
Data-Driven Programming Abstractions
and Optimization for Multi-Core

Platforms

Rebecca L. Collins

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c©2011

Rebecca L. Collins

All Rights Reserved

ABSTRACT

Data-Driven Programming Abstractions
and Optimization for Multi-Core

Platforms

Rebecca L. Collins

Multi-core platforms have spread to all corners of the computing industry, and trends

in design and power indicate that the shift to multi-core will become even wider-

spread in the future. As the number of cores on a chip rises, the complexity of

memory systems and on-chip interconnects increases drastically. The programmer

inherits this complexity in the form of new responsibilities for task decomposition,

synchronization, and data movement within an application, which hitherto have been

concealed by complex processing pipelines or deemed unimportant since tasks were

largely executed sequentially. To some extent, the need for explicit parallel pro-

gramming is inevitable, due to limits in the instruction-level parallelism that can be

automatically extracted from a program. However, these challenges create a great

opportunity for the development of new programming abstractions which hide the

low-level architectural complexity while exposing intuitive high-level mechanisms for

expressing parallelism.

Many models of parallel programming fall into the category of data-centric models,

where the structure of an application depends on the role of data and communication

in the relationships between tasks. The utilization of the inter-core communication

networks and effective scaling to large data sets are decidedly important in designing

efficient implementations of parallel applications. The questions of how many low-level

architectural details should be exposed to the programmer, and how much parallelism

in an application a programmer should expose to the compiler remain open-ended,

with different answers depending on the architecture and the application in ques-

tion. I propose that the key to unlocking the capabilities of multi-core platforms

is the development of abstractions and optimizations which match the patterns of

data movement in applications with the inter-core communication capabilities of the

platforms.

After a comparative analysis that confirms and stresses the importance of finding

a good match between the programming abstraction, the application, and the archi-

tecture, this dissertation proposes two techniques that showcase the power of leverag-

ing data dependency patterns in parallel performance optimizations. Flexible Filters

dynamically balance load in stream programs by creating flexibility in the runtime

data flow through the addition of redundant stream filters. This technique combines a

static mapping with dynamic flow control to achieve light-weight, distributed and scal-

able throughput optimization. The properties of stream communication, i.e., FIFO

pipes, enable flexible filters by exposing the backpressure dependencies between tasks.

Next, I present Huckleberry, a novel recursive programming abstraction developed in

order to allow programmers to expose data locality in divide-and-conquer algorithms

at a high level of abstraction. Huckleberry automatically converts sequential recur-

sive functions with explicit data partitioning into parallel implementations that can

be ported across changes in the underlying architecture including the number of cores

and the amount of on-chip memory. I then present a performance model for multi-

core applications which provides an efficient means to evaluate the trade-offs between

the computational and communication requirements of applications together with the

hardware resources of a target multi-core architecture. The model encompasses all

data-driven abstractions that can be reduced to a task graph representation and is

extensible to performance techniques such as Flexible Filters that alter an applica-

tion’s original task graph. Flexible Filters and Huckleberry address the challenges of

parallel programming on multi-core architectures by taking advantage of properties

specific to the stream and recursive paradigms, and the performance model creates

a unifying framework based on the communication between tasks in parallel appli-

cations. Combined, these contributions demonstrate that specialization with respect

to communication patterns enhances the ability of parallel programming abstractions

and optimizations to harvest the power of multi-core platforms.

Table of Contents

1 Introduction 1

1.1 Terminology . 2

1.2 Problem Statement . 3

1.3 Requirements . 5

1.4 Hypothesis . 6

1.5 Thesis Outline . 7

2 Background 10

2.1 Multi-Core Platforms . 10

2.1.1 Heterogeneous Architectures: IBM/Sony/Toshiba Cell BE . . 11

2.1.2 Graphics Processing Units: NVidia GeForce 8800 GTX 13

2.1.3 Tiled Architectures: Tilera TILE64 15

2.1.4 General-Purpose Architectures: Intel Core i7 16

2.2 Parallel Programming Models . 17

2.2.1 Threads . 19

2.2.2 Message Passing . 20

2.2.3 Graphics Languages . 21

2.2.4 SPMD . 21

2.2.5 Stream Programming . 23

2.2.6 Recursive Parallel Programming 24

2.2.7 Map-Reduce . 25

i

2.3 Programming Patterns . 26

3 An Empirical Comparison of Two Multi-Core Architectures 29

3.1 Benchmark Applications . 31

3.1.1 Option Pricing . 31

3.1.2 Fast-Fourier Transform (FFT) 34

3.1.3 Bitonic Sort . 35

3.1.4 Smith-Waterman Sequence Alignment 36

3.2 Experiments . 38

3.2.1 Option Pricing . 39

3.2.2 Fast-Fourier Transform (FFT) 42

3.2.3 Bitonic Sort . 43

3.2.4 Smith-Waterman Sequence Alignment 45

3.2.5 Discussion . 47

3.3 Related Works . 49

3.4 Summary . 50

4 Flexible Filters: Load Balancing through Backpressure in Streams 53

4.1 Flexible Filters . 57

4.1.1 Pipeline-Aware Mapping . 60

4.2 Implementation of Flex Split and Flex Merge 61

4.2.1 Multi-Channel Flexible Filters 64

4.2.2 Example . 66

4.2.3 Practical Implementation Concerns 70

4.3 Experiments . 71

4.3.1 Benchmarks . 71

4.3.2 Results . 76

4.3.3 Balance of Communication vs. Computation 79

4.3.4 Adapting to Data Dependent Flow 80

ii

4.4 Related Works . 81

4.5 Summary . 83

5 Huckleberry: A Data Partition Abstraction 85

5.1 Huckleberry Programming Interface 89

5.1.1 Partition Library . 90

5.1.2 Example . 91

5.1.3 Optimized Local Code . 93

5.2 Huckleberry Parallel Code Generator 94

5.2.1 Machine Model . 94

5.2.2 Stages of Execution . 95

5.2.3 Example: Traversing the R-Tree 100

5.3 Experiments . 102

5.3.1 Scalability . 104

5.3.2 Problem Granularity . 106

5.3.3 Throughput and the Role of Local Memory 108

5.4 Related Works . 108

5.5 Summary . 110

6 A Performance Model for Multi-Core Applications 111

6.1 Petri Nets . 113

6.2 Compositional Multi-Core Performance Model 114

6.2.1 Tasks . 115

6.2.2 Task Composition . 115

6.2.3 Architecture . 117

6.2.4 Mutual Exclusion . 118

6.2.5 Data Buffering in Pipeline Communication 118

6.2.6 Communication Latency . 119

6.2.7 Flexibility . 121

iii

6.3 Generating a Task Graph from a Recursive Program 122

6.3.1 Off-chip Data Swaps . 127

6.4 Experiments . 128

6.4.1 Mutual Exclusion . 128

6.4.2 Communication Latency . 130

6.4.3 Flexibility . 132

6.5 Composing Different Abstractions . 135

6.6 Related Works . 136

6.7 Summary/Future Avenues of Research 137

7 Conclusions 138

7.1 Contributions . 138

7.2 Future Directions . 140

7.2.1 Parallel Index Function . 141

Bibliography 144

iv

List of Figures

2.1 Cell BE architecture. 12

2.2 GeForce 8800 architecture. 14

3.1 Dependency structure of the binomial option pricing algorithm. . . . 34

3.2 FFT computation on eight input signals. 35

3.3 Structure of the bitonic sort algorithm. 36

3.4 Performance comparison of Monte Carlo simulations for Black-Scholes

option pricing. 40

3.5 Binomial option pricing. 41

3.6 Performance comparison of single-precision 2-D FFT. 42

3.7 Performance comparison of bitonic sort. 44

3.8 Performance comparison of Smith-Waterman sequence alignment. . . 46

3.9 Performance comparison of Cell vs. NVIDIA 8800 GTX. The x-axis

shows the spectrum of computation and communication patterns. Data

points toward the left side are more computation bound; data points

on the right are more communication bound. 47

3.10 Performance comparison of RapidMind vs. platform-specific SDKs. . 49

4.1 Stream graph of the Dedup benchmark application. 54

4.2 Histogram of execution times for Dedup’s Compress filter. 54

4.3 Flexible filter design flow. 56

4.4 Example stream program structure. 57

v

4.5 Pipeline mapping. 58

4.6 Flexible filter mapping. 58

4.7 Example stream graph. 60

4.8 Relationship of flex split and flex merge. 61

4.9 Block diagram of a flexible filter with n output channels. 65

4.10 Two alternatives of a flexible filter with n input channels. 65

4.11 Flexible filter timelines. 67

4.12 Time-line when filter C has a granularity of two tokens per block. . . 69

4.13 Block diagrams of benchmarks used together with their mapping on

the IBM Cell multi-core processor (the non-flexible case). 72

4.14 Profile of tasks for each benchmark. 73

4.15 Gedae trace tables of the VAR benchmark. A core’s timeline is black

when it is busy working on a task. Green and red marks show send

and receive events. 76

4.16 Speedup as the relative cost of a bottleneck filter increases with respect

to the cost of communication. 79

4.17 Histogram of workload per 114 cells, % targets/workload = 7/32µs. . 81

5.1 Wave-front dependency pattern. 86

5.2 Recursive quadrant dependency pattern. 87

5.3 Huckleberry design flow. 88

5.4 Patterns of recursively applied partition methods. 91

5.5 Nested dependencies between bitonic sort recursive functions from Al-

gorithms 3 and 5 (programmer view). 94

5.6 Abstract machine model. 95

5.7 Stages in a Huckleberry-generated parallel application. 96

5.8 The R-Tree of bitonic sort recursive functions (code generator view),

unrolled until the data partition size is two data blocks. 100

5.9 Subset of bitonic sort R-Tree visited by the locality wrapper. 101

vi

5.10 One subset of the bitonic sort R-Tree visited by the concurrency wrap-

per, when there are two cores with a memory capacity of two blocks. 102

5.11 One subset of the bitonic sort R-Tree as visited by the concurrency

wrapper, when there are four cores, each with a memory capacity of

two blocks. 103

5.12 Scaling cores: Speedup when D and mi are fixed and the number N

of available cores scales up. 105

5.13 Scaling task granularity: Speedup when I is constant, but mi is scaled

down, forcing more cores to work on the problem. 106

5.14 Scaling data size: mi remains fixed, while I scales up, normalized w.r.t.

the highest throughput instance in that benchmark. 107

6.1 Example task graph. 115

6.2 Task graph represented as a Petri net. 116

6.3 Modeling mutual exclusion. 119

6.4 Modeling backpressure. 119

6.5 Modeling communication overhead. 120

6.6 Modeling flex split and flex merge. 121

6.7 Incorporating flexibility into the CMCP model. 122

6.8 Modeling flex split and flex merge with multiple channels. 123

6.9 Overall Petri net performance model representation of a stream program.123

6.10 Task graph tree of the Smith-Waterman benchmark. 124

6.11 Row and column stripe mappings on two cores. 125

6.12 Different mappings on four cores. 126

6.13 Multiple stages of the Smith-Waterman benchmark. The feedback loop

ensures that only one data set is active at a time (pipelining the stages

is not the goal in this case). 127

6.14 Estimated vs. actual throughput testing mutual exclusion. 129

6.15 Estimated vs. actual throughput testing alternative mapping options. 130

vii

6.16 Estimated vs. actual throughput for VAR, no communication latency. 131

6.17 Estimated vs. actual throughput for VAR. 132

6.18 Estimated vs. actual speedup across several benchmarks. 133

6.19 Estimated vs. actual throughput for CFAR. 133

6.20 Estimated vs. actual throughput for JPEG. 134

6.21 Estimated vs. actual latency of the CMCP model for Smith-Waterman

on four cores. 134

6.22 Performance comparison of three mappings of a 4x4 task array on four

cores. 135

7.1 Composition with SPMD task blocks. 142

7.2 Composition with reduction task blocks. 143

7.3 Composition with stream task blocks. 143

viii

List of Tables

2.1 Cell BE details. 12

2.2 GeForce 8800 GTX details. 14

2.3 TILE64 details. 15

2.4 Core i7 details. 16

4.1 Baseline pipeline mapping timeline. 66

4.2 Summary of speedup results for benchmarks where one bottleneck filter

is made flexible. 78

6.1 CMCP graph size compared to original task graph. 129

ix

Acknowledgments

First, I would like to give my sincere thanks to my advisor, Luca Carloni, for his

guidance and support through this journey. His amazing energy and optimism are an

example I will forever endeavor to follow. I would also like to thank my committee

members, Keren Bergman, Nadya Bliss, Stephen Edwards, and Martha Kim, for their

time and helpful feedback.

The hardest part about not being a student anymore is that I have to leave the

community that I have belonged to for the last five and a half years and move on

to a new one. Many thanks to all the the members of the CSL who I have worked

with, and who have been there to listen to my practice presentations (sometimes more

than once) and offer feedback. In particular, I would like to thank Cheng-Hong Li,

who worked closely with me on benchmarking multi-cores, Bharadwaj Vellore, who

bravely became the first user and co-developer of Huckleberry, and Nishant Shah,

who worked with me developing Stream applications for the flexible filter project. I

would also like to thank Eugen Schenfeld, my IBM mentor in 2007, who set me up

with training at Gedae, which was essential to the development of flexible filters. I

am also very thankful for the opportunity to participate in WICS, which has been a

wonderful source of moral support, professional development, and great friends.

Finally, and most of all, I would like to thank my family; my parents, for support-

ing me from the beginning in every endeavor that I have attempted, my mother-in-law

for encouraging me to pursue a PhD, my husband Seva, for helping me keep things in

perspective, and my daughter Helen, for being my biggest supporter and for pointing

out that Petri nets are actually many-eyed monsters.

x

To Seva and Helen

xi

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Since the invention of the integrated circuit, the semiconductor industry has succeeded

in doubling the number of transistors on a single chip approximately every two years,

a trend known as Moore’s law [111]. As more resources have been added to the chip,

the processing core has become faster through rising clock rates, deeper pipelines, and

larger caches. However, it is becoming apparent that chasing Moore’s law into the

future will not guarantee continued performance improvements as it has in the past [1;

105]. The strategies that traditionally led to faster cores now offer diminishing returns

at the current scale of technology. For example, deep instruction pipelines that extract

instruction-level parallelism (ILP) are one of the primary innovations that have been

responsible for improved performance as the number of resources on a chip increases.

However, after a certain depth, control flow interferes with the ability to overlap the

execution of different instructions, hindering performance gains. Additional trends

such as the complexity of design verification and power constraints also contribute

obstacles to continuing to design faster cores. To sidestep these challenges, the focus

for improving performance is shifting: rather than make one task run twice as quickly

on a faster core, the goal instead is to run twice as many tasks in the same time on

two cores [6].

CHAPTER 1. INTRODUCTION 2

Thus, in last ten years multi-core chip architectures have gained in popularity, and

today multi-core platforms permeate the computer industry from high-performance

supercomputers to personal computers and even embedded devices such as smart-

phones [8; 36; 92; 114; 124]. Duplicating a core (or cores) versus making a single core

faster defers the problem of improving program performance to the software designer

by exposing parallelism in the hardware, thus enabling more kinds of parallelism

including task, data, and coarse-grained pipeline parallelism.

1.1 Terminology

This section defines terms used throughout the dissertation.

The terms multi-core architecture, multi-core platform and multi-core system are

used somewhat interchangeably. I distinguish them as follows: a multi-core architec-

ture is a chip which hosts more than one processing core; a multi-core platform, or

multi-core system, is the multi-core chip together with off-chip resources on a single

board (e.g., memory, or even other chips such as the CellBlade Server boards).

A program, or application, represents an algorithm in a programming language and

is part of the implementation. A parallel program is a program separated into tasks

that may be executed concurrently at runtime. The complete implementation of a

parallel program also includes the mapping (or mapping strategy when the mapping

is dynamic) of tasks to cores on the target architecture.

A programming model, or programming abstraction, is a simplification or template

that a programmer can follow in order to create a parallel program. The interface

between the programmer and the model may be implemented, for example, as a

library or language.

A task is equivalent to a function; in other words, a sequence of operations that

work together to accomplish a particular goal. A task may be hierarchical, comprising

several subtasks. There is no hard requirement about how large a task should be and

CHAPTER 1. INTRODUCTION 3

when a task should be split up into subtasks. This decision is part of the overall set

of design decisions for an application, and task granularity may be tuned to suit a

specific target architecture. The process of parallelization aims to split an application

into independent tasks that can be executed concurrently and that equally distribute

the workload. I consider only finite tasks and sets of tasks.

1.2 Problem Statement

The move to multi-core chip design exposes the parallelism of hardware resources

to the programmer rather than hiding it in deep instruction pipelines, leaving the

responsibility to extract parallelism (beyond ILP) to the software. In order to deliver

the performance promised by multi-core design, it is essential that software tools and

techniques are developed that provide this capability.

Unfortunately, many challenges hamper the design of high-performance parallel

code for multi-core architectures. While a linear sequence of tasks performed one

after another may represent a sequential program, a parallel program includes more

than one sequence of tasks that operate in parallel and at times must synchronize

and share data. This change significantly increases the complexity of program design

for communication, memory management, scheduling and algorithms.

Communication. Communication complexity includes ensuring correctness in

inter-task synchronization (e.g., avoiding deadlocks and maintaining a correct order-

ing of events). The tedious job of managing lower-level synchronization primitives

such as mutex locks and condition variables often proves prone to human errors. In

addition to ensuring correctness with respect to communication events, the software

must expose the communication structure between tasks and create a task schedule

that balances communication and computation. Situations of imbalance and poor

scheduling result in idle cores and lost performance.

CHAPTER 1. INTRODUCTION 4

Memory Management. Multi-core architectures often distribute memory across

the chip together with the cores and expose many of the memory details to the soft-

ware designer. In some cases, the hardware maintains cache-coherency among the

distributed memory banks, while other cases promote flexibility in how programs

use the memory by leaving coherency optional. In either case, non-uniform mem-

ory access across the chip seems likely in future architectures due to the increasing

latency of sending a signal from one end of the chip to another with respect to the

clock frequency. As with communication, the exposure of lower-level memory details

(e.g., data alignment, direct memory access (DMA) operations, limited local memory

capacity) to the programmer increases the difficulty of creating correct and efficient

programs.

Scheduling. With many cores and many tasks, it is important to schedule the

tasks across the cores so that the load is balanced and the dependencies between

tasks do not cause some cores to be idle frequently. The mapping from program to

multi-core architecture includes not only tasks to cores, but also the mapping of the

communication between tasks to the on-chip communication infrastructure, and the

mapping of data to the memory (in the case of a distributed memory architecture).

Mappings which increase data locality between tasks minimize inter-core data move-

ment and improve communication overhead. However, increased locality sometimes

comes at the cost of decreased concurrency, and vice versa.

Algorithms. Algorithm design must reflect the new constraints, and also break

an application up into tasks that can be executed concurrently. Furthermore, it is

not enough to design an algorithm with a good theoretical complexity. Because of

the additional design constraints, optimizations and design decisions chosen for the

sequential version of an algorithm may not be ideal in a parallel setting. For example,

even though Bitonic Sort’s O(n log2n) complexity is less than ideal for sorting, the

algorithm is often used for parallel sorting because the order of its compare-and-swap

CHAPTER 1. INTRODUCTION 5

operations is not data-dependent, and tasks are evenly sized. Thus, algorithm design

must exercise an awareness of the parallel resources on which software will run.

Additionally, extremely large data sets frequently drive the need for increased

performance over what single core architectures can offer. Algorithms must scale,

both in terms of data size and the number of cores. Often, some parallel algorithms

perform better for smaller data sets while others perform better for larger data sets.

For example, the Fast Fourier Transform libraries written for the Cell SDK switch

between different algorithms depending on the input data size.

1.3 Requirements

Performance, scalability, and programmer productivity are the three necessary com-

ponents of any multi-core programming tool. The search for better performance, e.g.,

more floating-point operations per second, motivates the design of multi-core chips.

Second, each generation of microprocessors increases the number of cores on a single

chip. While most of the commercially available multi-cores today host only tens of

cores or fewer, industry forecasts anticipate that future designs will include hundreds

of cores [6]. Parallel programs must be able to continue to offer improved perfor-

mance and scale with the number of cores, or they will obsolesce in a very short time.

Finally, the complexity of designing a parallel program cannot scale linearly with

the number of cores, or it will quickly become unmanageable. In particular, as the

number of cores approaches the hundreds and thousands, most programmers will be

unable to explicitly manage hundreds of independent tasks. However, programming

tools can reduce this complexity, e.g., by letting a programmer write one task that is

automatically expanded to hundreds.

CHAPTER 1. INTRODUCTION 6

1.4 Hypothesis

My hypothesis is that the right level of abstraction can simplify the challenges of pro-

gramming multi-core systems, while still providing an acceptable level of performance

and scalability. A programming abstraction supplies a simplification or template that

a programmer can follow in order to create a parallel program. An abstraction can

be defined by (1) what it requires of the programmer, (2) what it exposes to the

programmer about the underlying multi-core platform, and (3) what it hides. High-

level abstractions, which hide more and expose less, are easier for the programmer,

and thus improve design time and productivity, but offer less flexibility. In contrast,

low-level abstractions, which hide less and expose more, provide a greater amount of

flexibility and potentially better performance, but at the cost of the programmer’s

time. A good abstraction hides details that the compiler handles better than humans

and exposes details that humans handle better than compilers to enable a productive

collaboration that creates high-performance programs rapidly.

The question: What can be reasonably asked of a programmer? depends on the

context of the application being written, and also on the experience and skill set

of the programmer. In my experience as a programmer, I believe that reasonable

expectations include an understanding of the structure and dependencies of an al-

gorithm, what kind of data is used, and what role the data plays in the algorithm.

Essentially, the programmer must master all of the application-dependent details.

Details that are platform-dependent, such as explicit memory management and data

alignment, are better left to compilers as well as issues that are common to all or

many parallel programs such as mutual exclusion locks. Automated tools may also

mitigate algorithm-specific aspects of the implementation when those aspects can be

abstracted into patterns common to more than one algorithm, for example, a pattern

for breaking an application up into independent subtasks. However, note that task

granularity, i.e., the size of an application’s subtasks, differs from the decomposition

CHAPTER 1. INTRODUCTION 7

pattern of an algorithm because task granularity depends on platform features such

as the number of cores and their communication infrastructure.

1.5 Thesis Outline

This dissertation presents techniques to enhance throughput performance on appli-

cations for multi-core platforms. These approaches make it easier to write parallel

programs and to optimize them once they are written. I use a variety of programming

abstractions throughout the dissertation, and endeavor to uncover the needs of appli-

cations by including many benchmarks implemented on real systems with the tools

that I have developed. What unifies the different programming techniques and ab-

stractions is that they expose the role of data in applications. While this might seem

like a very general statement, the utilization of the on-chip interconnect and memory

systems is very important in creating efficient programs. Moreover, the chips them-

selves are collections of computational, communication and memory units. At some

level (perhaps not the level of the programming abstraction, but as a later result

of a compilation) every program is converted to a collection of computational tasks,

communication events and pieces of data in order to be mapped to the chips. The

different abstractions expose this in different ways to the programmer. My thesis is

that the key to unlocking the capabilities of multi-core platforms is the development

of abstractions and optimizations which match the patterns of data movement in the

applications with the inter-core communication capabilities of the platforms.

The rest of this section summarizes the chapters of the dissertation.

Chapter 2 surveys the landscape of multi-core hardware platforms, parallel pro-

gramming models and parallel application design patterns, and shows that there is

great diversity in each space. An efficient implementation of a program on a multi-

core platform requires a synergy between these three areas, and application design is

challenging since there are so many choices.

CHAPTER 1. INTRODUCTION 8

Chapter 3 measures a suite of five benchmarks on two high-end multi-core plat-

forms, the Cell Broadband Engine processor and the NVIDIA GeForce 8800 GTX

GPU. The benchmark tests make comparisons along two lines: first, they compare

the two architectures; and second, they compare the performance of low-level vs. high-

level programming abstractions. In particular, I compare platform-specific toolkits

to RapidMind, a portable single program multiple data (SPMD) language. No plat-

form emerges the winner; instead, each demonstrates strengths in certain areas and

is found to be more suitable for certain benchmarks. Similarly, the SPMD abstrac-

tion proves very effective for some benchmarks and platforms, but less beneficial for

others.

Chapter 4 presents flexible filters, a load-balancing optimization technique for

stream programs. Flexible filters utilize the programmability of the cores in order

to improve throughput of individual bottleneck tasks by “borrowing” resources from

neighbors in the stream. An application-independent implementation of flexible filters

is empirically evaluated on several stream benchmarks. The strength of flexible filters

is in their simplicity. Their basic function is very straightforward, and they do not

introduce heavy-weight runtime systems. Rather, all runtime load-balancing decisions

are distributed among the cores and based on pipeline backpressure which is already

present to prevent buffer overflows.

Chapter 5 proposes Huckleberry, a novel recursive programming abstraction based

on data partitioning. Huckleberry abstracts the problem of breaking a program up

into independent tasks, and instead requires explicit data partitioning with the Huck-

leberry partition library. Unlike stream programs, where all dependencies are the

result of the stream structure (i.e., waiting to send or receive data along a com-

munication channel), in recursive Huckleberry programs dependencies are detected

dynamically at runtime and data movement is the result of the dependencies that

are detected. Huckleberry’s parallel code generator automatically parallelizes and

CHAPTER 1. INTRODUCTION 9

distributes recursive tasks which can locally detect dependencies between each other

and synchronize accordingly.

Chapter 6 proposes a unifying task graph framework for all data-driven program-

ming abstractions together with a Petri net performance model that captures the

behavior of programs. A task graph separates a program into tasks and the commu-

nication dependencies between those tasks.

Chapter 7 concludes and outlines future directions of possible research.

CHAPTER 2. BACKGROUND 10

Chapter 2

Background

In order to effectively harness the resources of a multi-core system, there must be

synergy among the architectural platform, the programming model and the applica-

tion being executed. Great diversity characterizes all three of these key components.

This chapter provides a survey of various platforms, programming models and bench-

mark applications in use today, several of which will be revisited in the experiments

presented in later chapters.

2.1 Multi-Core Platforms

There are a wide range of multi-core platforms available both commercially and in

research. These platforms vary based on the following architectural features:

• Cores. Homogeneous platforms replicate the same core across the chip, which

reduces design time since architects only need to design the core once. Hetero-

geneous platforms specialize different cores to different types of tasks in order

to optimize performance. The complexity of the cores is another facet of the

design. Some platforms include a very large number of simple computing units,

organizing them to accomplish complicated tasks; for example, GPUs and poly-

morphous platforms [35; 110].

CHAPTER 2. BACKGROUND 11

• Memory Model. A multi-core platform’s memory model may physically dis-

tribute level-1 caches and private scratch-pad memory banks to the cores, and

the cores may share lower-level caches as well. Some multi-cores provide cache

coherency while others leave coherency up to the software.

• Interconnect. The communication infrastructure on the chip is gaining impor-

tance in chip design as more computational units are added to the chip and

need to communicate with each other. One example is a tiled packet-switched

network; when one core wants to communicate with another, that core may

route data across the chip through one of several possible paths depending on

the current network traffic. Shared network resources maximize the use of over-

all bandwidth while reducing the space taken up by wires. There are many

other interconnect possibilities. Compared to the communication networks of

distributed parallel systems (e.g., clusters), on-chip interconnects have higher

throughput and lower latency.

• Purpose. The degree to which a platform suits different application spaces also

varies. At one extreme, general-purpose multi-cores can be used with the widest

range of applications; however, multi-cores with a more narrow scope designed

for a particular application space provide better performance in that space (e.g.,

Anton is specialized for large scale molecular dynamics simulations [114]).

The rest of this section examines four multi-core architectures representing het-

erogeneous architectures, graphics processing units, tiled architectures and general-

purpose architectures.

2.1.1 Heterogeneous Architectures: IBM/Sony/Toshiba Cell

BE

The Cell Broadband Engine architecture is a heterogeneous multi-core system-on-

chip originally designed for high-performance embedded applications [71; 74; 98; 104].

Originally designed for the PlayStation 3 game console, Cell processors currently

CHAPTER 2. BACKGROUND 12

Figure 2.1: Cell BE architecture.

Cores 1 PowerPC, 8 SIMD

Memory Model 256KB private local memory per core; 512 L2 shared

Interconnect 4 circuit-switched rings

Purpose gaming, high-performance computing

Table 2.1: Cell BE details.

compose two thirds of the processors in IBM Roadrunner, the fastest supercomputer

in the Top500’s list in 2008 [8]. Both IBM and Mercury Computer Systems developed

high-performance servers to host Cell chips, which are used for a wide variety of

applications, from physics to finance [2; 85; 118]. Cell also shares many architectural

similarities with chips used in Anton, including: 128-bit registers, SIMD operations,

local scratch-pad memories and DMA transfers [114].

The Cell BE features eight synergistic processing elements (SPE) and one dual-

threaded 64-bit PowerPC processor (PPE). Heterogeneous architectures specialize

different cores to different tasks. In this case, the Cell architecture specializes the PPE

CHAPTER 2. BACKGROUND 13

for sequential code, and the SPEs for vector operations. Each SPE contains a single

instruction multiple data (SIMD) processor operating on entries of 128-bit registers;

an operation may, for instance, organize a register as a vector of four 32-bit integers.

Each SPE core operates on a local store memory of 256KB. Each core’s local store

holds both application data and code. The hardware does not supply cache coherency

between the local stores; rather, software must manage data transfers between cores

and to main memory via direct memory access (DMA) operations.

