less than
four edges must necessarily place two self-loops with different labels on one node,
which necessitates existence of a common Lyapunov function for the underlying
switched system. Since we are interested in exploiting the favorable properties of
graph Lyapunov functions in approximation of the JSR, we will focus on graphs
with four edges.

Before we proceed, for convenience we introduce the following notation: Given
a labeled graph G(N,E) associated with two matrices A1 and A2, we denote by
G(N,E), the graph obtained by swapping of A1 and A2 in all the labels on every
edge.

� 5.4.2 Comparison of performance

It can be verified that for path-complete graphs with two nodes, four edges, and
two matrices, and without multiple self-loops on a single node, there are a total
of nine distinct graph topologies to consider. Of the nine graphs, six have the
property that every node has two incoming edges with different labels. These
are graphs G1, G2, G2, G3, G3, and G4 (Figure 5.3). Note that G1 = G1 and

G4 = G4. The duals of these six graphs, i.e., G′1, G
′
2, G

′
2, G

′
3 = G3, G

′
3 = G3, and

G′4 = G4 have the property that every node has two outgoing edges with different
labels. Evidently, G3, G3, and G4 are self-dual graphs, i.e., they are isomorphic
to their dual graphs. The self-dual graphs are least interesting to us since, as we
will show, they necessitate existence of a common Lyapunov function for A (cf.
Proposition 5.12, equation (5.18)).

Note that all of these graphs perform at least as well as a common Lya-
punov function because we can always take V1 (x) = V2 (x). Furthermore, we
know from Corollaries 5.9 and 5.8 that if Lyapunov inequalities associated with
G1, G2, G2, G3, G3, and G4 are satisfied, then max {V1 (x) , V2 (x)} is a common

Lyapunov function, whereas, in the case of graphs G′1, G
′
2, G

′
2, G

′
3, G

′
3, and G′4,

the function min {V1 (x) , V2 (x)} would serve as a common Lyapunov function.
Clearly, for the self-dual graphs G3, G3, and G4 both max {V1 (x) , V2 (x)} and
min {V1 (x) , V2 (x)} are common Lyapunov functions.

Notation: Given a set of matrices A = {A1, · · · , Am} , a path-complete
graph G (N,E) , and a class of functions V , we denote by ρ̂V ,G (A) , the upper
bound on the JSR of A that can be obtained by numerical optimization of GLFs
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Vi ∈ V , i ∈ N, defined over G. With a slight abuse of notation, we denote by
ρ̂V (A) , the upper bound that is obtained by using a common Lyapunov function
V ∈ V .

Proposition 5.12. Consider the set A = {A1, A2} , and let G1, G2, G3, G4, and
H3 be the path-complete graphs shown in Figure 5.3. Then, the upper bounds on
the JSR of A obtained by analysis via the associated GLFs satisfy the following
relations:

ρ̂V ,G1 (A) = ρ̂V ,G′1 (A) (5.17)

and
ρ̂V (A) = ρ̂V ,G3 (A) = ρ̂V ,G3

(A) = ρ̂V ,G4 (A) (5.18)

and
ρ̂V ,G2 (A) = ρ̂V ,H3 (A) , ρ̂V ,G2

(A) = ρ̂V ,H3
(A) (5.19)

and
ρ̂V ,G′2 (A) = ρ̂V ,H′3 (A) , ρ̂V ,G′2 (A) = ρ̂V ,H′3 (A) . (5.20)

