
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Theses and Dissertations

8-2016

Randomness, information encoding, and shape replication in Randomness, information encoding, and shape replication in

various models of DNA-inspired self-assembly various models of DNA-inspired self-assembly

Eric M. Martinez
The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Martinez, Eric M., "Randomness, information encoding, and shape replication in various models of DNA-
inspired self-assembly" (2016). Theses and Dissertations. 201.
https://scholarworks.utrgv.edu/etd/201

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks @ UTRGV. For more
information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/etd
https://scholarworks.utrgv.edu/etd?utm_source=scholarworks.utrgv.edu%2Fetd%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fetd%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/etd/201?utm_source=scholarworks.utrgv.edu%2Fetd%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

RANDOMNESS, INFORMATION ENCODING, AND

SHAPE REPLICATION IN VARIOUS MODELS

OF DNA-INSPIRED SELF-ASSEMBLY

A Thesis

by

ERIC M. MARTINEZ

Submitted to the Graduate School of
The University of Texas Rio Grande Valley

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2016

Major Subject: Computer Science

RANDOMNESS, INFORMATION ENCODING, AND

SHAPE REPLICATION IN VARIOUS MODELS

OF DNA-INSPIRED SELF-ASSEMBLY

A Thesis
by

ERIC M. MARTINEZ

COMMITTEE MEMBERS

Dr. Robert Schweller
Chair of Committee

Dr. Timothy Wylie
Committee Member

Dr. Emmett Tomai
Committee Member

August 2016

Copyright 2016 Eric M. Martinez
All Rights Reserved

ABSTRACT

Martinez, Eric M., Randomness, Information Encoding, and Shape Replication in Various Models

of DNA-Inspired Self-Assembly. Master of Science (MS), August, 2016, 74 pp., 2 tables, 30 figures,

57 references, 90 titles.

Self-assembly is the process by which simple, unorganized components autonomously

combine to form larger, more complex structures. Researchers are turning to self-assembly

technology for the design of ever smaller, more complex, and precise nanoscale devices, and as an

emerging fundamental tool for nanotechnology.

We introduce the robust random number generation problem, the problem of encoding a

target string of bits in the form of a bit string pad, and the problem of shape replication in various

models of tile-based self-assembly. Also included are preliminary results in each of these directions

with discussion of possible future work directions.

Also described is VersaTILE, a cross-platform multi-model self-assembly simulator for

various models of algorithmic self-assembly.

iii

ACKNOWLEDGMENTS

My time as a graduate student has been a great period of my life and a wonderful experience.

Foremost, I would like to thank my advisor, Dr. Robert Schweller, for the continuous support of

my study and research. I took his class on algorithms during my Bachelor’s, which sparked my

interest in theoretical computer science. I would like to express my sincere gratitude for his immense

knowledge, enthusiasm, and guidance. I could not have imagined having a better advisor and mentor

for my Master’s study.

I would also like to thank Dr. Tim Wylie for all of his help. Both Robert and Tim have had

profound influence on my career. They were excellent collaborators, and real joys to work with. I

would also like to thank Cameron Chalk being an excellent collaborator and friend during this time.

My collaborators have greatly influenced me, guiding and shaping my ideas, refining my

work, teaching me new techniques, and being available to ping-pong ideas off of.

My co-authors include Cameron Chalk (UTRGV), Erik D. Demaine (MIT), Martin L.

Demaine (MIT), Bin Fu (UTRGV), Alejandro Huerta (UTRGV), Mario Maldonado (IBM), Robert

T. Schweller (UTRGV), Lucian Silcox, Emmett Tomai (UTRGV), Luis Vega, Andrew Winslow

(ULB), and Tim Wylie (UTRGV).

Last but not the least, I would like to thank my family: my parents Alicia and Carlos Martinez,

for giving birth to me in the first place and supporting me and my endeavors. I would also like to

thank my brother Carlos Martinez for always supporting and pushing me to ‘get it done’.

iv

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

TABLE OF CONTENTS . v

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER I INTRODUCTION . 1

Tile-based Self-Assembly . 2

Summary of Contributions . 2

CHAPTER II BACKGROUND . 5

Abstract Tile Assembly Model (aTAM) . 5

Staged Tile Assembly Model . 8

2-Handed Tile Assembly Model (2HAM) . 10

CHAPTER III RANDOM NUMBER GENERATION . 13

Introduction . 13

Unbounded Space, 1-Extensible, Robust Coin Flipping 14

Fixed Space, 1-Extensible, Robust Coin Flipping . 17

The Big Picture . 18

CHAPTER IV INFORMATION ENCODING . 20

Introduction . 20

Unique Bit String Pads in Separate Bins . 22

Fattening . 26

Encoding Via Tile Types . 26

Winged Bit String Pads . 30

The Big Picture . 30

CHAPTER V SHAPE REPLICATION . 33

Introduction . 33

Shape Replication Systems . 35

v

Overview of Replication Process . 36

Replication Gadgets . 39

Universal Shape Replication . 48

The Big Picture . 52

CHAPTER VI SIMULATION . 54

The Big Picture . 55

CHAPTER VII CONCLUSION . 57

Random Number Generation . 57

Information Encoding . 58

Shape Replication . 59

Simulation . 60

Closing Remarks . 60

BIOGRAPHICAL SKETCH . 74

vi

LIST OF TABLES

Page
Table 5.1 The glue strengths of each glue label in the shape replication system. 39
Table 5.2 Shown are the constraints, in the form of inequalities, which must be satisfied

for the replication gadgets shown in Section V to function in the way required
to prove Theorem 5.3. 53

vii

LIST OF FIGURES

Page
Figure 2.1 A simple example of attachment and detachment events and the notation for

the shape replication construction. 11
Figure 3.1 Here we have the algorithm for an unbounded fair coin flip extractor on the

left and the tile set for the construction that implements that algorithm on
the right. 15

Figure 3.2 A sample of producible assemblies for Round 1 16
Figure 4.1 Example of a bit string pad . 21
Figure 4.2 Example of bit string pads and winged bit string pads. 23
Figure 4.3 A 2-stage round used in Case 1 of Lemma 4.2. 24
Figure 4.4 A 3-stage round used in Case 2 of Lemma 4.2. 25
Figure 4.5 “Fattening” a single tile type from width 1 to width k 26
Figure 4.6 Example of “decompressing” a decompression pad into bit string pad. . . . 27
Figure 4.7 Generating the tile sets for decompression pads. 28
Figure 4.8 The set of tiles used to decompress a decompression pad representing a

string in base 8. 28
Figure 4.9 Assembling wings from bit string pads and extra O(1)-size assemblies. . . . 31
Figure 5.1 High level process for making the FRAME from input shape Υ. 37
Figure 5.2 High level process for making a copy of an input shape Υ from a frame of Υ. 38
Figure 5.3 Phase 1: Starting the outer mold process and handling type-1 corners. . . . 40
Figure 5.4 Phase 1: Type-2 concave and convex corners of the assembly. 41
Figure 5.5 Phase 2: The pre-drill process. 42
Figure 5.6 Phase 2: The drilling process begins. 42
Figure 5.7 Phase 2: The drilling process encounters a type-1 concave corner of the

assembly. 44
Figure 5.8 Phase 2: The drilling process encounters a type-2 concave corner of the

assembly. 45
Figure 5.9 Phase 2: The drilling process encounters convex corners of the assembly. . . 46
Figure 5.10 Phase 2: The post-drill process begins. 46
Figure 5.11 Phase 3: Starting the inner mold process and handling type-1 corners. . . . 47
Figure 5.12 Phase 3: Type-2 concave and convex corners of the assembly. 48

viii

Figure 5.13 Phase 4: The inner pre-drilling process begins. 49
Figure 5.14 Phase 4: The inner drilling process begins. 50
Figure 5.15 Phase 4: The inner post-drilling process. 51
Figure 5.16 Phase 5: The inner filling process. 51
Figure 6.1 VersaTILE: A breakdown of the primary components on the main window. . 56
Figure 6.2 VersaTILE: A breakdown of the primary components on the tile editor window. 56

ix

CHAPTER I

INTRODUCTION

Algorithmic self-assembly is the process of designing molecules such that, through local

interactions, they autonomously combine to form larger, more complex structures. Self-assembly

occurs abundantly in nature and is an important mechanism during the construction and life-cycle of

all biological organisms. Researchers are turning to self-assembly technology for the design of ever

smaller, more complex and precise nanoscale devices [18], [25], [30], [32], [34], [41], [51], [52]. At

the macroscale, industry relies on machinery for the ability to fabricate components from simple

plastic to complex microchips. Devices this large, however, cannot operate on nanoscale molecules.

Self-assembly has emerged as a fundamental tool in the field of nanotechnology to tackle these

problems.

Algorithmic self-assembly allows for the simulation of complex computational processes

which allows for small, compact systems to efficiently assemble large complex shapes and patterns.

These systems also serve as models for the design of parallel molecular computers. Fully

understanding the power of self-assembly systems, and how to control them, presents the possibility

of designing molecular algorithms for precise and efficient manipulation of matter at the nanoscale.

Models inspired by the ability DNA strands to predictibly bond with their complementary strands

have been developed that may allow the theoretical portion of this line of research to be realized.

In this work, we consider models of algorithmic self-assembly that are tile-based. Tile-based

self-assembly systems have nonrotatable square tiles as the monomers of the system with glues

on each of their edges. These glues, based on certain rules, can allow tiles to interact and bind

with each other. DNA strands can be synthesized to simulate nonrotatable square tiles and their

glues, which is the inspiration for these types of self-assembly models. In this work, I explore

1

several fundamental problems and detail my contributions in these directions: random number

generation, encoding information, shape replication, and simulation. Simulating various models of

self-assembly is an essential tool to debugging and testing self-assembling systems, without the

need for wetlab experiments.

Tile-based Self-Assembly

The simplest model, the abstract Tile Assembly Model, was first defined by [8] in which

the monomers of the assembly system are square tiles, with glue types assigned to tile edges.

Self-assembly within the tile assembly model is driven by a large (infinite) number of copies of a set

of tile types floating about, bumping into one another in the plane, and potentially sticking together

when glue affinities exceed some set threshold. This class of self-assembly model is motivated by

the ability to fold DNA strands into compact molecular building blocks, or tiles [2], [9], [10], [11],

[12], [26], [35], [42], and design a library of combinatorially distinct DNA strands [3], [4], [5], [6],

[7], [17], [19], [22], [23], [24], [29] for implementation of glues.

While simple, tile assembly has been extensively studied [15], [16], [21], [27], [31], [33],

[36], [37], [38], [39], [40], [43], [46], [48], [49], [50], [53], [54], [55], [56], [57], [60], [62], [64],

[68], [69], [71], [72], [73], [74], [76], [77], [78], [79], [89] and shown to be capable of universal

computation [8] to be intrinsically universal [63].

Summary of Contributions

Randomization and Fair Coins

Here I focus on the ability to generate uniformly random bits within the abstract Tile

Assembly Model, defined in Section II. This allows for the creation of tile systems that implement

randomized algorithms and models of computation. Previous research focused only on random

string generation and was restrictive and relied on specific concentrations of tiles [44], [49].

An aTAM algorithm generates a “fair coin” iff it generates a finite set of terminals that can

be partitioned into two subsets, and each subset is generated with probability 0.5.

This problem is trivial to solve with certain tile sets and tile type concentrations. If two tile

2

types nondeterministically compete to bind at a single edge on a seed tile, using the same glue type

and exposing no new glues of their own, then this system can generate a fair coin, if the relative

concentrations of the competing tile types are equal. Each competing tile type has 1/2 probabability

of attaching. This solution, however, breaks down if the concentrations of the tile types are all

different. Instead, a result is shown that works invariant of the concentrations of the tile types.

Encoding information

We then turn our attention to the Staged Tile Assembly Model, defined in Section II. A key

primitive is the design of an x-bit string pad. A width-m gap- f x-bit string pad is a m × f (r − 1)+ 1

rectangular assembly with r glue types of value 0 or 1 exposed on the north face of the rectangle

at intervals of length f , starting from the westmost northern edge. It can be used to build linear

assemblies, as input for specifying an n × n rectangle, or to describe a desired shape to a Turing

machine implemented in the staged tile assembly model. Two methods for building bit string pads

are described. The first, describes how to build many different types of bit string pads, with each

type in their own bin, showcasing a complexity tradeoff between tile types and bins. The second

method, utilizes only tile types to encode a representation of a number in a higher base and then

“unpack” that representation into a bit string pad representing the original number in binary. These

constructions can be used to build “wings” that allow large assemblies to self-assembly linearly in

some specified order.

Shape replication

Here, I describe a process in which the power of assembly can be used to build a system

that first senses the shape of a given unknown object, then builds copies of that shape. This model

is an extension of the 2-Handed Assembly Model (2-HAM), defined in Section II, that allows for

positive as well as negative glue strengths. Prior work, has shown this problem to be solvable in

an extension of the 2-Handed Assembly Model which includes an RNAse enzyme. In this model,

there are two types of tiles (DNA or RNA) as well as an operation utilizing an RNAse enzyme which

destroys all tiles of the RNA type. A constant set of tile types plus a global enzyme operation are

3

combined with an input shape yield a replication system. This model is unsatisfactory as it requires

multiple stages and a global “destroy” operation. In this work, the model is much more simple and

only requires positive glue types (attractive forces) and negative glue types (repulsive forces). It

receives a shape as input and with the addition of O(1)-tile types, yields an unbounded number of

copies of the input shape.

Simulation of self-assembling systems

Here, I describe the simulation of self-assembling systems via software. Specifically, my

contributions towards VersaTILE, a cross-platform multi-model self-assembly simulator. Simulation

of self-assembling systems allows the user to debug, test, and experiment with simulations without

the use of wetlab experiments. By creating an easy-to-use simulator, I made it easy for researchers

to test and interact with their systems in real-time and also integrated many of the popular extensions

to the standard model proposed in literature.

4

CHAPTER II

BACKGROUND

The various models used in the different chapters are described below. The Abstract Tile

Assembly Model is the model used in Chapter III. The Staged Tile Assembly Model is the model

used in Chapter IV. The 2-Handed Tile Assembly Model is the model used in Chapter V.