The Cell BE has a powerful on-chip network for inter-core communication, called

the Element Interconnect Bus (EIB), made up of four circuit-switched rings [4;

79]. Two rings transfer data in one direction and two transfer data in the opposite

direction, and the data arbiter only schedules data transfer circuits which take up half

of a ring or less. Each ring supports up to three concurrent, non-overlapping data

transfers. The EIB supports an on-chip communication bandwidth of over 200 GB/s,

and the main memory uses an XDR RAM interface with a 25.6 GB/s bandwidth.

Much of the underlying architecture of Cell is exposed to the programmer, in-

cluding the SIMD vector operations of the SPEs, the non-shared memory model,

and the DMA data-transfer mechanisms. These features have made it notoriously

difficult to program, but popular with programmers who seek extremely high perfor-

mance because they can tune and optimize its resources at a very low level. I use

the Cell in many of my experiments. In addition to being very flexible and tunable,

the platform provides predictable performance results, in part because of the lack

of hardware cache coherency operations and because the SPEs do not have complex

branch prediction mechanisms.

2.1.2 Graphics Processing Units: NVidia GeForce 8800 GTX

Graphics Processing Units are specialized for graphics applications and have massive

floating-point computation performance. Though originally intended for applications

such as 3D image rendering, GPUs are now programmable and able to be applied

CHAPTER 2. BACKGROUND 14

Figure 2.2: GeForce 8800 architecture.

Cores 128 “stream” processors clustered in 8 multiprocessors

Memory Model 16KB L1 per multiprocessor, L2 shared (size unknown)

Interconnect communicate through shared memory

Purpose graphics processing

Table 2.2: GeForce 8800 GTX details.

to any application that would benefit from their powerful computational abilities.

Programming support (e.g., CUDA and OpenCL) is simultaneously being developed

to open these platforms up to programmers who are not graphics specialists [33; 78],

and general-purpose programming on GPUs (GPGPU) is gaining in popularity [84;

101]. The NVidia GeForce 8800 GTX is an example of a high-end programmable

GPU with massive floating-point computation performance [35].

Figure 2.2 shows the high-level architecture of the GeForce 8800 GPU. It has 128

programmable processing units, called stream processors (SP), running at a clock

rate of 1.5GHz. The GeForce 8800 architecture connects 768 MB of external memory

CHAPTER 2. BACKGROUND 15

Cores 64, tiled homogeneous

Memory Model local L1 and L2 caches, virtual L3 combines L2 caches

(5MB on-chip cache total)

Interconnect routed packet-switched network

Purpose stream processing, networking, multimedia

Table 2.3: TILE64 details.

to the SPs by several links with an aggregated maximum bandwidth of 86.4 GB/sec.

The architecture divides the SPs into 16 groups, called multiprocessors, each with

8 SPs. The SPs in one group execute instructions in a SIMD fashion, i.e., at every

clock cycle they execute the same instruction on different data. If a branch instruction

changes the fetch direction of some, but not all of the SPs of the same group, the

execution of instructions of the two different basic blocks will be serialized (leading

some SPs to stall). The SPs of the same multiprocessor communicate with each

other through on-chip shared memory. Global communication between processing

units across multiprocessor boundaries is only possible through a shared location

in the external memory. This limits the performance of applications that present

complex communication patterns.

The large number of floating point units on GPUs offer massive parallelism and

enable unconventional parallelization strategies. For example, the GPU thread man-

ager (not shown in Fig. 2.2) may aggressively speculate by forking a separate thread

for each branch, and then running them in parallel until it is known which branch is

the correct one.

2.1.3 Tiled Architectures: Tilera TILE64

Tilera’s TILE64 architecture is an example of a tiled multi-core architecture. The

Tilera Corporation descends from MIT’s RAW processor project [36; 120]. Each tile

CHAPTER 2. BACKGROUND 16

Cores 2-8, homogeneous

Memory Model 32KB L1 instr, 32KB L1 data, 256KB L2 per core; 4-

8MB L3 shared

Interconnect point-to-point

Purpose general-purpose

Table 2.4: Core i7 details.

includes a processor, L1 and L2 caches, and a network switch. The tiled design and

routed network interconnect simplify the design complexity (since the tiles which each

include a core and network are replicas) and guarantee hardware scalability (since the

percent of the chip devoted to the network scales linearly with the number of tiles).

The RAW processor, an academic research platform, does not support hardware cache

coherency, and can be programmed with C, Fortran and StreamIt [121]. The TILE64,

in contrast, does provide hardware cache coherency and supports object-oriented

C++ in addition to C. WaveScalar is another example of a tiled architecture [117].

2.1.4 General-Purpose Architectures: Intel Core i7

General-purpose multi-core architectures build on single core general-purpose archi-

tectures, and include all of the platform features that are customarily available in their

single core counterparts, including deeply pipelined cores, and multi-level caches with

hardware cache coherency [92; 93]. These architectures support widely used thread

libraries such as POSIX threads. In addition, though they tend to have fewer cores

in comparison with GPUs and tiled architectures, the cores they do have are more

powerful, performing very well on the sequential parts of applications.

CHAPTER 2. BACKGROUND 17

2.2 Parallel Programming Models

Programming models (also called programming abstractions) for multi-core platforms

exhibit as much variation as the architectures. Parallel programming has been used

for many years in supercomputers, clusters, and multithreaded processors. What is

different about multi-cores is the high-performance inter-core communication avail-

able to them. Inter-core communication achieves extremely low latency and high

throughput compared to more traditional parallel systems, and thus parallel pro-

gramming must be reconsidered with respect to the new balance of communica-

tion and computation present in these newer systems. Programming models may

be realized as either a separate programming language (such as StreamIt [121])

or as a library or extension on top of an existing language (often C [14; 29; 47;

90]). As noted in the Chapter 1, I distinguish a programming model based on (1)

what it requires of the programmer, (2) what its abstraction exposes to the program-

mer, and (3) what it hides.

A programming model might hide or expose aspects of the underlying architecture

such as the number of cores, the memory model, and properties of the interconnect.

More conceptually, the model may either hide or expose different kinds of parallelism.

Data parallelism applies the same operation to many different data instances concur-

rently with no dependencies between them. Pipeline parallelism splits an operation

into a sequence of pipelined tasks which may work at the same time on different data

as the data passes through the pipeline. Last, task parallelism splits an operation

into a data flow of tasks which may include complex control flow such as splits, joins,

and feedback loops. Two tasks may work separately on different data that will later

be joined in the final result.

Generally, high-level abstractions optimize programmer productivity, since they

enable faster design and debugging of an application. But lower-level abstractions

optimize performance, since they expose more of the capabilities of the underlying

resources and are more flexible. However, although low-level abstractions may pro-

CHAPTER 2. BACKGROUND 18

vide the potential for the best performance, that potential will remain untapped if

programmers cannot manage the burden of orchestrating all of the lower-level details

of an architecture. Thus, higher levels of abstraction may alleviate the increasing

complexity of multi-core architectures. And high-level abstractions do not neces-

sarily preclude high performance. In particular, the restrictions of domain-specific

abstractions correspond exactly to the capabilities and resources that are not needed

within the target domain. As a bonus, if the communication structure of an ap-

plication from another domain does match that of an application within the target

domain, then it may work equally well in that setting (e.g., GPUs for non-graphics

applications [101]). A given parallel programming model will often match up well

to a particular hardware platform (or family of platforms). Likewise, models also

match better to certain applications than others, so that an implementation of an

application is a three-way match between the application, the programming model,

and the hardware architecture.

Each section below describes a general programming model, including languages

and libraries that utilize that model. I do not attempt to be fully inclusive of the

extensive literature on this topic, but to hit the main points, with an emphasis on

data-driven models. That is, models that capture the data movement within an appli-

cation. The prevalence across many applications of a focus on inter-task dependencies,

the balance of communication and computation, and throughput-based performance

metrics underscores the importance of data movement. Focussing on how models

handle data movement also highlights similarities in the different models.

This survey of parallel programming models will begin with lower-level parallel-

programming abstractions: threads and message passing, which are well developed,

having been used for many years on parallel platforms other than multi-cores. I

categorize them as “low-level” because they expose tools for composing concurrent

tasks (mutex locks, messages, etc.) without providing abstraction to the programmer

outside of the memory model: threads typically imply shared memory, while message

CHAPTER 2. BACKGROUND 19

passing typically implies distributed memory. Higher-level parallel abstractions are

sometimes built on top of these models.

2.2.1 Threads

Many mainstream programming languages support threads, which provide one of the

more expressive parallel programming models. Threads communicate through shared

data structures, which abstract the underlying memory architecture from the pro-

grammer and work well for architectures with hardware cache coherency, but may

not match well to other architectures. Threads traditionally require the program-

mer to explicitly program each parallel thread separately and to manage their syn-

chronization, which can be cumbersome and error-prone. Synchronization primitives

include locks, condition variables and semaphores. Many systems support POSIX

threads (pthreads), the IEEE threads standard [19]. Several newer threading lan-

guages (Cilk, CUDA and Intel Threading Building Blocks) for multi-cores retain the

parallel model of threads while abstracting away locks, synchronization, and other

low-level details [14; 30; 66].

Cilk is a language specialized for dynamic, asynchronous parallelism [14]. The

Cilk model expects the programmer to expose parallelism in an application while the

compiler and run-time system manage performance details such as load balancing and

managing the memory and inter-task communication. Cilk adds thread keywords such

as cilk, spawn and sink to the C language. These keywords annotate C functions to

expose parallelism. For example, the cilk keyword identifies parallelizable functions

and the spawn keyword identifies subroutines that may potentially be forked off as

separate threads. Removing all Cilk keywords produces a C elision of the code, i.e., a

valid sequential C program. Thus, the programmer may annotate where the code may

be forked as separate threads, but the runtime system manages the forking, joining

and synchronization of threads.

CHAPTER 2. BACKGROUND 20

The Compute Unified Device Architecture (CUDA) is a thread-based programming

interface and environment developed by NVIDIA for general-purpose programming

of its own GPUs [66]. The CUDA language abstracts the GPU hardware so that

language features do not rely on a particular hardware configuration, and software

may be easily ported to new GPU architectures. Programmers do not explicitly

manage threads in a CUDA application; instead, they write with parallel operations

through the CUDA API and the hardware thread manager handles the threading

aspect of the program, which may reach thousands of threads. By handling the

low level synchronization, the hardware guarantees that there are no deadlocks. For

example, the SPMD CUDA operation SAXPY performs ax + y on two arrays x and

y, with constant a. CUDA does expose tunability to programmers over the number of

threads to be created and their division within and across the multiprocessor groups.

2.2.2 Message Passing

Message passing is another widespread general-purpose approach, where parallel tasks

communicate through messages which can act like communication pipes; this matches

well to distributed memory architectures. Like threads, message passing also requires

the programmer to be responsible for explicitly programming the parallel tasks. The

Message Passing Interface (MPI) is a widely accepted standard for message pass-

ing that supports both point-to-point and collective communication operations [68].

The Cell Software Development Kit (SDK) supports Cell-specific message passing

operations, and work has been done to implement the MPI standard on the Cell

BE [100]; however the standard MPI library is not readily available on all multi-core

architectures, for instance, on GPUs.

SHIM provides a deterministic concurrency message passing model which has

been implemented for both shared memory and distributed memory multi-cores [43;

125]. SHIM’s model guarantees that communication events between tasks occur in a

CHAPTER 2. BACKGROUND 21

deterministic order, eliminating data races and simplifying the debugging of concur-

rency errors such as deadlocks.

2.2.3 Graphics Languages

The Open Graphics Library (OpenGL) is a language specification for programming

graphics hardware [112]. It is specialized to graphics functions, in particular, render-

ing into a framebuffer, and many of its function calls enable the programmer to draw

different types of 2D and 3D objects such as lines and polygons.

The Open Computing Language (OpenCL) is a general-purpose language intended

to help programmers take advantage of the impressive computing capabilities of GPUs

for non-graphics applications [78]. Unlike CUDA, which only supports the family

of NVIDIA GPUs, OpenCL provides an open standard, and supports a variety of

heterogeneous systems, including non-GPU systems. In OpenCL, the programmer

creates kernels, programs portable across OpenCL devices and host programs that

run on a specific host. Before a kernel executes, the OpenCL runtime model defines

the index space of a data set for each kernel instance, and breaks the index space

up into separate work-groups. At runtime, the host executes a variety of operations,

including kernel operations on work-groups, memory operations and synchronization

operations. The flexibility of the programming model allows for different types of

parallelism including data parallelism as well as task parallelism.

2.2.4 SPMD

Single Program Multiple Data (SPMD) programming exploits the data-parallelism of

an application by applying the same code in parallel on separate data, for example,

the elements of an array. A pure SPMD operation involves no inter-core commu-

nication. Therefore this style of parallel programming has been applied to many

parallel systems that do not have low latency inter-core communication, including

wide-area distributed ones like SETI@home. Several startup ventures have designed

CHAPTER 2. BACKGROUND 22

commercial SPMD programming languages in recent years for multi-core platforms

(e.g., RapidMind [90] and PeakStream, acquired by Intel and Google, respectively).

RapidMind grew out of Sh, a tool for programming GPUs intended to both unify

shader programs with their host programs and provide a more general-purpose pro-

gramming platform for GPUs than was previously available [89]. RapidMind provides

C++ libraries that add a few new types: Array, Value, and Program. A programmer

may invoke a RapidMind program with a RapidMind array as input, and the program

will execute separately on each array element. For example, consider the following

snippet of C++ code:

main {

float a[N], b[N];

// ... initialize a[] and b[] ...

for(int i=0; i<N; i++) {

a[i] *= b[i];

}

}

The code above is rewritten in RapidMind by first creating a RapidMind Program,

that can be called as a subroutine:

Program vector_mult = BEGIN {

In<Value1f>a;

In<Value1f>b;

a = a*b;

}

where Value1f indicates that a and b are each floats (Value4f would indicate a vector

of four floats). Next, vector mult replaces the for loop, and a[] and b[] are defined

with RapidMind types.

CHAPTER 2. BACKGROUND 23

main {

Array<1,Value1f> A(N);

Array<1,Value1f> B(N);

// ... initialize values ...

A = vector_mult(A,B);

}

RapidMind automatically parallelizes and distributes the program over the target

platform, hiding platform-specific thread management and data-transfer operations

from the programmer. RapidMind also supports reduction functions, multi-dimensional

Array types, and data views such as shifting or striping for manipulating the arrays.

2.2.5 Stream Programming

Stream processing captures the data flow model of computation, and applies to a

wide range of applications including high-performance embedded applications, signal

processing, image compression, and continuous database queries [20; 42; 113]. The

stream processing abstraction decomposes an application into a sequence of data items

(tokens) and a collection of tasks (referred to as filters or kernels) that operate upon

the stream of tokens as they pass through them. Filters communicate with each other

explicitly by exchanging the tokens through point-to-point communication channels.

Stream programs expose pipeline, data and task parallelism. StreamIt, a language

from the research community, and Gedae, a commercial language, are described below.

StreamIt is a stream language and compiler developed at MIT [121]. A StreamIt

program comprises stream tasks, called filters, which accommodate a single input

and a single output and use push, pop, and peek operations to interact with the

input and output data streams. The language also provides control flow filters to

allow for splits and joins in the stream. StreamIt has been used as a foundation for

research in compiler analysis and optimizations [3; 58; 122]. Other research stream

CHAPTER 2. BACKGROUND 24

projects include the Brook stream language and the Imagine stream processor and

programming model [18; 76].

Gedae [54] is a commercial stream language specialized for embedded signal pro-

cessing applications. Similar to StreamIt, a Gedae application also comprises stream

tasks, called blocks in Gedae, which communicate with each other through commu-

nication pipes. Gedae supports blocks that have more than one input and output

stream. During runtime, a typical Gedae block will fire, consuming a fixed number of

data tokens from its input and producing a fixed number on its output. The language

also provides support for nondeterministic and dynamic streams where the number

of tokens consumed or produced may vary.

Chapter 4 explores the stream abstraction further with flexible filters, a load-

balancing optimization method for stream programs.

2.2.6 Recursive Parallel Programming

Recursive parallel programming models utilize the divide-and-conquer aspect of re-

cursive functions to break a problem up into concurrent tasks, leveraging the hier-

archical nature of the memory hierarchy as well as locality in the application [12;

47; 80; 94]. Many parallel programming systems have used recursive models of par-

allelism because recursion concisely captures patterns of dependencies and exposes

temporal and data locality and is a natural fit for exposing concurrency in a program.

A recursive function corresponds to a hierarchical task graph with a tree topology,

which conveniently separates an application up into a set of balanced tasks. Working

on tasks under one branch of the task graph at a time promotes data locality between

concurrently executing tasks. Furthermore, increasing or decreasing the depth of the

tree can tune the task granularity by adjusting the size of leaf tasks.

Recursive parallel programming models for vector processors were developed in

the late 1980s and early 1990s [12; 59]. Unlike multi-core architectures today, these

systems presented relatively high inter-node communication costs (throughput around

CHAPTER 2. BACKGROUND 25

1 Gbps and application-level latency at 40-100 microseconds), and the implementation

of the model on such a system reflected these constraints. For example, the divide-

and-conquer Algorithmic Skeleton is implemented with SPMD parallelization based

on the powerlist data structure [24; 94].

More recent works that target multi-core architectures typically rely on compil-

ers for parallelization. For example, compilers can parallelize divide-and-conquer

programs by analyzing memory references to detect dependencies [64; 109]. Some

parallel languages also explicitly expose divide-and-conquer patterns to the compiler.

Cilk also includes support for recursion [14]. The Sequoia programming language

uses hierarchical program design to leverage data locality in the memory hierarchy

of parallel system [47; 80]. In Sequoia, different layers of the hierarchical tree are

associated with different levels of memory. Sequoia isolates concurrent tasks so that

they do not synchronize, but communicate through their parent task (which may be

mapped to the same core).

Chapter 5 presents Huckleberry, a new recursive programming model developed

as part of my research, and its library and code generator [29]. Huckleberry paral-

lelization relies on explicit data partitioning through Huckleberry’s partition library,

but abstracts the decomposition of algorithms up into concurrent threads.

2.2.7 Map-Reduce

Map-Reduce separates an application into data-parallel map and reduce steps [39].

Google developed the Map-Reduce model for applications which process very large

data sets. The map step breaks the data set up and distributes it among pro-

cessing nodes performing the map operation. The map step produces intermediate

<key,value> pairs and then passes them to the reduce step according to the keys.

The reduce step merges all data with the same key together. The Map-Reduce model

could also be used in multiple map and reduce stages. Phoenix implements Map-

Reduce for shared-memory multi-core platforms [108]. Phoenix creates parallel tasks

CHAPTER 2. BACKGROUND 26

for the map and reduce steps and manages dynamic load balancing across the cores.

The stages of map and reduce execute separately. Phoenix includes built-in fault

recovery for faulty tasks, which are detected through timeouts.

2.3 Programming Patterns

A parallel application is an application made up of more than one task such that

some or all of the tasks are capable of being executed in parallel. Each parallel ap-

plication exhibits a distinct pattern of dependencies among its tasks. Some works

classify applications according to a taxonomy based on their computational require-

ments, communication dependencies, and memory access patterns [6; 24; 88]. These

classifications are called programming patterns. For example, Asonovic et al.’s report,

A View from Berkeley, identifies a number of programming patterns related to the

structure of applications, called “dwarfs” in the report (for example, dense and sparse

linear algebra, N-body methods, map-reduce, graph traversal, dynamic programming,

etc.). In theory, all applications which fall into a category share common properties

and constraints which might be exploited by tools specific to that category. Thus, the

reuse of programming tools optimized for a specific class of applications may mitigate

the task of designing parallel software. The taxonomy of patterns continues to expand

as researchers consider more applications. Indeed, within five years of the original

Berkeley report, the set of seven “dwarfs” grew to thirteen.

The problem of choosing a generalized application classification resembles that

of choosing a programming model. However, an important distinction between the

classification of an application and a programming abstraction is that the same ap-

plication may be implemented using different programming models. For example, the

tools presented in later chapters implement the bitonic sort benchmark both with the

SPMD abstraction and with the recursive programming abstraction.

Several programming patterns from the Berkeley report are highlighted below:

CHAPTER 2. BACKGROUND 27

• Graph Traversal. Graph traversal algorithms work with graph data structures

and require indirect table lookups through memory pointers. Some examples of

graph traversal applications are router lookup in a network, decision trees, and

many graph theory algorithms such as shortest path, vertex cover, etc.

• Dynamic Programming. Dynamic programming problems often favor a

bottom-up approach, which first solves subproblems, saving the results in a

table, and builds up an overall solution from the subproblems. This approach

befits problems that have the optimal substructure property, i.e., an optimal

solution to a problem includes optimal solutions to all of its subproblems as

well [32].

• Dense Linear Algebra. The class of dense linear algebra captures MATLAB-

like functions, where data is densely packed into matrices or vectors. Regular

data access patterns typically characterize dense linear algebra.

• Sparse Linear Algebra. Sparse linear algebra packs data sparsely into ma-

trices and vectors with many zero value elements. The data is often then stored

with compression over blocks of the matrix, and data is accessed through in-

dexed loads and stores.

• Spectral Methods. Spectral methods include functions that operate in the

spectral domain (e.g., FFT converts data to a sum of frequencies, and DCT

converts data to a sum of cosine functions). Transformation to and from the

spectral domain from space and time domains requires all-to-all communication,

often organized in “butterfly” stages where data sharing is symmetric between

two tasks.

• MapReduce (originally Monte Carlo). MapReduce parallel functions com-

prise many independent tasks and little or no inter-task communication. “Em-

barrassingly parallel” workloads fit into this pattern. This pattern captures the

CHAPTER 2. BACKGROUND 28

applications supported by the SPMD model (Sec. 2.2.4), and also the Map-

Reduce model (Sec. 2.2.7), since the tasks within a map or reduce step are

independent from one another.

The categories above correspond to the overall classification of an application (or

function). In an alternative approach to programming patterns, Mattson et al. iden-

tify recurring patterns at several stages along the design flow of a parallel application.

The design space is separated into patterns for (1) finding concurrency, (2) algorithm

structure, (3) supporting structures, and (4) implementation mechanisms. For exam-

ple, the supporting structures design space includes the SPMD, master/worker, loop

parallelism, fork/join, shared data, shared queue, and distributed array patterns.

CHAPTER 3. AN EMPIRICAL COMPARISON OF TWO MULTI-CORE
ARCHITECTURES 29

Chapter 3

An Empirical Comparison of Two

Multi-Core Architectures

Given the diverse range of multi-core architectures (Chapter 2), the question arises:

which one is the best? It is unclear whether there can be a general-purpose multi-

core architecture, i.e., a single architecture that is able to perform reasonably in all

application domains. In particular, no architecture outperforms all others in gaming,

image processing, dense linear programming, and so on. Although parallel bench-

marks are being developed, they typically support different standards; e.g., the PAR-

SEC benchmark suite employs pthreads and OpenMP, while SPEC MPI2007 requires

MPI support [10; 96]. The lack of standardized programming tools at this point in

time prevents a complete head-to-head comparison of two architectures. The reason

there are no standardized programming tools across all platforms is both because the

architectures are relatively new and quickly changing and also because tools are often

designed with a particular architecture and application domain in mind. Because of

these two issues – the diversity of multi-core architectures, and the lack of standard-

ized tools – the evaluation of different platforms is analogous to comparing apples

and oranges.

CHAPTER 3. AN EMPIRICAL COMPARISON OF TWO MULTI-CORE
ARCHITECTURES 30

The diversity of on-chip interconnects further complicates the evaluation of per-

formance on multi-core architectures. For example, the Cell architecture uses circuit

switched rings to connect the cores with very high bandwidth, while NVIDIA GPUs

use small shared memory as the only way for two cores to communicate on-chip.

Given some application, the application’s subtasks will have a dependency structure.

The synchronizations from dependencies and communication between tasks needs to

take place through the interconnect. Because application performance depends on

the efficiency of communication over the network, not just the speed of computation

for individual tasks, finding a good match between the network and the application

dependencies is critical.

Mapping application dependencies down to the interconnect involves two steps.

First, the programmer implements the algorithm with the abstraction provided by

the programming model. Next, the compiler maps the programming abstraction

representation of the application to the available hardware resources. Programming

abstractions that mirror hardware support for different concurrency features are de-

sirable. For example, a model with a shared memory abstraction may be implemented

on either an architecture that provides hardware cache coherency or one that provides

only scratchpad local memories. In either case, an inefficient mapping will result in

lost performance, but an efficient mapping of shared memory will likely be easier for

the compiler when hardware cache coherency is available.

Despite the challenges of comparing multi-core architectures and programming

models, it is nonetheless beneficial to quantify performance so that it is possible to

identify the ideal platform and programming abstraction for a specific application.

Once a successful match between model and application has been made, other ap-

plications of the same programming pattern may also be matched to the model [6;

88].

This chapter presents experiments that compare several benchmarks on two lead-

ing multi-core processors: the Cell BE and NVIDIA GeForce 8800 GTX GPU (GeForce

CHAPTER 3. AN EMPIRICAL COMPARISON OF TWO MULTI-CORE
ARCHITECTURES 31

8800), using several programming tools [25]. The benchmark suite includes applica-

tions which range from computation intensive (e.g., option pricing) to communication

intensive (e.g., sorting). I compare RapidMind, a high-level portable SPMD language,

to low-level architecture-specific software development kits in order to better under-

stand how much performance (if any) is lost when switching from a low-level to a

high-level programming abstraction. The comparison of the Cell versus the GeForce

8800 is a complementary goal since the programming tools must expose and utilize

the features of the platforms. This chapter also provides a detailed description of sev-

eral benchmarks and illustrates the possible range of dependency structures across

multiple applications. The results imply that the Cell BE suits communication-rich

applications, while the GeForce 8800 is stronger for computation-rich applications.

Moreover, the SPMD abstraction works better with GPU architectures than with

streaming architectures like the Cell.

3.1 Benchmark Applications

This section introduces five benchmark applications.

3.1.1 Option Pricing

An option is a right to sell or buy a financial asset at a predetermined price on a

future date. The price of an option is determined by factors such as the current price

of the underlying financial asset, that asset’s volatility, and the timespan between the

current and future date. An option itself can be traded and its price is the discounted

profit made by exercising the option. Two kinds of options are described below:

Black-Scholes options and binomial options. The main difference between the two is

that time is continuous for the Black-Scholes model and discrete for binomial model,

although in some cases, the two models converge (e.g., when there are no dividends).

Black-Scholes options are typically used to price European options, where the option

CHAPTER 3. AN EMPIRICAL COMPARISON OF TWO MULTI-CORE
ARCHITECTURES 32

to buy or sell may only be exercised on the expiration date; binomial options, on

the other hand, are more commonly used to price American options, which may be

exercised at any time up until the expiration date.

Black-Scholes Option Pricing. The Black-Scholes option pricing model as-

sumes that the price fluctuations of the underlying financial asset can be modeled as

geometrical Brownian motion [11; 91]:

dSt = µStdt + vStdWt (3.1)

where St is the asset price at time t, Wt is a Wiener random process, and µ (drift)

and v (volatility) are two constants. Based on Eq. 3.1, the asset price at time T is:

ST = S0e
((µ−0.5v2)T+vT 1/2N(0,1)) (3.2)

where N(0, 1) is a normally-distributed random number between 0 and 1.

Based on Eq. 3.2, Monte Carlo simulations can be applied to estimate the expected

value of ST at a future time T 1. Each simulation consists of the following two steps:

1. generate a normally distributed random number x;

2. replace N(0, 1) in Eq. 3.2 with x to get one price S ′

T .

The average of all the S ′

T ’s obtained at Step 2 is an estimation of the expected value

of ST in Eq. 3.2. For the estimation of the expected ST to converge, a sufficient

number of simulations must be performed. Since all simulations are independent

from each other, they can be exercised by parallel processes between which there is

little communication. Hence, this is an embarrassingly parallel workload that can be

tackled by distributing the various simulations evenly across the processing elements

1 The standard Black-Scholes equation is actually closed-form, and does not require simulation.

However, if any underlying assumptions to the equation are altered, then it may no longer be closed-

form. Other financial benchmarks, such as VAR in Chapter 4, also require normally distributed

random numbers.

CHAPTER 3. AN EMPIRICAL COMPARISON OF TWO MULTI-CORE
ARCHITECTURES 33

of the multi-processor hardware platform. Such a workload represents one extreme

on the spectrum of computation and communication patterns.

Binomial Option Pricing. Binomial option pricing is a discretized version of

Black-Scholes option pricing. Like the Black-Scholes model, the binomial options

model also assumes that the value of the underlying asset follows a Brownian motion.

The binomial option pricing model is popular for American options as mentioned and

also for other cases where no closed-form solution exists.

This is the algorithm for pricing an option with the binomial options model:

• Start at the leaves of a binomial tree. Each leaf has one possible value that the

asset could have after n timesteps. It is assumed that the asset will only go up

or down at a fixed rate during each timestep (let u be the upward factor and d

be the downward factor), so there are n + 1 leaves.

• At the leaves, calculate the value of an option based on the projected value of

the asset. If a leaf has a value of S from the last step, then the value of a call

option (option to buy) at that leaf will be S − X, where X is the strike price

(i.e., price at which the option is exercised).

• Once the value of the option at each of the leaves is determined, work backwards

up the tree calculating each node’s value based on the value of its two children.

Each node has two children since the asset can either go up or down from each

point in time.

• For each layer of the tree calculate the option price until the root of the tree is

reached, which will be given the value of the option at time 0, the current time.

The complexity of this algorithm is O(n2) since a binomial tree is fully traversed;

however, the space required for the calculation is just O(n) since older layers of the

tree can be overwritten as the newer layers are calculated. The dependency structure

is illustrated in Fig. 3.1.

CHAPTER 3. AN EMPIRICAL COMPARISON OF TWO MULTI-CORE
ARCHITECTURES 34

t
0

t
1

t
2

t
3

First, calculate the value of each leaf node

based on the upward/downward change.