Proof. A proof of (5.17) in more generality is provided in Section 5.5 (cf. Corollary
5.15). The proof of (5.18) is based on symmetry arguments. Let {V1, V2} be
a GLF associated with G3 (V1 is associated with node 1 and V2 is associated
with node 2). Then, by symmetry, {V2, V1} is also a GLF for G3 (where V1 is
associated with node 2 and V2 is associated with node 1). Therefore, letting
V = V1 + V2, we have that {V, V } is a GLF for G3 and thus, V = V1 + V2 is
also a common Lyapunov function for A, which implies that ρ̂V ,G3 (A) ≥ ρ̂V (A) .
The other direction is trivial: If V ∈ V is a common Lyapunov function for A,
then {V1, V2 | V1 = V2 = V } is a GLF associated with G3, and hence, ρ̂V ,G3 (A) ≤
ρ̂V (A) . Identical arguments based on symmetry hold for G3 and G4. We now
prove the left equality in (5.19), the proofs for the remaining equalities in (5.19)
and (5.20) are analogous. The equivalence between G2 and H3 is a special case of
the relation between a graph and its reduced model, obtained by removing a node
without any self-loops, adding a new edge per each pair of incoming and outgoing
edges to that node, and then labeling the new edges by taking the composition of
the labels of the corresponding incoming and outgoing edges in the original graph;
see [145], [144, Chap. 5]. Note that H3 is an offspring of G2 in this sense. This
intuition helps construct a proof. Let {V1, V2} be a GLF associated with G2. It
can be verified that V1 is a Lyapunov function associated with H3, and therefore,
ρ̂V ,H3 (A) ≤ ρ̂V ,G2 (A) . Similarly, if V ∈ V is a Lyapunov function associated with
H3, then one can check that {V1, V2 | V1 (x) = V (x) , V2 (x) = V (A2x)} is a GLF
associated with G2, and hence, ρ̂V ,H3 (A) ≥ ρ̂V ,G2 (A) .
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Figure 5.6. A diagram describing the relative performance of the path-complete graphs of
Figure 5.3 together with their duals and label permutations. The graphs placed in the same
circle always give the same approximation of the JSR. A graph at the end of an arrow results
in an approximation of the JSR that is always at least as good as that of the graph at the start
of the arrow. When there is no directed path between two graphs in this diagram, either graph
can outperform the other depending on the set of matrices A.

Remark 5.4.1. Proposition 5.12 (equation 5.17) establishes the equivalence of the
bounds obtained from the pair of dual graphs G1 and G′1. This, however, is not
true for graphs G2 and G2 as there exist examples for which

ρ̂V ,G2 (A) 6= ρ̂V ,G′2 (A) ,

ρ̂V ,G2
(A) 6= ρ̂V ,G′2 (A) .

The diagram in Figure 5.6 summarizes the results of this section. We remark
that no relations other than the ones given in Figure 5.6 can be made among
these path-complete graphs. Indeed, whenever there are no relations between two
graphs in Figure 5.6, we have examples of matrices A1, A2 (not presented here)
for which one graph can outperform the other.

The graphs G1 and G′1 seem to statistically perform better than all other
graphs in Figure 5.6. For example, we ran experiments on a set of 100 random 5×5
matrices {A1, A2} with elements uniformly distributed in [−1, 1] to compare the
performance of graphsG1, G2 andG2. If in each case we also consider the relabeled
matrices (i.e., {A2, A1}) as our input, then, out of the total 200 instances, graph
G1 produced strictly better bounds on the JSR 58 times, whereas graphs G2 and
G2 each produced the best bound of the three graphs only 23 times. (The numbers
do not add up to 200 due to ties.) In addition to this superior performance, the
bound ρ̂V ,G1 ({A1, A2}) obtained by analysis via the graph G1 is invariant under
(i) permutation of the labels A1 and A2 (obvious), and (ii) transposing of A1 and
A2 (Corollary 5.15). These are desirable properties which fail to hold for G2 and
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G2 or their duals. Motivated by these observations, we generalize G1 and its dual
G′1 in the next section to the case of m matrices and m Lyapunov functions and
establish that they have certain appealing properties. We will prove (cf. Theorem
5.16) that these graphs always perform better than a common Lyapunov function
in 2 steps (i.e., the graph H2 in Figure 5.3), whereas, this is not the case for G2

and G2 or their duals.