Abstract Tile Assembly Model (aTAM)

Consider some alphabet of glue types Π. A tile is a unit square with four edges each assigned

some glue type from Π. Further, each glue type g ∈ Π has some non-negative integer strength

str(g). Each tile may be assigned a finite length string label, e.g., “black",“white",“0", or “1". For

simplicity, we assume each tile center is located at a pixel p = (px, py) ∈ Z2. For a given tile t, we

denote the tile center of t as its position. As notation, we denote the set of all tiles that constitute all

translations of the tiles in a set T as the set T∗. An assembly is a set of tiles each assigned unique

coordinates in Z2. For a given assembly α, define the bond graph Gα to be the weighted graph

in which each element of α is a vertex, and each edge weight between tiles is str(g) if the tiles

share an overlapping glue g, and 0 otherwise. An assembly α is said to be τ-stable for a positive

integer τ if the bond graph Gα has min-cut at least τ, and τ-unstable otherwise. A tile system is an

ordered triple Γ = (T, σ, τ) where T is a set of tiles called the tile set (we refer to elements of T as

tile types), σ is an assembly called the seed and τ is a positive integer called the temperature. When

considering a tile a that is some translation of an element of a tile set T , we will use the term tile

type of a to reference the element of T that a is a translation from. Assembly proceeds by growing

from assembly σ by any sequence of single tile attachments from T as long as each tile attachment

connects with strength at least τ. Formally, we define what can be built in this fashion as the set of

5

producible assemblies:

Definition 2.1 (Producibility). For a given tile system Γ = (T, σ, τ), the set of producible assemblies

for system Γ, PRODΓ, is defined recursively:

• (Base) σ ∈ PRODΓ

• (Recursion) For any A ∈ PRODΓ and b ∈ T∗ such that C = A∪{b} is τ-stable, then C ∈ PRODΓ.

As additional notation, we say A→Γ1 B if A may grow into B through a single tile attachment,

and we say A→ΓB if A can grow into B through 0 or more tile attachments. An assembly sequence

for a tile system Γ is a sequence (finite or infinite) ®α = 〈α1, α2, . . . 〉 in which α1 = σ, each αi+1

is a single-tile extension of αi, and each αi is τ-stable. The frontier of an assembly α, written

as F(ω, Γ), is a partial function that maps an assembly ω and a tile system Γ to a set of tiles

{t ∈ T∗ |ω ∪ {t} ∈ PRODΓ ∧ t < ω}. We further define TERMΓ to be the subset of PRODΓ consisting

only of assemblies for which no further tile in T may attach (i.e., the assembly has an empty frontier).

Definition 2.2 (Finiteness and Space). For a given tile assembly system Γ = (T, σ, τ), we say Γ

is finite iff ∀β ∈ PRODΓ, ∃α ∈ TERMΓ : β →Γ α. That is, each producible assembly has a growth

path ending in a finite, terminal assembly. If Γ is not finite, we say it is infinite. Define the space

of an assembly α as |α |. Let the space of a tile assembly system be defined as the max
α∈TERMΓ

|α |

iff Γ is finite. If Γ is infinite, let space remain undefined. Note that a finite system may have

infinite/unbounded space.

Definition 2.3 (Extensibility). Consider a tile assembly system Γ = (T, σ, τ), and assembly

α ∈ PRODΓ. We denote the set of all locations at which a tile may stably attach to α as Lα. More

formally, Lα = {pt |t ∈ F(α, Γ)}. We say a tile system Γ is k-extensible iff ∀α ∈ PRODΓ, |Lα | ≤ k.

Informally, a tile assembly system is k-extensible iff at any point in the assembly process, the

assembly can only grow in at most k locations.

6

Probability in Tile Assembly

We use the definition of probabilistic assembly presented in [31], [39], [49], [55], [61]. Let P

be a function denoting a concentration distribution over a tileset T representing the concentrations

of each tile type with the restrictions ∀t ∈ T, P(t) > 0 and
∑
t∈T

P(t) = 1. For a tile t, we sometimes

refer to P(t) as the concentration of t. Using a concentration distribution, we can consider

probabilities for certain events in the system. To study probabilistic assembly, we can consider the

assembly process as a Markov chain where each producible assembly is a state and transitions occur

with non-zero probability from assembly A to each B whenever A→Γ1 B. For each B that satisfies

A →Γ1 B, let tA→B denote the tile in T whose translation is added to A to get B. The transition

probability from A to B is defined to be

T RANS(A, B) = P(tA→B)∑
{C |A→Γ1C} P(tA→C)

(2.1)

The probability that a tile system Γ terminally assembles an assembly A is defined to be the

probability that the Markov chain ends in state A. For each A ∈ TERMΓ, let PROBP
Γ→A denote the

probability that Γ terminally assembles A with respect to concentration distribution P.

Definition 2.4 (Expected Space). For a given finite tile system Γ = (T, σ, τ), let the expected space

of Γ relative to a concentration distribution P be defined as

EXPECTEDSPACEΓ =
∑

α∈TERMΓ
|α | · PROBP

Γ→α

Definition 2.5 (Coin Flipping). We consider a finite tile system Γ a coin flip tile system with bias

b with respect to a concentration distribution P for some b ∈ R+ iff the set of terminal assemblies in

PRODΓ can be partitioned into two sets X and Y such that

����� ∑x∈X
PROBP

Γ→x −
∑
y∈Y
PROBP

Γ→y

����� ≤ 2b. A

fair coin flip tile system is a coin flip tile system with bias 0. We consider a finite tile system a

robust coin flip tile system with bias b iff it is a coin flip tile system with bias b for all concentration

distributions; i.e.

����� ∑x∈X
PROBC

Γ→x −
∑
y∈Y
PROBC

Γ→y

����� ≤ 2b for all concentration distributions C. A

robust fair coin flip tile system is a robust coin flip tile system with bias 0.

7

Staged Tile Assembly Model

Tiles. A tile is a non-rotatable unit square with each edge labeled with a glue from a set Σ.

Each pair of glues g1, g2 ∈ Σ has a non-negative integer strength, denoted str(g1, g2). Every set Σ

contains a special null glue whose strength with every other glue is 0. If the glue strengths do not

obey str(g1, g2) = 0 for all g1 , g2, then the glues are flexible. Unless otherwise stated, we assume

that glues are not flexible.

Configurations, assemblies, and shapes. A configuration is a partial function A : Z2 → T

for some set of tiles T , i.e., an arrangement of tiles on a square grid. For a configuration A and

vector ®u = 〈ux, uy〉 ∈ Z2, A + ®u denotes the configuration f ◦ A, where f (x, y) = (x + ux, y + uy).

For two configurations A and B, B is a translation of A, written B ' A, provided that B = A + ®u for

some vector ®u. For a configuration A, the assembly of A is the set Ã = {B : B ' A}. An assembly Ã

is a subassembly of an assembly B̃, denoted Ã v B̃, provided that there exists an A ∈ Ã and B ∈ B̃

such that A ⊆ B. The shape of an assembly Ã is {dom(A) : A ∈ Ã} where dom() is the domain of a

configuration. A shape S′ is a scaled version of shape S provided that for some k ∈ N and D ∈ S,⋃
(x,y)∈D

⋃
(i, j)∈{0,1,...,k−1}2(k x + i, ky + j) ∈ S′.

Bond graphs and stability. For a configuration A, define the bond graph GA to be the

weighted grid graph in which each element of dom(A) is a vertex, and the weight of the edge

between a pair of tiles is equal to the strength of the coincident glue pair. A configuration is τ-stable

for τ ∈ N if every edge cut of GA has strength at least τ, and is τ-unstable otherwise. Similarly,

an assembly is τ-stable provided the configurations it contains are τ-stable. Assemblies Ã and

B̃ are τ-combinable into an assembly C̃ provided there exist A ∈ Ã, B ∈ B̃, and C ∈ C̃ such that

A
⋃

B = C, dom(A)⋂ dom(B) = ∅, and C̃ is τ-stable.

Two-handed assembly and bins. We define the assembly process via bins. A bin is an

ordered tuple (S, τ) where S is a set of initial assemblies and τ ∈ N is the temperature. In this work,

τ is always equal to 2 for upper bounds, and at most some constant for lower bounds. For a bin

(S, τ), the set of produced assemblies P′(S,τ) is defined recursively as follows:

8

1. S ⊆ P′(S,τ).

2. If A, B ∈ P′(S,τ) are τ-combinable into C, then C ∈ P′(S,τ).

A produced assembly is terminal provided it is not τ-combinable with any other producible assembly,

and the set of all terminal assemblies of a bin (S, τ) is denoted P(S,τ). That is, P′(S,τ) represents the

set of all possible assemblies that can assemble from the initial set S, whereas P(S,τ) represents only

the set of assemblies that cannot grow any further.

The assemblies in P(S,τ) are uniquely produced iff for each x ∈ P′(S,τ) there exists a

corresponding y ∈ P(S,τ) such that x v y. Unique production implies that every producible assembly

can be repeatedly combined with others to form an assembly in P(S,τ).

Staged assembly systems. An r-stage b-bin mix graph M is an acyclic r-partite digraph

consisting of rb vertices mi, j for 1 ≤ i ≤ r and 1 ≤ j ≤ b, and edges of the form (mi, j,mi+1, j ′)

for some i, j, j′. A staged assembly system is a 3-tuple 〈Mr,b, {T1,T2, . . . ,Tb}, τ〉 where Mr,b is an

r-stage b-bin mix graph, Ti is a set of tile types, and τ ∈ N is the temperature. Given a staged

assembly system, for each 1 ≤ i ≤ r , 1 ≤ j ≤ b, a corresponding bin (Ri, j, τ) is defined as follows:

1. R1, j = Tj (this is a bin in the first stage);

2. For i ≥ 2, Ri, j =
(⋃

k: (mi−1,k,mi, j)∈Mr,b

P(R(i−1,k),τi−1,k)
)
.

Thus, bins in stage 1 are tile sets Tj , and each bin in any subsequent stage receives an initial

set of assemblies consisting of the terminally produced assemblies from a subset of the bins in

the previous stage as dictated by the edges of the mix graph.1 The output of a staged system is

the union of the set of terminal assemblies of the bins in the final stage.2 The output of a staged

1The original staged model [38] only considered O(1) distinct tile types, and thus for simplicity allowed tiles to be

added at any stage (since O(1) extra bins could hold the individual tile types to mix at any stage). Because systems here

may have super-constant tile complexity, we restrict tiles to only be added at the initial stage.
2This is a slight modification of the original staged model [38] in that there is no requirement of a final stage with a

single output bin. It may be easier in general to solve problems in this variant of the model, so it is considered for lower

bound purposes. However, all results herein apply to both variants of the model.

9

system is uniquely produced provided each bin in the staged system uniquely produces its terminal

assemblies.

2-Handed Tile Assembly Model (2HAM)

Here we define the two-handed tile self-assembly model (2HAM) with both negative and

positive strength glue types, as well as formulate the problem of designing a tile assembly system

that replicates any input shape. The 2HAM model was first presented in [68]. The 2HAM is a

variant of the abstract tile self-assembly model (aTAM) first presented in [20] in which there is no

seed tile, and large assemblies may combine together.

Tiles and Assemblies. A tile is an axis-aligned unit square centered at a point in Z2, where

each edge is labeled by a glue selected from a glue set Π. A strength function str : Π → Z denotes

the strength of each glue. Two tiles that are equal up to translation have the same type. A positioned

shape is any subset of Z2. A positioned assembly is a set of tiles at unique coordinates in Z2, and

the positioned shape of a positioned assembly A is the set of coordinates of those tiles.

For a given positioned assembly Υ, define the bond graph GΥ to be the weighted grid graph

in which each element of Υ is a vertex and the weight of an edge between tiles is the strength of the

matching coincident glues or 0.3 A positioned assembly C is said to be τ-stable for positive integer

τ provided the bond graph GC has min-cut at least τ, and C is said to be connected if every pair of

vertices in GC has a connecting path using only positive strength edges.

For a positioned assembly A and integer vector ®v = (v1, v2), let A®v denote the assembly

obtained by translating each tile in A by vector ®v. An assembly is a set of all translations A®v of a

positioned assembly A. An assembly is τ-stable if and only if its positioned elements are τ-stable.

An assembly is connected if its positioned elements are connected. A shape is the set of all integer

translations for some subset of Z2, and the shape of an assembly A is defined to be the union of

the positioned shapes of all positioned assemblies in A. The size of either an assembly or shape X ,

denoted as |X |, refers to the number of elements of any positioned element of X .

3Note that only matching glues of the same type contribute a non-zero weight, whereas non-equal glues always

contribute zero weight to the bond graph. Relaxing this restriction has been considered as well [28].

10

Breakable Assemblies. An assembly is τ-breakable if it can be cut into two pieces along a

cut whose strength sums to less than τ. Formally, an assembly C is breakable into assemblies A and

B if A and B are connected, and the bond graph GC ′ for some assembly C′ ∈ C has a cut (A′, B′)

for A′ ∈ A and B′ ∈ B of strength less than τ. We call A and B a pair of pieces of the breakable

assembly C.

Combinable Assemblies. Two assemblies are τ-combinable provided they may attach along

a border whose strength sums to at least τ. Formally, two assemblies A and B are τ-combinable into

an assembly C provided GC ′ for any C′ ∈ C has a cut (A′, B′) of strength at least τ for some A′ ∈ A

and B′ ∈ B. We call C a combination of A and B.

Note that A and B may be combinable into an assembly that is not stable. This is a key

property that is leveraged throughout our constructions. See Figure 2.1 for an example.

X
Y

X

Y

N
Z

Z

N X
Y

X

Y

N
ZZ

N X
Y

X

Y

N
ZZ

N

(a) (b) (c)

2

-1

Figure 2.1: A simple example of attachment and detachment events and the notation for the shape replication

construction. On each tile, the glue label is presented. Red (shaded) labels represent negative

glues, and the relevant glue strengths for the tiles can be found in the captions. For caption

brevity, for a glue type X we denote str(X) simply as X (e.g. X + Y =⇒ str(X) + str(Y)). In

this temperature one, (τ = 1) example, X = 2, Y = 1, Z = 2, and N = −1. (a) The three tile

assembly on the left attaches with the single tile with strength Z + N = 2 − 1 = τ resulting in the

2 × 2 assembly shown in (b). However, this 2 × 2 assembly is unstable along the cut shown by

the dotted line, since Y + N = 1 − 1 < τ. Then the assembly is breakable into the assemblies

shown in (c).

States, Tile Systems, and Assembly Sequences. A state is a multiset of assemblies whose

counts are in Z+
⋃∞. We use notation S(x) to denote the multiplicity of an assembly x in a state S.

A state S1 transitions to a state S2 at temperature τ, and is written as S1 →τ
1 S2, if S2 is obtained

11

from S1 by either replacing a pair of combinable assemblies in S1 with their combination assembly,

or by replacing a breakable assembly in S1 by its pieces. We simplify this to S1 →1 S2 when τ is

clear from context. We write S →τ S′ to denote the transitive closure of→τ
1, i.e., S →τ S′ means

that S →τ
1 S1 →τ

1 S2 →τ
1 . . . Sk →τ

1 S′ for some sequence of states 〈S1, . . . Sk〉.

A tile system is an ordered tuple Γ = (σ, τ)whereσ is a state called the initial system state and

τ is a positive integer called the temperature. We refer to any sequence of states 〈σ, S1, S2, . . . , Sk〉

such that σ →τ
1 S1, and Si →τ

1 Si+1 for i = {1 . . . k − 1}, as a valid assembly sequence for Γ. We

denote any state P at the end of of a valid assembly sequence (equivalently, σ →τ P) as a producible

state of Γ, and any assembly contained in a producible state is said to be a producible assembly.

