65 research outputs found

    Partially Instantiated Representations for Automated Planning

    Get PDF

    Proving the power of postselection

    Full text link
    It is a widely believed, though unproven, conjecture that the capability of postselection increases the language recognition power of both probabilistic and quantum polynomial-time computers. It is also unknown whether polynomial-time quantum machines with postselection are more powerful than their probabilistic counterparts with the same resource restrictions. We approach these problems by imposing additional constraints on the resources to be used by the computer, and are able to prove for the first time that postselection does augment the computational power of both classical and quantum computers, and that quantum does outperform probabilistic in this context, under simultaneous time and space bounds in a certain range. We also look at postselected versions of space-bounded classes, as well as those corresponding to error-free and one-sided error recognition, and provide classical characterizations. It is shown that NL\mathsf{NL} would equal RL\mathsf{RL} if the randomized machines had the postselection capability.Comment: 26 pages. This is a heavily improved version of arXiv:1102.066

    Classical and quantum Merlin-Arthur automata

    Full text link
    We introduce Merlin-Arthur (MA) automata as Merlin provides a single certificate and it is scanned by Arthur before reading the input. We define Merlin-Arthur deterministic, probabilistic, and quantum finite state automata (resp., MA-DFAs, MA-PFAs, MA-QFAs) and postselecting MA-PFAs and MA-QFAs (resp., MA-PostPFA and MA-PostQFA). We obtain several results using different certificate lengths. We show that MA-DFAs use constant length certificates, and they are equivalent to multi-entry DFAs. Thus, they recognize all and only regular languages but can be exponential and polynomial state efficient over binary and unary languages, respectively. With sublinear length certificates, MA-PFAs can recognize several nonstochastic unary languages with cutpoint 1/2. With linear length certificates, MA-PostPFAs recognize the same nonstochastic unary languages with bounded error. With arbitrarily long certificates, bounded-error MA-PostPFAs verify every unary decidable language. With sublinear length certificates, bounded-error MA-PostQFAs verify several nonstochastic unary languages. With linear length certificates, they can verify every unary language and some NP-complete binary languages. With exponential length certificates, they can verify every binary language.Comment: 14 page

    Randomness, information encoding, and shape replication in various models of DNA-inspired self-assembly

    Get PDF
    Self-assembly is the process by which simple, unorganized components autonomously combine to form larger, more complex structures. Researchers are turning to self-assembly technology for the design of ever smaller, more complex, and precise nanoscale devices, and as an emerging fundamental tool for nanotechnology. We introduce the robust random number generation problem, the problem of encoding a target string of bits in the form of a bit string pad, and the problem of shape replication in various models of tile-based self-assembly. Also included are preliminary results in each of these directions with discussion of possible future work directions

    Military Space Mission Design and Analysis in a Multi-Body Environment: An Investigation of High-Altitude Orbits as Alternative Transfer Paths, Parking Orbits for Reconstitution, and Unconventional Mission Orbits

    Get PDF
    High-altitude satellite trajectories are analyzed in the Earth-Moon circular restricted three-body problem. The equations of motion for this dynamical model possess no known closed-form analytical solution; therefore, numerical methods are employed. To gain insight into the dynamics of high-altitude trajectories in this multi-body dynamical environment, periapsis Poincare\u27 maps are generated at particular values of the Jacobi Constant. These maps are employed as visual aids to generate initial guesses for orbital transfers and to determine the predictability of the long term behavior of a spacecraft\u27s trajectory. Results of the current investigation demonstrate that high-altitude transfers may be performed for comparable, and in some cases less, V than conventional transfers. Additionally, transfers are found that are more timely than a launch-on-demand capability that requires 30 days lead time. The ability of satellites in such orbits to provide remote sensing coverage of the surface of the Earth is also assessed and found to be low relative to that of a satellite at geostationary altitude (35,786 km); however, intervals of high performance exist. The current investigation demonstrates not only the potential utility of high-altitude satellite trajectories for military applications but also an effective implementation of methods from dynamical systems theory

    Concurrent Probabilistic Simulation of High Temperature Composite Structural Response

    Get PDF
    A computational structural/material analysis and design tool which would meet industry's future demand for expedience and reduced cost is presented. This unique software 'GENOA' is dedicated to parallel and high speed analysis to perform probabilistic evaluation of high temperature composite response of aerospace systems. The development is based on detailed integration and modification of diverse fields of specialized analysis techniques and mathematical models to combine their latest innovative capabilities into a commercially viable software package. The technique is specifically designed to exploit the availability of processors to perform computationally intense probabilistic analysis assessing uncertainties in structural reliability analysis and composite micromechanics. The primary objectives which were achieved in performing the development were: (1) Utilization of the power of parallel processing and static/dynamic load balancing optimization to make the complex simulation of structure, material and processing of high temperature composite affordable; (2) Computational integration and synchronization of probabilistic mathematics, structural/material mechanics and parallel computing; (3) Implementation of an innovative multi-level domain decomposition technique to identify the inherent parallelism, and increasing convergence rates through high- and low-level processor assignment; (4) Creating the framework for Portable Paralleled architecture for the machine independent Multi Instruction Multi Data, (MIMD), Single Instruction Multi Data (SIMD), hybrid and distributed workstation type of computers; and (5) Market evaluation. The results of Phase-2 effort provides a good basis for continuation and warrants Phase-3 government, and industry partnership

    Frontiers of Membrane Computing: Open Problems and Research Topics

    Get PDF
    This is a list of open problems and research topics collected after the Twelfth Conference on Membrane Computing, CMC 2012 (Fontainebleau, France (23 - 26 August 2011), meant initially to be a working material for Tenth Brainstorming Week on Membrane Computing, Sevilla, Spain (January 30 - February 3, 2012). The result was circulated in several versions before the brainstorming and then modified according to the discussions held in Sevilla and according to the progresses made during the meeting. In the present form, the list gives an image about key research directions currently active in membrane computing
    corecore