� 5.5 Further analysis of a particular family of path-complete graphs

The framework of path-complete graphs provides a multitude of semidefinite pro-
gramming based techniques for the approximation of the JSR whose performance
vary with computational cost. For instance, as we increase the number of nodes
of the graph, or the degree of the polynomial Lyapunov functions assigned to the
nodes, or the number of edges of the graph that instead of labels of length one
have labels of higher length, we obtain better results but at a higher computa-
tional cost. Many of these approximation techniques are asymptotically tight, so
in theory they can be used to achieve any desired accuracy of approximation. For
example,

ρ̂VSOS,2d(A)→ ρ(A) as 2d→∞,

where VSOS,2d denotes the class of sum of squares homogeneous polynomial Lya-
punov functions of degree 2d. (Recall our notation for bounds from Section 5.4.2.)
It is also true that a common quadratic Lyapunov function for products of higher
length achieves the true JSR asymptotically [85]; i.e.5,

t
√
ρ̂V2(At)→ ρ(A) as t→∞.

Nevertheless, it is desirable for practical purposes to identify a class of path-
complete graphs that provide a good tradeoff between quality of approxima-
tion and computational cost. Towards this objective, we propose the use of m
quadratic Lyapunov functions assigned to the nodes of the De Bruijn graph of
order 1 on m symbols for the approximation of the JSR of a set of m matrices.
This graph and its dual are particular path-complete graphs with m nodes and m2

edges and will be the subject of study in this section. If we denote the quadratic
Lyapunov functions by xTPix, then we are proposing the use of linear matrix
inequalities

Pi � 0 ∀i = 1, . . . ,m,
γ2ATi PjAi � Pi ∀i, j = {1, . . . ,m}2 (5.21)

5By V2 we denote the class of quadratic homogeneous polynomials. We drop the superscript
“SOS” because nonnegative quadratic polynomials are always sums of squares.
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or the set of LMIs

Pi � 0 ∀i = 1, . . . ,m,
γ2ATi PiAi � Pj ∀i, j = {1, . . . ,m}2 (5.22)

for the approximation of the JSR of m matrices. Throughout this section, we
denote the path-complete graphs associated with (5.21) and (5.22) with G1 and G′1
respectively. (The De Bruijn graph of order 1, by standard convention, is actually
the graph G′1.) Observe that G1 and G′1 are indeed dual graphs as they can be
obtained from each other by reversing the direction of the edges. For the case
m = 2, our notation is consistent with the previous section and these graphs are
illustrated in Figure 5.4. Also observe from Corollary 5.8 and Corollary 5.9 that
the LMIs in (5.21) give rise to max-of-quadratics Lyapunov functions, whereas
the LMIs in (5.22) lead to min-of-quadratics Lyapunov functions. We will prove
in this section that the approximation bound obtained by these LMIs (i.e., the
reciprocal of the largest γ for which the LMIs (5.21) or (5.22) hold) is always the
same and lies within a multiplicative factor of 1

4√n of the true JSR, where n is the

dimension of the matrices. The relation between the bound obtained by a pair of
dual path-complete graphs has a connection to transposition of the matrices in
the set A. We explain this next.

� 5.5.1 Duality and invariance under transposition

In [63], [64], it is shown that absolute asymptotic stability of the linear difference
inclusion in (5.3) defined by the matrices A = {A1, . . . , Am} is equivalent to abso-
lute asymptotic stability of (5.3) for the transposed matricesAT := {AT1 , . . . , ATm}.
Note that this fact is immediately seen from the definition of the JSR in (5.1),
since ρ(A) = ρ(AT ). It is also well-known that

ρ̂V2(A) = ρ̂V2(AT ).

Indeed, if xTPx is a common quadratic Lyapunov function for the set A, then it
is easy to show that xTP−1x is a common quadratic Lyapunov function for the
set AT . However, this nice property is not true for the bound obtained from some
other techniques. For instance, the next example shows that

ρ̂VSOS,4(A) 6= ρ̂VSOS,4(AT ), (5.23)

i.e, the upper bound obtained by searching for a common quartic sos polynomial
is not invariant under transposition.