A producible state T is said to be terminal if T does not transition at temperature τ to any other

state. A producible assembly is terminal if it is not breakable and not combinable with any other

producible assembly.

12

CHAPTER III

RANDOM NUMBER GENERATION

Introduction

A promising new direction in self-assembly is the consideration of randomized self-assembly

systems. In randomized self-assembly (a.k.a. nondeterministic self-assembly), assembly growth is

dictated by nondeterministic, competing assembly paths yielding a probability distribution on a set

of final, terminal assemblies. Through careful design of tile-sets, and the relative concentration

distributions of these tiles, a number of new functionalities and efficiencies have been achieved

that are provably impossible without this nondeterminism. For example, by precisely setting the

concentration values of a generic set of tile species, arbitrarily complex strings of bits can be

programmed into the system to achieve a specific shape with high probability [39], [49]. Alternately,

if the concentration of the system is assumed to be fixed at a uniform distribution, randomization

still provides for efficient expected growth of linear assemblies [61] and low-error computation

at temperature-1 [55]. Even in the case where concentrations are unknown, randomized self-

assembly can build certain classes of shapes without error in a more efficient manner than without

randomization [67].

Motivated by the power of randomized self-assembly, along with the potential for even greater

future impact, we focus on the development of the most fundamental randomization primitive: the

robust generation of a uniform random bit. In particular, we introduce the problem of self-assembling

a uniformly random bit that is guaranteed to work for all possible concentration distributions. We

define a tile system to be a coin flip system, with respect to some tile concentration distribution,

if the terminal assemblies of the system can be partitioned such that each partition has exactly

13

probability 1/2 of assembling one of its terminals. We say a system is a robust coin flip system if

such a partition exists that guarantees 1/2 probability for all possible tile concentration distributions.

Through designing systems that flip a fair coin for all possible (adversarially chosen) concentration

distributions, we achieve an intrinsically fair coin-flipping system that is robust to the experimental

realities of imprecise quantity measurements. Such fair systems may allow for increased scalability

of randomized self-assembly systems in scenarios where exact concentrations of species are either

unknown or intractable to predict at successive assembly stages.

Unbounded Space, 1-Extensible, Robust Coin Flipping

Below, we describe a 1-extensible aTAM system capable of robust fair coin flips in unbounded

space. In 1951, John von Neumann gave a simple method for extracting a fair coin from a biased one

[1]. We show an algorithm based on the Von Neumann extractor. Algorithm 1 uses an unbounded

number of rounds to extract a fair coin flip. We use Algorithm 1 to show that a fair coin flip extractor

can be implemented in the aTAM to achieve an unbounded space, 1-extensible, robust coin flip tile

system. Let Algorithm 2 denote an extension of this method in which we create a bounded fair coin

flip extractor by adding a parameter k which controls the maximum number of rounds allowed. If

after all k rounds have been exhausted the system has not returned a fair coin flip, the result of a

single flip is returned. We implement this bounded coin flip extractor in the aTAM and achieve an s

space, 1-extensible, and robust coin flip tile system with bounded bias, for some space constraint s.

We now describe our 1-extensible aTAM tile system that implements Algorithm 1. In

Algorithm 1, a coin is a set of cardinality 2 with possible values heads and tails. flip is a function

that selects and returns a heads or tails value based on the probabilities h and t, respectively, where

h, t ∈ (0, 1) and h + t = 1. In our construction, calls to the flip function are carried out by a

nondeterministic competition for attachment between a h tile and a t tile. Aside from calls to the flip

function, the rest of the algorithm can be implemented by deterministic tile placements. Figure 3.1

gives the tile set used in the construction. This construction yields Theorem 3.1, and an example is

shown in Figure 3.2.

14

Algorithm 1: Unbounded

Input: h, t ∈ R, where 0 < h < 1, t = 1 − h
Output: heads or tails
1: procedure UnboundedFCFE(h, t)
2: coin = {heads, tails}
3: pdist = {h, t}
4: repeat
5: f lip_1← f lip(coin, pdist)
6: f lip_2← f lip(coin, pdist)
7: until f lip_1 , f lip_2
8: return f lip_2
9: end procedure

F
BA

F
RB

R'
R

R'
F F
R'

1
F

F

0
F

F

C

AS AV htF F

0
1 H

1
0 T

F
R

1
1 E

F
R

0
0 E

F
1

1
D 1

F
0

0
D 0

C
D

G
g

G
F

C
g

Figure 3.1: Here we have the algorithm for an unbounded fair coin flip extractor on the left and the tile set

for the construction that implements that algorithm on the right. The relative concentrations of

the h tile and t tile serve as parameters h and t, respectively. The tile labeled S is the seed of the

tile assembly system and the temperature is 2. The strength of the glues are as follows: str(0)=1,

str(1)=1, str(A)=2, str(B)=2, str(C)=1, str(D)=1, str(F)=1, str(G)=2, str(R)=2, and str(R’)=2.

Theorem 3.1. There exists a 1-extensible tile system Γ = (T, σ, 2) in the aTAM that implements a

robust fair coin flip tile system (unbounded) and achieves O
(

1
pq

)
expected space, where p and q

denote the relative concentrations of the two tiles with the largest difference in concentration for a

given concentration distribution.

Proof. Let the probability that flipping a single coin is heads be represented by u and tails be

represented by 1 − u. In our construction, we have a h tile and a t tile with concentrations Ch and Ct ,

respectively. Let u = Ch

Ch+Ct
and v = 1 − u. In each round, we flip two times. Let the probability

of generating a bit each round be g = 2uv. Then, let the expected total number of flips be t. If

we succeed in the first round, we have only flipped twice. Otherwise, we have to start over, so the

expected remaining number of flips is still two. Therefore, t = 2g + (1 − g)(2 + t) = 2
g .

Using this strategy, each round requires two flips. Heads and tails each have a probability uv

of being generated. Thus, each round can succeed with a probability 2uv and the average number of

flips required to generate a bit is 2
g =

2
2uv =

1
uv . Since each round utilizes two flips, the expected

number of rounds is then t
2 =

1
2uv . In the best case, u = v and the expected number of rounds would

15

C

AS AV
F
BA

F
RB

R'
R

R'
F F
R'

1
F

F
F

0
F

F
F t h

(a) An assembly with two pos-

sible choices for the next

attachment corresponding

to the first flip in the algo-

rithm.

C

AS AV
F
BA

F
RB

R'
R

R'
F F
R'0

F
F

F

1
F

F
F

0
F

F
F

t

ht

(b)Without loss of general-

ity, this shows possible

choices for the second flip

of the algorithm after the

first has been chosen.

C

AS AV
F
BA

F
RB

R'
R

R'
F F
R'0

F
F

F
1
F

F
F h t

(c) A t tile and a h tile have

been placed for the first

and second flip, respec-

tively. From Algorithm 1,

this will return a heads.

C

AS AV
F
BA

F
RB

R'
R

R'
F F
R'0

F
F

F
0
F

F
F tt

(d) Two t tiles were placed for

the first twoflips. FromAl-

gorithm1, the systemmust

perform another round.

C

AS AV
F
BA

F
RB

R'
R

R'
F F
R'G

F
C

g

C
D

G
g

R'
R

R'
F F
R'

1
F

F
F

0
F

F
F

0
F

F
F

0
F

F
F

F
0

0
D 0

F
R

0
0 E

h

t t

t

(e) An assembly where the

first round of the algorithm

failed to generate a bit and

proceeds to start a new

round.

C

AS AV
F
BA

F
RB

R'
R

R'
F F
R'0

F
F

F
1
F

F
F

G
F

C
g

C
D

G
g

F
1

1
D 1

0
1 H

h t

(f) An assembly where the

first round of the algorithm

was a valid flip and it gen-

erates a heads.

Figure 3.2: A sample of producible assemblies for Round 1.

be 1
2uv = 2. In the worst case, the two tiles with the largest difference in concentration are the h tile

and t tile implying 1
2uv =

1
2pq . Each round places a constant number of tiles z, therefore the expected

space of generating a coin flip is the expected number of rounds multiplied by the number of tiles

per round, z
2pq = O

(
1
pq

)
. The placement of an H tile or T tile maps to the event that the algorithm

returns heads or tails, respectively. �

16

Fixed Space, 1-Extensible, Robust Coin Flipping

We can also now limit the number of rounds, k, so that space of the system does not exceed

some constraint s by using some additional tile types and modification to glue strengths. If after k

rounds, the system has not returned a fair coin flip, the system returns the result of a single additional

flip of the two tiles used in nondeterministic attachment. This bounded fair coin flip extractor can

be implemented in the aTAM to achieve a fixed space, 1-extensible, robust coin flip tile system with

bounded bias. The bounded k-rounds can be controlled by first constructing a column of height

O(k) with glues that allow the variant of the construction of Theorem 3.1 to grow along the right

edge of the column. Note that this column can be built more efficiently, by allowing some width,

using a 1-extensible version of the aTAM counter construction from [28] for a desired base, leading

to a tradeoff in bias, space, and tile complexity.

Theorem 3.2. There exists an s space 1-extensible robust coin flip tile system in the aTAMwith bias

p(s/10), where p is the larger relative concentration from the pair of tiles with the largest difference

in concentration for a given concentration distribution.

Proof. We need at most 7 tile placements to perform a single additional flip when we fail all allotted

rounds and each round places 10 tiles. We design a system that can perform as many possible

rounds, k, given s − 7 space, where

s
10
− 1 < k = b(s − 7)/10c < s

10
. (3.1)

In the worst case, the two tile types with the largest difference in concentration, for a given

concentration distribution, are the two tile types used in nondeterministic attachment. In our

construction, those tiles are the h tile and a t tilewith concentrations Ch and Ct , respectively. Without

loss of generality, consider that Ch > Ct and thus, p = Ch

Ch+Ct
and let q = 1 − p. Let P(X = heads)

denote the probability that this system returns a heads and P(X = tails) = 1−P(X = heads). Let Fk

denote the probability that the system fails to return a coin flip after k rounds, that is Fk = (1− 2pq)k .

Therefore, P(X = heads) = pFk +
1−Fk

2 and

17

|P(X = heads) − P(X = tails)|
2

= Fk

(
p − 1

2

)
. (3.2)

And, since 1
2 < p < 1 and pk ≥ Fk ,

Fk

(
p − 1

2

)
≤ pk

(
p − 1

2

)
≤ pk+1

< p
s
10 .

(3.3)

Therefore,

2p
s
10 ≥ |P(X = heads) − P(X = tails)| (3.4)

which implies this system has bias p
s
10 . �

The Big Picture

The 1-extensible results detailed above show that a robust fair coin flip can be generated in

unbounded space, but when the amount of space is bounded, the construction incurs bounded bias.

A natural question then would be, is there an aTAM construction that constitutes a robust fair coin

flip system which completes in a guaranteed O(1) space even at temperature one? This and other

results, are included in the published version [77] of this body of work. The results detailed above

showcase my primary contributions to [77].

In [77], our primary result is an aTAM construction that constitutes a robust fair coin flip

system which completes in a guaranteed O(1) space even at temperature one. We apply our robust

coin-flip construction to the result of Chandran, Gopalkrishnan, and Reif [61] to show that for

any positive integer n, there exists a O(log n) tile system that assembles a constant width-4 linear

assembly of expected length n that works for all concentration assignments. This result is for

temperature two; at temperature one it must be a width-6 linear assembly. We accompany this result

with a proof that such a concentration independent assembly of width-1 assemblies is not possible

18

with fewer than n tile types. We further accompany our main coin-flip construction with variant

constructions that provide trade-offs among standard aTAM metrics such as space, tile complexity,

and temperature, as well as new metrics such as coin bias, and the extensibility of the system, which

is the maximum number of distinct locations a tile can be added to a single producible assembly of

the system.

We utilize the coin-flip construction as a fair random bit generator for implementation of

some classical random number generation algorithms. We show that 1-extensible systems, while

computationally universal, cannot robustly coin-flip in bounded space without incurring a bias, but

can robustly coin-flip in bounded expected space. We also consider the more extreme model in

which concentrations may change adversarially at each assembly step. We show that the aTAM

cannot robustly coin flip in bounded space within this model, but a number of more exotic extensions

of the aTAM from the literature are able to robustly coin flip in O(1) space. The problem of

self-assembling random bits has been considered before [45], but their technique, and almost all

randomized techniques to date, do not work when arbitrary concentrations are considered. Further,

we utilize the self-assembly of uniform random bits to implement algorithms for uniform random

number generation for any n, one construction achieving an unbiased generator with unbounded

space and the other imposing a space constraint while incurring some bias.

19

CHAPTER IV

INFORMATION ENCODING

Introduction

The staged (tile assembly) model is a generalization of the two-handed (2HAM) [38], [48],

[68], [69] or hierarchical [62], [75] tile assembly model. In the aTAM, single tiles attach to a

growing multi-tile seed assembly. The 2HAM additionally permits multi-tile assemblies attach to

each other, yielding a growth process strictly more general than that of the aTAM [68].

The staged assembly model extends the 2HAM by including the ability to simultaneously

carry out separate assembly processes in multiple bins. Such separation is motivated by similar

experimental practices wherein many reactions are carried out simultaneously in distinct test tubes,

often automated via liquid-handling robots [65].

In the staged model, a bin begins with a set of input assemblies previously assembled in

other bins. These assemblies are repeatedly attached pairwise to yield a growing set of producible

assemblies until all possibilities are exhausted. The producible assemblies not attachable to any

other producible assemblies during this process are the output assemblies of the bin, and may be

used as input assemblies for other bins.

An instance of the staged model, called a staged system, consists of many bins stratified into

stages, and a mix graph that specifies which bins in each stage supply input assemblies for bins in

the following stage. Input assemblies for bins in the first stage are sets of individual tiles, and the

output assemblies of bins in the final stage are considered the output of the system.

Complexity in staged assembly. A common goal in the design of self-assembling systems

is production terminal assemblies that meets some criteria. Here we consider the design of “efficient”

20

(a)

Figure 4.1: Example of a bit string pad. For compactness, glues are denoted by their subscripts in figures for

the remainder of this chapter (e.g. g0 denoted as 0). An example bit string r = 10011101001

encoded as a width-4 gap-2 11-bit string pad whose north-facing glues correspond to the bits in

r .

systems with minimum complexity that assemble our target assemblies. Three metrics exist for

staged systems:

• Tile type complexity: the number of distinct tile types used in the system.

• Bin complexity: the maximum number of bins used in a stage.

• Stage complexity: the number of stages.

Below is a description of the efficient assembly of bit string pads, shown in Figure 4.1:

assemblies that expose a sequence of north-facing glues that encode a bit string.