Next, work back up the tree to calculate the

value of the option at each step given the

probability of future values.

Time

Figure 3.1: Dependency structure of the binomial option pricing algorithm.

3.1.2 Fast-Fourier Transform (FFT)

Fast Fourier Transform (FFT) is a divide-and-conquer algorithm to compute the

discrete-time Fourier transform (DFT), which converts discrete signals from the time

domain to the frequency domain. Given an input of N discrete signals (x1, x2,

. . . , xN), the DFT (X1, X2, . . . , XN) is defined as follows:

Xk =
N−1∑

n=0

xn e−
2πi
N

nk, k = 0, . . . , N − 1

While a näıve implementation of this convolution requires O(n2) floating point oper-

ations, the FFT requires only O(n log n) of them.

Figure 3.2 illustrates a simple implementation of FFT on eight signals. The input

signals are fed into the left side, and the transformed signals are produced as output

from the right. The FFT is divided into three stages, and each stage has four “but-

terfly” operations, each of which is applied to two signals (this is the so called radix-2

FFT). Since the butterfly operations of a single stage are independent, they can be

executed in parallel. The FFT belongs to the class of spectral methods [6].

The FFT benchmark requires both intensive computational and communication

support from the hardware execution platform. From the computational aspect,

a butterfly operation takes in two inputs and a complex number ω(k), called the

CHAPTER 3. AN EMPIRICAL COMPARISON OF TWO MULTI-CORE
ARCHITECTURES 35

Figure 3.2: FFT computation on eight input signals.

“twiddle factor”, which is the k-th root of unity, and performs two sets of floating

point additions and one set of multiplications. The calculation of each twiddle factor

requires two trigonometric function calls. The communication aspect of FFT is also

very challenging since the inter-core communication pattern changes with each stage

of the algorithm.

3.1.3 Bitonic Sort

Bitonic sort is a popular O(n log2n) sorting algorithm for parallel architectures. Al-

though its complexity is less optimal than O(n log n) sorting algorithms such as merge

sort, bitonic sort is desirable because the order of its compare-and-swap operations is

not dependent on their outcome.

The bitonic sort algorithm uses a divide-and-conquer approach. To sort a list of

elements, the list is broken into two evenly-sized pieces. The two pieces are sorted in

opposite directions and then merged together with the (O(n)) bitonic merge opera-

tion. Bitonic merge works as follows: assuming there are two lists sorted in opposite

directions, first compare-and-swap the first element of the first list to the first element

of the second list; next, compare-and-swap the second element of the first list to the

second element of the second list; etc. Figure 3.3 shows the steps of the bitonic sort

CHAPTER 3. AN EMPIRICAL COMPARISON OF TWO MULTI-CORE
ARCHITECTURES 36

1 7 9 4 3 2 8 6

1 7 9 4 2 3 8 6

1 4 9 7 8 6 2 3

1 4 7 9 8 6 3 2

1 4 3 2 8 6 7 9

1 2 3 4 7 6 8 9

1 2 3 4 6 7 8 9

s t e p 1

s t e p 2

s t e p 3

Figure 3.3: Structure of the bitonic sort algorithm.

algorithm sorting a list of eight integers. In Step 1, every other set of two elements is

sorted in ascending order, and the other sets are sorted in descending order. In Step

2, every other set of four elements is sorted in ascending order, and so on.

Sorting, in general, is a task that requires very little computation, but intensive

data movement. Bitonic sort can be implemented in a variety of ways. A recursive

implementation is intuitive from the divide-and-conquer definition of the algorithm;

however, non-recursive iterative implementations are typically used to avoid the over-

head of recursive function calls.

3.1.4 Smith-Waterman Sequence Alignment

Smith-Waterman sequence alignment is a bioinformatics application that determines

the similarity of two sequences, such as protein sequences [60; 115]. The goal is

CHAPTER 3. AN EMPIRICAL COMPARISON OF TWO MULTI-CORE
ARCHITECTURES 37

to compute a score given a pair of sequences, and this is done by building a two-

dimensional matrix, where the columns correspond to the characters of one sequence

and the rows correspond to the characters of the other sequence.

Given one character from one sequence and one character from the other sequence,

a score matrix determines the similarity of the two characters. If they have a high

similarity, they get a high score. Otherwise they get a low or negative score. The

overall sequence alignment score is built up from the individual character similarity

scores. Gaps are allowed; for example, comparing sequences abbcdabab and ababab,

the following is one possible alignment between them. This alignment skips bcd in

the first sequence.

abbcdabab

ab---abab

It is also possible to align sequences where not every character matches. For example,

comparing abbcdabab and abaabab below, the third character does not match.

abbcdabab

aba--abab

I consider the case where there is a fixed negative cost for starting a gap, and a fixed

cost for extending the gap by one character. There are other schemes for sequence

alignment where the gap cost follows a function, but these cases in general are less

tractable.

To compute the score for an alignment, the algorithm fills the matrix starting at

the upper left corner, m[0][0]. The value for each remaining element, m[i][j], depends

on m[i−1][j],m[i][j−1], and m[i−1][j−1], and the similarity score for the ith element

of the first sequence and the jth element of the second sequence.

Sequential algorithms typically traverse the matrix one row at a time or one

column at a time. However, dependencies between elements of the same row and

column inhibit this approach for parallel algorithms. The most straightforward way

CHAPTER 3. AN EMPIRICAL COMPARISON OF TWO MULTI-CORE
ARCHITECTURES 38

to parallelize the execution of this algorithm is to compute the diagonals one at a

time.

3.2 Experiments

This section presents the experimental comparisons of the Cell BE versus the GeForce

8800, and of RapidMind versus low-level programming tools.

Two Cell platforms are included in the experiments: the IBM Cell blade QS20

equipped with two Cell BE multi-core processors, and the PlayStation 3 with one

Cell processor, of which six SPEs are enabled.

The programming tools used are summarized in the following categories:

• High-level abstractions: RapidMind supports both the GPU and Cell, and is a

high-level SPMD abstraction;

• Mid-level abstraction: CUDA is an NVIDIA GPU-specific thread language;

• Low-level abstraction: The Cell SDK provides a highly tunable Cell-specific

programming tool, and OpenGL provides a graphics programming language for

GPUs.

One goal of these experiments is to understand how much performance is lost when

moving from processor-specific software development kits to a high-level portable

multi-core development platform, which attempts to be a standardized programming

and benchmarking tool across multi-core platforms. The second goal is to compare

the performance of Cell and the GeForce 8800, and understand which architecture

better suits different application domains (outside of the domains for which they are

specially designed – i.e., gaming and graphics, respectively).

Most of the low-level benchmarks are drawn from publicly available hand-tuned

implementations, and represent very good performance for each respective platform.

In contrast, most of the high-level RapidMind implementations were developed by

CHAPTER 3. AN EMPIRICAL COMPARISON OF TWO MULTI-CORE
ARCHITECTURES 39

non-experts over the duration of a summer internship. One exception is the bitonic

sort on Cell RapidMind implementation, which is provided by RapidMind. Note that

although the base RapidMind language is portable, RapidMind implementations for

the Cell and the GeForce 8800 often differ to take advantage of the native SIMD

instructions on both architectures. Furthermore, certain language features are only

available on one of the two architectures, and so some of the benchmarks are not

available through RapidMind on both architectures. The results highlight some of the

challenges and lessons learned from implementing the benchmarks using the SPMD

abstraction. The mid-level CUDA benchmarks are a mix of both publicly available

optimized benchmarks, and in-house implementations.

3.2.1 Option Pricing

Black-Scholes Option Pricing. The experiments for Black-Scholes option pric-

ing include three distinct implementations of Monte Carlo simulations. The three

implementations compute the same pricing of an option, but differ in the way of

generating and transforming random numbers. The first two approaches adopt the

Mersenne-Twister random number generator [87], but use different methods for trans-

forming uniformly distributed random numbers to normally distributed ones. The

third approach uses the Hammersley sequence, a low discrepancy sequence, instead

of pseudo-random numbers2.

Figure 3.4 reports the run time of each implementation for two hundred million

simulations on both the Cell blade and the GeForce 8800. Comparing the perfor-

mance of hardware using platform-specific SDKs, the GeForce 8800 (using CUDA)

outperforms the Cell blade (using Cell SDK) in all three variations of Monte Carlo

simulations by a wide margin. Note that using the Hammersley sequence on the

GeForce 8800 boosts the performance significantly, compared to performances of the

other two approaches based on pseudo-random numbers. This is because the low-

2This is referred to as “quasi Monte Carlo”.

CHAPTER 3. AN EMPIRICAL COMPARISON OF TWO MULTI-CORE
ARCHITECTURES 40

Monte Carlo

Mersenne-Twister

Box-Muller Polar

Monte Carlo

Mersenne-Twister

Box-Muller Cartesian

Quasi Monte Carlo

Hammersley Sequence

Box-Muller Cartesian

0.0

0.1

0.2

0.3

ru
n

ti
m

e
 o

f
2

0
0

M
 s

im
u

la
ti

o
n

s
 (

s
)

Cell SDK, QS20 Cellblade

CUDA, NVIDIA GTX 8800

RM, QS20 Cellblade

RM, NVIDIA GTX 8800

Figure 3.4: Performance comparison of Monte Carlo simulations for Black-Scholes

option pricing.

latency texture memory of GPUs can be exploited to store the read-only lookup

table required by the Hammersley sequence algorithm. However, using the Hammer-

sley sequence is no more advantageous on the Cell processor, which does not provide

such specialized hardware.

Comparing the performance of RapidMind and platform-specific SDKs on the

same hardware, the SDK versions run faster than their corresponding RapidMind

versions both on the Cell and on the GeForce 8800. Note that on the GeForce

8800, however, the RapidMind implementation of Mersenne-Twister random number

generator cannot run on GPUs, because the algorithm reads and writes a local array,

which is not supported by the latest RapidMind backend (version 2.1) of GPUs at

the time of this study3.

3This restriction is lifted in RapidMind’s Cell backend.

CHAPTER 3. AN EMPIRICAL COMPARISON OF TWO MULTI-CORE
ARCHITECTURES 41

RapidMind

+ PS 3

RapidMind

+ CellBlade

 (16 SPU)

Cuda+Nvidia

GTX 8800

0.0

0.5

1.0

T
im

e
 (

s
)

to
 p

ri
c

e
 5

1
2

 o
p

ti
o

n
s

 u
s

in
g

 2
0

4
8

 s
te

p
s

1.01374

0.33847

0.16217

Figure 3.5: Binomial option pricing.

Binomial Option Pricing. I tested a parallel implementation of the binomial

option pricing algorithm and found that parallelizing the pricing of a single option

with the binomial option pricing algorithm using the task decomposition shown in

Fig. 3.1 for a practical number of steps (e.g., 2048) did not result in a good speedup.

The results in Fig. 3.5 instead price many options in parallel, each one on a separate

processor, like the results for the Black-Scholes option pricing experiments above;

also with an embarrassingly parallel communication pattern. Like the Mersenne-

Twister implementation for Black-Scholes option pricing, this benchmark requires

local arrays stored on each core, which were not supported by RapidMind on the GPU.

In addition, a hand implementation on the Cell SDK was not available at the time of

this study. Therefore, Fig. 3.5 only includes RapidMind implementations on the Cell

and a CUDA implementation on the GeForce 8800. Between sixteen SPE cores on a

CellBlade server and six SPE cores on a PS3, the RapidMind implementation scales

linearly with the number of processing units. Compared to the CUDA Nvidia GPU

implementation, RapidMind with two Cells on a Cellblade was about half the speed.

CHAPTER 3. AN EMPIRICAL COMPARISON OF TWO MULTI-CORE
ARCHITECTURES 42

Figure 3.6: Performance comparison of single-precision 2-D FFT.

In this application, which has no inter-process communication, the GPU demonstrates

more raw processing power than the CellBlade.

3.2.2 Fast-Fourier Transform (FFT)

Figure 3.6 reports the run time of the two-dimensional FFT on various architectures.

Cell’s low-level implementation comes from the one of the most popular FFT libraries,

FFTW, whose core computation optimally combines several straight lines of code

fragments called codelets written in platform natives [50]. CUFFT, the CUDA FFT

library, provides a similar interface to FFTW on the GeForce 8800 [34]. RapidMind

implementations on the Cell and the GeForce 8800 are also included. The run time

measurements are performed by interfacing the above libraries with the “benchFFT”

environment, an extensible FFT benchmark program [49].

The fastest FFT-performing architecture varies depending on input sizes. For

inputs smaller than 64 × 64 2-D arrays, the FFTW library on Cell runs faster than

the CUFFT on GeForce 8800. For the inputs with sizes in the interval [64 × 64,

CHAPTER 3. AN EMPIRICAL COMPARISON OF TWO MULTI-CORE
ARCHITECTURES 43

256 × 256], CUFFT/GeForce 8800 outperforms FFTW/Cell. Finally, for input size

beyond 256× 256, the FFTW/Cell is slightly faster than CUFFT/GeForce 8800.

The results of the FFT performance can be analyzed in the context of the compu-

tation and communication aspect of the FFT algorithm. The FFT algorithm requires

not only intensive floating-point computations but also frequent data communications

between processing elements. On most 2-D FFT instances Cell’s flexible on-chip com-

munication fabric overcomes its floating-point computation disadvantage with respect

to GeForce 8800, which does not provide direct links for inter-multiprocessor com-

munications. Therefore, for large inputs the Cell edges GeForce 8800, even though it

has less floating-point computation capability.

The RapidMind implementations have lower performance compared to their SDK

counterparts on both platforms. Compared to FFTW/Cell BE, this is not surprising

because RapidMind’s programming model does not support direct communications

between concurrent processes, thus the powerful Cell on-chip ring is not utilized. On

the other hand, RapidMind’s limited communication model is actually based on GPU

hardware. Therefore on large data inputs RapidMind’s performance is comparable to

CUFFT/GeForce 8800.

This set of benchmarks also includes the FFT run time on a general-purpose Intel

CPU (Intel Kentsfield quad-core clocked at 2.6GHz). For input data smaller than

128 × 128, the quad-core CPU has better FFT performance than Cell and GeForce

8800, which incur the overhead of distributing the work to processing cores, including

the time investment of “forking” and “joining” parallel processes on the processing

units.

3.2.3 Bitonic Sort

The RapidMind implementation of bitonic sort is an iterative loop-based solution,

where the innermost loops are replaced with data-parallel RapidMind program calls.

The low-level implementations of bitonic sort are CellSort [56] on the Cell QS20 and

CHAPTER 3. AN EMPIRICAL COMPARISON OF TWO MULTI-CORE
ARCHITECTURES 44

4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K

1M 2M 4M 8M 16
M

Number of Integers/Floats sorted

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

T
im

e
 (

s
)

-
lo

g
a
ri

th
m

ic
 s

c
a
le

CellSort, QS20 Cellblade

GPUSort, NVIDIA GTX 8800

RM, QS20 CellBlade

RM, NVIDIA GTX 8800

Figure 3.7: Performance comparison of bitonic sort.

GPUSort [61] on the GeForce 8800. The results for the different software implemen-

tations and hardware platforms are shown in Figure 3.7. The curves end at different

input data sizes because the different implementations do not support the same max-

imum sizes. The RapidMind and CellSort implementations sorted integers, while the

GPUSort implementation sorted floats (GPUs tend to handle floats more efficiently,

while Cell handles both equally).

Most striking is that CellSort, the Cell SDK implementation for Cell, has the

best performance by a large margin. This reflects Cell’s high bandwidth inter-

communication network and large local stores. A second observation is that the

performance with RapidMind comes much closer to the performance of a hand im-

plementation on the GPU backend than it does on the Cell Backend. In fact, for

smaller cases (<256K elements), RapidMind performs better than GPUSort. These

results reflect both a better GPU backend in RapidMind (RapidMind, developed from

Sh [89] has supported GPUs longer), and also the fact that an SPMD programming

model is probably not ideal for Bitonic Sort.

CHAPTER 3. AN EMPIRICAL COMPARISON OF TWO MULTI-CORE
ARCHITECTURES 45

The gap in performance between the best performing implementations on the

Cell and GPU platforms narrows as the data size increases. For example, sorting 32K

elements on the GeForce 8800 is about 25 times slower, but sorting 8M elements is only

4 times slower. With larger data sets, the amount of data being sorted exceeds the

capacity of the on-chip memory, and more off-chip data movement is required, evening

out the capabilities of the platforms somewhat since their off-chip bandwidth is more

evenly matched than that of their on-chip interconnects. And although GPUSort is

not optimized for the smaller data sets as some of the other implementations are, it

is the most scalable GPU implementation.

Looking closer at the memory performance, the curve of CellSort’s performance

has three distinct sections: 4K-32K, 32K-512K, and >512K. In the first section, the

data is small enough to fit into the local store of a single SPE, and sorting is handled

locally. In the second section, the data is too large for a single SPE’s local store,

but small enough to fit into the combined local stores, so off-chip communication is

not necessary during the sorting (except in the case of 512K where data must be

transferred between the two Cell chips). In the last section, the problem size is too

large to fit onto the chips and so data must be swapped in and out of main memory

throughout the sort. In these larger problem sizes, the GeForce 8800 begins to catch

up because it has higher off-chip memory bandwidth than the Cell.

3.2.4 Smith-Waterman Sequence Alignment

Several difficulties were encountered with the Smith-Waterman benchmark. A Rapid-

Mind implementation based on the method mentioned in Sec. 3.2.4 of computing di-

agonals in parallel turned out to be much slower than an optimized sequential code.

One performance issue is that although the same RapidMind program is called for

each diagonal, the length of each diagonal changes, and from the performance logs,

RapidMind requires a new online-compile for every other diagonal size. A second

embarrassingly parallel implementation, which computes an alignment separately for

CHAPTER 3. AN EMPIRICAL COMPARISON OF TWO MULTI-CORE
ARCHITECTURES 46

Hand-Cell,

16 SPU

Hand-Cell,

8 SPU

RapidMind,

16 SPU

RapidMind,

8 SPU

Intel Core 2

Quad

(seq. code)

PPU

(seq. code)

0.0

0.5

1.0

1.5

T
im

e
 (

s
)

fo
r

1
6
 p

a
ir

w
is

e
 a

li
g

n
m

e
n

ts
,

s
e
q

u
e
n

c
e
 l
e
n

g
th

 2
0
4
8

0.003 0.005

0.304

0.601 0.640

1.600

Figure 3.8: Performance comparison of Smith-Waterman sequence alignment.

each processing unit is used instead for the experiments presented in Fig. 3.8. This im-

plementation cannot handle very large sequences, but could be useful in implementing

sequence database search tools such as FASTA [102]. Like the binomial option pricing

RapidMind program, the implementation of Smith-Waterman was not supported on

GPUs due to the use of local arrays. At the time of the study, optimized GPU im-

plementations were not available, though some have been recently implemented [86].

While these challenges prevented a complete comparison of Smith-Waterman in this

study, they inspired the Huckleberry project, which is covered in Chapter 5.

Figure 3.8 shows the time to complete 16 alignments on the Cell BE, with both

a hand-optimized Cell SDK implementation and a RapidMind implementation. The

hand-optimized implementation performs roughly 1000x faster than the RapidMind

implementation. Note that the RapidMind implementation is not vectorized, and

could potentially have a speedup equal approximately to 4 with vectorization. With

RapidMind there was actually no speedup for just 16 alignments because the startup

overhead is great, so the numbers reported are the average based on 1024 parallel

alignments. However, even though the performance of RapidMind implementation

on Cell does not approach that of the hand-coded implementation, it outperforms a

CHAPTER 3. AN EMPIRICAL COMPARISON OF TWO MULTI-CORE
ARCHITECTURES 47

Figure 3.9: Performance comparison of Cell vs. NVIDIA 8800 GTX. The x-axis

shows the spectrum of computation and communication patterns. Data points to-

ward the left side are more computation bound; data points on the right are more

communication bound.

sequential implementation on the Intel Core 2 and the Cell PPU processor. Because

the application is embarrassingly parallel, the ability to harness more cores will set

apart the parallel implementations as the architectures scale up.

3.2.5 Discussion

This section summarizes the experiment results and qualitatively evaluates the impact

of the computation and communication aspects of the two hardware platforms and

the benchmark programs.

Figure 3.9 highlights the relative performance of the Cell blade (16 SPEs) and the

CHAPTER 3. AN EMPIRICAL COMPARISON OF TWO MULTI-CORE
ARCHITECTURES 48

GeForce 8800 using platform-specific SDKs across the spectrum of different computa-

tion and communication patterns. If the ratio is above 1, the Cell blade is faster. The

general trend is that the GeForce 8800 has an edge on computation bound workloads;

in contrast, Cell performs better on communication intensive applications. For exam-

ple, the GeForce 8800 runs faster if the application is computation bound, like Monte

Carlo methods. On the other hand, Cell is faster than GeForce 8800 on applications

like FFT on large data inputs and bitonic sort, both of which require intensive data

communications.

In particular, data movement is the limiting factor in the performance of bitonic

sort. Thus the memory capacity and communication network of a given multi-core

architecture play an important role for this application. The Cell’s EIB gives the

Cell a great advantage since cores can transfer data between each other very quickly.

However as the problem size scales up and data must be swapped in and out of the

off-chip memory, the bandwidth to main memory becomes a limiting factor.

The relative performance of RapidMind programs and their platform-specific SDK

counterparts are reported in Figure 3.10. If a RapidMind program runs faster, its rel-

ative ratio is larger than one. Except for the bitonic sort OpenGL implementations on

GeForce 8800, RapidMind’s performance cannot compete with the SDK-based imple-

mentations yet. At best RapidMind program are slightly faster (only in one problem

instance), but at worst they are orders of magnitude slower than the corresponding

SDK versions.

RapidMind’s SPMD programming model accounts for part of this performance

gap. The SPMD model fits applications like Monte Carlo methods well. However,

it provides no inter-process communications. These restrictions profoundly limit the

performance of applications like FFT and sorting where data movements between

parallel processes are as important as computation itself. This limitation is especially

visible when these applications are implemented on the Cell using RapidMind, which

does not exercise the Cell’s high-bandwidth inter-SPE communication links.

CHAPTER 3. AN EMPIRICAL COMPARISON OF TWO MULTI-CORE
ARCHITECTURES 49

Figure 3.10: Performance comparison of RapidMind vs. platform-specific SDKs.

3.3 Related Works

Comparing multi-core platforms has become a hot research topic recently [21; 62; 106;

123]. Other studies confirm the observation that there is no one “best” architecture

for all problems, but that each architecture has its own unique strengths.

Accelerating benchmark applications on multi-core architectures is also an inter-

esting and active area of research. Some of the missing hand-optimized implementa-

tions of the benchmark applications in this study have since been developed on var-

ious platforms. CUDASW implements the Smith-Waterman algorithm with CUDA

for CUDA-enabled GPUs [83]. Farrar introduces a striped SIMD multithreaded im-

plementation of Smith-Waterman that supports both general-purpose multi-core ar-

chitectures and the Cell BE architecture [45; 46]. SWPS3 extends Farrar’s work with

performance improvements [119]. Ganesan et al. accelerate the binomial option pric-

CHAPTER 3. AN EMPIRICAL COMPARISON OF TWO MULTI-CORE
ARCHITECTURES 50

ing algorithm with a GPU architecture. Their implementation alters the algorithm to

calculate multiple timesteps in parallel since the dependencies between two timesteps

can be broken if values from a previous time step are available [52]. Wynnyk and

Magdon-Ismail leverage reconfigurable hardware to accelerate single instances of bi-

nomial options [126].

3.4 Summary

In this chapter, five benchmarks are compared on two multi-core architectures and

over a range of low-level to high-level programming abstractions. From this empirical

survey, several observations can be made:

• Programming abstractions may be more successful with some applications than

they are with others. For example, the SPMD abstraction is a good match for

embarrassingly parallel and computation-rich benchmarks but not as good of a

match for communication-rich benchmarks like bitonic sort.

• Programming abstractions may be more successful with some architectures than

they are with others. GPU architectures feature a large number of floating point

units and a small capacity for inter-core communication. The SPMD abstrac-

tion fits GPU architectures well since it focusses on tasks that do not have

inter-dependencies. However, in applications where inter-dependencies play a

great role, such as binomial option pricing and Smith-Waterman sequence align-

ment, parallel speedup of a single application instance proved extremely elusive

given only data-parallelism. Both of these benchmarks were slower as parallel

implementations than as sequential implementations. The best parallelization

strategy found in these cases was to keep single problem instances sequential

and increase the throughput by processing many instances concurrently with

embarrassingly parallel data-parallelism.

CHAPTER 3. AN EMPIRICAL COMPARISON OF TWO MULTI-CORE
ARCHITECTURES 51

• The ability of a programming model to scale up to many cores and very large

data sets is more important than the performance of the model over small

data sets and fewer cores. Although the RapidMind programs were some-

times much slower than the hand-optimized parallel programs, especially on

the Cell architecture, they scale well with the number of cores. Hence, the

RapidMind programs will be portable to new generations of the architectures.

Furthermore, in some cases, the RapidMind implementation was available when

a hand-optimized implementation was not.

The RapidMind programming language uses an SPMD abstraction, and these

experiments provide a picture of how well the SPMD abstraction fits with various

benchmarks and architectures. In the next chapters, I propose two new techniques

that work with two different programming abstractions, the stream abstraction and

the recursive parallel abstraction.

In Chapter 4, I present flexible filters, a distributed load-balancing technique for

stream programs. While the SPMD abstraction extracts data parallelism from ap-

plications, the stream abstraction extracts both pipeline and task parallelism from

applications. Likewise, while the SPMD abstraction allows for no communication

between tasks, the stream abstraction allows complex communication between tasks.

Through their contrasts, these approaches complement each other.

In Chapter 5, I propose Huckleberry, a recursive parallel abstraction based on

data partitioning. As noted earlier, the difficulties encountered while creating an

SPMD implementation of the Smith-Waterman benchmark inspire the Huckleberry

project. In particular, an SPMD implementation of the Smith-Waterman algorithm

computes a SPMD calculation over the diagonals of the score matrix. The changing

diagonal sizes in the matrix cause performance degradation in this study. Moreover,

the SPMD abstraction does not capture locality between diagonals in the matrix,

and thus requires more off-chip data swapping than would be necessary otherwise.

For example, if the a diagonal of a large data set does not fit entirely into on-chip

CHAPTER 3. AN EMPIRICAL COMPARISON OF TWO MULTI-CORE
ARCHITECTURES 52

memory, the SPMD solution would compute that diagonal entirely before moving on

to the next, never reusing the computed solutions before they are swapped off chip.

Huckleberry addresses these issues with a recursive data-partitioning approach. The

Huckleberry implementation of Smith-Waterman recursively divides the score matrix

into quadrants so that concurrent tasks share a uniform size, and leverage locality

within their local neighborhood to minimize off-chip data swapping.

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 53

Chapter 4

Flexible Filters: Load Balancing

through Backpressure in Streams

Stream processing is a promising model for programming multi-core platforms that is

applicable to a wide range of applications including high-performance embedded ap-

plications, signal processing, image compression, and continuous database queries [18;

20; 63; 76; 81; 90; 113; 121]. The stream processing paradigm decomposes an appli-

cation into a sequence of data items (tokens) and a collection of tasks (referred to

as filters or kernels) that operate upon the stream of tokens as they “flow” through.

Filters communicate with each other explicitly by exchanging tokens through point-

to-point communication channels. This model exposes the inherent locality and con-

currency of the application and enables the realization of efficient implementations

based on mapping the filters onto parallel processor architectures. Given a stream

program and a target architecture, the filters of the stream program are mapped to

the cores of the architecture, and the communication channels to the communication

substructure of that architecture, including mapping input and output buffers to the

(possibly distributed) memory and the communication itself to underlying communi-

cation protocols such as message passing. In general, it is a challenge to achieve an

optimal mapping that maximizes the program performance given data dependencies

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 54

hash

table

 nd

anchors

compress

send

data
SHA1

hash

split

Figure 4.1: Stream graph of the Dedup benchmark application.

0.000 0.001 0.002 0.003 0.004 0.005

Execution Time (s)

0

2

4

6

8

10

P
er

ce
n

t
B

lo
ck

s
w

it
h

 E
x

ec
u

ti
o

n
 T

im
e

Figure 4.2: Histogram of execution times for Dedup’s Compress filter.

among the filters and the available hardware resources (processing cores, memories,

and interconnect). Moreover, the execution time of a software task is often variable,

making mapping more difficult since the relative cost of filters with respect to each

other is not constant. Consider the Dedup benchmark, a parallel compression appli-

cation [10], that can be implemented as a stream program with six main filters as

illustrated in Fig. 4.1, which shows the corresponding stream graph. A data-dependent

execution time characterizes the compress filter, illustrated by a histogram in Fig. 4.2.

The execution time to compress a block varies by up to 0.005 seconds in the sample

of blocks. The histogram shows the distribution of execution times of different blocks

in the sample.

This chapter presents flexible filters as a technique to balance stream programs on

distributed-memory multi-core platforms that combines static mapping of the stream

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 55

program filters with dynamic load balancing of their execution [27; 28]. The goal is

to increase the overall processing throughput of the stream program by reducing the

impact of bottleneck filters running on particular cores. A filter can cause a bottleneck

because either (a) its algorithmic characteristics make it disproportionately expensive

to run on a given core with respect to the other filters running on neighboring cores

or (b) at run time it may go through phases where it has to process a larger number

of tokens per unit of time. When a filter becomes a bottleneck, its neighboring

upstream or downstream filters, or both, may start suffering a loss of throughput

and, ultimately, this affects the data processing throughput of the overall stream. If

a slow computation creates a bottleneck by delaying the production of new tokens, the

downstream filters may become idle due to the lack of inputs. Alternatively, a filter

can also be a bottleneck if it cannot keep up with the data production of upstream

filters. If this is the case, the input buffers of its processing core start filling up.