Example 5.5.1. Consider the set of matrices A = {A1, A2, A3, A4}, with

A1 =

 10 −6 −1
8 1 −16
−8 0 17

 , A2 =

 −5 9 −14
1 5 10
3 2 16

 , A3 =

 −14 1 0
−15 −8 −12
−1 −6 7

 , A4 =

 1 −8 −2
1 16 3

16 11 14

 .
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We have ρ̂VSOS,4(A) = 21.411, but ρ̂VSOS,4(AT ) = 21.214 (up to three significant
digits). 4

Similarly, the bound obtained by non-convex inequalities proposed in [63]
is not invariant under transposing the matrices. For such methods, one would
have to run the numerical optimization twice—once for the set A and once for
the set AT—and then pick the better bound of the two. We will show that by
contrast, the bound obtained from the LMIs in (5.21) and (5.22) are invariant
under transposing the matrices. Before we do that, let us prove a general result
which states that for path-complete graphs with quadratic Lyapunov functions
as nodes, transposing the matrices has the same effect as dualizing the graph.

Theorem 5.13. Let G(N,E) be a path-complete graph, and let G′(N,E ′) be its
dual graph. Then,

ρ̂V2,G(AT ) = ρ̂V2,G′(A). (5.24)

Proof. For ease of notation, we prove the claim for the case where the edge labels
of G(N,E) have length one. The proof of the general case is identical. Pick an
arbitrary edge (i, j) ∈ E going from node i to node j and labeled with some
matrix Al ∈ A. By the application of the Schur complement we have

AlPjA
T
l � Pi ⇔

[
Pi Al
ATl P−1

j

]
� 0 ⇔ ATl P

−1
i Al � P−1

j .

But this already establishes the claim since we see that Pi and Pj satisfy the LMI
associated with edge (i, j) ∈ E when the matrix Al is transposed if and only if
P−1
j and P−1

i satisfy the LMI associated with edge (j, i) ∈ E ′.

Corollary 5.14. ρ̂V2,G(A) = ρ̂V2,G(AT ) if and only if ρ̂V2,G(A) = ρ̂V2,G′(A).

Proof. This is an immediate consequence of the equality in (5.24).

It is an interesting question for future research to characterize the topologies
of path-complete graphs for which one has ρ̂V2,G(A) = ρ̂V2,G(AT ). For example,
the above corollary shows that this is obviously the case for any path-complete
graph that is self-dual. Let us show next that this is also the case for graphs G1

and G′1 despite the fact that they are not self-dual.

Corollary 5.15. For the path-complete graphs G1 and G′1 associated with the
inequalities in (5.21) and (5.22), and for any class of continuous, homogeneous,
and positive definite functions V, we have

ρ̂V,G1(A) = ρ̂V,G′1(A). (5.25)
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Moreover, if quadratic Lyapunov functions are assigned to the nodes of G1 and
G′1, then we have

ρ̂V2,G1
(A) = ρ̂V2,G1

(AT ) = ρ̂V2,G′1
(A) = ρ̂V2,G′1

(AT ). (5.26)

Proof. The proof of (5.25) is established by observing that the GLFs associated
with G1 and G′1 can be derived from one another via V ′i (Aix) = Vi(x). (Note that
we are relying here on the assumption that the matrices Ai are invertible, which as
we noted in Remark 5.2.1, is not a limiting assumption.) Since (5.25) in particular
implies that ρ̂V2,G1

(A) = ρ̂V2,G′1
(A), we get the rest of the equalities in (5.26)

immediately from Corollary 5.14 and this finishes the proof. For concreteness, let
us also prove the leftmost equality in (5.26) directly. Let Pi, i = 1, . . . ,m, satisfy
the LMIs in (5.21) for the set of matrices A. Then, the reader can check that

P̃i = AiP
−1
i ATi , i = 1, . . . ,m,

satisfy the LMIs in (5.21) for the set of matrices AT .