Definition 4.1 (Bit string pad). A width-k gap- f r-bit string pad is a k × (f (r − 1) + 1) rectangular

assembly with r glues from a set of two glue types {g0, g1} exposed on the north face of the rectangle

at intervals of length f , starting from the westmost northern edge. All remaining exposed glues on

the north tile edges have some common label gF . The remaining exposed south, east, and west tile

edges have glues gS, gE , and gW . A bit string pad represents a given string of r bits if the exposed

g0 and g1 glues from west to east, on the north facing edges, are equal to the given bit string.

The ability to reliably encode bit strings on assemblies is a fundamental primitive for many

self-assembly algorithms. Two upper-bound constructions are detailed in the proceeding sections of

this chapter. In the “Big Picture” section, lower bounds are stated that motivate these constructions

as well how these constructions play a role in the published version [85] of this work.

21

Unique Bit String Pads in Separate Bins

In this section, a b bin system constructs all possible blog bc-bit string pads, each contained

in a distinct bin.

Lemma 4.2. There exists a constant c such that for any b, t ∈ N with b, t > c, there exists a τ = 2

staged assembly system with b bins, t tile types, and O(log log b
log t) stages whose uniquely produced

output is all width-2 gap-1 blog(b)c-bit string pads, each placed in a distinct bin.

Proof. Let γ = b t−4
2 c + 1. The construction has three cases, depending upon the relative values of γ

(determined by t) and b.

Case 1: γ < 2 log b and b = γn for n ∈ N. All three cases use width-2, gap-0 1-bit string

pads called binary gadgets: O(1)-sized assemblies representing 0 and 1. The remaining tile types

are used to assemble 2(γ − 1) connectors that bind to the west and east ends of binary gadgets.

Connectors come in west and east varieties and connector has a positive integer index such that two

connectors can bind to one another if and only if their indices are equal.

For each k ∈ {1, 2, . . . , γ − 1}, assemble west and east connectors with index k. Then repeat

the following 2-stage “round” seen in Figure 4.3. The ith round begins with 2γi−1 binary gadgets,

each in their own bin, and each of the west and east connectors stored in their own bins. In the first

stage of the round, mix each binary gadget with west and east connectors with indices h − 1 and h,

respectively, for all h ∈ {1, 2, . . . , γ − 1}, In the special case that h = 1 or h = γ − 1, omit the west

or east connector, respectively. The result is γ2γi distinct assemblies, with each assembly in its own

bin. The tile set for bit string pads and connectors can be seen in Figure 4.2.

In the second stage of the round, selectively mix the γ-size subsets of the γ2γi−1 bins,

choosing one binary gadget with each pair of connector indices, to assemble all width-2 γi-bit string

pads in separate bins. The number of bins used in round i is thus 2γi + γ: enough for all γi-bit string

pads and the γ (reusable) connectors.

Perform sufficient rounds to assemble all blog(b)c-bit string pads, i.e., the smallest integer r

such that γr ≥ log(b) and thus r = blogγ log(b)c. In the last stage of round r, the number of bins

22

0c

0

e

0

e

c

0

1c

1

f

1

f

c

1

1-bit string pads
versions of the 1-bit string pads

with connectors

0c

0

e

0

e

c

0

c

c1

c

c1

0c

0

e

0

e

c

0

c

c2

c 0c

0

e

0

e

c

0

1c

1

f

1

f

c

1

c

c1

c

c1

1c

1

f

1

f

c

1

c

c2

c

c

1c

1

f

1

f

c

1

...

...

c

Figure 4.2: Example of bit string pads and winged bit string pads. Left: 2 width-2 1-bit string pads. Right:

2γ versions of each bit string pad with pairs of west and east connectors attached, as done in the

first stage of each round.

used can be reduced to 2γr , dropping the γ additional bins containing connectors.

The number of bins used then does not exceed b since 2γi + γ ≤ 2γr ≤ b for all i < r.

Moreover, the number of stages used is O(r) = O(log log b
log γ) = O(

log log b
log t). This construction requires

b, t > c for some constant c large enough to ensure γ ≥ 1 and b can accommodate at least 1 of each

of the bin types.

Case 2: γ < 2 log(b) and b , γn for n ∈ N. Note that this case is identical to Case 1, except

that b is not a power of γ. Thus the desired length of the assembled bit string pads are between γr−1

and γr for some r; as a solution, bit string pads are assembled from collections of shorter bit string

pads of power-of-γ lengths.

Let d1d2 . . . dblogγ(b)c be the base-γ expansion of b, with Di representing dblogγ(b)c−i+1. New

special connectors with index 0 are used, in addition to the standard connectors from Case 1. Each

round also uses growth bins, output bins, and west and east incubator bins. West and east incubator

bins contain growing
∑i

j=1 D jγ
j−1-bit string pads with special west or east connectors, respectively.

As in Case 1, use logγ(b) rounds to assemble growing sets of longer bit string pads; the

ith round begins with all γi−1-bit string pads in separate growth bins. In the first stage of the ith

round, mix standard connectors with these pads to assemble γ versions of all γi−1-bit string pads

in separate growth bins. Also, the output bins are carried down from the previous stage. In the

second stage of the ith round, if Di > 0, selectively mix γ-sized subsets of bit string pads with

23

2

-1

2 -1

2

-1

...Stage 0:
all length bitpads
each in their own bin

versions of
 bitpads

each in their own bin

all length bitpads
each in their own bin

0 1

...

0 1

01

0

...

1 1

1

1

...

1

1

...

1 ... 0

2 2 2Stage 1:

Stage 2:

11 1

1

i-1
i-1

i-1all length

i
i

example of selective
mixing to get a single

bitpad of length

i-1

i-1

i-1

i-1

2

-1

2

-1

Figure 4.3: A 2-stage round used in Case 1 of Lemma 4.2. Top: at Round i Stage 0, every γi−1-bit string

pad is in a separate bin (labeled according to index). Middle: in Stage 1, each of the γi−1-bit

string pads is mixed with γ different pairs of west and east connectors with consecutive values,

yielding γ versions of each γi−1-bit string pads. Bottom: in Stage 2, bit string pads from Stage 1

are mixed in size-γ groups, assembling every possible γi-bit string pad.

standard connectors (stored in growth bins) to assemble all Diγ
i−1-bit string pads in separate bins.

When i = 1 or the output bins are empty, these bit string pads are stored in their own output bins.

Otherwise, the output bins are not empty; and they are also mixed with west connectors and stored

in west incubator bins. In the same stage, mix every bit string pad, from the output bins, with a

special east connector and store them in east incubator bins. Then, in a third stage mix all pairs of

west and east incubator bins into separate output bins, replacing any previous output bins.

For all but the last round, mix γ-sized subsets of bit string pads with standard connectors

(stored in growth bins) to assemble all γi-bit string pads in separate growth bins, replacing the previous

growth bins. Since each round concatenates Diγ
i−1 bits to the bit string pads in output bins, the bit

string pads assembled in the output bins of the final round represent
∑blogγ(b)c

j=1 D jγ
j−1 = blog(b)c

24

Stage 0 of Ri:

Stage 1 of Ri:

Stage 2 of Ri: ...
west incubator bins

...
east incubator bins

Stage 3 of Ri:

...
growth bins

...
growth bins (bitpads + connectors)

growth bins

...
all possible pairs

in their own output bins

same as Case 1

growth bins

...

...

...
previous round output bins

...
special west

connectors

special east

connectors

Figure 4.4: A 3-stage round used in Case 2 of Lemma 4.2. The bins labeled growth bins follow the same

process as Case 1. Special west connectors are mixed with Di of the bitpads (from the growth

bins of Stage 1 of Round i) to produce the bitpads stored in the west incubator bins. Special east

connectors are mixed with the bitpads stored in the outputs bins (produced in the previous round)

to produce the bitpads stored in the east incubator bins. In Stage 3, all possible pairs of bitpads

from west and east incubator bins are mixed to produce the bitpads stored in the output bins for

Round i. If it is not the final round, the growth bins are also carried down.

bits. The high-level idea for the construction can be seen in Figure 4.4.

This construction requires b, t > c for some constant c large enough to ensure that γ ≥ 1

and at least one of each bin type (growth, output, etc.) is available. The number of stages remains

O(log log b
log t).

Case 3: γ ≥ 2 log(b). Let β = blog(b)c. Begin with β bins, each containing a binary gadget

representing 0 with a distinct pair of west/east glues g1 and g2, g2 and g3, etc. Similarly, create a

second set of identical β bins, but with binary gadgets representing 1. In the second stage, combine

every β-sized subset of bins that contain binary gadgets with distinct west/east glue pairs to assemble

all β-bit string pads. �

25

Fattening

Roughly speaking, “fattening” replaces a single tile type with a set of 5 corresponding tile

types and a generic filler assembly of length k − 2 to yield a 2 × k assembly which exposes the

same glues as the original tile (see Figure 4.5). Fattening is used as a subroutine for assembling

decompression pads and can also further be used to increase the gap between the bitpads generated.

A filler assembly is an assembly of length k − 2 used to fatten a tile type to some length k.

The technique in Section IV for assembling bit string pads can be used to assemble length-Θ(log b)

filler assemblies. Lemma 4.2 yields all length-log(b) bit string pads in O(log log b
log t) stages; small

modifications yields a filler assembly of the same length in the same complexity.

(a)

a

b

c

d

(b)

s

abc'

d

abc'

abc

x

abcabc

a

b

'abc

e

'abc

c

abc

x

s

x

e

x

...

s

abc'

d

a

b

'abc

e

x

s e

x...
abc'

abc

x

abcabc

'abc

c

abc

x

x

abcabc

x

abcabc

Figure 4.5: “Fattening” a single tile type from width 1 to width k. (a) The tile to be fattened is shown. (b) 5

tile types, based on the tile to be fattened, are mixed with a length-(k − 2) filler assembly which

“fattens” the assembly from width 1 to width k. The four glues of the original are exposed in the

same directions.

Encoding Via Tile Types

Here the goal is to design a collection of t tile types that assembles a target string ofΘ(t log t)

bits in bit string pad form. The solution is to utilize the base conversion approach of [15], [28], [37],

[81]. In this approach, tile types optimally encode integer values in a higher base (than binary) and

then are “decompressed” into a binary representation. In total, t tile types are used to encode a value

in a high base and decompress this representation into a string of Θ(t log t) bits.

26

Definition 4.3 (Decompression pad). For k, d, x ∈ N and u = 2x , a width-k d-digit base-u

decompression pad is a k × dx rectangular assembly with d glues from a set of u − 1 glue types

{g0, g1, ..., gu−1} exposed on the north face of the rectangle at intervals of length x − 1 and starting

from the westmost northern edge. All remaining glues on the north surface have a common type gN .

The remaining exposed south, east, and west tile edges have glues gS, gE , and gW . The exposed glues

on the northern edge, disregarding glues of type gN , ga1, ga2, . . . , gad represent string a1, a2, . . . , ad .

Consider the following example, also seen in Figure 4.6. Let S = 010100000 (S = 240 in

base 8) be a bit string, with the goal of constructing a width-3 9-bit string pad representing S. First,

build a decompression pad representing S in base 8 by combining 3 different 3 × log2(8) blocks.

Then convert the decompression pad into a bit string pad representing S using O(u) tile types, where

u = 8.

U0=010 U1=100 U2=000

} } }

x=2
spacing

x=2
spacing

x=2
spacing

B B B B B010 100 B 000

0 01 1 10 0 00

0 1 0 1 0 0 0 0 0

Figure 4.6: Example of “decompressing” a decompression pad into bit string pad. Left: a width-2 gap-

(log(u) − 1) decompression pad representing a bit string S = 010100000 in base u = 8. Right:

O(u) decompression tiles interact with the north glues of the decompression pad to combine into

a width-3 bit string pad representing S in base 2.

Lemma 4.4. Given integers x ≥ 3, d ≥ 1 and u = 2x , there exists a 1-stage, 1-bin staged τ = 2

self-assembly system whose uniquely produced output is a d-digit decompression pad of width-2

and base-u, using at most 5d + log(u) − 2 tile types.

Proof. Consider a string of d digits, S = s0s1 . . . sd−1 in a base u. We want to build a decompression

pad that has glues on the north facing side representing each of the d digits with log(u) − 1 spacing

between the d digits (to have room to unpack into base-2) and with gB glues on the north surface of

those log(u) − 1 regions. We can use the algorithm in Figure 4.7 to create the tiles that build the

27

B B 000B B 100

A.

B.

C.

010 100 000

B B 010

B B 100 B B 000B B 010

A Bfattener

Getting" B" from" A:

Algorithm" 1:

MakeTileSetA(S,"u):
""""for"si in"S:"
""""""""var"exp"="B(si,"u)
""""""""var"p"="concat(dBd,"i)
""""""""var"n"="concat(dBd,"i"+"1)
"""""""

Add" to"tile"set

exp

p n

Figure 4.7: Generating the tile sets for decompression pads. Using the algorithm on the left, we can generate

a tile for each digit in the string, S = 240 with base u = 8, to get the tiles in A. We can fatten the

tiles in A to length log(u) to get the tile set in B. We modify the fattening process described in

Section IV such that all glues on the north surface, other than the eastmost one, are of type gB.

Finally, C shows us how the tile set of B can self-assemble into a decompression pad for string S.

The algorithm takes as input a string of digits in base u, S = s0s1 . . . sd−1. For every digit in the

string, it creates a new tile type with the digit, converted to binary, as its north glue. The east

glues and west glues bind to the next and previous digits in the sequence, respectively.

1

1

B

1

0

0

B

0

0

00

B

0 00

1

01

B

0 01

0

10

B

1 10

1

11

B

1 11

0

000

000

00 000

1

001

001

00 001

0

010

010

01 010

1

011

011

01 011

0

100

100

10 100

1

101

101

10 101

0

110

110

11 110

1

111

111

11 111

Figure 4.8: The set of tiles used to decompress a decompression pad representing a string in base 8. It

requires 2u − 2 tile types, where base u = 8, in this example. Similar tile sets can be made for

any base u, using 2u − 2 tiles. These tiles interact with glues exposed on a decompression pad

and extract bits along the north surface.

decompression pad by first considering a tile for each of the d digits, then fattening it so that it has

length log(u). This algorithm creates a series of length-log(u) decompression pads for each digit in

S. These length-log(u) decompression pads self-assemble into a length-d log(u) decompression pad

representing S. The length-log(u) decompression pads are created via fattening singleton tiles that

chain together so that each singleton becomes a 2 × log(u) block. For an overview of fattening, see

Section IV. Each block uses a shared filler of length log(u) − 2 built with log(u) − 2 tile types. Each

digit requires 5 tile types to fatten. Therefore, the total tile complexity is 5d + log(u) − 2. �

Lemma 4.5. Given integers d ≥ 3, x ≥ 3, u = 2x , and bit string S of length d log(u), there exists a

28

τ = 2 staged assembly system with 1 bin, 5d + 2u+ log(u) − 4 tile types, and 1 stage whose uniquely

produced output is a width-3 gap-0 d log(u)-bit string pad representing S.