This ultimately leads to the emission of backpressure signals between the the cores

running the bottleneck filter and its upstream neighbors, forcing the upstream filters

to become idle to avoid a loss of data from buffer overflows.

The basic idea of flexible filters is precisely to take advantage of the available cycles

on these neighboring cores and use them to dynamically accelerate the execution of

bottleneck filters. In other words potential bottleneck filters can be balanced by

making their mapping to the underlying architecture “flexible” so that for certain

periods of time they can run simultaneously on more than one processing core to

execute different substreams of the data stream.

Figure 4.3 illustrates my proposed design flow to guide the application of flexible

filters. Profiling or modeling of the stream application on the target architecture

may identify bottleneck filters. Based on this profiling, the graph is modified to

include redundant copies of the flexible filter as well as auxiliary code which leverages

the backpressure mechanism to dynamically activate the execution of the additional

copies of the bottleneck filters when necessary, while preserving the correct ordering

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 56

c ea b

d

c ea b

d

Stream Program

Identify Bottleneck Filter

c
ea b

d

c

Modify Graph: (1) duplicate bottleneck

 (2) auxiliary !lters

c
ea b

d

cMapping

Flexible Filter Design Flow

Figure 4.3: Flexible filter design flow.

of the tokens in the data stream. Finally, a mapping assigns the set of filters to the

cores of the architecture. The design flows in a cyclical process since the first program

profile depends on a mapping of the application, and the modification to the original

stream graph may give rise to new bottlenecks.

In summary, the main contributions of this chapter are the implementation and

evaluation of flexible filters on a suite of five benchmarks, including an example with

a data dependent processing flow. Later, Chapter 6 proposes task graphs as a general

representation for all data-driven multi-core programs. Stream programs have a one-

to-one correspondence with task graphs (e.g., the correspondence of filters to tasks),

and therefore load balancing techniques for stream programs, including flexible filters,

may also be applicable to more general task graphs. Here, however, I focus only on

stream programs. The rest of the chapter is organized as follows: Section 4.1 describes

the mechanics of adding flexibility to a stream graph, and Section 4.2 describes the

implementation of flex split and flex merge. Section 4.3 presents experimental results

obtained with the application of flexible filters to several real world benchmarks.

My experiments show that flexible filters achieve speedup over a wide variety of

application domains and in cases where the execution time of filters varies during

runtime.

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 57

ca b

Figure 4.4: Example stream program structure.

4.1 Flexible Filters

The presence of a bottleneck filter may limit performance by preventing utilization

of the full capabilities of an architecture. This section first defines throughput as a

performance metric and then presents a small example to illustrate how performance

can be lost because of a bottleneck filter and how the incorporation of flexibility into

a program corrects for this loss.

In order to implement a stream program on a multi-core architecture each of its

filters must be mapped to at least one core. A core may host several filters and

rely on a scheduler to time-multiplex the core’s resources among the filters. The

performance of a given implementation can be measured by its maximum sustainable

throughput (MST), i.e., the maximum rate at which data tokens can be processed

under the assumption that the environment is always willing to produce new tokens

and never requires the system to stall through a backpressure signal. In an ideal

multi-core architecture, (1) the overhead of inter-core communication and intra-core

context switching is negligible and (2) each core has unlimited local memory. An

ideal mapping of filters would result in a runtime execution where no core ever stalls

and the MST scales linearly with the number of cores.

Consider the simple example of a generic stream program whose structure is shown

in Fig. 4.4: it consists of three filters a, b, and c with data tokens traveling between

them on communication channels (a, b) and (b, c). If the filters have execution times1

1The execution time of a filter is the time necessary to execute it on a given core as a stand-alone

task. In a heterogeneous multi-core architecture the same filter would have different execution times

when executed on different programmable cores. However, this example considers only homogeneous

architectures.

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 58

ca b

“wait”core1 core2 core3

Figure 4.5: Pipeline mapping.

ca b

“wait”

c

core1 core2 core3

Figure 4.6: Flexible filter mapping.

La = 2, Lb = 2, and Lc = 3, respectively, then the ideal MST (i.e., assuming that no

core is idle, and performance scales linearly) is # cores

La+Lb+Lc
= 3

7
= 0.429.

Fig. 4.5 illustrates a simple pipeline mapping: each filter is mapped to a separate

core. Using the same execution times as above, this mapping delivers an MST equal

to 1
3

= 0.333, lower than the ideal 0.429 because filter c can process a new data

token only every three time steps, limiting the performance of the program. Once the

buffers between core2 and core3 (where b and c are located, respectively) fill up, core3

requests core2 to stall occasionally through the emission of a backpressure signal (and

backpressure continues to propagate upstream).

However, suppose that core2 can also execute filter c. Then, instead of stalling,

core2 can “work ahead” on the data tokens in its buffers. Now the rate at which data

tokens are processed by filter c increases, and the load on core3 decreases, and so the

system runs faster. Thus, load balancing based on flexible filters duplicates bottleneck

filters and maps the duplicate copies together with upstream filters. For instance, as

shown in Fig. 4.6, adding flexibility to the stream program from Fig. 4.5 makes it

possible to alleviate the bottleneck caused by filter c on core3. The new mapping

duplicates filter c on core2 so that core2 can share the load of filter c. Performance

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 59

gained will be discussed with examples later in this section and tested experimentally

in Section 4.3.

Besides increasing the code footprint in core2 with respect to the pipeline mapping,

flexible filters also add some complexity to the program because now the data stream

is split and merged around core3. The two auxiliary filters, flex split and flex merge

accomplish the split and merge steps. These filters, which are represented as small

black boxes in Fig. 4.6, can be added to the stream program without changing any of

the original filters. Flexible filters provide a notion of semantic preservation whereby

the ordering of tokens is preserved in the final output of the program, and lossless

channels guarantee that no token is dropped so that the resulting output data stream

is unaltered when some filters are made flexible in the execution. To be eligible for

flexibility, a filter must be stateless; i.e., given an input token x, a stateless filter will

produce the same output token regardless of what tokens came before x. The filters

surrounding a flexible filter may be stateful, and in some cases it is possible to break

a stateful bottleneck filter up so that the most computationally expensive part is

stateless.

The flexible filter solution combines a static mapping of stream tasks with dynamic

runtime flow so that the flow may be redirected at runtime around bottlenecks as

allowed by flexibility in the static mapping. Note that in this example, a static load-

balancing split and join could achieve the same speedup as flexible filters if each

core always had the same execution time. Previous works have shown that static

splits and joins of the data flow can be used to balance the workload of cores and

improve performance [58]. The decision of where to insert splits and joins and to what

extent a job should be split is left to the compiler. Hence, it is a static optimization

choice. However, the dynamic load balancing of flexible filters has advantages over

static load balancing in cases where the application or environment do not allow for

constant execution times; e.g., when bottlenecks are data dependent, and when the

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 60

b:67 c:52

d:62

e:31

f:53

h:53

g:31

a:34

Figure 4.7: Example stream graph.

sharing of resources in the system changes dynamically due to contention with other

applications.

Flexible filters differ from previous load-balancing approaches because backpres-

sure alone drives load balancing, and data dependencies across the filters in the stream

program guide the task reassignment to idle cores rather than random reassignment.

The approach does not require centralized control, and sends no extra messages among

cores beyond backpressure messages, which are already present to prevent the com-

munication buffers from overflowing. Since the runtime load drives load balancing,

flexible filters can be used not only to optimize the implementation of programs whose

filters have constantly unbalanced computational loads but also to adjust temporary

imbalances due to spikes of activity, e.g., detecting “bargains” in real-time streaming

stock tick data [55].

4.1.1 Pipeline-Aware Mapping

The throughput of a stream program reflects the mapping of that program to the

underlying architecture. Data flow dependencies distinguish stream programs from

general-purpose parallel programs with respect to mapping because of the buffering

requirements between neighboring stream filters.

Consider the stream graph in Fig. 4.7, which is a pseudo-randomly generated task

graph by the Task Graph For Free (TGFF) tool [41]. The figure annotates each filter

in the example with the execution time of that filter’s computation. If we assume

that the number of available cores, N , equals six then some of the filters must share

a core with each other. If the costs of buffering and communication were omitted,

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 61

�lter

�lter ex

�ex_split �ex_merge out

select

in

in1

in0out0

out1

Figure 4.8: Relationship of flex split and flex merge.

the optimal mapping would co-map filters a with e and c with g (with e and g

interchangeable since they have the same execution time). This mapping minimizes

the maximum workload assigned to any core. A pipeline-aware mapping algorithm

might instead co-map filter a with f and e with g. The schedule of a pipeline-aware

mapping does not minimize the maximum workload of an individual core, but it favors

co-mapping filters that neighbor each other in the graph. Co-mapping neighboring

filters allows the output buffers of the upstream filter and the input buffers of the

downstream filter to be implemented as the same buffer in the local memory of a

core, while co-mapping filters that are not neighbors requires separate buffers.

4.2 Implementation of Flex Split and Flex Merge

The programmer identifies potential bottleneck filters through profiling or other pro-

gram analysis. Then the original stream program is transformed into a flexible stream

program by duplicating these filters and by adding pairs of flex split and flex merge

auxiliary filters around the flexible duplicates. Fig. 4.8 shows the connections among

the filters newly added to the graph. Flex split and flex merge can be provided by an

application-independent library because they do not depend on application-specific

details. Furthermore, flex split and flex merge do not require modification of the

original stream filters. The addition of these filters to the stream graph is the same

regardless of the eventual mapping of filters to cores. However, the mapping deter-

mines the direction of flexibility, i.e., whether flexibility is achieved by pushing extra

load upstream or downstream.

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 62

Algorithm 1 flex split

[Input: stream in; Output: streams out0, out1, select]

pop data block b from in

n0← avail(out0)

n1← |b| − n0

for i = 0 to n0− 1 do

push 0 to select

end for

for i = n0 to |b| − 1 do

push 1 to select

end for

push n0 tokens from b to out0

push n1 tokens from b to out1

Implementations of flex split and flex merge work with data blocks, where a data

block is a substream of data tokens. Each data block may consist of many data tokens,

and the blocks, like tokens, form a stream and follow an ordering that depends on

their place in the bigger stream. One difference between data tokens and data blocks

with respect to scheduling the flow of data is that it is possible to break a data

block up into several pieces and process them in parallel. A data block is the input

unit for flex split and the output unit for flex merge. The divisibility of data blocks

is one factor that enables load balancing with flexible filters. But data blocks can

only contain a finite number of data tokens and cannot be divided into arbitrarily-

sized fractions. Lower granularity (fewer tokens per block) can limit the benefits of

flexibility in the data stream because it puts more constraints on the possible data

flow.

Flex split (pseudocode shown in Algorithm 1) dynamically reuses the backpressure

information on the current capacity of the downlink input buffers to manage load

balancing by dividing the data stream between out0 and out1. Specifically, it checks

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 63

Algorithm 2 flex merge

[Input: streams in0, in1, select; Output: stream out]

pop i from select

if i is 0 then

pop token t from in0

else

pop token t from in1

end if

push t to out;

how much space is available on the buffering queue for the primary copy of the

flexible filter, f , and divides the data stream by sending as much data to f ’s primary

copy as it can (stream out0) and then sending any leftover data to the flexible copy

(stream out1). Flex split also produces a select bitstream that contains information

on how to reconstruct the correct ordering of the stream. Flex merge (pseudocode

in Algorithm 2) takes the input streams in0 and in1 from both of f ’s copies along

with the select bitstream, which comes directly from flex split. The select bitstream

indicates which of f ’s copies has the next data token, thus allowing flex merge to

reassemble the stream into its original order.

Backpressure plays a key role in the implementation of flexible filters. Before a

core can send data downstream, it must ensure the availability of adequate buffering

space for the data in the receiving core. A typical handshake protocol guarantees that

buffers do not overflow and proceeds through a sequence of phases: it starts with the

sending core placing a request to send data; then, the receiving core sends back an

acknowledgement with information on how much data it can receive (backpressure);

and finally the sending core sends the data. In practice, the various phases can be

overlapped to further improve performance by adding sufficient memory space.

If a flexible filter is inherently slower than the all of the other filters, then the

imbalance will cause the input buffering queue of its primary copy to be full often,

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 64

and flex split will redirect the data flow to f ’s secondary copy at regular intervals.

Instead, if f experiences only occasional spikes of activity that cause it to slow down

– or if f ’s upstream neighbor occasionally creates extra data tokens on its output –

the flow of data will usually behave as if there is no redundant flexible filter present,

and flex split will intervene sporadically when a spike arises.

Finally, notice that instead of having a distinct bit for every token, a compressed

format may reduce the select bitstream to counts of how many of the next tokens go

to out0 and then how many go to out1. In practice, if the data tokens are vectors or

other large data structures, using a distinct select bit for each token does not take up

a significant portion of memory.

4.2.1 Multi-Channel Flexible Filters

The preceding discussion of flex split and flex merge assumes that the flexible filter has

exactly one input and one output channel. Filters with multiple input and output

channels may also be flexible, but flex split and flex merge are inserted differently

into the graph, and in the case of a filter with more than one input channel, flex split

requires modification.

For a filter with several output channels but only one input channel, no modifica-

tion to flex split or flex merge is necessary: the flexible stream graph simply inserts a

separate flex merge for every output channel, and copies the select bits of flex split to

each copy of flex merge, as illustrated in Fig. 4.9. Because each copy of the flexible

filter produces data tokens to its output channels in the same order, the same select

bitstream is correct for every flex merge.

Adding flexibility around several input channels poses a greater challenge. Dupli-

cating flex split in the same way that flex merge is duplicated for the multiple-output

case does not result in a correct implementation because flex split splits the data

stream and builds the select bitstream based on how much queue space is available

downstream. If multiple copies of flex split check for queue space separately at slightly

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 65

�lter

�lter ex�ex_split

�ex_merge

�ex_merge

�ex_merge

...

output channel 1

output channel 2

output channel n

select

Figure 4.9: Block diagram of a flexible filter with n output channels.

�lter

�lter ex

�ex_split �ex_merge

input channel 1

input channel 2

input channel n

...

Centralized

�lter

�lter ex

�ex_split

�ex_merge

input channel 1

input channel 2

input channel n

...

β �ex_split

β �ex_split

Distributed

select

select

Figure 4.10: Two alternatives of a flexible filter with n input channels.

different times they may get different answers, and thus the data tokens in the input

streams would be mismatched. Fig. 4.10 illustrates two possible solutions. One possi-

ble solution is to create one centralized flex split that monitors all of the input queues

for the copies of the flexible filter, and then splits the data stream in a way that is

consistent across all input streams. The downside of this approach is that it may

create a bottleneck in processing. Another approach is to introduce a second version

of the flex split implementation, denoted βflex split. The original flex split is used for

the first channel, and then instead of building new select bitstreams, βflex split filters

reuse the original flex split’s select stream and wait for sufficient space on their out-

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 66

Time Steps t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

core0
Step a0,0 a0,1 a1,0 a1,1 a2,0 a2,1 a3,0 a3,1 a4,0 a4,1 a5,0 a5,1 a6,0

Block(s) 0 0 1 1 2 2 3 3 4 4 5 5 6

core1
Step b0,0 b0,1 b1,0 b1,1 b2,0 b2,1 b3,0 b3,1 b4,0 b4,1 b5,0

Block(s) 0 0 1 1 2 2 3 3 4 4 4,5

core2
Step c0,0 c0,1 c0,2 c1,0 c1,1 c1,2 c2,0 c2,1 c2,2

Block(s) 0 0 0,1 1 1,2 1,2 2,3 2,3 2,3

Time Steps t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25

core0
Step a6,1 a7,0 a7,1 a8,0 a8,1 a9,0 a9,1 a10,0 a10,1 a11,0 a11,1 - a12,0

Block(s) 6 7 7 8 8 8,9 9 9,10 9,10 10,11 10,11 10,11 11,12

core1
Step b5,1 b6,0 b6,1 b7,0 b7,1 - b8,0 b8,1 - b9,0 b9,1 - b10,0

Block(s) 5 5,6 5,6 6,7 6,7 6,7 7,8 7,8 7,8 8,9 8,9 8,9 9,10

core2
Step c3,0 c3,1 c3,2 c4,0 c4,1 c4,2 c5,0 c5,1 c5,2 c6,0 c6,1 c6,2 c7,0

Block(s) 3,4 3,4 3,4 4,5 4,5 4,5 5,6 5,6 5,6 6,7 6,7 6,7 7,8

Table 4.1: Baseline pipeline mapping timeline.

put queues before proceeding. This approach avoids forcing all of the input channels

through a bottleneck, but may result in extra stalling by the new βflex split filters.

4.2.2 Example

I now walk through the execution of a stream program at runtime when flexibility is

invoked to balance the load. Table 4.1 shows the timeline for the example shown in

Fig. 4.5, using the same example execution times that were used in Sec. 4.1 (La = 2,

Lb = 2, and Lc = 3). The table shows both the current step being executed on each

core, and the contents of the core’s local buffering memory.

In Table 4.1, each filter completes processing a block i in timesteps equivalent

to that filter’s execution time. For example, filter a whose execution time is two,

computes a block i in two timesteps, denoted ai,0 and ai,1, respectively. Since filter c

has an execution time of three, it must compute blocks in three timesteps (ci,0, ci,1,

and ci,2).

In Table 4.1, even though the filters’ latencies are not equal, the buffer capacity

allows the faster filters to work ahead initially. However, at time step t18, core2 must

stall. At this timestep, core2’s memory contains Blocks 6 and 7, and even though

core1 is ready to pass Block 8, core3 holds Blocks 4 and 5 and will not be ready to

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 67

core
1

core
2

t ime

23 24 25 26 27 28 29 3022

a11

core
3

a12 a13

b9 b10 b11

c6 c7 c8

core
1

core
2

t ime

core
3

core
1

core
2

t ime

core
3

core
1

core
2

t ime

1 2 3 4 5 6 7 8 90

a0

core
3

b0 c0

a1 b1 c1

a2 b2 c2

(a) SPMD

(b) No flexibil i ty

(c) c flexible

(d) b and c flexible

16 17 18 19 29 21

a8 a9 a10

b8b7

c5c4

23 24 25 26 27 28 29 3022

a11 a12 a13

b9 b10 b11

c6 c7 c8

16 17 18 19 29 21

a8 a9 a10

b8b7

c5c4

c6 c7 c10

a14

b12

c9

c11 b13

c11

a15 a16

b14

c10

31 32 33 34 35

23 24 25 26 27 28 29 3022

a11 a12 a13

b9 b10 b11

c6 c7 c8

16 17 18 19 29 21

a8 a9 a10

b8b7

c5c4

c6 c7 c10

a14

c9

a15 a16

b14

c10

31 32 33 34 35

b12

b12

c11

c11 b13

b13

c12

c12

b15

a17

c13

b16

a18

36 37 38 39

a3 b3 c3

a4 b4 c4

a5 b5 c5

11 12 1310

cycle

cycle

cycle

Figure 4.11: Flexible filter timelines.

take the next block from core2 until it is done processing Block 4. Therefore, core2

must wait until core3 is ready to accept the next block before it can make space in its

memory for Block 8. The state of the system is the same at time steps t22 and t25 in

terms of the state of each core with respect to the blocks in that core’s memory. In

fact, the system begins to cycle through a pattern of states, in this case the pattern

from t22 to t24. During one cycle, this implementation completes one block every

three cycles, confirming that the MST is 1
3
, as calculated in Sec. 4.1. Note that if

the filter latencies are unbalanced, stalling will occur no matter how much buffering

space is available on the cores: additional memory simply extends the time that it

takes to initially fill up the buffers.

Fig. 4.11 summarizes timelines for several mappings in a more abbreviated format

that does not include the current memory state. For each case other than SPMD,

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 68

the timelines start at t16 using the same state of t16 in Table 4.1 and continue until

a cyclic pattern emerges. (For the SPMD mapping, the entire stream program is

duplicated separately to each core, with no intercommunication, and data blocks are

distributed round-robin to the cores.) Fig. 4.11(b) depicts the same timelines as in

Tables 4.1. Fig. 4.11(c) shows the timeline for a flexible-filter mapping where filter

c is made flexible and is mapped to core2 and core3 (same as Fig. 4.6). The cyclic

pattern for this mapping begins at time step t26 and continues until t35. Fig. 4.11(d)

shows an alternative flexible-filter mapping where both filters b and c have been made

flexible. In particular, filter c is again mapped to core2 and core3, while filter b is

mapped to core1 and core2. Here, the pattern goes from time step t26 to t39.

When no filters are flexible, the MST (0.333) is degraded by 22% compared to

the ideal throughput, 0.429. When only filter c is flexible, the MST is increased to

4
10

= 0.400 (only 7% degradation). When both filter b and c are flexible, the MST

reaches its ideal limit of 0.429, thus matching the MST of the SPMD mapping, but

without requiring a complete copy of the stream program on every core. From another

perspective, the speedup gained when going from a non-flexible pipeline mapping to a

flexible pipeline mapping is 1.29. A speedup of 2.0 is the maximum possible in any case

where only one duplicate copy of a flexible filter is made. Flex split could be extended

to a three, or four-way split to take advantages of other available cores. However, a

few caveats on higher degree splits should be kept in mind. (1) In an architecture like

the Cell, where application code and data occupy the same memory, there may not

be room for additional code and data buffers to accommodate the flexible filter, even

if a core is not as busy with computation; e.g., a hash table filter is not compute-

intensive, but it is memory-intensive, and the less space available for building the

table, the more times the downstream and possibly compute-intensive filters must

execute. (2) The pipeline nature of stream applications forces dependencies between

the buffers of different filters and adding extra channels within the stream may place

higher buffering burdens on those parts of the stream graph.

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 69

(b) C flexible, 1-block buffer

core
1

core
2

t ime

core
3

23 24 25 26 27 28 29 3022

a11 a12 a13

b9 b10 b11

c6 c7 c8

16 17 18 19 29 21

a8 a9 a10

b7

c5c4

c6 c7

a14

b12

c9

b13

a15 a16

b14

c10

31 32 33 34 35

b8

c11

c12

c12

c13 b15

c13

a17

36 37 38 39

core
1

core
2

t ime

core
3

7 8 9 10 11 12 13 146

a2

0 1 2 3 4 5

c0

cycle

a0

b0

a1

b1

a3

b3c1

c1

b2

c2

c3

a4

b4

a5

c3

cycle

(a) C flexible, 2-block buffer

Figure 4.12: Time-line when filter C has a granularity of two tokens per block.

4.2.2.1 Granularity of Firing Constraints and Buffer Size

The previous examples have assumed that it is always possible to break one of c’s

data blocks up into thirds and b’s data blocks up into halves. Suppose, however, that

the local data memory of each core only holds a block of two tokens for c. Since

data tokens are the minimum amount of data that a filter can fire on, it is now only

possible to break one of c’s data blocks up into two pieces. Fig. 4.12 repeats the

mapping from Fig. 4.11(c) to show the timeline when c has this constraint. There are

two cases shown. In Fig. 4.12(a), I assume buffers of size two just like in the previous

examples, while in Fig. 4.12(b) I assume that the buffer has capacity for one data

block only. At t7 in Fig. 4.12(b), core3 must wait for Block 1 until core2 is ready

to send it. Similarly, core1 must also wait to send Block 2 to core2. When buffers

have enough capacity for two blocks, the MST is 6
15

= 0.4, which is the same as the

MST when we did not have the additional granularity constraint. However, when the

buffers only hold one block, the MST is degraded to 2
5.5

= 0.364. This example shows

that the local buffering memory plays a critical role in insulating performance from

granularity constraints.

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 70

4.2.3 Practical Implementation Concerns

Streaming programming languages typically abstract away the backpressure mecha-

nism that is implemented at the lower level of the inter-core communication stack [54;

121]. Hence, programmers need not worry about the current state of the buffers be-

tween stream functions and can focus on the computational aspects of the algorithm

and data manipulation through higher-level functions such as push and pop. At the

same time, the underlying message-passing API functions that support the handshake

communication protocol and backpressure mechanism between communicating cores,

and that are often specific to the target architecture, may also be made available

to allow performance optimizations. The implementation of flex split and flex merge

relies on such functions. In particular, the flex split implementation given in Algo-

rithm 1 uses the avail() function that returns how much buffering space is available in

the next core’s buffer. If the programmer does not use avail() to check the buffering

availability of its output channels at runtime then the filter will automatically stall

whenever there is not sufficient space for the data to be sent on any of its output

channels. Instead, using avail() to check the available space on a channel allows the

programmer to dynamically send only the right amount of data to that channel and

then proceed to the next instruction without stalling the filter. For instance, to avoid

stalling when there is not enough space to send the entire block to f ’s primary copy,

flex split sends exactly the amount of data equal to avail(out0) to out0. Then, the

rest of the data is sent to f ’s secondary copy without calling avail() on this channel

but relying instead on the underlying backpressure mechanism to regulate the stream

out1. In my experience, relying on the implicit backpressure of the channel instead

of explicitly checking avail() on out1 tends to produce better results, possibly be-

cause the leftover portion of the output stream can move forward faster to the filter’s

secondary copy in the presence of a temporary input buffering shortage.

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 71

4.3 Experiments

All of the experiments were performed on a Sony PlayStation3 (PS3) which hosts

one Cell BE processor [98]. Because PS3 systems enable only six of the Cell’s eight

SPEs, this is the maximum number of cores used in my experiments. Gedae, a data

flow language, is utilized to program the Cell. Gedae provides an abstraction of

the communication layer for my implementation by handling low-level details like

direct-memory access (DMA) alignment and double buffering while exposing point-

to-point communication channels between filters [54]. Gedae’s API contains functions

to implement the communication channels, including the avail() function (mentioned

previously in Section 4.2) that gives information on how much space is available in

the input and output buffers.

4.3.1 Benchmarks

My experiments implement several benchmarks with Gedae and then test them with

flexible filters. Fig. 4.13 shows block diagrams of the filters of each benchmark to-

gether with how they are mapped to SPE cores of the Cell, and Fig. 4.14 shows

profile information for the filters. The remainder of this section briefly describes the

benchmarks.

Constant False Alarm Rate Detection (CFAR). CFAR is a signal process-

ing benchmark from the HPEC benchmark suite that identifies targets in a stream of

incoming data given a noisy background. It does so by using an adjustable threshold

value that changes based on the background noise so that the false alarm rate is

constant [67]. CFAR evaluates each token in the stream by comparing it to a sliding

window of tokens before and after that token in the stream. The token under eval-

uation at a given point in time is called the “cell under test”. The filters of CFAR

are:

• uInt to Float: converts unsigned integer to float;

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 72

square
left

window

uInt to

 Float

right

window

!nd

targets

add

align

data

(a) CFAR block diagram.

hash

table

 nd

anchors

compress

send

data
SHA1

hash

split

(b) Dedup block diagram.

�nalize

DES rounds

initialize

(c) DES block diagram.

add

const
DCT quantize zigzag

hu man

coding

stu

bits

(d) JPEG block diagram.

random
Box-

Muller
Cholesky

Random

Walk

accum.

P&L

(e) VAR block diagram.

Figure 4.13: Block diagrams of benchmarks used together with their mapping on the

IBM Cell multi-core processor (the non-flexible case).

• square: mathematical square of float;

• right window: maintains a sum of a sliding window of values in the stream;

• left window: same as the right window, but positioned after the cell under test;

• add: sums the values from the right and left windows;

• align data: stores and saves incoming data in order to line up the left and right

window with the cell-under-test;

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 73

0.00 0.02 0.04

Average Execution Time (microseconds)

uIntToFloat
square

right window
left window

add
align data

find targets

(a) CFAR Profile.

0 10000 20000 30000

Average Latency (microseconds)

find anchors

SHA1

hash table

hash split

compress

send data

(b) Dedup Profile.

0 20 40 60

Average Latency (microseconds)

initialize

DES round (odd)

DES round (even)

finalize

(c) DES Profile.

0 2000 4000 6000

Average Latency (microseconds)

add const

DCT

quantize

zigzag

Huffman

stuff bits

(d) JPEG Profile.

0 2000 4000 6000

Average Latency (microseconds)

random

Box-Muller

Cholesky

random walk

accumulate P&L

(e) VAR Profile.

Figure 4.14: Profile of tasks for each benchmark.

• find targets: identifies targets in the stream based on how the next cell compares

with the right and left windows around it.

Dedup compression. Dedup is a pipeline compression algorithm from the PAR-

SEC benchmark suite. Dedup breaks a file up into blocks according to the Rabin fin-

gerprinting method, and then compresses the file on a block-by-block basis, checking

the hash of each block beforehand and only compressing duplicate blocks once [10].

The filters of Dedup are:

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 74

• find anchors: separates the data stream into blocks according to anchors which

are based on Rabin fingerprints;

• SHA1: computes SHA1 hash of a data block;

• hash table: maintains a hash table of SHA1 hashes encountered so far;

• hash split: splits the data stream according to whether the hash of the next

block was found in the table;

• compress: compresses a data block;

• send data: for each block, copies only the hash if the block has already been

encountered, otherwise, copies the hash and the compressed data block.

Data Encryption Standard (DES). DES is a block cipher security algo-

rithm [31]. The 16 DES subkeys are generated in advance. The filters of DES are:

• initialize: performs an initial permutation on the data;

• DES round (odd): computes one round of des with one of the subkeys;

• DES round (even): the “even” rounds are identical to the “odd” rounds; how-

ever, in experimentation, their execution times consistently differed as illus-

trated in Fig. 4.14(c);

• finalize: performs a final permutation on the data.