� 5.5.2 An approximation guarantee

The next theorem gives a bound on the quality of approximation of the estimate
resulting from the LMIs in (5.21) and (5.22). Since we have already shown that
ρ̂V2,G1

(A) = ρ̂V2,G′1
(A), it is enough to prove this bound for the LMIs in (5.21).

Theorem 5.16. Let A be a set of m matrices in Rn×n with JSR ρ(A). Let
ρ̂V2,G1

(A) be the bound on the JSR obtained from the LMIs in (5.21). Then,

1
4
√
n
ρ̂V2,G1

(A) ≤ ρ(A) ≤ ρ̂V2,G1
(A). (5.27)

Proof. The right inequality is just a consequence of G1 being a path-complete
graph (Theorem 5.4). To prove the left inequality, consider the set A2 consisting
of all m2 products of length two. In view of (5.6), a common quadratic Lyapunov
function for this set satisfies the bound

1√
n
ρ̂V2(A2) ≤ ρ(A2).

It is easy to show that
ρ(A2) = ρ2(A).

See e.g. [85]. Therefore,
1
4
√
n
ρ̂

1
2

V2(A2) ≤ ρ(A). (5.28)
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Now suppose for some γ > 0, xTQx is a common quadratic Lyapunov function
for the matrices in A2

γ; i.e., it satisfies

Q � 0
γ4(AiAj)

TQAiAj � Q ∀i, j = {1, . . . ,m}2.

Then, we leave it to the reader to check that

Pi = Q+ ATi QAi, i = 1, . . . ,m

satisfy (5.21). Hence,

ρ̂V2,G1
(A) ≤ ρ̂

1
2

V2(A2),

and in view of (5.28) the claim is established.

Note that the bound in (5.27) is independent of the number of matrices. More-
over, we remark that this bound is tighter, in terms of its dependence on n, than
the known bounds for ρ̂VSOS,2d for any finite degree 2d of the sum of squares poly-
nomials. The reader can check that the bound in (5.7) goes asymptotically as 1√

n
.

Numerical evidence suggests that the performance of both the bound obtained by
sum of squares polynomials and the bound obtained by the LMIs in (5.21) and
(5.22) is much better than the provable bounds in (5.7) and in Theorem 5.16.
The problem of improving these bounds or establishing their tightness is open. It
goes without saying that instead of quadratic functions, we can associate sum of
squares polynomials to the nodes of G1 and obtain a more powerful technique for
which we can also prove better bounds with the exact same arguments.

� 5.5.3 Numerical examples

In the proof of Theorem 5.16, we essentially showed that the bound obtained
from LMIs in (5.21) is tighter than the bound obtained from a common quadratic
applied to products of length two. Our first example shows that the LMIs in
(5.21) can in fact do better than a common quadratic applied to products of any
finite length.

Example 5.5.2. Consider the set of matrices A = {A1, A2}, with

A1 =

[
1 0
1 0

]
, A2 =

[
0 1
0 −1

]
.

This is a benchmark set of matrices that has been studied in [13], [122], [6] because
it gives the worst case approximation ratio of a common quadratic Lyapunov
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function. Indeed, it is easy to show that ρ(A) = 1, but ρ̂V2(A) =
√

2. Moreover,
the bound obtained by a common quadratic function applied to the set At is

ρ̂
1
t

V2(At) = 2
1
2t ,

which for no finite value of t is exact. On the other hand, we show that the LMIs
in (5.21) give the exact bound; i.e., ρ̂V2,G1

(A) = 1. Due to the simple structure of
A1 and A2, we can even give an analytical expression for our Lyapunov functions.
Given any ε > 0, the LMIs in (5.21) with γ = 1/ (1 + ε) are feasible with

P1 =

[
a 0
0 b

]
, P2 =

[
b 0
0 a

]
,

for any b > 0 and a > b/2ε. 4
Example 5.5.3. Consider the set of randomly generated matricesA = {A1, A2, A3},
with