Proof. Consider a string of d digits, S = s0s1 . . . sd−1 that represent the same number as S but in

base u. We use the construction of Lemma 4.4 to build a width-2 decompression pad for each of the

d digits in base u. We build decompression tiles for a base u using 2u − 2 tile types (see Figure 4.8).

Decompression tile types representing bit strings of length log(u) bind via a single glue to

the decompression pad and expose a bit glue. Other decompression tiles then attach to these initial

types interact with those tiles and the north surface to “unpack” the remaining bits. Each base u

digit unpacks into log(u) bits. It follows that a string of d digits in a base u can be unpacked into

d log(u) bits. The total tile complexity is t = 5d + 2u + log(u) − 4: 5d + log(u) − 2 tupes to build

the decompression pad and 2u − 2 decompression tile types. �

Lemma 4.6. There exists a constant c such that for any t ∈ Nwith t > c, there exists an x = θ(t log t)

such that for any bit string S of length x, there exists a τ = 2 staged assembly system with 1 bin, t tile

types, and 1 stage whose uniquely produced output is a width-3 gap-0 x-bit string pad representing

S.

Proof. Here we choose the parameters that maximize the number of bits encoded using Lemma 4.5.

Given t tile types, let the base be u = 2blog t
3 c . For a string of digits S in base u, Lemma 4.5

constructs length-log(u) decompression pads for every digit in the string. Decompression pads are

constructed using 5 tile types plus some additional number of tile types called shared spacing that

allow decompression pads to grow to any length. If b t
2c tiles are used for building decompression

pads without shared spacing, then we can build b t
10c decompression pads, since each one requires 5

tile types. This allows us to represent b t
10c digits in base u. We allocate another b t

2c tile types to

build the tiles used to decompress the decompression pads and for the shared spacing that makes

them the appropriate length. Lemma 4.5 requires 2u + log(u) types to do this.

The number of bits achieved is y = d log(u) =
⌊ t

10
⌋

log 2blog t
3 c =

⌊ t
10

⌋ ⌊
log t

3
⌋
= Θ(t log t).

Using Lemma 4.5 and base u, we can build any width-3 b t
10c blog t

3c-bit string pad using only 1

29

stage and 1 bin. Due to constraints building the decompression pad, we need to build at least 3

bits with a minimum of base 8, for encoding into a higher base. For building the decompression

pad, minus the shared spacing, we need at least b t
2c ≥ 5d = 15 tile types. For the decompression

tiles and shared spacing we need b t
2c ≥ 2u + log(u) − 4 = 15. For selecting base 8, we also need

u = 2blog t
3 c = 8. Thus, to implement this method, we need t

3 ≥ 8. At minimum, we need t
2 ≥ 15

and t
3 ≥ 8, so this method works for all cases where t ≥ c = 30. �

Winged Bit String Pads

Bit string pads can be mixed with O(1) tile types to assemble wings. Wings are rectangular

assemblies with geometric bumps, or teeth, that encode a positive integer index in binary. A wing

gadget has index i and m bits provided it geometrically encodes an m-bit binary string representing i.

Wings come in two varieties, west and east, shown in Figure IV.

Wings encode their indices on either the north surface (west wings) or south surface (east

wings). Roughly speaking, a pair of west and east wings can attach if their teeth match (perfectly

interlock), equivalent to having the same index. Assemblies can brought together to self-assemble

in order by attaching the approriate wings on the west and east edges of the assembly. All winged

assemblies can then be mixed to self-assemble, linearly, in the order chosen by the designer.

The Big Picture

The constructions detailed above showcase two methods of creating bit string pads and are

my primary contributions towards the published version of this body of work [85] describing an

optimal algorithm for building bit string pads.

In [85], a lower bound on the number of stages required to build a shape containing a

specified quantity of information.

Lemma 4.7. A staged system of fixed temperature τ with b bins, s stages, and t tile types can be

specified using O(t log t + sb2 + tb) bits. Such a system with flexible glues can be specified using

O(t2 + sb2 + tb) bits.

30

f f1 0
f1

f1

f1f0
0r

0l

1r

1l

1r

1l

(a)

1r
0r 1r

1l
1l0l

f f1 0 f1
f1

f1f0

(b)

f

f1

1

1r

f f f

f1

1 0 1

1l

f0

0l

f1

1l

0r 1r1r

1l

0

f0

f0

0r

0l

f

f1

1

1r

1l

(c)

0

1

1

1

0

X

(d)

Figure 4.9: Assembling wings from bit string pads and extra O(1)-size assemblies. (a) Assembly of a west

wing. (b) Assembly of an east wing. (c) The attachment of chosen west and east wings to a

O(1)-sized assembly (dark shaded) (d) Directing the assembly of O(1)-sized assemblies (dark

shaded) with attached wings. Left: mismatched wings prevented from attaching via matched

glues due to mismatched geometry. Right: matching wings have no such geometric mismatch

and so attach.

It immediately follows from Lemma 4.7 that for almost all bit strings, any staged system

with b bins and t tiles that encodes the bit string must have Ω(x−tb−t log t
b2) stages with standard glues

and Ω(x−tb−t2

b2) stages with flexible glues, where x is the length of the bit string.

The methods described above are used as subconstructions in an upper bound that nearly

matches the lower bound.

Lemma 4.8. There exists a constant c such that for any b, t ∈ N with b, t > c and any bit string S of

length x, there exists a τ = 2 staged assembly system with b bins, t tiles, and O(x−tb−t log t
b2 +

log log b
log t)

stages whose uniquely produced output is a width-7 gap-Θ(log b) x-bit string pad representing S.

The additive gap between the upper and lower bounds implied by these lemmas is due to the

31

O(log log b
log t) additional stages used to assemble the bit string pads from Section 4.2, needed to carry

out the primary steps of Lemma 4.8.

Two classes of shapes have become the defacto standards [88] for measuring assembly

efficiency: squares and and general shapes (with scaling permitted). Efficient assembly of these

two classes was first considered in the aTAM, where matching upper and lower bounds on the tile

complexity were obtained [14], [15], [37]. Squares and general scaled shapes can be assembled by

combining a universal set of “computation” tiles with efficiently assembled “input” bit string pads.

For n × n squares, we prove the stage complexity is O(log n−tb−t log t
b2 +

log log b
log t) and, for

almost all n, Ω(log n−tb−t log t
b2).1 For shapes S with Kolmogorov complexity K(S), we prove the stage

complexity is O(K(S)−tb−t log t
b2 +

log log b
log t) and Ω(

K(S)−tb−t log t
b2).

We obtain similar results when flexible glues [28], glues that can form bonds with non-

matching glues, are permitted. In this case, the stage complexity for n × n squares is reduced to

O(log n−t2−tb
b2 +

log log b
log t) and, for almost all n, Ω(log n−t2−tb

b2), and the stage complexity for general

shapes is reduced to O(K(S)−t2−tb
b2 +

log log b
log t) and Ω(

K(S)−t2−tb
b2).

Because our results are optimal across all choices of tile type and bin complexity, these

results generalize and, in some cases, improve on prior results.

1The fraction of values for which the statement holds reaches 1 in the limit as n→∞.

32

CHAPTER V

SHAPE REPLICATION

Introduction

How can we harness the power of self-assembly to build a system that first senses the shape

of a given unknown object, then builds copies of that shape, like the nanoscale equivalent of a

photocopier? Although replicators are traditionally the subject of science fiction [90], biological

reproduction illustrates that this is possible (at least approximately) in the real world, and recent

biological engineering shows that information can be replicated using DNA crystal growth and

scission [66]. In this paper, we investigate more complex replication of geometric shape, using

biologically realistic models (taken to an extreme admittedly not yet practical). To do so, we need a

sufficiently flexible algorithmic model of self-assembly, and a replication “algorithm” defined by

particles that interact with each other and the given object.

The standard algorithmic abstraction of self-assembly is to model the self-assembling

particles as Wang tiles, that is, unit squares with a specified “glue” on each side, which can translate

but not rotate; each glue has a nonnegative integer strength. In the 2-Handed Assembly Model

(2HAM), two assemblies (eventually) join together if they can be translated so as to match up glues

of total strength at least τ, the temperature of the system. The resulting terminal assemblies are

those that do not join into any other assemblies.

We can define the replication problem in this model: given an unknown initial assembly of

tiles, design a collection of tiles or small assemblies to add to the self-assembly system such that the

resulting terminal assemblies consist of copies of the given shape (plus possibly some small “trash”

assemblies). However, this goal is impossible to achieve in just the 2HAM model, or any model

33

with just a mechanism to join assemblies together: to sense a shape without destroying it, we need

to be also able to split assemblies back apart.

The first extension of the 2HAM shown to enable a solution to the replication problem is the

RNAse enzyme staged assembly model [47]. In this model, tiles can be of two types (DNA or RNA),

the given shape is all one type (DNA), and there is an operation that destroys all tiles of the other

type (RNA). Abel et al. [47] show that this model enables making a desired number k of copies of a

given unknown hole-free shape or, through a complicated construction, infinitely many copies of

the shape using just a constant number of tiles and stages. This result requires that the shape has a

feature size (minimum distance between two nonincident edges) of Ω(lg n) where n is the (unknown)

number of tiles in the shape. The model is unsatisfying, however, in the way that it requires multiple

stages and a global operation that modifies all tiles.

Another extension of the 2HAM shown to enable a partial solution to the replication problem

is the Signal Tile Assembly Model (STAM) [83]. This powerful model allows tiles to change their

glues and trigger assembly/disassembly events when tiles attach to other tiles. Keenan et al. [83]

show that this model enables replicating a given unknown pattern of tiles in a rectangular shape,

but not an arbitrary shape. Hendricks et al. [82] show that this model enables infinitely replicating

a given unknown hole-free shape of feature size at least 2. The model is unsatisfying, however,

in the way that it allows tiles to have arbitrarily complex behaviors. (Recent results show how to

simulate part of STAM using 2HAM (in 3D) [80], but this simulation necessarily cannot simulate

the necessary aspect of breaking assemblies apart.)

In this paper, we study a simple extension of 2HAM to allow glues of negative strength,

that is, repulsive forces in addition to standard attractive forces. This extension is practical, as

biology implements both types of forces [13], and well-studied theoretically: negative glues have

already been shown to enable fuel-efficient computation [73], space-efficient computation [70], and

computation even at temperature τ = 1 [58], [87]. The complexity of combinatorial optimization

problems with negative glues has also been studied [59]. We show that shape replication is possible in

this model: adding a fixed constant number of constant-size assemblies to a given unknown hole-free

34

shape results in terminal assemblies of infinitely many copies of that shape, plus constant-size trash

assemblies.

Shape Replication Systems

A system Γ = (σ, τ) is a universal shape replicator for a class of shapes if for any shape X

in the class, there exists an assembly Υ of shape X such that system Γ′ = (σ⋃
Υ, τ) (i.e., Γ with a

single copy of Υ added to the initial state) produces an unbounded number of assemblies of shape

X , and essentially nothing else. We formalize this in the following definition, and then add some

discussion of additional desirable properties a replicator might have.

Definition 5.1. [Universal Shape Replicator] A system Γ = (σ, τ) is a universal shape replicator

for a class of shapes U if for any shape X ∈ U, there exists an assembly Υ of shape X such that

system Γ′ = (σ⋃
Υ, τ) has the following properties:

• For any positive integer n and producible state S, there exists a producible state S′ containing

at least n terminal assemblies of shape X such that S →τ S′.

• All terminal assemblies of super-constant size have shape X .

In addition to the above replicator properties, there are some additional desirable properties

a universal replicator might have. For example, the producible assemblies of the system should

be limited in size as much as possible (O(|X |) in the best possible case). Additionally, it may be

desirable to place substantial limitations on the complexity of the initial input assembly Υ, e.g.,

require its surface to expose essentially a single type of glue for each edge orientation. Our universal

replicator achieves the following bonus constraints.

Definition 5.2 (Bonus properties!). A universal replicator is said to be sleek if it has the following

properties:

• (bonus!) All producible assemblies have size O(|X |).

• (bonus!) The input assembly Υ is rather simple: infinite internal bonds, and a single glue

type for each edge orientation (e.g. North, East, South, andWest) for exposed surface glues,

with at most O(1) special tiles violating this convention.

35

The class of shapes which can be replicated by the system described in this paper are hole-free

polyominoes with feature size of at least 9. The feature size of a shape is defined as follows (we use

the same definition as [47]): for two points a, b in the shape, let d(a, b) = max(|ax − bx |, |ay − by |).

Then the feature size is the minimum d(a, b) such that a, b are on two non-adjacent edges of the

shape. The feature size ensures that the replication gadgets (O(1) sized assemblies used to replicate

the shape) function properly (e.g. the gadgets can encompass the shape without “bumping into”

each other). Formally, we prove the following:

Theorem 5.3. There exists a sleek universal shape replicator Γ = (σ, 10) for genus-0 (hole-free)

shapes with feature size of at least 9.

Overview of Replication Process

The high-level process for replicating a given input assemblyΥ is described here. We assume

that Υ has special glues along its perimeter such that all North, East, South, and West facing edges

have glues of N, E, S, and W , respectively, with the exception of the Northernmost-Westernmost

unit of the shape having a North glue of C1 and West glue of C2 (Fig. 5.1a). Intuitively, the process

is to assemble an outline of Υ that is filled to have the same shape as Υ. In Phase 1, mold gadgets

attach clockwise along the outside perimeter of Υ, to detect the edges of the shape. In Phase 2, the

mold gadgets are replaced, counterclockwise gadget-by-gadget, by drill gadgets. These drill gadgets

follow the path laid out by the mold gadgets and do not attach to the shape. The drill gadgets use

negative glues to destabilize adjacent mold gadgets. This technique is used to create an assembly

called the FRAME which outlines Υ but whose bounding box is too large to simply fill to get a copy

of the shape of Υ. In Phase 3, inner mold gadgets detect the outline of the inside perimeter of the

FRAME. In Phase 4, the inner mold gadgets are replaced, counterclockwise gadget-by-gadget, by

inner drill gadgets in order to begin destabilizing the FRAME from the assembly. With the help of

an additional inner post-drill gadget, the assembly destabilizes into the FRAME and HOLLOW[Υ].

Using fill gadgets, HOLLOW[Υ] is filled to create COPY[Υ], which is a copy of the original shape.

36

(a) Input Shape, Υ (b) Start of process (c) MOLD[Υ]

(d) Drilling (e) FRAME[Υ] (f) FRAME

Figure 5.1: High level process for making the FRAME from input shape Υ.

Phase 1: Shape detection via mold gadgets (Section V)

1. Place an outer start gadget at the Northernmost-Westernmost corner utilizing glues C1 and N

(Fig. 5.1b).

2. From the East edge of the outer start gadget, moving clockwise, trace the outside perimeter of

the shape with a layer of mold gadgets. Call the result MOLD[Υ] (Figs. 5.1b, 5.1c).