JPEG Encoder. This benchmark implements the baseline grayscale JPEG en-

coder [57]. The data stream is broken into 8x8 pixel blocks, where each pixel is a 256

grayscale value. The filters of JPEG are:

• add const: adds a constant to the incoming data pixels (converts [0,255] range

to [-128,127]);

• DCT: the discrete cosine transform of a pixel block separates the data into a

sum of cosine functions;

• quantize: lossy compression step that reduces the amount of the least significant

data;

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 75

• zigzag: reorders 2-D block into 1-D sequence according to a zigzag trace through

the array;

• Huffman coding: replaces data stream with values from Huffman coding tables

designed specially to replace the JPEC AC and DC coefficients;

• stuff bits: searches for 8-bit aligned 0xff values in the stream and inserts 0x00

after them (0xff bits are reserved for code words in the JPEG standard).

Value-at-Risk (VAR). VAR is a finance benchmark that calculates the value

at risk for a portfolio of stocks (or other assets) averaged over a number of random

walks over a discrete number of timesteps, assuming that the stocks change at each

timestep according to a random correlated set of moves2. The filters of VAR are:

• random: generates random numbers with uniform distribution;

• Box-Muller: transforms a set of uniformly distributed random numbers to a

set of normally distributed random numbers with mean (µ) = 0, and variance

(σ2) = 1;

• Cholesky: transforms a set of normally distributed random numbers to a cor-

related set of random numbers using a lower triangular matrix generated by

Cholesky decomposition of a correlation matrix (i.e., starts with correlation

matrix C and decomposes it into C = U ∗ U t);

• Random Walk: using a stream of random float values as input, takes a random

walk for each stock/asset in a portfolio. The random walk lasts a specified

number of steps, and then the filter outputs aggregate P&L (profit & loss)

values for the portfolio;

• accumulate P&L: aggregates and sorts P&L values from previous step to deter-

mine VAR.

2In light of the recent economic recession, a more popular approach recently has been to estimate

VAR as the average of the worst seven days over the previous year, but one hopes that optimism

will return.

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 76

(a) Trace table of VAR without flexibility.

(b) Trace table of VAR with flexibility.

Figure 4.15: Gedae trace tables of the VAR benchmark. A core’s timeline is black

when it is busy working on a task. Green and red marks show send and receive events.

4.3.2 Results

Flexible filters provide speedup to an application whenever there is a bottleneck filter

as long as the relative cost of communication to computation is not too high. However,

when computational tasks are relatively inexpensive compared to communication, the

additional overhead from adding flexibility outweighs its performance benefits. The

performance gained depends on the relative latencies of filters to each other, and not

on the particular operation of each filter. The Dedup, JPEG and VAR benchmarks

all include one filter that is significantly more computationally expensive than the

others.

Figures 4.15(a) and 4.15(b) show a Gedae trace table for the VAR benchmark

before and after the Cholesky filter has been made flexible to show how a bottleneck

filter can slow down all of the other cores. In the trace table, the black rectangles

show when a core is busy working on a task, the smaller red and green rectangles show

the sequence of send and receive events. In Fig. 4.15(a), Core 3, which is assigned

the Cholesky filter, is always working, while the other cores spend most of their time

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 77

waiting for data to arrive. In Fig. 4.15(b), Core 2 assists Core 3 and reduces its load.

Notice that the timespan is actually different in the two timelines. When flexibility is

added, I found it often necessary to reduce the overall data block granularity in order

to achieve optimal speedup. Therefore compute tasks are broken up more frequently

by send and receive events in Fig. 4.15(b).

Table 4.2 reports the speedup gained by making the bottleneck filter flexible

in benchmarks where I observed a bottleneck. (The CFAR benchmark is a data-

dependent example, whose performance is discussed in Section 4.3.4.) The DES

benchmark is an example where there is no bottleneck. Even though there is some

variation in the latencies of DES filters, once the eighteen filters are mapped to the

six cores of the PS3, the load becomes fairly balanced and adding flexibility to one

or more of the filters does not benefit performance. However, many of these bench-

marks do include a “bottleneck” filter, and are amenable to the addition of flexibility.

In some cases, a better implementation may alleviate the bottleneck. However, in

practice, software is often designed using pre-existing libraries. This was the case for

the Dedup benchmark in these experiments. The Gedae implementation invoked the

same libraries as the original Dedup benchmark3. When a filter is made flexible (one

redundant copy) as described here, potential speedup is limited to twice the original

parallel performance (the overall parallel speedup may be higher from pipelining).

For example, flexibility does achieve a full 2.0 speedup for the Dedup benchmark.

However, it is often the case that a full 2x speedup is not achieved when flexibility

is added even though the bottleneck filter is much more expensive than its neighbors

(e.g., the JPEG benchmark). The overhead of communication and changes in data

block granularity required by flexible filters are additional costs of flexibility that can

impact the performance speedup gained. Section 4.3.3 explores the balance of com-

3The hash table library required a minor modification in one of its constants so that the table

would be guaranteed to fit within an SPE’s local memory.

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 78

Benchmark Input Data Speedup

CFAR

% targets/workload

7.3/16µs 1.45

7.3/32µs 1.39

7.3/63µs 1.47

1.3/16µs 0.82

1.3/32µs 1.06

1.3/63µs 1.27

Dedup
Rabin block/max chunk size

4096/512 2.00

DES – (no speedup)

JPEG

image width x height

128x128* 1.31

256x256* 1.16

512x512* 1.25

VAR

stocks/walks/timesteps

16/1024/1024 0.98

32/1024/1024 1.34

64/1024/1024 1.56

96/1024/1024 1.54

128/1024/1024 1.55

160/1024/1024 1.81
*individual benchmark images, each with different content

Table 4.2: Summary of speedup results for benchmarks where one bottleneck filter is

made flexible.

munication and computation with respect to the speedup gained by adding flexibility

to an application.

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 79

3
.9

e-3

7
.8

e-3

1
.2

e-2

2
.6

e-2

2
.0

e-2

2
.4

e-2

2
.7

e-2

3
.1

e-2

3
.5

e-2

3
.9

e-2

Bottleneck Filter Execution Time (s)

0.8

1.0

1.2

1.4

S
p

ee
d

u
p

5
.6

e-4
1

.0
e-3

2

.1
e-3

Figure 4.16: Speedup as the relative cost of a bottleneck filter increases with respect

to the cost of communication.

4.3.3 Balance of Communication vs. Computation

Adding flexibility to a stream filter typically adds more communication overhead

compared to the original pipeline implementation because flex split and flex merge

require additional buffers, which reduce the space per buffer available on the cores.

This translates to a lower granularity (i.e., fewer tokens per data block) in the data

stream. There is also additional data movement between the buffers of the filter

and flex split and flex merge even when some are co-located on the same core. The

experiments in Fig. 4.16 synthetically vary the latency of the Cholesky and BoxMuller

filters in a subset of the VAR benchmark. By increasing the execution time of the

filters while the relative ratio between them stays the same, these tests examine

how the speedup changes as the relative cost of communication and computation

changes. The flexible copy of Cholesky is mapped to the same core as BoxMuller,

and the latency of Cholesky is approximately 3 times that of BoxMuller so that

the optimal speedup in any case possible is about 50% (shown with a dashed line

in Fig. 4.16). The speedup approaches 50% as the computation cost of the filters

becomes very large, overshadowing the cost of communication. On the other end

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 80

of the spectrum, speedup drops off as the execution time of the “bottleneck filter”,

Cholesky, is reduced. When the execution time of the Cholesky filter is less than 560

microseconds, no improvement is observed. The point at which speedup tapering-off

occurs in this benchmark is a result not only of the execution latency of the bottleneck

filter, but also of the data block size (vector of 128 floats) and task granularity (3

data blocks in the flexible case, 50 in the non-flexible case). In other words, other

applications will experience a trade-off point in a different location depending on their

own data structures and granularity.

4.3.4 Adapting to Data Dependent Flow

One of the strengths of flexible filters is that they can adapt load dynamically at

runtime when there are data dependent spikes of activity that may cause temporary

bottlenecks in the flow of execution. The CFAR benchmark provides an example to

explore data dependent flow volume. As shown in Fig. 4.14(a) all filters of CFAR

have a relatively lightweight execution time with respect to the communication over-

head, and initially the program did not benefit from the addition of flexibility. In

particular, the find targets filter in the original implementation does no additional

work after a target is detected, and so has relatively constant execution time regard-

less of the content of the data stream. However, in practice it is possible that once

a target is found, additional processing such as target classification and tracking is

needed [99]. To capture this fact, in the CFAR experiments reported in Table 4.2 I

add an additional synthetic workload to find targets every time a target is detected.

Since the location of targets is data dependent and may not be uniformly distributed

in the stream, the workload of find targets may change dynamically, and spikes in the

number of targets detected could cause bottlenecks. The percent of targets detected

is varied by adjusting the sensitivity threshold for the input data sets provided by the

HPEC challenge. Fig. 4.17 plots a histogram of the time it takes to process a data

block of 114 cells, where 7% of the cells are targets, and an additional workload of

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 81

0 200 400 600

Execution Time (microseconds)

0

5

10

15

P
er

ce
n

t
B

lo
ck

s
w

it
h

E
x
ec

u
ti

o
n

 T
im

e

Figure 4.17: Histogram of workload per 114 cells, % targets/workload = 7/32µs.

32µs is added for each target. The speedup gained by applying flexible filters in this

case depends both on the percentage of data tokens that require extra processing and

on the amount of extra work required. While it would likely be possible to achieve

similar results for any one instance of CFAR with a static stream split and enough

buffering, the strength of flexible filters is that the same implementation will adapt to

changing load in the same stream without modification (i.e., a stream that switches

from one distribution of execution times to another).

4.4 Related Works

Flexible filters balance load using a version of work stealing for stream programs.

Work stealing is a technique used in a variety of parallel systems to balance load by

allowing idle cores to “steal” tasks from busy cores [9; 51; 75]. Most work stealing

techniques go through stages of load evaluation, reassignment, and task migration;

and their “victim” processors (from whom tasks will be stolen) are selected randomly.

In contrast, flexible filters do not steal randomly, but use the knowledge that neigh-

bors of a bottleneck filter will be idle because they depend on this filter to continue

processing data tokens. Items are never migrated between buffering queues of differ-

ent processors; instead, when queues become full new items are redirected elsewhere.

With flexible filters, tasks are not “stolen” per-se but rather the data flow is re-routed

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 82

when a bottleneck arises. Whichever filters have been mapped with flexibility deter-

mine the available routes for data during runtime. Flexible filters are specialized to

pipeline data flow because the pipeline stream dependencies narrow down good can-

didates for redundant-code placement by exposing which tasks will become idle when

another becomes a bottleneck.

Load balancing approaches specific to stream programs can be categorized depend-

ing on whether the stream models rely on data parallelism or pipeline parallelism (in

practice both approaches can be used simultaneously [58]). In data parallel stream

systems, there can be many producers that feed many consumers, and there may

be many instances of producer and consumer functions [5; 108]. Load balancing is

achieved by routing data to different instances of consumers based on their current

load and productivity. On the other hand, in pipeline-parallel stream systems, the

data may need to flow through a series of pipelined filters where each filter can be

viewed as a producer and consumer of input and output data. The order of filters

constrains the order in which tasks may be executed.

Flexible filters are a solution for load balancing in pipeline-parallel stream pro-

grams. Many related works for balancing the load of pipeline parallel stream programs

involve a central control and/or phases where the compute nodes collect statistics

which are used by the control to direct reorganization [48; 113; 127]. The number of

filters is designed to outnumber the cores, and load balancing is typically achieved

by moving filters from nodes with heavy loads to nodes with lighter loads, similar to

work stealing. Flexible filters simulate filter migration by duplicating some filters on

the cores and invoking duplicates when the load becomes unbalanced.

Chen et al. perform load balancing for stream programs by compiling several

alternative filter mappings [22]. During run-time, the system can “context-switch”

between the alternatives based on the properties of the data. Flexible filters, on the

other hand, dynamically adapt to the current flow behavior of the system. In the

Diamond system developed by Huston et al., data tokens are forwarded based on

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 83

threshold values in the input and output queues [70]. Load balancing with flexible

filters similarly is an outcome of the state of the queues, but the difference is that

flexible filters balance load based on backpressure. Moreover, Diamond is optimized

for distributed search which relaxes several constraints of stream programs – namely

that the filters need not be executed in a particular order because they are used

to eliminate unwanted data (rather than transform the data) and that data can be

processed in any order.

Many stream programming languages, such as StreamIt include split and join

nodes in their supporting library that are used to transform the stream programs [48;

58; 121]. Split and join nodes in StreamIt can be used in two ways. First, the

programmer may use them while writing a new stream program. Second, the StreamIt

compiler may introduce split and join nodes to optimize the program by increasing

data parallelism. This accomplishes static load balancing because the data flow is split

at run-time regardless of the loads on the various cores. In contrast, the Flexible-

Filter flex split and flex merge filters described in Section 4.2 are not intended for use

when building a stream program, but are application-independent library filters that

are introduced at a later stage when flexibility is added. Dynamic load balancing

in my approach is based only on the insertion of flex split and flex merge. These

are statically added during compilation but achieve dynamic load balancing via the

backpressure mechanism applied to the dataflow.

4.5 Summary

Stream processing is a promising paradigm for programming multi-core systems for

high-performance embedded applications. Flexible filters combine static mapping of

stream program tasks with dynamic load balancing of their execution in order to

improve system-level processing throughput of the program when it is executed on

a distributed-memory multi-core system as well as the local (core-level) memory uti-

CHAPTER 4. FLEXIBLE FILTERS: LOAD BALANCING THROUGH
BACKPRESSURE IN STREAMS 84

lization. The flexible filters technique is scalable because it is based on distributed

point-to-point handshake signals exchanged between neighboring cores. Flexibility

may be applied to any stateless filter without any modification to the filter itself,

and only altering the overall stream program with the addition of the application-

independent auxiliary filters flex split and flex merge around the filter and its flexible

duplicate. The experiments in this chapter apply flexible filters to five stream bench-

marks, and achieve performance speedup higher than 30% in most cases.

In the next chapter, a recursive parallel programing abstraction called Huckleberry

is presented. Data flow is very obvious in a stream program because it is a direct

result of the program structure. In Huckleberry recursive programs, data partition-

ing is exposed, but data dependencies are hidden from the programmer. Instead, the

data dependencies are handled automatically at runtime. Chapter 6 presents a per-

formance model for programming abstractions which frames all programming models

as task graphs.

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 85

Chapter 5

Huckleberry: A Data Partition

Abstraction

This chapter presents Huckleberry, a novel tool for automatically generating par-

allel implementations for multi-core platforms from sequential recursive divide-and-

conquer programs. Explicit data partitioning is the cornerstone of Huckleberry’s

programming abstraction. With regard to the three questions that define a program-

ming model – (1) what is expected of the programmer? (2) what does the model

expose? and (3) what does the model hide? – Huckleberry expects the programmer

to explicitly partition data using Huckleberry’s partition library; the model allows

for mutually recursive functions with inter-task dependencies within the recursive

functions, and hides parallel programming concepts from the programmer including

individual threads, synchronization and message passing. Huckleberry’s high level of

abstraction lessens the challenge of programming distributed memory architectures

and extracting data parallelism from applications. My preliminary implementation of

Huckleberry focusses on distributed memory architectures since Huckleberry includes

data distribution techniques; however, the concepts of Huckleberry are not limited

only to distributed memory architectures.

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 86

Figure 5.1: Wave-front dependency pattern.

Programming distributed memory multi-core platforms has distinct challenges:

First, hardware may not provide cache-coherency, meaning that a parallel program

must be designed so that tasks and data are explicitly distributed to the cores. A

parallel implementation must schedule tasks and data to maximize concurrency and

minimize unnecessary (expensive) off-chip data-swapping and also account for non-

uniform access among the cores to the distributed memory banks. In addition, the

implementation must coordinate the on-chip communication network with the system

memory and task scheduling. Finally, the number of cores is likely to scale much

higher in future generations of chips, thus requiring new algorithms that avoid single-

point bottlenecks. Chips with more cores, whether they are distributed memory

architectures or not, are more likely to experience more drastic non-uniform memory

access latencies due to the increased relative latency of communication across the

chip as feature sizes decrease and clock rates increase.

Recursive parallel models typically extract data-parallelism from an application

by recursively divide-and-conquering a problem into many smaller pieces that may all

be executed in parallel. Unlike the data-parallelism extracted by SPMD programs,

recursive data-parallelism may include additional constraints, such as inter-task de-

pendencies. For example, Fig. 5.1 illustrates an array with a wavefront dependency

pattern. Data-parallelism is available in the diagonals (where no two tasks are depen-

dent on one another); however, the number of elements in a diagonal changes with

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 87

Figure 5.2: Recursive quadrant dependency pattern.

each step, making an iterative SPMD solution cumbersome. And if the size of the

data set is large, and a diagonal is too large to fit on the chip all at once, data locality

between diagonals is lost in off-chip data swapping.

Huckleberry’s recursive programming model highlights the temporal and spacial

locality of data use among tasks to promote schedules that distribute data nearby

to the tasks that will use it and minimize data swapping. Huckleberry manages

data swaps between cores with distributed synchronization to avoid a bottleneck

in processing. Recursive parallelism references data in a top-down fashion, so that

different chunks of the problem are separated into pieces that will fit on the chip.

Fig. 5.2 shows a recursive quadrant pattern which can be recursively applied to the

wave-front array from Fig. 5.1 in order to manage the varying diagonal sizes with

a simple hierarchical pattern. Notice that each quadrant is a smaller version of the

overall problem and could be distributed as a unit onto the chip to preserve data

locality between tasks.

Huckleberry differs from other recursive parallel programming models because it

completely abstracts the decomposition of concurrent tasks so that a programmer

need only to focus on the data partitioning, and the code generator transparently

expands a Huckleberry recursive function into a parallel task graph. Recursive algo-

rithms are used by Huckleberry’s code generator not only to automatically divide a

problem up into smaller tasks, but also to derive lower-level parts of the implemen-

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 88

Code Generator

Huckleberry

Part i t ion Library

Tunable Parameters

 Max # Threads

 Granulari ty

P r o g r a m m e r Archi tecture
memory mode l

cores

size of local memory

Paral lel

Imp lementa t ion

schedule

d is t r ibuted

determinist ic

da ta -swaps

Using R-Tree to.. .
create smal l paral le l

subproblems

Opt imized

Local Code

Recursive

Code

Figure 5.3: Huckleberry design flow.

tation, such as data distribution and inter-core synchronization mechanisms. Huck-

leberry’s recursive parallel model supports interaction between nested calls including

data-dependencies between the calls and mutually recursive functions that alter the

nested data access pattern. It does so by leveraging the powerful mechanisms for

inter-core communication and synchronization that are typically provided by on-chip

networks.

Fig. 5.3 illustrates the Huckleberry design flow. The programmer provides one

or more divide-and-conquer recursive functions that employ Huckleberry’s Partition

Library application programming interface (API). These functions will be referred

to as user-input functions throughout this chapter. The code generator takes user-

input functions together with specifications of the underlying architecture and returns

a parallel implementation. The recursive task graph resulting from the combined

recursive functions of an application, called an R-Tree, is used at runtime in the

parallel implementation to: (1) break the problem up into subproblems small enough

to fit onto the chip, (2) distribute data across the cores, and (3) coordinate data

swaps when necessary between the cores. Huckleberry also gives the programmer the

flexibility of specifying which core is responsible for which task (through its parallel-

index function fpi) and of using optimized local code that runs at the leaves of the

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 89

R-Tree (i.e., on individual cores). Decentralization is a central idea to the Huckleberry

approach, and is achieved by allowing cores to calculate for themselves which tasks

they are responsible for, and when and with whom they should swap data. By keeping

as much communication contained on a chip as possible, Huckleberry takes advantage

of the performance edge delivered by high-speed on-chip networks. The first release

of Huckleberry supports multi-core platforms based on the Cell BE processor and

generates parallel code for a variety of benchmarks. The experiments presented adjust

code generation parameters to uncover the distinct demands that each benchmark

places on the system’s resources.

5.1 Huckleberry Programming Interface

Huckleberry is based on the C programming language, supplemented by Huckleberry’s

partition API. The constraints on the programmer are as follows: foremost, only re-

cursive divide-and-conquer functions where the divide step can be determined before

the compute steps are supported (i.e., the partitioning of the data does not depend

on the data; however, there can be data dependencies between branches where several

steps of the algorithm alter the same data.). If a user-input function has this prop-

erty, as it is the case for bitonic sort that is introduced as an example later in this

section, the programmer can modify it to be accelerated by Huckleberry simply by

wrapping all of the function’s parameters with the API’s Partition data structures.

In return, Huckleberry abstracts away the details of implementing a parallel algo-

rithm. The programmer does not need to separate the algorithm into independent

tasks or consider architectural details like the number of cores or the size of the local

memory. Huckleberry supports mutually recursive functions that invoke one another,

and multidimensional data in user-defined types.

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 90

5.1.1 Partition Library

The Partition API is the centerpiece of the Huckleberry partition library. User-

input functions must use partitions for all of their parameters. Partitions support

generic data structures, but annotate the actual data with meta-information about

the data; for example, array-based metadata includes data type, dimensions, and

where a partition’s data begins and ends within each dimension. The partition API

includes the following functions:

• create partition() creates and fills a partition;

• free partition() frees the memory of a partition;

• left half() copies a partition’s metadata into a new partition, altering the

new partition to only include the original partition’s left half;

• right half() is the inverse of left half();

• copy element() copies an element of an array into a new unit partition (a small

data structure that is not divided but is passed down the R-Tree intact);

• update int() updates an integer unit partition;

• mydata intersects() returns true if any part of two partition sets intersect

and false otherwise;

• mydata contains() compares two sets of partitions, a local and global set;

returns true if the local set entirely contains the global set, and false otherwise;

• partition size() calculates the size of a partition based on the number of

dimensions in a partition and the begin and end boundaries of each partition.

The partition library provides functions that perform operations on partitions to

reduce their size for the divide step of divide-and-conquer functions, including adjust-

ing their data pointers and keeping track of the original boundaries and where the new

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 91

l e f t - r ight pa t te rn le f t - r ight -sp l i t pat tern

quadran t pa t te rn

1

1 1

2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 5 6 3 4 7 8

1 5 2 6

1 2 1 3 1 4

2 1 2 2 2 3 2 4

3 1 3 2

4 1 4 2
3 1 3 2

4 1 4 2

1 1 1 2

2 1 2 2

1 3 1 4

2 3 2 4

3 3 3 4

4 3 4 4
3 3 3 4

4 3 4 4

2 42 3

1 3 1 4

3 7 4 8

Figure 5.4: Patterns of recursively applied partition methods.

reduced partition lies within them. My initial implementation of Huckleberry sup-

ports data that is arranged in arrays of one or more dimensions. Data structures such

as trees could also be supported using the same concepts. For example, left half()

and right half() may take the left and right subtrees of the tree structure (assigning

the root node to one of the halves).

Repeatedly applying the partition library methods to data results in a partition

pattern. Fig. 5.4 shows three patterns that break larger data structures down into

smaller pieces in a divide-and-conquer fashion. The patterns use the same library

methods, but in different combinations. For example, the left-right partition pattern

shows how data is broken down if left half() and right half() are used to par-

tition data into halves once for each branch, while the left-right-split pattern uses

left half() and right half() twice per branch.

5.1.2 Example

Bitonic sort is a divide-and-conquer algorithm where a list of elements is sorted by

first sorting its two halves in opposite directions, and then merging the two halves

together [32; 56]. While having a complexity of O(n log2 n), which is slightly less

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 92

Algorithm 3 sort(Partition list, Partition dir)

idir ← extract int(dir)

left ← left half(list)

right ← right half(list)

sort(left, dir)

update int(dir, idir ∗ −1) // change directions for the next half

sort(right, dir)

update int(dir, idir ∗ −1)

merge(left, right, dir)

sort merge only(left, dir)

sort merge only(right, dir)

Algorithm 4 sort merge only(Partition list, Partition dir)

idir ← extract int(dir)

left ← left half(list)

right ← right half(list)

merge(left, right, dir)

sort merge only(left, dir)

sort merge only(right, dir)

Algorithm 5 merge(Partition left, Partition right, Partition dir)

left of left ← left half(left)

right of left ← right half(left)

left of right ← left half(right)

right of right ← right half(right)

merge(left of left, left of right, dir)

merge(right of left, right of right, dir)

efficient than O(n log n) sorting algorithms like Merge Sort or average-case Quick

Sort, bitonic sort is a popular parallel sorting algorithm because the order of its

compare-and-swap operations is not data dependent.

Algorithms 3, 4 and 5 show a recursive implementation of bitonic sort written

with the Huckleberry API which consists of three mutually-recursive functions. The

dir partition provides the direction that the list should be sorted in, and is a unit

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 93

partition. This example demonstrates how the programmer may statically express

data partitioning at a high level of abstraction, while the generated parallel code

adapts partitions dynamically to runtime parameters (input size, available memory,

etc.). Notice that the functions lack exit conditions. Huckleberry’s code generator

inserts function wrappers around recursive functions which manage the exit condition

based on the runtime size of the Partition data compared with the available memory

in the underlying architecture. At the leaves of the R-Tree, exit conditions (or a non-

recursive optimized local code, discussed next) are necessary.

5.1.3 Optimized Local Code

The programmer may provide an optimized implementation of the user-input func-

tions to be used once a partition is small enough to fit in a single core’s local memory.

It is called local code because it is executed when all of the relevant data is in a core’s

local memory space. Since local code is executed sequentially, it can be optimized

using standard sequential coding techniques which may be specifically designed for

the hardware in use (e.g., vectorized code for Cell’s SPEs). Optimized local code is

essential for good overall performance because it will be repeated many times during

execution. In the bitonic sort example, for each instance of sort() that is called on

a platform with 16 cores, local sort() is called 1 time, local merge() 10 times,

and local sort.mo() (abbreviated from sort merge only()) 4 times for each core

(and 16, 160 and 64 times on all cores together). Thus, performance improvements

in the local code can translate into significant overall improvements. The bitonic sort

benchmark experiences more than a 10x speedup when switching between recursive

unoptimized local code and (non-recursive) optimized local code. However, the dra-

matic performance benefits of a highly optimized local code only impact what happens

on a single core. Huckleberry is able to take good single-core performance and extend

it to a complete multi-core implementation, bridging together many instances of the

single-core code.

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 94

Figure 5.5: Nested dependencies between bitonic sort recursive functions from Algo-

rithms 3 and 5 (programmer view).

5.2 Huckleberry Parallel Code Generator

The Huckleberry code generator creates a parallel implementation that follows a

hierarchical call tree at runtime by recursively unrolling the nested structure provided

by the programmer. For example, bitonic sort in Sec. 5.1.2 is made up of several

recursive functions that interact with each other in the nested dependency structure

illustrated in Fig. 5.5. In this section, after describing the machine model used for code

generation I describe how a user-input function is parallelized from the perspective

of the thread of execution at runtime.

5.2.1 Machine Model

A distributed memory multi-core system is made up of a set of N cores, each of which

is associated with a local memory whose capacity is denoted mi for core ci. There

may also be an organizer core (OC) dedicated to sequential and administrative tasks

or other special purpose cores. The capacity mi reflects the available memory for

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 95

communicat ion network 0

Aggregate Memory V iew, M

OC

c
0

m
0

c
1

m
1

c
2

m
2

c
3

m
3

c
4

m
4

c
5

m
5

c
6

m
6

c
7

m
7

m
0

m
1

m
2

m
3

m
4

m
5

m
6

m
7

Figure 5.6: Abstract machine model.

data once space for the application code and temporary buffers has been accounted

for. The aggregate local memory, denoted M =
⋃

∀i mi, is the sum total of the local

memories of the cores. The value of mi is processed by Huckleberry as an input

parameter to generate the parallel code and can be varied to change the granularity

of the parallel execution; mi can also vary depending on the particular application.

As in typical sequential programming models, the notion of data is kept separate

from memory. I denotes the program’s input data set while D denotes the working

data set that is stored in the aggregate local memory M at any given time during the

execution of the program. Finally, di denotes the subset of D that is stored in the

local memory space mi. Fig. 5.6 illustrates how the machine model can be used to

derive an abstraction of the Cell processor, with 8 SPE vector cores, and one PowerPC

core which serves as the OC.

5.2.2 Stages of Execution

The code generated by Huckleberry creates a flow of execution that passes through

three major stages (Fig. 5.7). Each stage addresses a different aspect of the parallel

implementation: the locality stage determines which subproblem should be executed

next (when the overall input data size is too large for the chip; the distribute data stage

distributes data to the chip; and the concurrency stage is executed concurrently by

cores. All stages are generated by refactoring the user-input functions with wrapper

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 96

Local i ty Wrapper

Dis t r ibute Data Wrapper

Concurrency Wrapper

Which subproblem should be

executed next?

How should data be

distr ibuted?

Local Core: Am I responsible

for the next task?

Do I ho ld data that another

core needs for the next task?

Executed Sequentially by the Organizer

Executed Concurrently by Parallel Cores

myprog ()

myprog ()

Exchange Data

Opt imized

Local Code

Stage 1

Stage 2

Stage 3

myprog ()

Figure 5.7: Stages in a Huckleberry-generated parallel application.

functions that make different scheduling decisions, which are implemented as follows:

(1) the user provides a user-input function, myprog(); (2) the code generator inserts

a wrapper by replacing calls for myprog() with wrapper myprog(), including within

the body of myprog() itself; (3) wrapper myprog() performs bookkeeping steps and

then calls myprog(). Interleaving calls to myprog() and wrapper myprog() in this

way has the effect of executing some extra code around each of the instances of

myprog(). For each of the three stages, there is a wrapper and a separate copy of

the original recursive function. The current implementation of Huckleberry assumes

that the input recursive functions correctly partition data so that each branch covers a

proper subset of the data of its parent. Partition set size is used in the exit conditions

of the wrappers.