A1 =


0 −2 2 2 4
0 0 −4 −1 −6
2 6 0 −8 0
−2 −2 −3 1 −3
−1 −5 2 6 −4

 , A2 =


−5 −2 −4 6 −1

1 1 4 3 −5
−2 3 −2 8 −1

0 8 −6 2 5
−1 −5 1 7 −4

 , A3 =


3 −8 −3 2 −4
−2 −2 −9 4 −1

2 2 −5 −8 6
−4 −1 4 −3 0

0 5 0 −3 5

 .

A lower bound on ρ(A) is ρ(A1A2A2)1/3 = 11.8015. The upper approximations
for ρ(A) that we computed for this example are as follows:

ρ̂V2(A) = 12.5683

ρ̂
1
2

V2(A2) = 11.9575
ρ̂V2,G1

(A) = 11.8097
ρ̂VSOS,4(A) = 11.8015.

(5.29)

The bound ρ̂VSOS,4 matches the lower bound numerically and is most likely exact
for this example. This bound is slightly better than ρ̂V2,G1

. However, a simple
calculation shows that the semidefinite program resulting in ρ̂VSOS,4 has 25 more
decision variables than the one for ρ̂V2,G1

. Also, the running time of the algorithm
leading to ρ̂VSOS,4 is noticeably larger than the one leading to ρ̂V2,G1

. In general,
when the dimension of the matrices is large, it can often be cost-effective to
increase the number of the nodes of our path-complete graphs but keep the degree
of the polynomial Lyapunov functions assigned to its nodes relatively low. 4

� 5.6 Converse Lyapunov theorems and approximation with arbitrary accu-

racy

It is well-known that existence of a Lyapunov function which is the pointwise max-
imum of quadratics is not only sufficient but also necessary for absolute asymptotic
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stability of (5.2) or (5.3); see e.g. [105]. This is perhaps an intuitive fact if we
recall that switched systems of type (5.2) and (5.3) always admit a convex Lya-
punov function. Indeed, if we take “enough” quadratics, the convex and compact
unit sublevel set of a convex Lyapunov function can be approximated arbitrar-
ily well with sublevel sets of max-of-quadratics Lyapunov functions, which are
intersections of ellipsoids. This of course implies that the bound obtained from
max-of-quadratics Lyapunov functions is asymptotically tight for the approxima-
tion of the JSR. However, this converse Lyapunov theorem does not answer two
natural questions of importance in practice: (i) How many quadratic functions
do we need to achieve a desired quality of approximation? (ii) Can we search
for these quadratic functions via semidefinite programming or do we need to re-
sort to non-convex formulations? Our next theorem provides an answer to these
questions.

Theorem 5.17. Let A be a set of m matrices in Rn×n. Given any positive
integer l, there exists an explicit path-complete graph G consisting of ml−1 nodes
assigned to quadratic Lyapunov functions and ml edges with labels of length one
such that the linear matrix inequalities associated with G imply existence of a
max-of-quadratics Lyapunov function and the resulting bound obtained from the
LMIs satisfies

1
2l
√
n
ρ̂V2,G(A) ≤ ρ(A) ≤ ρ̂V2,G(A). (5.30)

Proof. Let us denote the ml−1 quadratic Lyapunov functions by xTPi1...il−1
x,

where i1 . . . il−1 ∈ {1, . . . ,m}l−1 is a multi-index used for ease of reference to
our Lyapunov functions. We claim that we can let G be the graph dual to the
De Bruijn graph of order l− 1 on m symbols. The LMIs associated to this graph
are given by

Pi1i2...il−2il−1
� 0 ∀i1 . . . il−1 ∈ {1, . . . ,m}l−1

ATj Pi1i2...il−2il−1
Aj � Pi2i3...il−1j

∀i1 . . . il−1 ∈ {1, . . . ,m}l−1,
∀j ∈ {1, . . . ,m}.