Phase 2: Drilling to create a FRAME (Section V)

1. Place a pre-drill gadget at the Northernmost-Westernmost corner of MOLD[Υ].

2. Starting from the pre-drill gadget, and moving counter-clockwise, replace the mold gadgets in

the surrounding layer with drill gadgets that do not have affinity to the shape (Fig. 5.1d).

3. When done drilling, place a post-drill gadget, call the result FRAME[Υ] (Fig. 5.1e).

4. FRAME[Υ] is unstable and separates into two assemblies, FRAME (Fig. 5.1f) and START[Υ].

START[Υ] is an assembly that contains only the input shape with the start gadget attached.

37

(a) Start of inner process (b) FRAME[MOLD] (c) Completed drilling

(d) FRAME[HOLLOW[Υ]] (e) FRAME[START] (f) HOLLOW[Υ]

Figure 5.2: High level process for making a copy of an input shape Υ from a frame of Υ.

Phase 3: Detecting the inside of the FRAME (Section V)

1. Place an inner start gadget at the Northernmost-Westernmost corner on the inside perimeter

of FRAME, call the result FRAME[START] (Fig. 5.2a).

2. Starting from the inner start gadget, and moving clockwise, trace the inside perimeter of

FRAME[START] with a layer of mold gadgets. Call the result FRAME[MOLD] (Fig. 5.2b).

Phase 4: Drilling and post-drilling to create HOLLOW[Υ] (Section V)

1. Starting from the Northernmost-Westernmost inside corner, replace the inner mold gadgets on

the inside perimeter with inner drill gadgets that do not have affinity to FRAME (Fig. 5.2c).

2. Place an inner post-drill gadget. Call the result FRAME[HOLLOW[Υ]] (Fig. 5.2d).

3. FRAME[HOLLOW[Υ]] is unstable and separates into FRAME[START] and HOLLOW[Υ]

(Fig. 5.2e and Fig. 5.2f).

38

Label Strength Label Strength
C1 2 C2 9

N,E,S,W,n,e,s,w 9 T*,t*,O*,o*,L 1
B*,b* 5 K,k 3

X*,Y*,Z*,x*,y*,z* 9 D -7
F*,f* -2 V*,U*,H*,J*,S*,v*,u*,h*,j*,s* 9
R,r 2 A* 10
g* 9 M* 5
Q -2 q -5

Table 5.1: The glue strengths of each glue label in the shape replication system.

Phase 5: Filling and Repeating (Section V)

1. HOLLOW[Υ] is filled to become COPY[Υ], which is an assembly with the same shape as Υ.

2. START[Υ], repeats the process over again, starting at the second step of Phase 1.

3. FRAME[START] also repeats creating copies of the shape, starting at the second step of

Phase 3.

Replication Gadgets

In this section, we describe the assemblies, or gadgets, which are constructed from the tiles

in the initial state of the replication system. These gadgets are designed to work in a temperature

τ = 10 system. There is a constant number of these distinct gadget types which are used to replicate

arbitrarily sized input assemblies. In our figures, a black line perpendicular and in the middle of the

edge of two adjacent tiles indicates a unique infinite strength bond (i.e. the strength of the glue is

� τ such that no detachment events can occur in which these tiles are separated). Although each

glue strength can be found in the figures and their captions, there is a full table of glue strengths in

Table 5.1. First, we describe the gadgets used in the process of creating the layer of mold gadgets

around the outer perimeter of the input assembly.

Phase 1 Gadgets for the Outer Mold

Below we describe the gadgets used to implement Phase 1 and create MOLD[Υ].

Start gadget. The start gadget is an assembly, designed to attach using the C1 glue and N

glue, which designates the Northernmost-Westernmost corner of the input assembly. Once the start

39

C1 N

O1O1

K

D

B1

Q

N

D

F1

B1

O2 O1O1

D

N
B1

T1
O2O11 1

2 9 9 9

C1 N N N
C2

(a)

1

9

1
9

D

N
B1

T1
O2O1

N

D

F1

B1

O2 O1O1

D

N
B1

T1
O2O1

N

D

F1

B1

O2 O1O1

W
D B4

T1

O7

D
T4

B4
W

O7

O8

W

W

W

W

W

N N N N

(b)

W

W

N N N

D
T4

B4
W

O7

O8

D B4
W

O8

O7
F4

O7 N

D

B1

O1

1 9

(c)

Figure 5.3: Phase 1: Starting the outer mold process and handling type-1 corners. (a) The start gadget

attaches. C1 + N = 2 + 9 ≥ τ = 10., The first mold gadget attaches, cooperatively, to the start

gadget and the input shape. O1+N = 1+ 9 ≥ τ. The second mold gadget attaches, cooperatively,

to the previous mold gadget and the input shape. O2 + N = 1 + 9 ≥ τ. (b) A concave corner of

the assembly. The North→West corner gadget attaches. T1 +W = 1 + 9 ≥ τ. A mold gadget

attaches. O7 +W = 1 + 9 ≥ τ. (c) A convex corner of the assembly. The West→North corner

gadget attaches. O7 + N = 1 + 9 ≥ τ.

gadget attaches, a North mold gadget may attach (Fig. 5.3a).

Mold gadgets. The mold gadgets, beginning at the start gadget as shown in Figure 5.3a,

walk along the input assembly in a clockwise manner to create MOLD[Υ]. The North (South) mold

gadgets are 1 × 3 assemblies designed to walk from West to East (East to West) along the North

(South) edges of the input assembly. The West (East) mold gadgets are 3 × 1 assemblies designed

to walk from South to North (North to South) along the West (East) edges of the input assembly.

The mold gadgets expose either a positive or negative glue on their unused edge (e.g. North mold

gadgets expose either a T1 or F1) used for detecting corners and drilling at corners, respectively.

Corner mold gadgets. The corner mold gadgets attach at corners of the input assembly

once a mold gadget has reached the corner. Two sets of corner mold gadgets are used; one for

concave corners and one for convex corners. There are two types of concave and convex corner mold

gadgets. This is due to the edge length being even or odd. If the mold gadget that places adjacent to a

40

corner of the shape has two negative glues, we denote the concave corner as a type-1 concave corner

and otherwise as a type-2 concave corner. A type-1 concave corner gadget attachment can be seen in

Figure 5.3b, and convex in Figure 5.3c. Type-2 corner gadget details can be seen in Figure 5.4. The

North→West (South→East) corner gadget attaches cooperatively to a North (South) mold gadget

and the input shape. The East→North (West→South) corner gadget attaches cooperatively to a East

(West) mold gadget and the input shape.
D

T4
B4
W

O7

O8

W
D B4

T1

O7

N

D

F1

B1

O2 O1O1

D

N
B1

T1
O2O1

N

D

F1

B1

O2 O1O1

D

N
B1

T1
O2O1

W

W

W

W

W

N N N N

1

1

9

9

(a)

W

W

N N N

D B4
W

O8

O7
F4

D
T4

B4
W

O7

O8

O8 N

D

B1

O1

1 9

(b)

Figure 5.4: Phase 1: Type-2 concave and convex corners of the assembly. (a) A type-2 concave corner of

the assembly. The type-2 North→West corner gadget attaches. T1 +W = 1 + 9 ≥ τ. An mold

gadget attaches. O7 +W = 1 + 9 ≥ τ. (b) An convex corner of the assembly. The West→North

corner gadget attaches. O8 + N = 1 + 9 ≥ τ.

Phase 2 Gadgets for Making the FRAME

Belowwe describe the gadgets used to implement Phase 2 and create FRAME and START[Υ].

Pre-drill gadget. A gadget that binds to the start gadget, a mold gadget (in some cases) , and

the input shape that is designed to allow the placement of a West drill helper to its South. It allows

the drilling process to begin once mold gadgets have finished encircling the input shape (Fig. 5.5).

Drill gadgets. The drill gadgets (Fig. 5.6a), along with drill helpers, walk along the

boundary of the input assembly in a counter-clockwise manner destabilizing mold gadgets and

41

B4

K

DZ4
C2Y5

D
T4

B4
W

O7

O8

D B4
W

O8

O7
F4

D

N
B1

T1
O2O1

W

C1 N N
C2

W

C1 N

O1O1

K

D

B1

Q

3

9
5-7

(a)

B4

K

DZ4
C2Y5

D
T4

B4
W

O7

O8

D B4
W

O8

O7
F4

D

N
B1

T1
O2O1

W

C1 N N
C2

W

C1 N

O1O1

K

D

B1

Q

(b)

B4

K

DZ4
C2

3

9
Y5

D

N
B1

T1
O2O1

W

C1 N N
C2

W

C1 N

O1O1

K

D

B1

Q

(c)

Figure 5.5: Phase 2: The pre-drill process. (a) Case 1: The mold process has completed. The pre-drill

gadget attaches cooperatively to the start gadget, input shape, and a mold gadget. K + C2 +

B4 + D = 3 + 9 + 5 − 7 ≥ τ. (b) The pre-drill gadget destabilizes the adjacent mold gadget.

B4 +W + O8 + D = 5 + 9 + 1 − 7 < τ. (c) Case 2: The mold process has not completed, the

pre-drill gadget may still attach. After attachment, the negative ‘D’ glue prevents a mold gadget

from occupying the space directly below. K + C2 = 3 + 9 ≥ τ.

B4

K

DZ4
C2

9

9
5

5

Y5

D

N
B1

T1
O2O1

W

C1 N N
C2

W

C1 N

O1O1

K

D

B1

Q

DZ4

Z4
X4

B4

B4
X4 wY4

(a)

B4

B4

DZ4

Z4
X4 X4 wY4

B4

K

DZ4
C2Y5

D
T4

B4
W

O7

O8

D

N
B1

T1
O2O1

W

C1 N N
C2

W

C1 N

O1O1

K

D

B1

Q

(b)

B4

B4

DZ4

Z4
X4 X4 wY4

B4

K

DZ4
C2Y5

D

N
B1

T1
O2O1

W

C1 N N
C2

W

C1 N

O1O1

K

D

B1

Q

B4

B4

DZ4

Z4
X4 X4 wY4

(c)

Figure 5.6: Phase 2: The drilling process begins. (a) A West drill helper attaches cooperatively to the

pre-drill gadget and a mold gadget. B4 + B4 = 5 + 5 ≥ τ. A drill gadget attaches cooperatively

to the pre-drill gadget and drill helper. Z4 + X4 + D = 9 + 9 − 7 ≥ τ. (b) The drill gadget

destabilizes the mold gadget underneath. B4+W +O7+D = 5+ 9+ 1− 7 < τ. (c) The removal

of the mold gadget allows the process shown in (a) and (b) to repeat. The process continues

along the face of the shape.

replacing them to create the FRAME. The drill gadgets do not attach to the input shape Υ, so when

the drills have removed all of the mold gadgets, the FRAME will not be attached to the input shape.

42

The drill gadgets are assemblies that attach to the North (South) drill helpers and destabilize mold

gadgets to their East (West). The West (East) drill gadgets are assemblies that attach to the West

(East) drill helpers and destabilize mold gadgets to their North (South).

Drill helpers. The drill helpers (Fig. 5.6a) are 1 × 1 assemblies that, beginning at the

pre-drill gadget, walk along the boundary of the input assembly in a counter-clockwise manner

exposing glues that allow drill gadgets to destabilize adjacent mold gadgets. These gadgets walk

along the boundary by following glues exposed by mold gadgets, rather than using glues on the

input assembly.

Drill corner gadgets. Drill corner gadgets bind cooperatively at type-1 and type-2 corners

to drill helpers and mold gadgets in order for the drilling process to turn corners. Details can be

seen in Figures 5.7,5.8,and 5.9.

Post-drill gadget. Post-drilling refers to the the process of removing the input shape to

create a FRAME. It is needed because the pre-drill gadget is still attached to the input shape. The

post-drill gadget may attach once the drill gadgets have encircled the input shape. It attaches to the

pre-drill gadget and last-placed drill gadget. Once attached, it destabilizes the assembly with the

input shape and start gadget to create the FRAME. (See Fig. 5.10.)

Phase 3 Gadgets for the Inner Mold

Here we describe the gadgets used to implement Phase 3 and create FRAME[MOLD]. The

inner mold gadgets are similar to the mold gadgets used in Section V, with changes to allow them to

encircle the inside perimeter of the FRAME, rather than the outside perimeter of the input shape

Υ. The Phase 3 gadgets (shown in Figure 5.11) include an inner start gadget which attaches to the

FRAME to allow the attachment of inner mold gadgets which attach along the inside perimeter of

the FRAME in a clockwise manner. The inner mold gadgets reflect the form and function of the

mold gadgets shown in Section V, handling corners in a similar way. Type-2 inner mold corner

gadgets can be seen in Figure 5.12.

43

Y4

T1
H4

B4

B4

DZ4

Z4
X4 X4 wY4

B4

B4

DZ4

Z4
X4 X4 wY4

B4

B4

DZ4

Z4
X4 X4 wY4

N

D

F1

B1

O2 O1O1

D

N
B1

T1
O2O1

T1 F1
O1

H4
F1

Z4
J4

A4

W

W

W

W

W

W

W

N N N N N

1
9 9

9

(a)

H4
F1

Z4
J4

A4

Y4

T1
H4

B4

B4

DZ4

Z4
X4 X4 wY4

B4

B4

DZ4

Z4
X4 X4 wY4

B4

B4

DZ4

Z4
X4 X4 wY4

N

D

F1

B1

O2 O1O1

D

N
B1

T1
O2O1

N

D

F1

B1

O2 O1O1

D

N
B1

T1
O2O1

N

D

F1

B1

O2 O1O1

W

W

W

W

W

W

W

N N N N N

(b)

H4
F1

Z4
J4

A4

Y4

T1
H4

B4

B4

DZ4

Z4
X4 X4 wY4

B4

B4

DZ4

Z4
X4 X4 wY4

B4

B4

DZ4

Z4
X4 X4 wY4

N

D

F1

B1

O2 O1O1

D

N
B1

T1
O2O1

D

N
B1

T1
O2O1

W

W

W

N N N N

J4
B4

F1
w

5
9

(c)

J4
B4

F1
H4
F1

Z4
J4

A4

Y4

T1
H4

B4

B4

DZ4

Z4
X4 X4 wY4

B4

B4

DZ4

Z4
X4 X4 wY4

B4

B4

DZ4

Z4
X4 X4 wY4

N

D

F1

B1

O2 O1O1

D

N
B1

T1
O2O1

D

N
B1

T1
O2O1

N

D

F1

B1

O2 O1O1

W

W

W

W

W

W

W

N N N N N

w

(d)

J4
B4

F1
H4
F1

Z4
J4

A4

Y4

T1
H4

B4

B4

DZ4

Z4
X4 X4 wY4

B4

B4

DZ4

Z4
X4 X4 wY4

B4

B4

DZ4

Z4
X4 X4 wY4

N

D

F1

B1

O2 O1O1

D

N
B1

T1
O2O1

D

N
B1

T1
O2O1

W

W

W

W

W

W

W

N N N N N

w

(e)

J4
B4

F1
H4
F1

Z4
J4

A4

Y4

T1
H4

B4

B4

DZ4

Z4
X4 X4 wY4

B4

B4

DZ4

Z4
X4 X4 wY4

B4

B4

DZ4

Z4
X4 X4 wY4

N

D

F1

B1

O2 O1O1

D

N
B1

T1
O2O1

W

W

W

W

N N N B1

w

w

w
nn

w

A4

10

B1B1
n

X1
5

5

(f)

Figure 5.7: Phase 2: The drilling process encounters a type-1 concave corner of the assembly. (a)Adrill gadget

destabilizes the North→West corner gadget. B4+W+T1+D = 5+9+1−7 < τ.AWest→North

drill corner helper attaches to amold gadget and a drill gadget. Y4+T1 = 9+1 ≥ τ.AWest→North

drill corner gadget attaches, cooperatively. H4+ Z4+ F1 = 9+ 9− 2 ≥ τ. (b) The West→North

drill corner gadget destabilizes a mold gadget to its South. O1+N +O2+F1 = 1+9+1−2 < τ.