5.2.2.1 Locality Wrapper

The locality wrapper stage decides what part of the problem should be executed next

when the initial input problem size is too large for the aggregate local memory M

of the cores. This step is executed only by the organizing core, and it is executed

sequentially to preserve data dependencies in the recursive program while maximizing

data locality.

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 97

Algorithm 6 loc wrapper myprog(data). In the bitonic sort example, data for

loc wrapper sort() includes list and dir.

if |data| ≤M then

call dd wrapper myprog()

else

loc myprog(data)

end if

Algorithm 7 loc merge(Partition left, Partition right, Partition dir)

left of left ← left half(left)

right of left ← right half(left)

left of right ← left half(right)

right of right ← right half(right)

loc wrapper merge(left of left, left of right, dir)

loc wrapper merge(right of left, right of right, dir)

The steps of the locality wrapper are shown in Alg. 6. Note that the wrapper is

application-independent, and will look the same for any program myprog(). Alg. 7

illustrates how the locality wrapper is wrapped into the merge() function from Alg. 5

with the merge() renamed to loc merge(). The replica of merge() is prefixed with

“loc ” in order to distinguish it from the replicas called by the distribute data and

concurrency wrappers (prefixed with “dd ” and “con ”, respectively). Each call to

loc merge() is wrapped with a call to loc wrapper merge(), which checks that the

problem size is small enough for M by iterating through a list of the input partition

parameters and calculating their size based on the partition size() subroutine

from the partition library. When the exit condition is met (i.e., the size is small

enough), the locality wrapper calls the next stage, the distribute data wrapper. The

assumption that branches cover a proper subset ensures the problem size is reduced

with each step.

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 98

Algorithm 8 dd wrapper myprog (data, depth). Let m be the size of data assigned leaf nodes.

if |data| ≤ m then

i← fpi(id seq)

if data has not been already sent then

send data to core i

end if

else

dd myprog(data, depth)

end if

id seq[depth]← id seq[depth] + 1

5.2.2.2 Distribute Data Wrapper

The distribute data wrapper distinguishes between individual cores and their neigh-

bors. The distribute data stage starts with a problem that will fit in the aggregate

local memory of the N cores, and breaks the problem up into N pieces based on

the application’s R-Tree. For example, a divide-and-conquer function that divides its

input in two ways can be represented as a binary tree, whose leaves correspond to

instances of the function that reach the exit case. Each node in the tree is uniquely

assigned to a specific core that is determined by calling the parallel-index function

(fpi) on the node’s position in the tree. Fpi operates on two parameters: depth and

sibling order id (e.g., left child 0, right child 1) of a node and its parents in the R-Tree.

The distribute data wrapper (shown in Alg. 8) does several things. First, it keeps

track of the current sibling id at each level of the tree with an array id seq[] and

the current depth. Id seq[depth] is incremented every time dd wrapper myprog() is

called. Dd wrapper myprog() includes depth as an input parameter; for example,

dd wrapper merge(left of left, left of right, dir) becomes dd wrapper merge(left of left,

left of right, dir, depth + 1). The minimum possible depth is determined by the size of

each core’s local available memory. However, granularity can be tuned by traversing

deeper into the R-Tree to reach smaller leaf tasks. With smaller leaf tasks, a core

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 99

is assigned more smaller tasks vs. fewer larger tasks. With coarser task granularity,

dependencies may reduce parallel speedup by forcing some tasks to wait for others.

Finer task granularity also may have finer grained dependencies so that greater con-

currency is possible. Second, the wrapper applies fpi to determine where to send the

next data. Last, it keeps track of which data it has already sent to the cores. Data

may be revisited several times in the R-Tree, but it only needs to be transferred to

the chip once.

5.2.2.3 Concurrency Wrapper

The concurrency wrapper is similar to the distribute data wrapper because it starts

with the same data, uses the same fpi function, and handles depth and id seq[] in a

similar fashion. However, while the distribute data wrapper is executed once on the

OC, the concurrency wrapper is executed in parallel on each core over the global data

set that is shared among the cores. Each core is aware of its own rank in the group.

In addition to identifying which core is responsible for each task, the concurrency

wrapper also organizes synchronization among the cores and data swapping. Data

swapping is needed when one core must read or modify data that has already been

modified by another core, i.e., there is a data dependency between tasks assigned to

different cores.

The concurrency wrapper handles context switches by recalculating the correct

depth depending on the data size and resetting the values of id seq[] to 0 for elements

beyond the new depth. The steps of the concurrency wrapper are shown in Alg. 9. A

push handshake protocol organizes data swaps: a core that needs data simply waits

to proceed until another core sends data, and the sending core will not send data

until it has reached the same node in the R-Tree as the first core. The downside of

this protocol is that some concurrency may be lost because the sending core does not

send data as soon as it is available.

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 100

Algorithm 9 con wrapper myprog (data,depth).

context switch if necessary

if |data| ≤ m then

i← fpi(id seq)

if i is rank then

if mydata contains(data) then

wait for data

end if

local myprog(data) //not to be confused with loc myprog()

else if mydata intersects(data) then

send data to core i

end if

else

con myprog(data, depth)

end if

id seq[depth]← id seq[depth] + 1

sort

1 2 3 4 5 6 7 8

sort

1 2 3 4

sort

5 6 7 8

sort

1 2

sort

3 4

sort

7 85 6

sort

merge

1 2 3 4 5 6 7 8

sort.mo

1 2 3 4

sort.mo

5 6 7 8

merge

1 3

merge

2 4

merge

6 85 7

merge

merge

1 2 5 6

merge

3 4 7 8

merge

1 5

merge

2 6

merge

4 83 7

mergemerge

1 2 3 4

merge

5 6 7 8

sort.mo

1 2

sort.mo

3 4

sort.mo

5 6

sort.mo

7 8

merge

1 3

merge

2 4

merge

1 2 3 4

sort.mo

1 2

sort.mo

3 4

merge

6 85 7

merge

merge

5 6 7 8

sort.mo

5 6

sort.mo

7 8

Figure 5.8: The R-Tree of bitonic sort recursive functions (code generator view),

unrolled until the data partition size is two data blocks.

5.2.3 Example: Traversing the R-Tree

Fig. 5.8 illustrates the hierarchical call tree, or R-Tree, constructed for bitonic sort

from its three functions sort(), merge(), and sort.mo(). In the locality stage, the

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 101

sort

1 2 3 4 5 6 7 8

sort

1 2 3 4

sort

5 6 7 8

merge

1 2 3 4 5 6 7 8

sort.mo

1 2 3 4

sort.mo

5 6 7 8

merge

1 2 5 6

merge

3 4 7 8

Figure 5.9: Subset of bitonic sort R-Tree visited by the locality wrapper.

OC initially traverses the R-Tree until it reaches a point where the data size is less

than or equal to M . Suppose that there are two cores (N = 2), and each core can

hold two data blocks (mi = 2, and M = 4). Fig. 5.9 shows the nodes of the tree from

Fig. 5.8 which would be visited during the locality stage. In each branch, the locality

wrapper stops when the data partition is reduced to four data blocks (two blocks

× two cores). Notice that when the tree stops at a sort() branch with four data

blocks, although sort() has a merge() sub-branch that also has four data blocks,

the locality wrapper does not consider the merge() sub-branch separately. Instead,

the concurrency stage will manage the merge() sub-branch since the data used by

that sub-branch will already have been distributed.

Next, the OC continues in the distribute data stage. The distribute data stage

picks up in the R-Tree where the locality stage stops, and continues in the R-Tree

until it reaches data partitions that are small enough to be distributed to individual

cores. To distribute data, it is not necessary to traverse the entire tree; it is possible

to stop the traversal when all of the data has been distributed once. The distribute

data and concurrency stages use fpi to determine which core is responsible for which

data and tasks. As mentioned, it is possible to tune the granularity smaller so that

the OC traverses deeper and distributes multiple smaller data partitions to the cores.

Up until this point, execution has taken place sequentially, but once the data has

been distributed, the cores continue in parallel in the concurrency stage. Fig. 5.10

illustrates the subtree of sort() visited in the concurrency wrapper. This example

assumes that there are two cores, each of which can hold two data blocks (and has

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 102

sort

1 2 3 4

sort

1 2

sort

3 4

merge

1 3

merge

2 4

merge

1 2 3 4

sort.mo

1 2

sort.mo

3 4

sort

1 2

sort

3 4

merge

1 3

merge

2 4

sort.mo

1 2

sort.mo

3 4

core 1 core 2

Figure 5.10: One subset of the bitonic sort R-Tree visited by the concurrency wrapper,

when there are two cores with a memory capacity of two blocks.

sufficient buffering to swap one block with another core). Thus, the concurrency

wrapper is called when the data partition has been reduced to four data blocks.

Because different recursive functions may use different partition patterns, the divide-

and-conquer pattern may be disrupted when switching between different recursive

functions as is the case when switching between sort() and merge(). Each core in

this example manages three tasks, and data swaps between the tasks as necessary.

With only two cores, after these steps are completed, the data blocks 1-4 must be

swapped off chip with data blocks 5-8 to complete the next steps. If four cores were

available instead, more tasks could be completed in one concurrency stage as shown

in Fig. 5.11. Execution returns to the locality stage tree once the complete subtree

has been executed in the concurrency stage tree.

5.3 Experiments

I evaluated the initial implementation of Huckleberry on the QS20 Cell Blade [98]

because of its flexibility and computational power and because it represents the class of

distributed-memory multi-core platforms. Each QS20 features two Cell BE processors

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 103

sort

1 2

merge

1 3

sort.mo

1 2

merge

1 5

merge

1 3

sort.mo

1 2

sort

3 4

merge

2 4

sort.mo

3 4

merge

2 6

merge

2 4

sort.mo

3 4

5 6

sort

5 7

merge

sort.mo

5 6

3 7

merge

5 7

merge

sort.mo

5 6

sort

7 8

merge

6 8

sort.mo

7 8

merge

4 8

merge

6 8

sort.mo

7 8

core 1 core 2 core 3 core 4

Figure 5.11: One subset of the bitonic sort R-Tree as visited by the concurrency

wrapper, when there are four cores, each with a memory capacity of two blocks.

together with 1GB of XDRAM. In these experiments, Huckleberry derives parallel

implementations targeting the QS20 for four benchmarks (revisited from Chapter 3):

1. Smith-Waterman Sequence Alignment is a dynamic programming algorithm

which computes a similarity score between two sequences such as DNA se-

quences [60; 115]. The algorithm fills in a matrix m starting from the top-left

corner such that m[i, j] is assigned a value which is a function of m[i − 1, j],

m[i, j − 1], and m[i − 1, j − 1]. The Smith-Waterman benchmark is imple-

mented in Huckleberry using a combination of the quadrant pattern on its

two-dimensional matrix data and the left-right pattern on its one-dimensional

sequence data.

2. Black-Scholes is an algorithm for stock-option pricing. The algorithm calculates

the price of a stock option given information such as the current price, time

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 104

period, volatility, interest rate, etc; and can be calculated with a closed form

equation. Black-Scholes is implemented using the left-right pattern to distribute

data.

3. One-Dimensional FFT is implemented based on the ‘four-step’ method [7] with

the bit-reversal algorithm [72]. The input array is a 2D matrix, and the FFT

is computed by performing smaller FFTs on the matrix rows and columns. For

the FFT the left-right pattern is used.

4. Bitonic sort is implemented as described in Section 5.1, using both the left-right

and left-right-split partition patterns.

All these benchmarks are amenable to a divide-and-conquer specification, but they

are different in nature and stress our approach in different ways. These experiments

focus on evaluating the overhead and trade-offs of communication rather than on

optimizing local single-core code to get the best performance.

5.3.1 Scalability

Fig. 5.12 shows the performance speedup for large problem sizes as the number of

cores is increased. These problem sizes require multiple stages in the locality wrap-

per. The Black-Scholes benchmark performs almost ideally, which is expected, since

the benchmark is an example of an “embarrassingly parallel” program. This demon-

strates that the overhead of partitioning and distributing the problem in the absence

of inter-core communication is very low. The overhead of inter-core data passing and

synchronization is more difficult to quantify with respect to alternative implementa-

tions; however, using double-buffering to hide the overhead is a potential solution in

both cases, though it is not implement here. Two curves for bitonic sort are shown;

the bitonic sort benchmark achieves slightly more than a 5x speedup with 16 cores for

the smaller problem size (128K integers), but the speedup degrades as the problem

size increases. The size of local memory likely plays a role in the parallel speedup

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 105

1 2 4 8 16

Number of Cores

0

5

10

15
S

p
ee

d
u

p

Bitonic Sort, 128K integers

Bitonic Sort, 1M integers

Black-Scholes, 1M options

FFT, 8M points

FFT (No sequential execution)

Smith-Waterman 16K seq

Figure 5.12: Scaling cores: Speedup when D and mi are fixed and the number N of

available cores scales up.

in this case because a hand-coded recursive implementation was able to compute

larger problems on a single core than the Huckleberry-generated implementation, and

achieved a speedup closer to 7x with larger problem sizes. For the Smith-Waterman

benchmark, the data dependencies of the algorithm limit speedup. Namely, imposing

the dependencies of high levels of the hierarchy onto lower levels causes some cores

to wait for data exchanges longer than is necessary. This behavior may be improved

by changing the data swap protocol. The FFT benchmark achieves a speed-up of 5x,

though notably, increasing from 4 to 8 and from 8 to 16 cores does not significantly

improve performance; as per Amdahl’s law, matrix transpose and multiplication op-

erations are performed sequentially on the OC in our implementation, even though

performance is near ideal when the sequential operations are excluded. Algorithmic

optimizations and the use of huge page sizes on the Cell may be a possible solution

to reduce the time consumed by these operations, as suggested by Chow et al. [23].

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 106

1 2 4 8 16,1 16,2 16,3
Number of Cores (, Number Data Sets from Off-chip)

0.01

0.10

1.00

10.00

S
p

ee
d

u
p

 C
o

m
p

a
re

d
 t

o
 1

 C
o

re

(l
o

g
a

ri
th

m
ic

)

Bitonic Sort, 8K integers

Black-Scholes, 8K stock options

FFT, 16K points

Smith-Waterman, 256 seq.

Single

Core

Multi

Core

Data

Swap

Figure 5.13: Scaling task granularity: Speedup when I is constant, but mi is scaled

down, forcing more cores to work on the problem.

5.3.2 Problem Granularity

Fig. 5.13 shows how performance changes as the problem granularity becomes finer.

The problem size is fixed and is small enough to fit in the local memory of a single core,

but more cores are recruited for their additional computational power. For example,

the Black-Scholes curve corresponds to pricing 8K stock option values. With one core,

all options are calculated by this core; with four cores, each core calculates 8K
4

= 2K

options. Cases 16,2 and 16,3 correspond to each core calculating 256 and 128 options,

respectively.

The curves are highlighted in three groups. In the first, data is small enough to

fit on a single core; in the second, data is small enough to fit entirely in the aggregate

local memory space; in the third, data is swapped on and off the chip. Breakpoints

between groups occur at different places for the benchmarks. For example, bitonic

sort requires many inter-core data exchanges. During data exchanges, temporary

buffers take up some of the local memory space, and limit the size of the input data

that can be assigned to a single core.

The benchmarks perform strikingly differently. The Black-Scholes benchmark

improves almost linearly as more cores are utilized (note the logarithmic y-axis).

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 107

1K 8K 64K 1M 16M
Input Data Size (logarithmic)

0.0

0.2

0.4

0.6

0.8

1.0

D
a

ta
 P

ro
ce

ss
ed

 p
er

 S
ec

o
n

d

Bitonic Sort

Single

Core

Multi

Core

Data

Swap

1K 8K 64K 1M 16M
Input Data Size (logarithmic)

0.0

0.2

0.4

0.6

0.8

1.0

D
a

ta
 P

ro
ce

ss
ed

 p
er

 S
ec

o
n

d

FFT

Single

Core

Multi

Core

Data

Swap

1K 8K 64K 1M 16M
Input Data Size (logarithmic)

0.0

0.2

0.4

0.6

0.8

1.0

D
a

ta
 P

ro
ce

ss
ed

 p
er

 S
ec

o
n

d

BlackScholes

Single

Core

Multi

Core

Data

Swap

1K 8K 64K 1M 16M
Input Data Size (logarithmic)

0.0

0.2

0.4

0.6

0.8

1.0

D
a

ta
 P

ro
ce

ss
ed

 p
er

 S
ec

o
n

d

Smith-

Waterman

Single

Core

Multi

Core

Data

Swap

Figure 5.14: Scaling data size: mi remains fixed, while I scales up, normalized w.r.t.

the highest throughput instance in that benchmark.

However, data swapping eventually becomes a bottleneck as the problem granularity

is reduced. The Smith-Waterman benchmark’s speedup improves slightly as N is in-

creased to 16, but is relatively flat. Performance of the FFT benchmark first improves

and then degrades as granularity is increased, while the bitonic sort benchmark per-

forms best when the entire problem is handled on one core. For all benchmarks, the

cost of additional off-chip data swapping outweighs the benefits of increased concur-

rency.

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 108

5.3.3 Throughput and the Role of Local Memory

Fig. 5.14 plots the performance of the benchmarks as the input data size scales up,

but granularity is fixed. The results in Fig. 5.14 show why bitonic sort performs

better with smaller data (128K integers versus 1M integers) in Fig. 5.12. For input

sizes that do not require data swapping, the benchmark throughput increases with

the input size, but once data is large enough to require data swapping, the throughput

drastically decreases. For the other three benchmarks throughput stays steady as the

input size increases beyond what will fit on a chip. Since data swapping is not the

bottleneck for these benchmarks, a good balance of communication and computation

has been achieved.

5.4 Related Works

With respect to related works in recursive parallelism, Huckleberry is distinct because

of its programming abstraction and the interaction of its data partitioning library

with parallel code generator. The parallel implementation generated by Huckleberry

reuses the programmer’s user-input recursive functions not only to break a problem

up into concurrent tasks, but also to break a data set up into pieces that will fit on-

chip in one stage, and to schedule synchronization between concurrent tasks. Nested

dependencies and context switches between mutually recursive functions are detected

at runtime and managed with distributed control.

Huckleberry follows a number of works in recursive parallel programming. All

take advantage of the divide-and-conquer hierarchy to decompose an algorithm into

parallel tasks. The Sequoia programming language uses hierarchical program design

to leverage data locality in the memory hierarchy of a parallel system, and also sup-

ports the Cell architecture [47; 80]. In Sequoia, different layers of the hierarchical

tree are associated with different levels of memory. Concurrent tasks are isolated

and do not synchronize, but communicate through their parent task (which may be

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 109

mapped to the same core). The Sequoia compiler plays a role in optimizing the paral-

lel implementation. The parallel implementation generated by Huckleberry similarly

focusses on the memory hierarchy; however, the Huckleberry compiler performs no op-

timizations, but is paired with a distributed application-independent runtime library

that has access to the aggregate memory view and partition metadata on local cores.

Compilers have also been used to parallelize divide-and-conquer programs in other

parallel architectures by analyzing memory references to detect dependencies [64;

109]. Cilk is an expressive general-purpose C-based parallel programing language

that includes support for recursion [14]. Cilk does not abstract parallelism from the

programmer to the same extent that Huckleberry does; the programmer must expose

parallelism in applications through the use of thread keywords such as spawn and

sync. Huckleberry, in contrast, requires the equivalent of data partitioning keywords

(i.e., library functions) instead of thread keywords.

NESL is a nested parallel programming languages [12]. Huckleberry is novel with

respect to NESL because data passing and inter-core synchronization are determined

at runtime via a distributed decision making process which is fully integrated with the

distributed tasks. Algorithmic Skeletons capture abstract communication patterns of

parallel programs, and are intended to be developed separately from the algorithmic

specification of an application by system and application experts, respectively [59].

The divide-and-conquer skeleton, which supports the parallelization of recursive pro-

grams, is implemented with SPMD parallelization based on the powerlist data struc-

ture [94]. Huckleberry’s implementation does not separate the recursive algorithm

from the application’s communication pattern, but instead models the communica-

tion after partition patterns.

CHAPTER 5. HUCKLEBERRY: A DATA PARTITION ABSTRACTION 110

5.5 Summary

As multi-core systems of the future scale up to large numbers of cores, there is a need

for tools that can abstract away the process of separating a program into parallel

tasks. My goal with Huckleberry is to create such a tool for recursive divide-and-

conquer programs where the programming abstraction is based on data partitioning.

My experiments demonstrate Huckleberry’s ability to automatically generate parallel

implementations from sequential recursive functions. I find that the speedup available

from parallelization provided by Huckleberry is affected by the interaction of data

dependencies and workload.

What does Huckleberry’s recursive model have in common with stream graphs?

A stream graph is a fairly low-level parallel abstraction. The programmer identifies

the tasks and how they communicate, and (possibly after compiler optimizations) the

tasks are mapped directly to cores. The Huckleberry recursive model, on the other

hand is high-level, and the programmer does not identify individual tasks. However,

at run-time, the program is broken up into a task graph where some of the tasks may

execute in parallel. Both programming models share a common task graph form at

run time, and this task graph can be used as a common framework. The next chapter

describes a model for the task graphs of multi-core applications which simplifies the

search for a good mapping to the hardware platform.

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 111

Chapter 6

A Performance Model for

Multi-Core Applications

The trend towards multi-core chip design anticipates performance gains proportional

to the increasing number of cores. In fact, it is very difficult to achieve linear speedup

as the number of cores increases. If there is any imbalance between the tasks that

two cores are executing, then one core will become idle, and whenever a core is idle,

the potential performance gain promised by its presence is lost. Secondly, when there

are many more tasks than cores, these tasks must be co-mapped. It is then a chal-

lenge to choose a good partitioning of the tasks among the cores that balances the

execution times and the communication and memory needs of the tasks. Depen-

dencies between tasks can also limit their ability to be executed in parallel, further

reducing performance. Thus, finding a mapping of an application is an essential

part of designing a balanced parallel implementation of that application. Mapping

applications to multi-cores has been studied in a number of different contexts [13;

81], and in general is a hard problem [53; 95].

When exploring the search space for a good mapping, the performance for new

mappings can be evaluated through either experimentation or simulation. Empiri-

cally implementing and testing an application on a target multi-core platform can

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 112

be very time consuming. The implementation is challenging for the reasons men-

tioned in Chapter 1, for example, the correct usage of synchronization primitives,

and low-level memory management such as direct memory access operations and

data alignment. Moreover, many multi-core platforms lack sophisticated debugging

tools, which further increases the time to design and test an application. For these

reasons, a performance model may be preferable over actual experiments to facilitate

rapid design-space exploration of different filter mappings.

In this chapter, I present the compositional multi-core performance (CMCP)

model for multi-core applications. The proposed model provides a representation

of a program that brings together the algorithmic and hardware dependencies. The

CMCP model captures the physical constraints of a parallel architecture including

mutual exclusion, buffer capacity, communication latency, and off-chip data swap-

ping as well as the properties of the application such as the execution time and

composition of tasks. The model is compositional because the different constraints

(e.g., mutual exclusion, etc.) are captured in modular constructs which are modelled

separately, but can be composed together to create a comprehensive representation

of an application. Furthermore, it is extensible to performance optimizations such as

flexible filters.

The CMCP model is based on the Petri net model of computation, which captures

the data-driven nature of the programming abstractions and applications presented

in this thesis. Programs are represented as a set of tasks together with a network of

the data movement between them.

Sec. 6.1 briefly outlines the Petri net model of computation and Sec. 6.2 describes

in detail the CMCP model and how it can be modularly built up to represent different

aspects of a parallel implementation of an application. Next, in Sec. 6.4, I present an

experimental evaluation of the CMCP model compared to actual performance data for

the benchmarks presented in Chapters 4 and 5 for Flexible Filters and Huckleberry.

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 113

6.1 Petri Nets

Petri nets are a mathematical model of computation [103]. Originally invented by

Carl Petri for describing chemical compound production nets, Petri nets have been

used over the years for modelling and performance evaluation of many computer

systems, including manufacturing, hardware design, and communication protocols,

and more recently systems-on-a-chips and distributed software systems [26; 40; 44;

73]. Petri nets are a convenient representation for evaluating concurrent systems

because it is possible to analyze a Petri net and determine its behavioral properties

such as graph liveness, boundedness, and reachability [97]. After a brief description of

Petri nets, this section shows how multi-core application task graphs can be modelled

using Petri nets.

Petri nets are directed bipartite graphs with two kinds of nodes, transitions and

places. Transitions may only be connected to places, and vice versa. A place is a

container for tokens and starts with an initial marking, denoting how many tokens

it initially contains. A transition is a node that connects places to each other, and

is able to fire, consuming tokens from each of the places on its incoming arcs, and

producing tokens on each of its outgoing arcs. A transition is only enabled to fire

when all of the places on its incoming arcs have a sufficient number of tokens. Each

arc is assigned a weight corresponding to the number of tokens that is produced or

consumed during one firing event. The rate of production/consumption of tokens by

the actors of a Petri net can be used to model the data-processing throughput of the

components of a computing system.

Throughput and latency are the two performance metrics considered for the per-

formance model. Throughput is a measure of how much work a system can complete

per unit of time, and latency is the overall time from start to finish that is necessary

to complete a unit of work. Latency is estimated from a throughput calculation by

modifying the graph to have a feedback loop between the sinks and sources (this

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 114

feedback loop ensures that only one unit of work is active at a time, and thus latency

can be calculated as 1
throughput

).

Formally, a Petri net is defined as a five-tuple: PN = (P, T, F,W,M0), where

• P is the set of places;

• T is the set of transitions (with P ∩ T = Ø);

• F is the set of arcs (P × T) ∪ (T × P);

• W is the set of weights for each arc;

• M0 is the initial marking of each place; each m ∈M0 is a non-negative integer.

The original definition of Petri nets does not place any restrictions on the timing

of when a transition fires. In particular, transitions may wait an arbitrary amount

of time before firing after having become enabled, and there is no synchronization

between the firings of different transitions. Different studies of Petri nets have in-

troduced timing semantics into the model in order to model different systems (e.g.,

timed Petri nets and stochastic Petri nets [17; 65; 107]).

6.2 Compositional Multi-Core Performance Model

I introduce the following two refinements over general Petri nets for the performance

model. First, firing semantics are discretized over time steps, and all transitions

enabled at a given time step will fire. Second, when nondeterminism is present in

the graph (i.e., more than one transition could consume tokens from the same place,

but the firing of one transition would preclude that of others), the transitions follow

a round-robin priority schedule.

The proposed performance model is expressive enough to capture various aspects

of mapping a task graph onto an architecture, including intertask dependencies, dif-

ferent task mappings, communication latency, and buffer sizing. Individual Petri net

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 115

c ea b

d

Figure 6.1: Example task graph.

constructs are introduced to capture each of these aspects, and these constructs are

composed into a comprehensive Petri net representation of the program. Figures 6.1

through 6.9 step through the construction of an instance of the CMCP model from

an example task graph in order to illustrate the combination of these aspects. Fig. 6.1

illustrates a simple example task graph consisting of five computational tasks which

are composed with pipelined inter-task communication.

6.2.1 Tasks

A task is equivalent to a sequential sub-program; in other words, a sequence of opera-

tions that work together to accomplish a particular goal. A task may be hierarchical,

comprising several subtasks. Each task corresponds to a transition in the CMCP

graph (transitions are shown as rectangles, while places are large empty circles, and

tokens are small filled-in circles within the places). The execution time, e, of a tran-

sition corresponds to the measured or estimated execution time of the task on the

target hardware, and when a transition fires, it will not produce tokens until e time

steps have passed.

6.2.2 Task Composition

Composition captures the dependencies between tasks and sets of tasks. For example:

• pipelined composition, f ◦ g: there is a data dependency between f and g such

that the input consumed by g depends on the output produced by f .

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 116

c ea b

d

p0 p1 p2 p5 p6

p3 p4

Figure 6.2: Task graph represented as a Petri net.

• commutative composition, f + g: there are no dependencies between f and g,

and f and g can be executed in any order, or concurrently;

• transactional composition, f ⊕ g: f and g can be executed in any order, but

they must be executed atomically (i.e., f must complete before g or vice versa).

Thus, there is an implied data dependency between f and g since otherwise

their order would not matter;

• functional composition: dynamic and/or data dependent rules about the order-

ing of tasks;

The examples in this section, which are based on experiments from previous chap-

ters, primarily employ pipelined and commutative composition. Pipelined communi-

cation paths and dependencies are illustrated as directed edges in the task graph, and

places with an initial marking of zero are inserted between transitions. Commutative

composition involves no dependencies between tasks, and corresponds to a lack of

dependency arcs in the task graph.

The following five-tuple expresses the task graph shown in Fig. 6.1 as a Petri net,

PN = (P, T, F,W,M0), where P = {p0, p1, p2, p3, p4, p5, p6}, T = {a, b, c, d, e},

F = {(p0, a), (a, p1), (p1, b), (b, p2), (b, p3), (p2, c), (c, p5), (p5, e), (p3, d), (d, p4), (p4, e),

(e, p6) }, W = {1, 1, 1, 1, 1, 1, 1}, and M0 = {0, 0, 0, 0, 0, 0, 0}. Fig. 6.2 illustrates

the full set of places and arcs in the Petri net representation of this example. In

the case of feedback loops within the task graph, it is necessary to insert tokens so

that the Petri net can make progress. A minimum of one token must be present in

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 117

the initial marking of every cycle in the original graph, but more may be inserted

depending on the initialization of tasks in the real program.

6.2.3 Architecture

The CMCP model combines a general Petri net representation of an application task

graph with an abstraction of the target multi-core architecture. Multi-core architec-

tures are characterized by their (1) cores, (2) communication infrastructure, and (3)

memory model.