(5.31)

The fact that G is path-complete and that the LMIs imply existence of a max-of-
quadratics Lyapunov function follows from Corollary 5.9. The proof that these
LMIs satisfy the bound in (5.30) is a straightforward generalization of the proof
of Theorem 5.16. By the same arguments we have

1
2l
√
n
ρ̂

1
l

V2(Al) ≤ ρ(A). (5.32)
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Suppose xTQx is a common quadratic Lyapunov function for the matrices in Al;
i.e., it satisfies

Q � 0
(Ai1 . . . Ail)

TQAi1 . . . Ail � Q ∀i1 . . . il ∈ {1, . . . ,m}l.

Then, it is easy to check that6

Pi1i2...il−2il−1
= Q+ ATil−1

QAil−1

+(Ail−2
Ail−1

)TQ(Ail−2
Ail−1

) + · · ·
+(Ai1Ai2 . . . Ail−2

Ail−1
)TQ(Ai1Ai2 . . . Ail−2

Ail−1
),

i1 . . . il−1 ∈ {1, . . . ,m}l−1,

satisfy (5.31). Hence,

ρ̂V2,G(A) ≤ ρ̂
1
l

V2(Al),

and in view of (5.32) the claim is established.

Remark 5.6.1. A converse Lyapunov theorem identical to Theorem 5.17 can be
proven for the min-of-quadratics Lyapunov functions. The only difference is that
the LMIs in (5.31) would get replaced by the ones corresponding to the dual graph
of G.

Our last theorem establishes approximation bounds for a family of path-
complete graphs with one single node but several edges labeled with words of
different lengths. Examples of such path-complete graphs include graph H3 in
Figure 5.3 and graph H4 in Figure 5.5.

Theorem 5.18. Let A be a set of matrices in Rn×n. Let G̃ ({1} , E) be a path-
complete graph, and l be the length of the shortest word in Ã = {L (e) : e ∈ E} .
Then ρ̂V2 ,G̃ (A) provides an estimate of ρ (A) that satisfies

1
2l
√
n
ρ̂V2 ,G̃ (A) ≤ ρ(A) ≤ ρ̂V2 ,G̃ (A).

Proof. The right inequality is obvious, we prove the left one. Since both ρ̂V2 ,G̃ (A)
and ρ are homogeneous in A, we may assume, without loss of generality, that
ρ̂V2 ,G̃ (A) = 1. Suppose for the sake of contradiction that

ρ(A) < 1/ 2l
√
n. (5.33)

6The construction of the Lyapunov function here is a special case of a general scheme for
constructing Lyapunov functions that are monotonically decreasing from those that decrease
only every few steps; see [1, p. 58].



Sec. 5.7. Conclusions and future directions 139

We will show that this implies that ρ̂V2 ,G̃ (A) < 1. Towards this goal, let us first
prove that ρ(Ã) ≤ ρl(A). Indeed, if we had ρ(Ã) > ρl(A), then there would
exist7 an integer i and a product Aσ ∈ Ãi such that

ρ
1
i (Aσ) > ρl(A). (5.34)

Since we also have Aσ ∈ Aj (for some j ≥ il), it follows that

ρ
1
j (Aσ) ≤ ρ(A). (5.35)

The inequality in (5.34) together with ρ(A) ≤ 1 gives

ρ
1
j (Aσ) > ρ

il
j (A) ≥ ρ(A).

But this contradicts (5.35). Hence we have shown

ρ(Ã) ≤ ρl(A).

Now, by our hypothesis (5.33) above, we have that ρ(Ã) < 1/
√
n. Therefore, there

exists ε > 0 such that ρ((1 + ε)Ã) < 1/
√
n. It then follows from (5.6) that there

exists a common quadratic Lyapunov function for (1+ε)Ã. Hence, ρ̂V2((1+ε)Ã) ≤
1, which immediately implies that ρ̂V2 ,G̃ (A) < 1, a contradiction.