(c) A mold gadget has destabilized and has broken off the assembly. Another West→drill gadget

attaches. (d) destabilizes a mold gadget to its South. N +O2 + F1 = 9 + 1 − 2 < τ (e) Without

any adjacent mold gadgets to its East or West, a mold gadget becomes unstable. N = 9 < τ. (f)

A drill corner gadget fills in the space in the concave corner and exposes a glue that will allow

drilling to continue to the West. A4 = 10 ≥ τ.

44

B4

B4

DZ4

Z4
X4 X4 wY4

B4

B4

DZ4

Z4
X4 X4 wY4

B4

B4

DZ4

Z4
X4 X4 wY4

W
D B4

T1

O7

D

N
B1

T1
O2O1

N

D

F1

B1

O2 O1O1

D

N
B1

T1
O2O1

N

D

F1

B1

O2 O1O1

D

N
B1

T1
O2O1

W

W

W

W

W

W

W

N N N N N

(a)

W

W

W

W

W

W

W

N N N N N

D

N
B1

T1
O2O1

N

D

F1

B1

O2 O1O1

D

N
B1

T1
O2O1

N

D

F1

B1

O2 O1O1

D

N
B1

T1
O2O1

B4

B4

DZ4

Z4
X4 X4 wY4

B4

B4

DZ4

Z4
X4 X4 wY4

B4

B4

DZ4

Z4
X4 X4 wY4

Y4

T1
V4

9

1

(b)

Z4
V4

F1

Z4
U4

D

N
B1

T1
O2O1

N

D

F1

B1

O2 O1O1

D

N
B1

T1
O2O1

N

D

F1

B1

O2 O1O1

D

N
B1

T1
O2O1

W

W

W

W

W

W

W

N N N N N

Y4

T1
V4 9

9

-2

(c)

V4
F1

Z4
U4

B4

B4

DZ4

Z4
X4 X4 wY4

B4

B4

DZ4

Z4
X4 X4 wY4

B4

B4

DZ4

Z4
X4 X4 wY4

D

N
B1

T1
O2O1

N

D

F1

B1

O2 O1O1

D

N
B1

T1
O2O1

N

D

F1

B1

O2 O1O1

D

N
B1

T1
O2O1

W

W

W

W

W

W

W

N N N N N

Y4

T1
V4

(d)

B4

B4

DZ4

Z4
X4 X4 wY4

B4

B4

DZ4

Z4
X4 X4 wY4

B4

B4

DZ4

Z4
X4 X4 wY4

V4
F1

Z4
U4

Y4

T1
V4

D

N
B1

T1
O2O1

N

D

F1

B1

O2 O1O1

D

N
B1

T1
O2O1

D

N
B1

T1
O2O1

W

W

W

W

W

W

W

N N N N N

(e)

V4
F1

Z4
U4

B4

B4

DZ4

Z4
X4 X4 wY4

B4

B4

DZ4

Z4
X4 X4 wY4

B4

B4

DZ4

Z4
X4 X4 wY4

Y4

T1
V4

D

N
B1

T1
O2O1

N

D

F1

B1

O2 O1O1

D

N
B1

T1
O2O1

W

W

W

N N N N

W

W

W

U4
B4

B1

Z1

B1 B1
n

X1

w

w

w

w
n

5

9

5
5

(f)

Figure 5.8: Phase 2: The drilling process encounters a type-2 concave corner of the assembly. (a) A drill

gadget destabilizes the North→West corner gadget. B4 +W + T1 + D = 5 + 9 + 1 − 7 < τ (b) A

West→North drill corner helper attaches to a mold gadget and a drill gadget. Y4+T1 = 9+1 ≥ τ.

(c) A West→North drill corner gadget attaches, cooperatively. V4+ Z4+ F1 = 9+ 9− 2 ≥ τ. (d)

TheWest→North drill corner gadget destabilizes a mold gadget to its South. O1+N +O2+F1 =

1 + 9 + 1 − 2 < τ. (e) Without a mold gadget to its West, the mold gadget in the concave

corner is unstable. N = 9 < τ. (f) A drill corner gadget fills in the space in the concave corner.

U4+ B4 = 9+ 5 ≥ τ. This gadget exposes a glue on its West side that allows drilling to continue

to the West. B1 + B1 = 5 + 5 ≥ τ.

45

W

W

N N N

D
T4

B4
W

O7

O8

D B4
W

O8

O7
F4

O7 N

D

B1

O1

B1 B1
X1

n

D

Z1Z1

X1

Y1

B1 B1
X1

n

D

Z1Z1

X1

Y1

(a)

W

W

N N ND
T4

B4
W

O7

O8

D B4
W

O8

O7
F4

N

D

B1

O1

B1 B1
X1

n

D

Z1Z1

X1

Y1

B1 B1
X1

n

D

Z1Z1

X1

Y1

O8

(b)

W

W

N N N

D B4
W

O8

O7
F4

D
T4

B4
W

O7

O8

B1 B1
X1

n

D

Z1Z1

X1

Y1

B1 B1
X1

n

D

Z1Z1

X1

Y1

B4
B1

R4 S1

Z1

DZ4

R4 S1

9

44

5

5
-7

(c)

Figure 5.9: Phase 2: The drilling process encounters convex corners of the assembly. (a) Coming from the

East, drill gadgets encounter a type-1 convex corner of the assembly. The mold corner gadget

becomes unstable and will break from the assembly. O7+N +B1+D = 1+9+5−7 ≥ τ. (b) The

drill gadgets encounter a type-2 convex corner gadget. It becomes unstable and will break from

the assembly. O8 + N + B1 + D = 1 + 9 + 5 − 7 < τ. (c) Convex corner gadgets bind and allow

the drilling process to continue. B4 + B1 = 5 + 5 ≥ τ. Z1 + R4 + S1 + D = 9 + 4 + 4 − 7 ≥ τ.

Y5

Y1

Q

C1 N N
C2

W

C1 N

O1O1

K

D

B1

Q

B1 B1
X1

n

D

Z1Z1

X1

Y1

B4

K

DZ4
C2Y5

B4

B4

DZ4

Z4
X4 X4 wY4

9

-2

9

(a)

Y5

Y1

Q

C1 N N
C2

W

C1 N

O1O1

K

D

B1

Q

B1 B1
X1

n

D

Z1Z1

X1

Y1

B4

K

DZ4
C2Y5

B4

B4

DZ4

Z4
X4 X4 wY4

(b)

Y5

Y1

Q

B1 B1
X1

n

D

Z1Z1

X1

Y1

B1 B1
X1

n

D

Z1Z1

X1

Y1

B1 B1
X1

n

D

Z1Z1

X1

Y1

B4

K

DZ4
C2Y5

B4

B4

DZ4

Z4
X4 X4 wY4

B4

B4

DZ4

Z4
X4 X4 wY4

(c)

Figure 5.10: Phase 2: The post-drill process begins. (a) The post-drill gadget binds at the Northernmost-

Westernmost corner of the assembly that contains the input shape. It binds cooperatively to

the last placed drill block and the pre-drill gadget. Y5 + Y1 + Q = 9 + 9 − 2 ≥ τ. (b) Once

placed, the pre-drill gadget destabilizes a cut which includes the input shape and the start block.

B1 +C2 + K +Q + D = 5 + 9 + 3 − 2 − 7 < τ. (c) Once the assembly with the input shape and

the start block detached, the FRAME remains.

Phase 4 Gadgets for Making the Hollow Outline

Below we describe the gadgets used to implement Phase 4 and create FRAME[START] and

HOLLOW[Υ]. The inner pre-drill gadget can attach to the FRAME after the inner start gadget has

46

C2

O1o1

D2D

B1B1

B1b1
B1k

q

w

C2

w

w

w

w

n n n
B1B1

D

n
b1

t1
o2o1

D

n
b1

o1o2
f1

D2D

5

9

9 9

1
1

(a)

D

n
b1

o1o2
f1

D

n
b1

t1
o2o1

D

n
b1

o1o2
f1

D

n
b1

t1
o2o1

D

n
b1

o1o2
f1

e
b2

t1

o3 D

e

n n n n n

e

e

e

e

t2
D b2

o3

o4
e

1
9

9

1

(b)

n n n
e

et2
D b2

o3

o4
e

D b2

o4

o3
ef2

o3 n

o1

D

b1

D

n
b1

t1
o2o1

1 9 9

1

(c)

Figure 5.11: Phase 3: Starting the inner mold process and handling type-1 corners. (a) The inner start

gadget attaches to the inside perimeter of the FRAME. C2 + B1 = 9 + 5 ≥ τ. An inner mold

gadget attaches cooperatively to the start gadget and the FRAME. o1 + n = 1 + 9 ≥ τ. Another

inner mold gadget attaches cooperatively to the FRAME and the previous inner mold gadget.

o2 + n = 1 + 9 ≥ τ. (b) A concave corner of the assembly. A South→West concave corner

gadget attaches to the concave corner. t1 + e = 1 + 9 ≥ τ. An inner mold gadget attaches

cooperatively to the FRAME and the South→West concave corner gadget. o3 + e = 1 + 9 ≥ τ.

(c) A convex corner of the assembly. AWest→South convex corner gadget attaches at the convex

corner, allowing the mold process to continue around the convex corner. o3 + n = 1 + 9 ≥ τ.

o1 + n = 1 + 9 ≥ τ.

placed, similar to the pre-drill gadget shown in Section V. The inner pre-drill gadget can be seen in

Figure 5.13. Once the inner pre-drilling gadget has attached, the inner drill gadgets attach along the

inside edge of the frame, removing the inner mold gadgets one by one counterclockwise. These

gadgets reflect the form and function of the drill gadgets shown in Section V. The inner drilling

process reflects that of the outer drilling, and can be seen in Figure 5.14a. Corners are handled

similarly to the outer drill gadgets, from Phase 2 (Section V) An. When the drills completely

attach to the inner perimeter of the FRAME, the inner post-drill gadget can attach, as seen in

Figure 5.15a, to create FRAME[HOLLOW[Υ]]. After the inner post-drill gadget attaches, the

assembly destabilizes into FRAME[START] and HOLLOW[Υ], as shown in Figure 5.15b.

47

D

n
b1

t1
o2o1

D

n
b1

o1o2
f1

D

n
b1

t1
o2o1

D

n
b1

o1o2
f1

D

n
b1

t1
o2o1

e

n n n n n

e

e

e

e

e
b2

t1

o3 D

t2
D b2

o3

o4
e

1
9

9

1

(a)

D b2

o4

o3
ef2

t2
D b2

o3

o4
e

n n n
e

e

o4 n

i1

D

b1

D

n
b1

t1
o2o1

1 9 9

1

(b)

Figure 5.12: Phase 3: Type-2 concave and convex corners of the assembly. (a) A type-2 South→West

concave corner gadget binds, which allows the mold process to continue around the concave

corner. t1 + e = 1 + 9 ≥ τ. o3 + e = 1 + 9 ≥ τ.(b) A type-2 West→South corner gadget

binds allowing the mold process to continue around the convex corner. o4 + n = 1 + 9 ≥ τ.

o1 + n = 1 + 9 ≥ τ.

Phase 5 Gadgets to Fill the Hollow Outline

Below we describe the gadgets used to implement Phase 5 to fill HOLLOW[Υ] to create

COPY[Υ]. The filler gadgets begin the process of filling the shape, shown in Figure 5.16. Two

regions of HOLLOW[Υ] need to be filled to become COPY[Υ], the Northernmost-Westernmost

corner (Figure 5.16a) and the interior (Figures 5.16b,5.16c).

Universal Shape Replication

In this section we formally state the results, including the class of shapes which can be

replicated by the replication gadgets discussed in the previous section. The input shape must be

sufficiently large for the replication gadgets to assemble in the intended manner, so we define the

feature size of a shape as follows (we use the same definition as [47]): for two points a, b in the

shape, let d(a, b) = max(|ax − bx |, |ay − by |). Then the feature size is the minimum d(a, b) such

that a, b are on two non-adjacent edges of the shape.

Theorem 5.3. There exists a sleek universal shape replicator Γ = (σ, 10) for genus-0 (hole-free)

48

w

C2

w

n n n

w

w

w

B1B1

k

w
b4 D1D z4

B1

y5

k

3

9

(a)

w

C2

w

w

w

w

w
b4 D1D z4

B1

y5

k

Db4 o6

o5
w t4

k

w
Db4 o5

o6
w f4

3

9

5
-7

(b)

w

C2

w

n n n

w

w

w

B1B1

D

n
b1

t1
o2o1

D

n
b1

o1o2
f1

D

n
b1

t1
o2o1

Db4 o6

o5
w t4

w
b4 D1D z4

B1

y5

k

w
Db4 o5

o6
w f4

C2

O1o1

D2D

B1B1

B1b1
B1k

q
D

(c)

Figure 5.13: Phase 4: The inner pre-drilling process begins. (a) Case 1: The inner mold process has not

completed and the inner pre-drill gadget binds cooperatively to the FRAME and the inner start

gadget. w + k = 9 + 3 ≥ τ. (b) Case 2: The inner mold process has completed and the inner

pre-drill gadget binds cooperatively to the FRAME, inner start gadget, and an inner mold gadget.

w + k + b4 + D = 9 + 3 + 5 − 7 ≥ τ. (c) The inner pre-drill gadget prevents any inner mold

gadget from attaching to its south and destabilizes any inner mold gadget that may have been in

that space. b4 + o5 + w + D = 5 + 1 + 9 − 7 < τ.

shapes with feature size of at least 9.

Proof. The proof follows by constructing an unbounded shape replication system Γ = (σ, 10).