The CMCP model includes a set of cores C. The experiments in this chap-

ter utilize uniform models for the communication infrastructure and memory model.

Equation 6.1 calculates a uniform communication latency between cores as a function

of the message size.

latency = α + β ∗message size (6.1)

Profiling of the target architecture determines the α and β factors. The CMCP model

assigns each core ci the same memory capacity µ.

The CMCP model allows for extensions to more complex models of non-uniform

communication latency and memory distribution, for example, by modelling non-

uniform communication latency as a function of the identities of the sender and

receivers as well as the message size. The memory capacity of each core may be

adjusted on a per-core basis to reflect uneven memory distribution; e.g., the Cell

architecture maps application code and data to the same local memory and thus the

size of the application code reduces the available memory to a core.

The resources of a multi-core architecture interact with application properties

and dependencies during runtime. The CMCP model captures various interactions

including mutual exclusion, data buffering and backpressure constraints by introduc-

ing additional transitions and places to the Petri Net which represent the resources

and constraints of the architecture.

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 118

Formally, the CMCP model extends a general Petri net model to an eight-tuple:

CMCP = (P, T, F,W,M0, E, C,Map), where

• E : T −→ N is the set of execution times for each transition;

• C = {c1, c2, ..., cN} is a set of N cores;

• Map : T −→ C is a mapping of each transition to a core.

The remainder of this section addresses different aspects of the program’s implemen-

tation and how they are captured in the performance model.

6.2.4 Mutual Exclusion

To capture the fact that each core only works on one task at a time, mutual exclusion

(mutex) constructs are added for all tasks co-mapped to the same core. A mutex

construct consists of a place initialized with one mutex token, such that a task must

consume this token in order to fire, and will not return the token until it is done

executing. For each core ci, where the set {t:map(t) = ci} has more than one element,

an additional place is added to P with arcs to and from all t with map(t) = ci. For

example, Fig. 6.3 adds a mutex construct between tasks a and b, and the CMCP

model is updated with the following changes: add C = {c1, c2, c3, c4}, and map(a) =

map(b) = c1, map(c) = c2, map(d) = c3, map(e) = c4, P = P ∪ {p7}, and F =

F ∪ {(a, p7), (p7, a), (b, p7), (p7, b)}, with the weight of all new arcs set to 1, and the

initial marking of the new place m0(p7) = 1. A round-robin priority scheme is enforced

when more than one filter is simultaneously enabled but requires the same mutex

token.

6.2.5 Data Buffering in Pipeline Communication

When two neighboring pipelined tasks are co-mapped on the same core, data may

be passed between these tasks via in-place buffering (i.e., in the core’s local memory)

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 119

d

ea cb

p7

Figure 6.3: Modeling mutual exclusion.

c e
q q

qq

a b

d

Figure 6.4: Modeling backpressure.

and does not incur additional storage cost. Consequently, there is never backpressure

due to buffering between co-mapped neighbors. However, when neighboring tasks are

not co-mapped, a data buffer of finite size is maintained between them. Backpres-

sure, corresponding to the available buffer space, is modeled by adding a backward

arc/place pair between tasks. The place is initialized with q tokens for a buffer of q

size. The CMCP captures data buffering in a pipeline communication by the addition

of backpressure arcs. For each pair of transitions t1 and t2, if there exists p such that

(t1, p), (p, t2) ∈ F and map(t1) 6= map(t2), a new place pback is added in the opposite

direction: P = P ∪ {pback}, F = F ∪ {(t2, pback), (pback, t2)}, the weight of the new

arcs is set to q, and m0(pback) = q. The figures of this chapter follow the convention of

representing backpressure edges as dashed lines. In Fig. 6.4, four backpressure edges

are added among tasks b, c, d, and e. In this example, all backedges have the same

number of tokens (q), though uniform buffer sizing is not mandatory in general.

6.2.6 Communication Latency

The cost of communication is incorporated into the performance model with addi-

tional transitions, shown as darkened rectangles in Fig. 6.5. These transitions add

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 120

q q

qq

c ea b

d

Figure 6.5: Modeling communication overhead.

additional latency based on the size of data being passed and on the execution time

of the tasks that follow them. The cost of pipeline communication may be hidden

when the data movement is overlapped with computation. This is known as double

buffering and is a popular technique to optimize the execution of stream programs

on multi-core architectures. However, if the execution time of a task is relatively low

compared to the latency of communication, the communication overhead may not be

hidden. Notice that Fig. 6.5 imposes mutual exclusion constraints on the communica-

tion transitions. The latency of these transitions corresponds to the communication

overhead which is not hidden through double buffering. Multiple incoming com-

munication streams do typically overlap, such as the two incoming communication

transitions of filter e. In this case, it is not necessary to add a mutex loop to the

second communication transition. To avoid cluttering the figures in the next pages,

mutex loops to communication transitions are not drawn. Notice that the backpres-

sure arcs bypass the communication overhead. This reflects the difference in latency

between sending a block of data and a control message. Depending on the hardware

platform, the properties of communication latency and how it changes with data size

may vary.

Formally, for the same set of transitions considered when adding buffering con-

straints (i.e., each pair of transitions t1 and t2, if there exists p such that (t1, p),

(p, t2) ∈ F and map(t1) 6= map(t2)), a new transition tlat and corresponding place plat

are added between the transitions, thus altering the existing arcs. The CMCP model

is updated with these changes: P = P ∪ {plat}, T = T ∪ {tlat}, F = F ∪ {(p, tlat),

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 121

0 v

vε

�ex-split �ex-merge

original

 "lter

#exible

 copy

q q

Figure 6.6: Modeling flex split and flex merge.

(tlat, plat), (plat, t2)} ∪ {(p, t2)}
c (i.e., replacing the arc (p, t2) with arcs through plat

and tlat). W is updated so that all new arcs have the same weight as (t1, p). The

initial marking M0 for new places is zero: m0(plat) = 0. The execution time of the

communication transitions, e(tlat), is set according to the communication latency

of the architecture. The new transitions are co-mapped to the same core as t2

(map(tlat) = map(t2)), and the mutual exclusion constructs are added accordingly

(unless t2 already has incoming arcs from communication latency transitions, like

filter e in the example above).

6.2.7 Flexibility

Flexible filters (which are discussed in Chapter 4) are modelled with the flex split and

flex merge structures shown in Fig. 6.6 and incorporated into the CMCP graph as

shown in Fig. 6.7, which illustrates a mapping where c is flexible, and b and cflex are

co-mapped. (For clarity, places with an initial marking of zero are omitted from the

rest of the figures in this chapter.) The construction of flex split has two transitions

(shown shaded gray in Fig. 6.7), one with an execution time of zero, and one with

a small positive execution time, ǫ. The difference enforces a permanent priority of

the original copy of c over cflex. The implementation of flex merge buffers incoming

data from c and cflex separately (discussed in Section 4.2). The performance model

abstracts this into a shared backpressure place, where both tasks may consume tokens

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 122

c

e

c ex

b qq

Figure 6.7: Incorporating flexibility into the CMCP model.

from the buffer. The overhead in latency and communication cost of flex split and

flex merge is added to the flex merge transitions (labeled v in Fig. 6.6).

In this example, the flexible filter c only has one input and one output channel. To

model multiple input channels, the nondeterministic places in the flex split structure

are replicated. This results in a synchronization between the input channels which

is necessary in the stream program since the same tokens must be matched up in

order to produce the same output results regardless of whether c is flexible or not.

Like the experimental implementation, the construction of flex merge across multiple

output channels is simply a replication of the flex merge structure for each output

channel. No synchronization is necessary for the output channels. Fig. 6.8 illustrates

the constructs for flexibility across multiple input and output channels.

Fig. 6.9 depicts the overall CMCP model representation of the program from

Fig. 6.1, including mutual exclusion, buffering, communication overhead, and flexi-

bility.

6.3 Generating a Task Graph from a Recursive

Program

The CMCP model builds on a task graph representation of applications. However,

higher-level programming abstractions may not be based on task graphs (i.e., they

may not require that the programmer specify an application as a set of tasks).

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 123

multi-input

 �ex-split

multi-output

 �ex-merge

input

channel 1

output

channel 1

output

channel 2

input

channel 1

q

q

q

q

Figure 6.8: Modeling flex split and flex merge with multiple channels.

d

c

e

c ex

a b q q

Figure 6.9: Overall Petri net performance model representation of a stream program.

Nonetheless, during runtime the parallel implementation of even a high-level ab-

stracted program partitions the application among the cores and moves data to and

from different parts of memory. The runtime expression of a program corresponds to

a task graph representation where parts of the program that run on different cores

correspond to different tasks, and the movement of data between the memory of two

cores corresponds to a dependency between the tasks executing on those cores. Before

presenting experiments on the CMCP model, this section details the conversion of

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 124

a00 a01

a10 a11

a02 a03

a12 a13

a20 a21

a30 a31

a22 a23

a32 a33

A0 A2

A1 A3

Nested View of User Code

Figure 6.10: Task graph tree of the Smith-Waterman benchmark.

a high-level abstraction into a task graph, in particular, the construction of a task

graph from a Huckleberry program.

The task graph from a recursive Huckleberry program is not obtained directly

from user code, as is the case for stream programs where filters translate directly

to tasks, because the user code does not identify separate tasks. Instead, the task

graph is generated from the R-Tree of the program. Fig. 6.10 shows the R-Tree

for the Smith-Waterman sequence alignment benchmark. Recall that the Smith-

Waterman benchmark works over an array of data with a wave-front dependency

pattern, and it is implemented recursively using a quadrant partition pattern (i.e.,

breaking the array up into quadrants). In the Huckleberry implementation of the

Smith-Waterman algorithm, the data of the array is assigned to different cores, and

each core will separately traverse the tree shown in Fig. 6.10, executing only the leaf

nodes that correspond to data assigned to that core. However, the mapping of tasks

to cores impacts the structure of the task graph. The example below illustrates how

the dependencies between tasks are altered.

Each core traverses the tree in depth-first order. Thus every core will visit the

leafs in the same order: a00, a10, a01, a11, a20, a30, etc. Consider the two mappings

shown in Fig. 6.11 for only tasks a00, a10, a01 and a11. In the column-stripe task

distribution across two cores, a00 and a10 are assigned to core0 and a01 and a11 are

assigned to core1, At runtime, both cores perform a depth-first search of the R-Tree,

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 125

a00 a01

a10 a11

core 0

core 1

a00 a01

a10 a11

co
re

 0

co
re

 1
Column Stripe

Row Stripe

Figure 6.11: Row and column stripe mappings on two cores.

executing tasks for which they are responsible and passing data as necessary to other

cores for tasks for which they are not. This is a list of the steps that occur at runtime

(for simplicity each task takes one timestep and data swaps are instantaneous):

1. timestep0: core0 executes a00. core1 visits a00 and a10 in the tree and detects it

is not responsible for those tasks, and that it does not have any data to pass.

core1 then reaches a01 and waits for data produced by a00.

2. timestep1: core0 executes a10.

3. timestep2: core0 visits a01 and detects that data must be sent to core1. After

receiving this data, core1 may now execute a01 while core0 also sends data for

a11 to core1.

4. timestep3: core1 executes a11.

No speedup is gained in the column-stripe mapping even though a10 and a01 could

be executed in parallel. The row stripe mapping takes advantage of this and can

achieve a speedup of 4
3

= 1.33 since core1 is able to execute a01 starting in timestep1.

Dependencies caused by the recursive call tree are called spurious dependencies.

From a performance model perspective the question is not necessarily how to

avoid the interactions between the mapping and constraints imposed by the partition

pattern, but how to capture them in the model. My approach to detect spurious de-

pendencies is as follows: for each core, a task list is created including tasks assigned to

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 126

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

core 0

core 1

core 2

core 3

core 0 core 1

core 2 core 3

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33
co

re
 0

co
re

 1

co
re

 2

co
re

 3

Quadrant
Row Stripe

Column Stripe

Figure 6.12: Different mappings on four cores.

that core as well as communication arcs for which that core is the source, maintaining

the order of tasks that is created by a depth-first search of the tree. For example,

in the column stripe distribution, core0 is assigned a task list: { a00, (a00 → a10),

a10, (a00 → a01), (a00 → a11), (a10 → a11)}. Since the communication events corre-

sponding to arcs with a00 as a source occur after a10 has been visited in the tree, the

list is altered to reflect the latest task executed on core0 before that communication

event takes place. These are the dependencies used by the CMCP model. The list

is updated as: { a00, (a00 → a10), a10, (a10 → a01), (a10 → a11), (a10 → a11)}. This

list can be created automatically by traversing the recursive user-input functions (not

necessarily on a multi-core platform).

Unfortunately, for the Smith-Waterman application it is not possible to fix this

issue in the recursive kernel by adjusting parameters such as the granularity (for

example, creating a 16-way divide-and-conquer recursive kernel rather than a 4-way

divide-and-conquer algorithm), because no matter how many tasks are explicitly de-

fined, they are visited in sequential order in a depth-first search of the call tree. And

more spurious dependencies arise as the system scales to include more cores. Fig. 6.12

shows the spurious dependencies when sixteen tasks are distributed across four cores

in three alternative mappings. To mitigate performance losses caused by spurious de-

pendencies, it is important to choose a good mapping (e.g. row striping over column

striping in the examples above).

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 127

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

sw
ap

sw
ap

sw
ap

st
ar
t/
 n
is
h

Smith-Waterman Task Graph

Figure 6.13: Multiple stages of the Smith-Waterman benchmark. The feedback loop

ensures that only one data set is active at a time (pipelining the stages is not the goal

in this case).

6.3.1 Off-chip Data Swaps

So far, the CMCP model covers the overhead costs of on-chip communication, but

not off-chip communication, like the data swap stages described in the discussion of

Huckleberry in Chapter 5. Huckleberry programs compute in several stages, so that

off-chip communication is synchronized between the cores. Fig. 6.13 illustrates the

task graph for the Smith-Waterman benchmark over a four-core architecture where

the input data size is too large to fit into the local memory available on chip.

Stages of execution are separated by synchronization transitions that represent

the off-chip data swapping and synchronization of the cores. The execution time and

granularity of these transitions is set according to the latency and throughput of the

platform’s off-chip link. Because Huckleberry programs operate on a single data set at

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 128

a time rather than pipelining multiple data sets, an additional start/finish transition

creates a barrier between data sets.

6.4 Experiments

In this section, I evaluate the proposed CMCP model to understand how closely

it approximates actual experiment data collected. The experiments draw from the

benchmarks of both the Flexible Filters and Huckleberry projects, as well as syn-

thetic benchmarks generated with the Task-Graphs For Free (TGFF) tool [41] and

implemented using the Gedae stream language. The hardware platform for the em-

pirical part of these experiments is the PlayStation3 with a Cell BE processor with

six enabled SPE cores.

One advantage of a CMCP model is the ability to explore a wider space of design

decisions than can be feasibly tested empirically. A case study of the Smith-Waterman

benchmark is also included that tests the interaction of different task mappings with

the spurious dependencies created by its recursive partition pattern.

Performance on instances of the CMCP model is estimated using a simulator that

tracks the movement of tokens around the graph as transitions become enabled and

fire. As described in Sec. 6.2, the CMCP adds new transitions and arcs to the task

graphs of applications. Table 6.1 reports the total number of transitions and places in

the experiments for the VAR and Smith-Waterman benchmarks; the VAR benchmark

is shown with and without flexibility added; and the Smith-Waterman information

uses the row-stripe and column-stripe mapping from Fig. 6.12 on 1K sequences which

do not require multiple data-swaps.

6.4.1 Mutual Exclusion

Fig. 6.14 illustrates how effectively the CMCP model captures mutual exclusion. The

benchmarks tested are synthetic stream graphs generated by TGFF and implemented

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 129

Benchmark (orig) tasks (orig) arcs transitions places

VAR 5 4 9 11

VAR-flexible 5 4 15 21

Smith-Waterman (row-stripe) 17 38 41 87

Smith-Waterman (col-stripe) 17 38 49 111

Table 6.1: CMCP graph size compared to original task graph.

map 1 map 2 map 3 map 4
0

1000

2000

3000

4000

5000

T
h
ro

u
g
h
p
u
t

(f
ir

es
/s

ec
o
n
d
)

experiment

simulation

Figure 6.14: Estimated vs. actual throughput testing mutual exclusion.

with Gedae for the Cell processor. The mappings tested are illustrated in Fig. 6.15.

TGFF provides relative execution times of the different tasks. For this experiment,

they are set large enough so that the communication latency is completely absorbed

into double buffering in the communication channels. The communication buffers

between the pipelined stream tasks are also set large enough so that backpressure

does not impact performance and the model of mutual exclusion is highlighted by the

results. For all mappings, the CMCP model’s simulated throughput came within 2%

of the throughput of the experimental model.

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 130

b:220

c:170

d:232

e:152 f:137

a:269

Map 1

b:220

c:170

d:232

e:152 f:137

a:269

Map 2

b:220

c:170

d:232

e:152 f:137

a:269

Map 3

b:220

c:170

d:232

e:152 f:137

a:269

Map 4

Figure 6.15: Estimated vs. actual throughput testing alternative mapping options.

6.4.2 Communication Latency

The experiments presented in this chapter are all conducted on a Cell BE processor.

Based on the Cell BE profiling experiments of Kistler et al. [79], the latency of a

DMA data transfer between cores is estimated with the following equation:

latency(nanoseconds) = 91 + 0.03939 ∗message size (bytes) (6.2)

The actual latency added by a communication operation in a pipeline communication,

accounting for double buffering, may be calculated with Equation 6.3, where the

computational operation has execution time t:

pipeline latency = max(latency(message size)− t, 0) (6.3)

Equations 6.2 and 6.3 provide a lower bound for the latency of programs running

on the Cell written with the Cell SDK. In practice, I observed larger latencies in the

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 131

16 32 64 96 128 160

Portfolio Size

0

100000

200000

300000

400000

T
h
ro

u
g
h
p
u
t

(f
ir

es
/s

ec
o
n
d
)

experiment

simulation

experiment flex

simulation flex

Figure 6.16: Estimated vs. actual throughput for VAR, no communication latency.

benchmarks run on the Cell on top of Gedae, which adds more runtime operations.

Latency is better approximated for Gedae applications using Equation 6.4.

latency(microseconds) = 56 + 0.15 ∗message size (bytes) (6.4)

Note that the time units are in microseconds instead of nanoseconds. It is likely

that there are some computational operations taking place in the Gedae runtime

environment that account for the increase, and there may also be some inefficiencies in

the implementation of my benchmarks (e.g. how data is packed into 128-bit chunks).

Although it seems like a much larger latency, in most experiments computational tasks

dominate, and communication latency does not significantly impact performance.

Profile data collected from the Flexible Filter benchmarks reported in Sec. 4.3.1

populate the CMCP model for the following sets of experiments (with the granularity

remaining fixed when flexibility is added in the model).

Fig. 6.16 shows the comparison of the estimated and measured throughput for all

of the VAR benchmark’s input data sets when communication latency is not included

in the model. The discrepancy between the simulator and experiments is largest for

the smallest portfolio size which is equal to 16.

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 132

16 32 64 96 128 160

Portfolio Size

0

100000

200000

300000

400000

T
h
ro

u
g
h
p
u
t

(f
ir

es
/s

ec
o
n
d
)

experiment

simulation

experiment flex

simulation flex

Figure 6.17: Estimated vs. actual throughput for VAR.

Fig. 6.17 plots the same data when communication latency is included in the

CMCP model, using the communication latency estimate from Equation 6.4. Most

of the simulations are fairly accurate, with greater accuracy in the data points which

correspond to larger portfolio sizes. The benchmark requires steps that grow with

the square of the portfolio size. Thus, with the smaller portfolio sizes, the cost of

communication plays a greater role.

6.4.3 Flexibility

Fig. 6.18 shows how well the simulator predicts trends of speedup when flexibility

is added to a stream graph for the CFAR, JPEG and VAR benchmarks. In most

cases the simulation accurately captures trends in performance gains when flexibility

is added to a benchmark. The CFAR benchmark results demonstrate the largest dif-

ferences when comparing the simulation and experiments. CFAR presents challenges

to simulation since it is a data-dependent benchmark and its filters have a fairly light

workload, and thus communication plays a bigger role.

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 133

16 us 32 us 64 us 128x128 16 32 64 96 128 160
0.0

0.5

1.0

1.5
S

p
ee

d
u
p

experiment

simulation

CFAR (1.3%) JPEG VAR

Figure 6.18: Estimated vs. actual speedup across several benchmarks.

16 us 32 us 64 us

Synthetic Workload

0

1000000

2000000

3000000

4000000

5000000

T
h
ro

u
g
h
p
u
t

(f
ir

es
/s

ec
o
n
d
)

experiment

simulation

experiment flex

simulation flex

Figure 6.19: Estimated vs. actual throughput for CFAR.

6.4.3.1 Recursive Task Graphs and Data Swaps

Fig. 6.21 compares the latency predicted by the CMCP model with the latency mea-

sured experimentally on four cores for the Smith-Waterman algorithm, using a row-

stripe data distribution among the cores with the recursive call tree structure from

Fig. 6.10. In all of the data sets, the task granularity is a 256x256 character array,

which corresponds to 64KB of data, and has a profiled execution time of 4280 ms.

Each core is assigned four tasks, such that the data set with sequence length 1024

fits entirely onto the chip, but larger sets require numerous stages of data swapping.

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 134

128x128 image
0

5000

10000

15000

20000

25000

T
h

ro
u

g
h

p
u

t
(f

ir
es

/s
ec

o
n

d
)

experiment

simulation

experiment flex

simulation flex

Figure 6.20: Estimated vs. actual throughput for JPEG.

1024
2048

4096
8192

Sequence Length (square matrix)

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

E
x
ec

u
ti

o
n

 T
im

e

(m
ic

ro
se

co
n

d
s)

experiment

simulation

Figure 6.21: Estimated vs. actual latency of the CMCP model for Smith-Waterman

on four cores.

The CMCP model comes closest to the experimental results when each off-chip data

swap (cumulative over all four cores) is set to cost an additional 1200 ms. The 64KB

array is filled in on the cores, and then sent off-chip and saved for computing the final

alignment later. Meanwhile, only a single row or column (256 bytes) must be passed

between cores (approx. 100 ns, according to Equation 6.3).

When the input size increased beyond 4K, the variability of the results increased

significantly because the CMCP model does not take into account the L2 cache be-

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 135

row
 stripe

colum
n stripe

quadrant

single core

Sequence Length (square matrix)

0e+00

2e+04

4e+04

6e+04

8e+04

E
x

ec
u

ti
o

n
 T

im
e

(m
ic

ro
se

co
n

d
s)

Figure 6.22: Performance comparison of three mappings of a 4x4 task array on four

cores.

havior. In order to adjust for this variability and capture the ideal L2 cache behavior,

the experimental results listed are best-case times over 100 trials.

Fig. 6.22 explores the performance of three different task mappings for performing

a 1k x 1k sequence alignment, taking into account different spurious dependencies for

each mapping. The estimate for a single core execution is also included. With the

row stripe mapping performing almost 30% faster than the column and quadrant

mappings, it is clear that the data and task distribution can have a significant impact

on the performance of a Huckleberry program, and the CMCP model can aid in

quickly narrowing the space down to the best mappings.

6.5 Composing Different Abstractions

With the examples of stream abstractions and high-level recursive abstractions, I

demonstrate that the CMCP model can capture general multi-core applications. By

providing a common intermediate form among different levels of programming ab-

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 136

stractions, it also offers a common framework for composing different abstractions

within the same application. A single application may include some functions which

are best parallelized with one abstraction and other functions which are a better

suited to other abstractions. Because of Amdahl’s law, the best performance won’t

be achieved if portions of an application which could be parallelized are left sequential.

This includes the communication of an application, which if possible should be dis-

tributed among the parallel communication resources just as the tasks are distributed

among the parallel cores.

6.6 Related Works

Synchronous Dataflow (SDF) represents a special case of dataflow with fixed rates

of data production and consumption [82]. An extensive body of literature exists

on throughput analysis of SDFs, and more recently in resource trade-offs on multi-

processor systems [95; 116]. Static analysis can reveal the Minimum Cycle Mean,

which in turn can be used to derive the Maximum Sustainable Throughput of a

data flow graph [37; 77]. Previously developed techniques can be leveraged to cal-

culate the throughput in the CMCP model presented in this chapter: when a graph

is deterministic, throughput can be calculated with Karp’s algorithm in ©(|V ||E|)

(used with Marked Graphs, a special case of Petri nets which are deterministic) [38;

77]. When the graph is dynamic or nondeterministic, throughput can be estimated

through simulation over a number of time steps.

The CMCP model is based on a combination of previous works, each of which

address a subset of the combined view presented here (either the co-mapping of tasks

on the same core, or the behavior of FIFO buffers between tasks, but not both).

Bonfietti et al. modify the SDF to include multi-core mapping by adding additional

arcs to the SDF to create a cycle between filters mapped to the same core, such that

the cycle has only one token since only one filter at a time can execute on the core [15;

CHAPTER 6. A PERFORMANCE MODEL FOR MULTI-CORE
APPLICATIONS 137

16]. The mutex loops added to the CMCP model also ensure that only one filter at

a time will execute on a core, but in contrast allows arbitrary order of execution of

the filters and different execution rates of the filters, depending on when they are

enabled. Hölzenspies et al. add backedges and tokens to the SDF to create buffer

space constraints [69].

Compared to other models, the CMCP model provides a holistic view of a parallel

application running on a multi-core platform, taking into account the algorithmic

aspects of the application as well as the resource constraints of the platform, and

interactions between the two at runtime. The CMCP model is also extensible to

include performance optimizations and to represent high level programming abstrac-

tions, as demonstrated by the inclusion of Flexible Filters and Huckleberry. Finally,

it provides a unifying intermediate framework among different levels of programming

abstractions.

6.7 Summary/Future Avenues of Research

The CMCP model performs well in matching the absolute throughput and perfor-

mance trends for different mappings and flexibility assignments. In future work,

more research to understand how buffering and granularity impacts performance in

the system would be necessary, both experimentally and in the CMCP model. In my

experiments, buffer sizes and granularity for each task were selected manually through

trial and error in both Gedae programs and Huckleberry programs. An algorithm for

determining the best buffer and granularity through the performance model could

simplify and automate this design stage.

CHAPTER 7. CONCLUSIONS 138

Chapter 7

Conclusions

The goal of my research has been to discover and understand the parallelism that is

present in applications, and how it is captured by parallel programming abstractions

and implemented on multi-core architectures. I have made in-depth examinations of

the single program multiple data (SPMD), stream, and recursive parallel program-

ming abstractions in the context of numerous benchmarks (bitonic sort, fast Fourier

transform, option pricing, Smith-Waterman sequence alignment, JPEG image com-

pression, constant false alarm-rate detection, value-at-risk, dedup image compression,

and the data encryption standard). Overall, no abstraction is able to capture all ap-

plications well. And this is to be expected, since each application is characterized

by its own dependency structure, and each abstraction makes assumptions about the

properties of the dependency structure of applications. In some cases, they fit, while

in others they do not.

7.1 Contributions

In summary, the contributions of this thesis include the following:

• A quantitative comparison of the Cell BE architecture vs. the NVIDIA

GeForce 8800 GPU and of the SPMD programming abstraction vs. low-level

CHAPTER 7. CONCLUSIONS 139

platform-specific SDKs. This study highlights the advantages of the Cell on

data-centric benchmarks and the advantages of the GeForce 8800 on computation-

centric benchmarks. As a high-level abstraction, it is expected that some per-

formance is lost when moving from low-level SDKs to the SPMD abstraction.

The gap in performance between hand-optimized code and SPMD code is much

smaller for the GeForce 8800 than it is for the Cell across all benchmarks.

• Flexible filters, a lightweight, distributed, load-balancing throughput-optimization

method for programs written in the stream programming abstraction. Flexi-

ble filters can significantly improve the performance of stream programs. They

are especially effective in cases where one filter has a relatively high execution

latency compared to other filters in the program. Since this approach auto-

matically adapts the data flow to the filter latencies, it can reduce the need

to break large filters up by hand. Further, load balancing is determined solely

by backpressure signals and can be applied both to systems with static filter

latencies and systems with dynamically-varying latencies. I implement flexible

filters on top of the Gedae stream language and demonstrate speedup of at least

30% over a non-flexible parallel pipeline stream implementation in the majority

of the benchmarks tested.

• Huckleberry, a data partitioning abstraction, including the design and imple-

mentation of the Huckleberry partition library and code generation tool. Huck-

leberry provides an intuitive abstraction for parallelizing recursive divide-and-

conquer programs, and is evaluated with a suite of benchmarks. Huckleberry

demonstrates automatic parallelization of these benchmarks up to sixteen cores,

and the flexibility to adapt to different dependency structures in the benchmarks

and different available resources.

• A performance model and simulator, which unifies data-driven program-

ming abstractions, including SPMD, stream, and recursive abstractions, to-

CHAPTER 7. CONCLUSIONS 140

gether at the task graph level of a parallel implementation. The model is able

to capture properties of the application, such as its dependency structure and

task execution times together with properties of the architecture, such as the

number of cores, communication overhead, and buffering constraints, as well as

interactions between the two (e.g., spurious dependencies).

7.2 Future Directions

Many high-level parallel languages and libraries have been discussed that can help

the programmer in writing parallel programs and in extracting performance from

multi-core platforms. A popular approach to mitigate the complexity of designing

parallel algorithms is to select a programming pattern that matches the algorithm,

and then use a model that is specialized for that particular pattern [6; 24]. However,

many programs would be best represented as a heterogeneous composition of several

patterns. In this section, I briefly outline a potential avenue for future work that

generalizes Huckleberry’s parallel index (PI) function, fpi, to enable the composition

of heterogeneous parallel functions; that is, parallel functions that do not share the

same parallel pattern.