A noteworthy immediate corollary of Theorem 5.18 (obtained by setting Ã =⋃k
t=rAt) is the following: If ρ(A) < 1

2r√n , then there exists a quadratic Lyapunov

function that decreases simultaneously for all products of lengths r, r+1, . . . , r+k,
for any desired value of k. Note that this fact is obvious for r = 1, but nonobvious
for r ≥ 2.

� 5.7 Conclusions and future directions

We introduced the framework of path-complete graph Lyapunov functions for the
formulation of semidefinite programming based algorithms for approximating the
joint spectral radius (or equivalently establishing absolute asymptotic stability of
an arbitrary switched linear system). We defined the notion of a path-complete
graph, which was inspired by concepts in automata theory. We showed that
every path-complete graph gives rise to a technique for the approximation of the
JSR. This provided a unifying framework that includes many of the previously
proposed techniques and also introduces new ones. (In fact, all families of LMIs

7Here, we are appealing to the well-known fact about the JSR of a general set of matrices
B: ρ(B) = lim supk→∞maxB∈Bk ρ

1
k (B). See e.g. [85, Chap. 1].
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that we are aware of are particular cases of our method.) We shall also emphasize
that although we focused on switched linear systems because of our interest in
the JSR, the analysis technique of multiple Lyapunov functions on path-complete
graphs is clearly valid for switched nonlinear systems as well.

We compared the quality of the bound obtained from certain classes of path-
complete graphs, including all path-complete graphs with two nodes on an al-
phabet of two matrices, and also a certain family of dual path-complete graphs.
We proposed a specific class of such graphs that appear to work particularly well
in practice and proved that the bound obtained from these graphs is invariant
under transposition of the matrices and is always within a multiplicative factor of
1/ 4
√
n from the true JSR. Finally, we presented two converse Lyapunov theorems,

one for the well-known methods of minimum and maximum-of-quadratics Lya-
punov functions, and the other for a new class of methods that propose the use
of a common quadratic Lyapunov function for a set of words of possibly different
lengths.

We believe the methodology proposed in this chapter should straightforwardly
extend to the case of constrained switching by requiring the graphs to have a
path not for all the words, but only the words allowed by the constraints on the
switching. A rigorous treatment of this idea is left for future work.

Vincent Blondel showed that when the underlying automaton is not deter-
ministic, checking path-completeness of a labeled directed graph is an NP-hard
problem (personal communication). In general, the problem of deciding whether
a non-deterministic finite automaton accepts all finite words is known to be
PSPACE-complete [61, p. 265]. However, we are yet to investigate whether the
same is true for automata arising from path-complete graphs which have a little
more structure. At the moment, the NP-hardness proof of Blondel remains as the
strongest negative result we have on this problem. Of course, the step of checking
path-completeness of a graph is done offline and prior to the run of our algo-
rithms for approximating the JSR. Therefore, while checking path-completeness
is in general difficult, the approximation algorithms that we presented indeed run
in polynomial time since they work with a fixed (a priori chosen) path-complete
graph. Nevertheless, the question on complexity of checking path-completeness
is interesting in many other settings, e.g., when deciding whether a given set of
Lyapunov inequalities imply stability of an arbitrary switched system.

Some other interesting questions that can be explored in the future are the
following. What are some other classes of path-complete graphs that lead to new
techniques for proving stability of switched systems? How can we compare the
performance of different path-complete graphs in a systematic way? Given a set
of matrices, a class of Lyapunov functions, and a fixed size for the graph, can
we efficiently come up with the least conservative topology of a path-complete
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graph? Within the framework that we proposed, do all the Lyapunov inequalities
that prove stability come from path-complete graphs? What are the analogues of
the results of this chapter for continuous time switched systems? To what extent
do the results carry over to the synthesis (controller design) problem for switched
systems? These questions and several others show potential for much follow-up
work on path-complete graph Lyapunov functions.
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