The challenge in composing heterogeneous parallel functions is how to find a

common frame of reference. The intermediate task graph representation presented

for the CMCP Model (Chapter 6) for parallel programs provides not only a framework

for modelling performance, but also for composing different types of parallel functions.

Within the CMCP model, all programs are represented as a set of concurrent tasks,

together with communication connections between those tasks, leaving the nature

of communication open-ended. This discussion of composition starts from the point

where all functions, regardless of their parallel model, are represented as tasks in a

task graph.

CHAPTER 7. CONCLUSIONS 141

A trivial composition of programming models can always be implemented, where

each separate parallel function is completed before the next is started, with data

collected at the end of each function and redistributed for the next function. In this

way, the functions act as separate applications. However, the trivial solution does not

leverage on-chip communication capabilities. In addition, as the bandwidth on and off

chip fails to keep up with the memory capacity on chip, repeated scatter/gather steps

will become a bottleneck. I believe that in order to design a distributed composition

of two or more parallel models, two things are key:

• data partitioning: that is, a data set is defined not only by its data structure, but

also by the partitioning of the data set across a distributed memory architecture;

• boundary tasks: given a parallel function, which is represented as a general task

graph, the boundary tasks are those that form a gate between that function

and other parallel functions. For example, in an SPMD function, all tasks are

boundary tasks, but in a stream function, there is a distinction: only tasks that

have channels to the outside environment (i.e., typically source and sink nodes)

are boundary tasks, while all other tasks are internal.

The rest of this section outlines at a high level how a general fpi can enable the

composition of parallel programming models.

7.2.1 Parallel Index Function

A parallel index function matches tasks and data to an index, which corresponds to

a unique core identifier. At any point in time, each core works on some task and

some data while the other cores work on other tasks and data. A task, executed

on a core, is finite, and between executing tasks, a core must decide which task to

do next, and whether it should initiate a change in the data mapping in the system

(either by sending data from its local store elsewhere or by moving data into its local

store). A task block is a set of tasks that can be considered one instance of a parallel

CHAPTER 7. CONCLUSIONS 142

fpi

fpi

fpi

fpi

fpi

fpi

Figure 7.1: Composition with SPMD task blocks.

model (e.g., one forall loop from an SPMD program). The boundary tasks of a task

block communicate outside of the block through a parallel index function. For the

discussion, it is assumed that the composition of two task blocks entails the transition

of data between two (possibly overlapping) sets of cores.

Even when two task blocks can be represented with the same model, they may use

different parameters and structures within that model. Explicit composition in these

cases may be needed just as if the composition were between heterogeneous models.

When a boundary task has completed its execution and is holding some data, the

parallel index function decides where the data should be sent next, and this is based

on information such as data dependent keys, array indexing, etc. Composition with

four parallel programming models is considered below.

SPMD Composition. Fig. 7.1 depicts the composition of two SPMD task

blocks, shown in yellow and blue. Since every SPMD task pushes its results in-

dependently, each task is a boundary task and must be accompanied by an instance

of fpi. In the first instance shown in Fig 7.1, the second task block has fewer tasks,

and so fpi must manage the redistribution of data. A very simple static implementa-

tion might be fpi(index) = index%4. Notice that since data is redirected in this case

regardless of the value of data tokens, fpi takes no input parameters other than the

core’s index. Alternatively, fpi may also take into account the data-index in addition

CHAPTER 7. CONCLUSIONS 143

f
pi
(key, 0)

c
0

f
pi

(key, 1)
c

1

f
pi

(key, 2)
c

2

f
pi

(key, 3)
c

3

f
pi

(key, 4)
c

4

k
0

k
1

k
2

k
3

k
4

Figure 7.2: Composition with reduction task blocks.

fpi
(identity)

Figure 7.3: Composition with stream task blocks.

to the core index. In the second instance, where both task blocks have the same

number of tasks and one of each is mapped to each core, fpi is the identity function

and may be omitted.

Reduction Composition. Reduction composition is like the reduce step from

MapReduce, and represents data dependent composition [39]. In the composition of

two reduction task blocks, fpi requires the key value of data tokens as an input param-

eter, and possibly the current core index depending on whether tasks are replicated,

and will remap data according to how the reduce tasks are mapped to cores.

Stream Composition. The stream model is perhaps the most composable of

parallel models. Since stream programs are constructed by connecting independent

tasks via their input and output channels, every subset of a stream program is also

a stream program, and two streams can be connected simply through their input

and output channels. Because composition in the stream model always uses pipeline

composition, fpi is the identity function for stream-to-stream composition.

Recursion Composition. Rather than being driven by the identity of the core,

like SPMD composition, or by the task mapping, like reduction composition, recursion

CHAPTER 7. CONCLUSIONS 144

composition is driven by the local data partition assigned to a core. Boundary tasks

are identified as described in the bitonic sort example of Section 5.2.2.2.

Heterogeneous Composition. In order to compose heterogeneous program-

ming models, parallel index functions similar to the cases above may be reused. For

example, fpi for SPMD to reduction would remain the same as reduction to reduction,

and vice versa. One difference in the heterogeneous composition compared to homo-

geneous composition is how stream functions interface with non-stream functions.

Streams tend to have a single or very few boundary tasks compared to other models,

which could potentially give rise to bottlenecks, for example, if all of the tasks of an

SPMD function simultaneously try to send data to the single source task of a stream

function. This case may call for the addition of hierarchical reduction and expansion

steps.

BIBLIOGRAPHY 145

Bibliography

[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock rate versus

IPC: The end of the road for conventional microarchitectures. In Proc. Annual

Intl. Symposium on Computer Architecture, pages 248–259, 2000.

[2] V. Agarwal, L.-K. Liu, and D. A. Bader. Financial modeling on the cell broad-

band engine. In IEEE Intl. Parallel & Distributed Processing Symposium, pages

1–12, April 2008.

[3] S. Agrawal, W. Thies, and S. Amarasinghe. Optimizing stream programs us-

ing linear state space analysis. In Int. Conf. on Compilers, Architecture, and

Synthesis for Embedded Systems, September 2005.

[4] T. W. Ainsworth and T. M. Pinkston. Characterizing the Cell EIB on-chip

network. IEEE Micro, 27(5):6–14, 2007.

[5] R. H. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. E. Culler, J. M. Hellerstein,

D. Patterson, and K. Yelick. Cluster I/O with River: Making the fast case

common. In Proc. of the Sixth Workshop on I/O in Parallel and Distributed

Systems, pages 10–22, May 1999.

[6] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,

D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.

The landscape of parallel computing research: A view from Berkeley. Techni-

BIBLIOGRAPHY 146

cal Report UCB/EECS-2006-183, EECS Department, University of California,

Berkeley, December 2006.

[7] D. H. Bailey. FFTs in external of hierarchical memory. In Proc. of ACM/IEEE

Conf. on Supercomputing, pages 234–242, November 1989.

[8] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin, and

J. C. Sancho. Entering the petaflop era: The architecture and performance of

Roadrunner. In Proc. of ACM/IEEE Conf. on Supercomputing, pages 1–11,

November 2008.

[9] M. A. Bender and M. O. Rabin. Online scheduling of parallel programs on

heterogeneous systems with applications to Cilk. Theory of Computing Systems,

35(3):289–304, 2002.

[10] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite:

Characterization and architectural implications. In Proc. of the Intl. Conf. on

Parallel Architectures and Compilation Techniques, October 2008.

[11] F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal

of Political Economy, 81(3):637–654, 1973.

[12] G. E. Blelloch. Programming parallel algorithms. Communications of the ACM,

39(3):85–97, March 1996.

[13] N. Bliss. Addressing the multicore trend with automatic parallelization. Lincoln

Laboratory Journal, 17(1):187–198, 2007.

[14] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,

and Y. Zhou. Cilk: An efficient multithreaded runtime system. J. of Parallel

and Distributed Computing, 37(1):55–69, August 1996.

[15] A. Bonfietti, L. Benini, M. Lombardi, and M. Milano. An efficient and complete

approach for throughput-maximal SDF allocation and scheduling on multi-core

BIBLIOGRAPHY 147

platforms. In Proc. of the Conf. on Design, Automation and Test in Europe,

March 2010.

[16] A. Bonfietti, M. Lombardi, M. Milano, and L. Benini. Throughput constraint

for synchronous data flow graphs. In Proc. of the Intl. Conf. on Integration of AI

and OR Techniques in Constraint Programming for Combinatorial Optimization

Problems, pages 26–40, May 2009.

[17] G. Bucci, L. Sassoli, and E. Vicario. Correctness verification and performance

analysis of real time systems using stochastic preemptive time petri nets. IEEE

Transactions on Software Engineering, 31(11):913–927, 2005.

[18] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and

P. Hanrahan. Brook for GPUs: Stream computing on graphics hardware. In

Intl. Conf. on Computer Graphics and Interactive Techniques (SIGGRAPH),

pages 777–786, August 2004.

[19] D. R. Butenhof. Programming with POSIX Threads (1st ed.). Addison-Wesley,

1997.

[20] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,

W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. Shah.

TelegraphCQ: Continuous dataflow processing for an uncertain world. In Conf.

on Innovative Data Systems Research, pages 668–668, January 2003.

[21] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach. Accelerating compute-

intensive applications with GPUs and FPGAs. In Proc. of the Symposium on

Application Specific Processors, pages 101–107, 2008.

[22] J. Chen, M. I. Gordon, W. Thies, M. Zwicker, K. Pulli, and F. Durand. A

reconfigurable architecture for load-balanced rendering. In Proc. of the SIG-

GRAPH/ EUROGRAPHICS Conf. on Graphics Hardware, pages 71–80, July

2005.

BIBLIOGRAPHY 148

[23] A. Chow, G. Fossum, and D. Brokenshire. A programming example: Large

FFT on the Cell Broadband Engine. Technical report, IBM, May 2005.

[24] M. Cole. Bringing skeletons out of the closet: A pragmatic manifesto for skeletal

parallel programming. Parallel Computing, 30(3):389–406, March 2004.

[25] R. Collins, C.-H. Li, L. P. Carloni, K. J. Nowka, and E. Schenfeld. An exper-

imental analysis of general purpose computing with commodity data-parallel

multicore processors. Technical Report RC25070, IBM T. J. Watson Research

Center, October 2010.

[26] R. L. Collins and L. P. Carloni. Topology-based performance analysis and

optimization of latency-insensitive systems. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 27(12):2277–2290, December

2008.

[27] R. L. Collins and L. P. Carloni. Flexible filters: Load balancing through back-

pressure for stream programs. In Proc. of the Intl. Conf. on Embedded Software,

October 2009.

[28] R. L. Collins and L. P. Carloni. Flexible filters for high-performance embedded

computing. In High Performance Embedded Computing Workshop, September

2010.

[29] R. L. Collins, B. Vellore, and L. P. Carloni. Recursion-driven parallel code gen-

eration for multi-core platforms. In Proc. of the Conf. on Design, Automation

and Test in Europe, pages 190–195, March 2010.

[30] G. Contreras and M. Martonosi. Characterizing and improving the performance

of intel threading building blocks. In IEEE Intl. Symposium on Workload Char-

acterization, pages 57–66, September 2008.

BIBLIOGRAPHY 149

[31] D. Coppersmith. The data encryption standard (des) and its strength against

attacks. IBM J. of Research and Development, 38(3):243–250, 1994.

[32] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to

Algorithms. McGraw-Hill, 2001.

[33] NVIDIA Corporation. NVIDIA CUDA Toolkit. [Online]. Available: http:

//www.nvidia.com/cuda.

[34] NVIDIA Corporation. CUDA CUFFT library, June 2007. [Online]. Avail-

able: http://developer.download.nvidia.com/compute/cuda/1_1/CUFFT_

Library_1.1.pdf.

[35] NVIDIA Corporation. NVIDIA GeForce 8800 GTX, 2007. [Online]. Available:

http://www.nvidia.com/page/8800_tech_briefs.html.

[36] Tilera Corporation. Tile64 processor product brief, 2007. [Online]. Available:

http://www.tilera.com/products/processors/TILE64.

[37] A. Dasdan and R. K. Gupta. Faster maximum and minimum mean cycle algo-

rithms for system performance analysis. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 17(10):889–899, October 1998.

[38] A. Dasdan and Rajesh K. Gupta. Faster maximum and minimum mean cycle

algorithms for system-perofrmance analysis. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 17(10):889–899, 1998.

[39] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large

clusters. In Symposium on Operating System Design and Implementation, San

Francisco, CA, December 2004.

[40] A. A. Desrochers and R. Y. Al-Jaar. Applications of petri nets in manufacturing

systems: modeling, control, and performance analysis. IEEE Press, 1995.

BIBLIOGRAPHY 150

[41] R.P. Dick, D.L. Rhodes, and W. Wolf. TGFF task graphs for free. In The Sixth

International Workshop on Hardware/Software Co-Design (CODES), March

1998.

[42] M. Drake, H. Hoffmann, R. Rabbah, and S. Amarasinghe. Mpeg-2 decoding in a

stream programming language. In IEEE Intl. Parallel & Distributed Processing

Symposium, April 2006.

[43] S. A. Edwards, N. Vasudevan, and O. Tardieu. Programming shared mem-

ory multiprocessors with deterministic message-passing concurrency: Compil-

ing SHIM to pthreads. In Proc. of the Conf. on Design, Automation and Test

in Europe, pages 1498–1503, March 2008.

[44] H. Ehrig, W. Reisig, G. Rozenberg, and H. Weber, editors. Petri Net Technology

for Communication-Based Systems - Advances in Petri Nets, volume 2472 of

Lecture Notes in Computer Science, 2003.

[45] M. Farrar. Optimizing smith-waterman for the cell broadband engine. [Online].

Available http://farrar.michael.googlepages.com/SW-CellBE.pdf.

[46] M. Farrar. Striped smith–waterman speeds database searches six times over

other simd implementations. Bioinformatics, 23(2):156–161, 2007.

[47] K. Fatahalian, T. J. Knight, M. Houston, M. Erez, D. R. Horn, L. Leem, J. Y.

Park, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan. Sequoia: Program-

ming the memory hierarchy. In Proc. of ACM/IEEE Conf. on Supercomputing,

November 2006.

[48] Eric T. Fellheimer. Dynamic load-balancing of StreamIt cluster computations.

Master’s thesis, Massachusetts Institute of Technology, 2006. Department of

Electrical Engineering and Computer Science.

BIBLIOGRAPHY 151

[49] M. Frigo and S. G. Johnson. benchFFT. [Online]. Available: http://www.

fftw.org/benchfft/.

[50] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Pro-

ceedings of the IEEE, 93(2):216–231, 2005.

[51] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the Cilk-

5 multithreaded language. In Proc. of the SIGPLAN Conference on Program

Language Design and Implementation, pages 212–223, June 1998.

[52] N. Ganesan, R. D. Chamberlain, and J. Buhler. Accelerating options pricing

calculations via parallelization along time-axis on a GPU. In Proceedings of the

First Symposium on Application Acceleration and High Performance Comput-

ing, June 2009.

[53] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, 1979.

[54] Gedae. [Online]. Available: http://www.gedae.com.

[55] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo. Spade: The system

S declarative stream processing engine. In Proc. of ACM SIGMOD Intl. Conf.

on Management of Data, pages 1123–1134, 2008.

[56] B. Gedik, R. Bordawekar, and P. Yu. CellSort: High performance sorting on

the Cell processor. In Very Large Data Bases Conf., September 2007.

[57] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison-Wesley

Longman Publ. Co., Inc., Boston, MA, 2001.

[58] M. I. Gordon, W. Thie, and S. Amarasinghe. Exploiting coarse-grained task,

data, and pipeline parallelism in stream programs. SIGOPS Operating Systems

Review, 40(5):151–162, 2006.

BIBLIOGRAPHY 152

[59] S. Gorlatch. Programming with divide-and-conquer skeletons: A case study of

FFT. J. Supercomput., 12(1-2):85–97, Jan./Feb. 1998.

[60] O. Gotoh. An improved algorithm for matching biological sequences. J. Mol.

Biol., 162(3):705–708, December 1982.

[61] N. K. Govindaraju, J. Gray, R. Kumar, and D. Manocha. GPUTeraSort: High

performance graphics coprocessor sorting for large database management. In

ACM SIGMOD Intl. Conf. on Management of Data, June 2006.

[62] C. Grozea, Z. Bankovic, and P. Laskov, editors. FPGA vs. Multi-core CPUs vs.

GPUs: Hands-On Experience with a Sorting Application, volume 6310/2011 of

Lecture Notes in Computer Science, 2011.

[63] J. Gummaraju and M. Rosenblum. Stream programming on general-purpose

processors. In Proc. of the Intl. Symp. on Microarchitecture (MICRO), pages

343–354, November 2005.

[64] M. Gupta, S. Mukhopadhyay, and N. Sinha. Automatic parallelization of re-

cursive procedures. Intl. J. of Parallel Programming, 28(6):537–562, 2000.

[65] P. J. Haas and G. S. Shedler. Stochastic petri net representation of discrete

event simulations. IEEE Transactions on Software Engineering, 15(4):381–393,

1989.

[66] T. R. Halfhill. Parallel processing with CUDA. Microprocessor Report, January

2008.

[67] R. Haney, T. Meuse, J. Kepner, and J. Lebak. The HPEC challenge benchmark

suite. In The High-Performance Embedded Computing Workshop, September

2005.

BIBLIOGRAPHY 153

[68] R. Hempel. The MPI standard for message passing. In High–Performance

Computing and Networking, volume 797 of Lecture Notes in Computer Science,

pages 247–252, 1994.

[69] P. K. F. Hölzenspies, G. J. M. Smit, and J. Kuper. Mapping streaming appli-

cations on a reconfigurable mpsoc platform at run-time. In Proceedings of the

International Symposium on System-on-Chip (SoC 2007), Tampere, Finland,

pages 74–77, November 2007.

[70] L. Huston, A. Nizhner, P. Pillai, R. Sukthankar, P. Steenkiste, and J. Zhang.

Dynamic load balancing for distributed search. In Proc. of the Intl. Symposium

on High Performance Distributed Computing, pages 157–166, July 2005.

[71] C. R. Johns and D. A. Brokenshire. Introduction to the Cell broadband engine

architecture. IBM J. Res. Develop., 51(5):521–528, September 2007.

[72] D. Jones. Decimation-in-time (DIT) Radix-2 FFT, September 2006. [Online].

Available http://cnx.org/content/m12016/1.7/.

[73] G. Juanole, B. Algayres, and J. Dufau. On communication protocol modelling

and design. In Advances in Petri Nets 1984, volume 188 of Lecture Notes in

Computer Science, pages 267–287, 1985.

[74] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and

D. Shippy. Introduction to the Cell multiprocessor. IBM J. Res. Develop.,

49(4-5):589–604, September 2005.

[75] P. Kakulavarapu, O. Maquelin, J. N. Amaral, and G. R. Gao. Dynamic load bal-

ancers for a multithreaded multiprocessor system. Parallel Processing Letters,

11(1):169–184, 2001.

BIBLIOGRAPHY 154

[76] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson, and

J. D. Owens. Programmable stream processors. IEEE Computer, 36(8):54–62,

August 2003.

[77] R. M. Karp. A characterization of the minimum cycle mean in a digraph.

Discrete Mathematics, Discrete Math, 23(3):309–311, September 1978.

[78] Khronos OpenCL Working Group. The OpenCL Specification, Version: 1.1,

Document Revision: 36, September 2010.

[79] M. Kistler, M. Perrone, and F. Petrini. Cell multiprocessor communication

network: Built for speed. IEEE Micro, 26(3):10–23, 2006.

[80] T. J. Knight, J. Y. Park, M. Ren, M. Houston, M. Erez, K. Fatahalian, A. Aiken,

W. J. Dally, and P. Hanrahan. Compilation for explicitly managed memory

hierarchies. In Symposium on Principles and Practice of Parallel Programming,

pages 226–236. ACM, March 2007.

[81] M. Kudlur and S. Mahlke. Orchestrating the execution of stream programs on

multicore platforms. ACM SIGPLAN Notices, 43(6):114–124, 2008.

[82] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. IEEE, 75(9):1235–

1245, September 1987.

[83] Y. Liu, D. Maskell, and B. Schmidt. CUDASW++: Optimizing Smith-

Waterman sequence database searches for cuda-enabled graphics processing

units. BMC Research Notes, 2(1), 2009.

[84] D. Luebke and G. Humphreys. How GPUs Work. IEEE Computer, 40(2):96–

100, February 2007.

[85] E. Luttmann, D. L. Ensign, V. Vaidyanathan, M. Houston, N. Rimon, J. Oland,

G. Jayachandran, M. Friedrichs, and V. S. Pande. Accelerating molecular dy-

BIBLIOGRAPHY 155

namic simulation on the Cell processor and Playstation 3. J. of Computational

Chemistry, 30:268–274, 2009.

[86] S. Manavski and G. Valle. CUDA compatible GPU cards as efficient hardware

accelerators for Smith-Waterman sequence alignment. BMC Bioinformatics,

9(Suppl 2), 2008.

[87] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally

equidistributed uniform pseudo-random number generator. ACM Transactions

on Modeling and Computer Simulation, 8(1):3–30, 1998.

[88] T. Mattson, B. Sanders, and B. Massingill. Patterns for parallel programming.

Addison-Wesley Professional, 2004.

[89] M. McCool, S. Du Toit, T. Popa, B. Chan, and K. Moule. Shader algebra.

ACM Transactions on Graphics, 23(3):787–795, 2004.

[90] M. D. McCool. Data-parallel programming on the Cell BE and the GPU using

the RapidMind development platform. In GSPx Multicore Applications Conf.,

October 2006.

[91] R. C. Merton. Theory of rational option pricing. Bell Journal of Economics

and Management Science, 4(1):141–183, 1973.

[92] Intel Microarchitecture. Intel core i7-800 processor series and the intel core

i5-700 processor series based on intel microarchitecture (nehalem). [Online].

Available http://www.intel.com/products/processor/corei7/index.htm.

[93] Sun Microsystems. Ultrasparc architecture 2005. [Online]. Available: http:

//www.opensparc.net.

[94] J. Misra. Powerlist: A structure for parallel recursion. ACM Trans. Program.

Lang. Syst., 16(6):1737–1767, November 1994.

BIBLIOGRAPHY 156

[95] O. Moreira, J-D. Mol, M. Bekooij, and J. van Meerbergen. Multiprocessor re-

source allocation for hard-real-time streaming with a dynamic job-mix. In Proc.

of the IEEE Real Time on Embedded Technology and Applications Symposium,

pages 332–341, 2005.

[96] M. S. Müller, M. van Waveren, R. Lieberman, B. Whitney, H. Saito, K. Ku-

maran, J. Baron, W. C. Brantley, C. Parrott, T. Elken, H. Feng, and C. Ponder.

SPEC MPI2007 - An application benchmark suite for parallel systems using

MPI. Concurrency and Computation: Practice and Experience, 22(2):191–205,

2010.

[97] T. Murata. Petri Nets: Properties, analysis and applications. Proceedings of

the IEEE, 77(4):541–580, April 1989.

[98] A. K. Nanda, J. R. Moulic., R. E. Hanson, G. Goldrian, M. N. Day, D. B.

D’Arnora, and S. Kesavarapu. Cell/B.E. blades: Building blocks for scalable,

real-time, interactive, and digital media servers. IBM J. of Research and De-

velopment, 51(5):573–582, September 2007.

[99] L. M. Novak, G. J. Owirka, W. S. Brower, and A. L. Weaver. The automatic

target-recognition system in SAIP. The Lincoln Laboratory Journal, 10(2):187–

202, 1997.

[100] M. Ohara, H. Inoue, Y. Sohda, H. Komatsu, and T. Nakatani. MPI microtask

for programming the Cell broadband engine processor. Online Game Technol-

ogy, 45(1):85–102, March 2006.

[101] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn,

and T. J. Purcell. A survey of general-purpose computation on graphics hard-

ware. Computer Graphics Forum, 26(1):80–113, March 2007.

BIBLIOGRAPHY 157

[102] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence com-

parison. Proc. of the National Academy of Sciences of the United States of

America, 85(8):2444–2448, April 1988.

[103] Carl A. Petri. Kommunikation mit Automaten (“communication with au-

tomata”). PhD thesis, Darmstadt University of Technology, 1962.

[104] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. Johns, J. Kahle,

A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Stasiak, M. Suzuoki,

M. Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, and K. Yazawa.

The design and implementation of a first-generation CELL processor. In ISSCC,

pages 184–185, February 2005.

[105] Timothy Mark Pinkston and Jeonghee Shin. Trends toward on-chip networked

microsystems. Intl. Journal of High Performance Computing and Networking,

3(1):3–18, 2005.

[106] F. Pratas, P. Trancoso, A. Stamatakis, and L. Sousa. Fine-grain parallelism

using multi-core, Cell/BE, and GPU systems: Accelerating the phylogenetic

likelihood function. In International Conference on Parallel Processing, pages

9–17, September 2009.

[107] Chander Ramchandani. Analysis Of Asynchronous Concurrent Systems by

Timed Petri Nets. PhD thesis, Massachusetts Institute of Technology, 1974.

[108] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Eval-

uating MapReduce for multi-core and multiprocessor systems. In Proc. of the

Symposium on High Performance Computer Architecture, February 2007.

[109] R. Rugina and M. Rinard. Automatic parallelization of divide and conquer

algorithms. In Symposium on Principles and Practice of Parallel Programming,

pages 72–83, May 1999.

BIBLIOGRAPHY 158

[110] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W.

Keckler, and C. R. Moore. Exploiting ILP, TLP, and DLP with the polymor-

phous TRIPS architecture. SIGARCH Computer Architecture News, 31(2):422–

433, 2003.

[111] R. R. Schaller. Moore’s law: Past, present and future. IEEE Spectrum,

34(6):52–59, June 1997.

[112] M. Segal and K. Akeley. The OpenGL graphics system: A specification (version

4.0 (core profile)), March 2010.

[113] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J. Franklin. Flux:

An adaptive partitioning operator for continuous query systems. In Intl. Conf.

on Data Engineering, pages 25–36, March 2003.

[114] D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H. Larson, J. K.

Salmon, C. Young, B. Batson, K. J. Bowers, J. C. Chao, M. P. Eastwood,

J. Gagliardo, J. P. Grossman, C. R. Ho, D. J. Ierardi, I. Kolossváry, J. L.

Klepeis, T. Layman, C. McLeavey, M. A. Moraes, R. Mueller, E. C. Priest,

Y. Shan, J. Spengler, M. Theobald, B. Towles, and S. C. Wang. Anton, a

special-purpose machine for molecular dynamics simulation. Communications

of the ACM, 51(7):91–97, July 2008.

[115] T. F. Smith and M. S. Waterman. Identification of common molecular subse-

quences. J. Molecular Biology, 147(1):195–197, March 1981.

[116] S. Stuijk, M. Geilen, and T. Basten. Exploring trade-offs in buffer requirements

and throughput constraints for synchronous dataflow graphs. In Proc. of the

Design Automation Conf., pages 899–904, 2006.

[117] S. Swanson, A. Schwerin, M. Mercaldi, A. Petersen, A. Putnam, K. Michelson,

M. Oskin, and S. J. Eggers. The wavescalar architecture. ACM Trans. Comput.

Syst., 25(2):4, 2007.

BIBLIOGRAPHY 159

[118] Mercury Computer Systems. 25u/42u dual cell-based blade 2 system. [Online].

Available: http://www.mc.com/microsites/cell.

[119] A. Szalkowski, C. Ledergerber, P. Kraehenbuehl, and C. Dessimoz. SWPS3

- Fast multi-threaded vectorized Smith-Waterman for IBM Cell/B.E. and

x86/sse2. BMC Research Notes, 1(1), 2008.

[120] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald, H. Hoff-

mann, P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman, V. Strumpen,

M. Frank, S. Amarasinghe, and A. Agarwal. Evaluation of the Raw micro-

processor: An exposed-wire-delay architecture for ILP and streams. In Proc.

Annual Intl. Symposium on Computer Architecture, 2004.

[121] W. Thies, M. Karczmarek, M. Gordon, D. Maze, J. Wong, H. Hoffmann,

M. Brown, and S. Amarasinghe. StreamIt: A compiler for streaming applica-

tions. Technical report, MIT-LCS Technical Memo TM-622, Cambridge, MA,

December 2001.

[122] W. Thies, M. Karczmarek, J. Sermulins, R. Rabbah, and S. Amarasinghe. Tele-

port messaging for distributed stream programs. In Symposium on Principles

and Practice of Parallel Programming, June 2005.

[123] D. B. Thomas, L. Howes, and W. Luk. A comparison of CPUs, GPUs, FPGAs,

and massively parallel processor arrays for random number generation. In Pro-

ceeding of the ACM/SIGDA international symposium on Field programmable

gate arrays, pages 63–72, 2009.

[124] C. H. van Berkel. Multi-core for mobile phones. In Proc. of the Conf. on Design,

Automation and Test in Europe, pages 1260 –1265, April 2009.

[125] N. Vasudevan and S. A. Edwards. Celling SHIM: Compiling deterministic con-

currency to a heterogeneous multicore. In Proc. of the ACM Symposium on

Applied Computing, pages 1626–1631, March 2009.

BIBLIOGRAPHY 160

[126] C. Wynnyk and M. Magdon-Ismail. Pricing the american option using recon-

figurable hardware. In Intl. Conf. on Computational Science and Engineering,

pages 532 – 536, August 2009.

[127] Y. Xing, S. Zdonik, and J.-H. Hwang. Dynamic load distribution in the Borealis

stream processor. In Intl. Conf. on Data Engineering, pages 791–802, April

2005.