Consider an initial assembly state σ consisting of infinite counts of the tiles which construct the

replication gadgets shown in Section V. For any shape X of genus-0 and minimum feature size 9,

consider an assembly Υ of shape X with the properties discussed at the beginning of Section V (i.e.,

the exposed glues on Υ are N, E, S, and W based on edge orientation, and there is a special glue

in the Northernmost-Westernmost position of Υ which exposes glues C1 to the North and C2 to

the West). Then we prove inductively that Γ′ = (σ⋃
Υ, 10) has the following property: for any

n ∈ N and producible state S of Γ′, there exists a producible state S′ containing at least n terminal

assemblies of shape X such that S → S′.

For the base, note that the Γ′ follows the process described in Section V. When the FRAME

detaches from HOLLOW[Υ], HOLLOW[Υ] is filled to generate 1 terminal assembly of shape X .

49

w w
b4 D1D z4

w

C2

w

n n n

C2

O1

D2D

B1B1B1B1

B1b1
B1k
B1k

w q

y5

D

n
b1

t1
o2

D

n
b1

f1

D

n
b1

t1
o2

D

o1o1 o2o1o1

w

w
b4 b4

b4
x4

D z4

z4
x4 y4

Db4 o5

o6
w f4w

5

5 9

9

(a)

w

w
Db4

w t4

b4

b4
x4

D z4

z4
x4 y4

Db4
w f4w

w w
b4 D1D z4

w

C2

w

n n n

C2

O1

D2D

B1B1B1B1

B1b1
B1k
B1k

w q

y5

D

n
b1

t1

D

n
b1

f1

D

n
b1

t1
o2o1o1 o2o1o1

o6

o5
o5

o6

o2

(b)

w

w

w

b4

b4
x4

D z4

z4
x4 y4

b4

b4
x4

D z4

z4
x4 y4

b4

b4
x4

D z4

z4
x4 y4

w w
b4 D1D z4

w

C2

w

n n n

C2

O1o1

D2D

B1B1B1B1

B1b1
B1k

D

z1

b1 b1
x1
x1

z1
y1

D

z1

b1 b1
x1
x1

z1
y1

D

z1

b1 b1
x1
x1

z1
y1

B1k

w q

y5

(c)

Figure 5.14: Phase 4: The inner drilling process begins. (a) A drill helper binds to the inner pre-drill gadget

and an inner mold gadget. b4 + b4 = 5 + 5 ≥ τ. A drill block binds cooperatively to the drill

helper and pre-drill gadget. x4 + z4 + D = 9 + 9 − 7 ≥ τ. (b) The drill gadgets destabilize an

inner mold gadget. b4 + o5 + w + D = 5 + 1 + 9 − 7 < τ. (c) The drilling process continues

counter-clockwise along the inside perimeter of the FRAME until the drill gadgets reach the

inner start gadget.

Then, for any producible state S, σ
⋃
Υ→ S by definition, so S contains at least 1 terminal of shape

X or S → Ŝ such that Ŝ contains at least 1 terminal of shape X .

Now, consider any producible state A such that A has at least n ∈ N terminal assemblies

of shape X . For A to have at least one such terminal, HOLLOW[Υ] must have detached from

the FRAME. When this occurs, the FRAME is still attached to the inner start gadget, so the

inner mold/drill process repeats, generating HOLLOW[Υ]. Again, HOLLOW[Υ] detaches from

the FRAME, and then HOLLOW[Υ] is filled, resulting in 1 more terminal assembly of shape X .

Therefore A→ A′ such that A′ contains at least n + 1 terminal assemblies of shape X . Then, since

S or Ŝ contains at least 1 terminal of shape X , S → S′ such that S′ has at least n terminal assemblies

of shape X for any n. This satisfies the first property of Definition 5.1.

Further, any terminal assembly B in the system that does not have shape X , |B | = O(1),

satisfying the second property of Definition 5.1. Note that the only assemblies which are larger

50

y5

y1
q

w

w

w

b4

b4
x4

D z4

z4
x4 y4

b4

b4
x4

D z4

z4
x4 y4

b4

b4
x4

D z4

z4
x4 y4

w w
b4 D1D z4

w

C2

w

n n n

C2

O1i1

D2D

B1B1B1B1

B1b1
B1k

D

z1

b1 b1
x1
x1

z1
y1

D

z1

b1 b1
x1
x1

z1
y1

D

z1

b1 b1
x1
x1

z1
y1

B1k

w q

y5

9

9

-5D

L

L

L

L

(a)

w

w

w

b4

b4
x4

D z4

z4
x4 y4

b4

b4
x4

D z4

z4
x4 y4

b4

b4
x4

D z4

z4
x4 y4

w w
b4 D1D z4

w

C2

w

n n n

C2

O1i1

D2D

B1B1B1B1

B1b1
B1k

D

z1

b1 b1
x1
x1

z1
y1

D

z1

b1 b1
x1
x1

z1
y1

D

z1

b1 b1
x1
x1

z1
y1

B1k

w q

y5 y5

y1
q L

L

L

L

(b)

Figure 5.15: Phase 4: The inner post-drilling process. (a) The inner post-drill gadget binds cooperatively to

the inner pre-drill gadget and the second-to-last placed drill gadget. y5+ y1+ q = 9+9−5 ≥ τ.

(b) The assembly with the FRAME and the start gadget becomes unstable and breaks off the

assembly. b1 + w + k + q + D = 5 + 9 + 3 − 5 − 7 < τ.

O1k

O1y1

b4

b4
x4

D z4

z4
x4 y4

b4

b4
x4

D z4

z4
x4 y4

b4

b4
x4

D z4

z4
x4 y4

w
b4 D

k

z4

D

z1

b1 b1
x1
x1

z1
y1

D

z1

b1 b1
x1
x1

z1
y1

D

z1

b1 b1
x1
x1

z1
y1

y5 y5

y1
q L

L

L

L

(a)

O1k

O1y1

b4

b4
x4

D z4

z4
x4 y4

b4

b4
x4

D z4

z4
x4 y4

b4

b4
x4

D z4

z4
x4 y4

w
b4 D

k

z4

D

z1

b1 b1
x1
x1

z1
y1

D

z1

b1 b1
x1
x1

z1
y1

D

z1

b1 b1
x1
x1

z1
y1

y5 y5

y1
q

y1

g1

g1

g2

g2

D

z1

b1 b1
x1
x1

z1
y1

D

z1

b1 b1
x1
x1

z1
y1

g3

g3

M1

M1

M2

1

1

1

1

9

9

9

9

L

L

L

L

L

L

L

L

(b)

M1

M2
M3

M3
M2

M1

O1k

O1y1

b4

b4
x4

D z4

z4
x4 y4

b4

b4
x4

D z4

z4
x4 y4

b4

b4
x4

D z4

z4
x4 y4

w
b4 D

k

z4

D

z1

b1 b1
x1
x1

z1
y1

D

z1

b1 b1
x1
x1

z1
y1

D

z1

b1 b1
x1
x1

z1
y1

y5 y5

y1
q

y1

g1
g1

g2
g2

D

z1

b1 b1
x1
x1

z1
y1

g3
g3

M1

M1

M2

M1

M2
M3

M3
M2

M1

M1

M2
M3

M3
M2

M1

M1
M3
M2

5
5

5

5

5

55

5

L

L

L

L

L

L

L

L

(c)

Figure 5.16: Phase 5: The inner filling process. (a) The first filler gadget comes in to fill in the Northernmost-

Westernmost corner of HOLLOW[Υ]. k + y1 = 3 + 9 ≥ τ. (b) L = 1, g∗ = 9. (c) M1 = M2 =

M3 = 5. First, the 4 tiles in (b) attach one by one to the hollow shape. The filler gadget in (c)

can then attach and flood the inside of the shape.

than O(1) size are assemblies related to the input shape, the FRAME, and HOLLOW[Υ]. The input

shape and the intermediate assemblies produced while creating the FRAME are not terminal since

the process repeats once the FRAME is detached. The FRAME and the intermediate assemblies

51

produced while creating HOLLOW[Υ] are not terminal since the process repeats once HOLLOW[Υ]

detaches. HOLLOW[Υ] fills to create a terminal assembly of shape X , so none of the intermediate

assemblies are terminal.

Then, Γ = (σ, 10) is a universal shape replicator for genus-0 (hole-free) shapes with minimum

feature size 9. To show that it is a sleek universal shape replicator (i.e. the bonus properties

discussed in the definitions apply), note that the input shape considered here has the same properties

as described in that definition, and that the input shape, the FRAME, HOLLOW[Υ], and the

intermediate steps of each of these assemblies, do not grow larger than O(|X |) in size. �

The Big Picture

The above described work reflects my contribution to a larger body of work [84]. In this

work we formally introduced the problem of shape replication in the 2-handed tile assembly model

and provided a universal replication system for all genus-0 shapes with at least a constant minimum

feature size. Shape replication has been studied in more powerful self-assembly models such as

the staged self-assembly model and the signal tile model. However, our result constitutes the

first example of general shape replication in a passive model of self-assembly where no outside

experimenter intervention is required, and where the system monomers are state-less, static pieces

that interact based purely on the attraction and repulsion of surface chemistry.

52

Phase 1
C + N ≥ τ O + N ≥ τ
T +W ≥ τ

Phase 2: Pre-drilling
K + C2 + B + D ≥ τ K + C2 ≥ τ
B +W +O + D < τ

Phase 2: Drilling
B + B ≥ τ Z + X + D ≥ τ
B + X ≥ τ
Phase 2: Drilling Type-1 Corners

B +W + T + D < τ Y + T ≥ τ
Z + V + F ≥ τ Y + Z + T + F ≥ τ

Z + B + V + Y + F ≥ τ Z + X + V + Y + F ≥ τ
T + Z + B + F ≥ τ O + N +O + F < τ

B + B ≥ τ B +U ≥ τ
Phase 2: Drilling Type-2 Corners

Z + H + F ≥ τ H + Y + Z + B + F ≥ τ
H + Y + Z + X + F ≥ τ T + Z + B + F ≥ τ

O + N +O + F < τ N < τ
A ≥ τ B + B ≥ τ

Phase 2: Drilling Obtuse Corners
B + N +O + D < τ B + B ≥ τ
Z + R + S + D ≥ τ O +W + B + D < τ

Phase 2: Post-Drilling
B + N + C1 + K + D ≥ τ Y + Y +Q ≥ τ

Y + Z + B + N + C1 + K +Q ≥ τ B + N + C1 + C2 + B + Z + Y +Q + D ≥ τ
Y + Z + B + C2 + K +Q ≥ τ B + N + C1 + K + D +Q ≥ τ

C2 + C1 + N ≥ τ K + B + C2 +Q + D < τ

Phase 3
C2 + B ≥ τ o + n ≥ τ

t + e ≥ τ
Phase 4 - Pre-drilling

k + w + b + D ≥ τ b + w + i + D < τ
k + w ≥ τ

Phase 4 - Drilling
b + b ≥ τ z + x + D ≥ τ

b + w + i + D < τ b + x ≥ τ
Phase 4 - Post-drilling

B + b + k + C2 + D ≥ τ y + y +Q ≥ τ
B + b + k + C2 + D +Q ≥ τ b + k + w + D + q < τ

B + C2 ≥ τ B + C2 + C1 + N + B1 +O + D ≥ τ
Z + B ≥ τ B +W +W +O + D ≥ τ
k + y ≥ τ

Phase 5
L + g∗ ≥ τ M + M ≥ τ

Table 5.2: Shown are the constraints, in the form of inequalities, which must be satisfied for the replication
gadgets shown in Section V to function in the way required to prove Theorem 5.3. All single glue
labels except A must have strength < τ. Unless otherwise stated, in these inequalities, a glue label
G represents all glues G∗ (e.g., G1, G2, etc.).

53

CHAPTER VI

SIMULATION

VersaTILE is a graphical simulator (Figure 6.1) and tile editor (Figure 6.2) designed to be

able to simulate many models of tile-based algorithmic self-assembly. VersaTILE is cross-platform

(Java) and currently supports the simulation of the abstract Tile Assembly Model, the dupled Tile

Assembly Model, the hexagonal Tile Assembly Model, and the polyomino Tile Assembly Model. It

also supports generalized versions of many of the extensions to these models such as probabilistic

attachment, temperature programming, concentration programming, negative interactions, a run-time

model, and flexible glues. VersaTILE has clean and consistent user-interface that makes it very

easy for a user to identify how to use the software. To make things easier, VersaTILE automatically

keeps up-to-date and looks the same across all platforms. Users are able to specify custom colors

for tiles so that they can quickly get a high-level overview of the state of the tile assembly system.

VersaTILE was inspired by other tile-based self-assembly simulators that exist, such as Xgrow and

the ISU Tile Assembly Simulator. Simulators for this line of research are important tools for the

rapid prototyping and debugging of tile assembly systems. The primary contribution of VersaTILE

to this space is that VersaTILE generalizes the self-assembly process and uses polymorphism to

allow a developer to make new models by simply constraining or modifying small pieces of the base

classes through inheritance. Not only is VersaTILE open-source, but it uses an XML file format to

make it simple for others to support or write to the VersaTILE format. Besides being a tool for rapid

prototyping and development, VersaTILE is a useful tool for interactive demonstrations as well as

education. This poster reviews the major features and functionality of VersaTILE.

54

Simulated Models

VersaTILE is able to simulate various models of DNA tile self-assembly such as the abstract

Tile Assembly Model (aTAM), the polyomino Tile Assembly Model (polyTAM), the dupled Tile

Assembly Model (DaTAM), hexagonal Tile Assembly Model (hTAM), and other models that extend

on the use of unit square DNA tiles.

Features

VersaTILE supports generalized extensions to thesemodels such as temperature programming,

concentration programming, negative interactions (attachments only), a run-time model, flexible

glues, and probabilistic assembly.

VersaTILE supports auto-updating, importing of ISU TAS files, XML output, visualization

and debugging of the frontier, and other features. VersaTILE is easy to extend. Developers can add

new models by simply extending existing Java classes and overriding default behavior.

The Big Picture

VersaTILE attempts to provide a solution for the problem of simulating self-assembling

systems. As the lead developer my primary contributions to VersaTILE were the high-level

design, the implementation of many of the base classes, the GUI interface, the tile editor, the

auto-updating mechanism, the development of all the extensions to base models, and more. This

work was presented at a poster session at the 21st International Conference on DNA Computing and

Molecular Programming (DNA '15) titled “Multi-Model Cross-Platform Self-Assembly Simulation

with VersaTILE” to a large portion of the self-assembly community.

55

Figure 6.1: VersaTILE: A breakdown of the primary components on the main window.

Figure 6.2: VersaTILE: A breakdown of the primary components on the tile editor window.

56

CHAPTER VII

CONCLUSION

During my time as a graduate student, I researched the area of algorithmic self-assembly.

Investigating different models is essential because without having a model it is almost impossible to

design a real-world experimental system. Knowing the capabilities of different models, helps to

identify which problems can or can’t be solved by certain systems and helps to establish a hierarchy

of models in terms of complexity. I was able to make original contributions to the areas of random

number generation, information encoding, shape replication, and simulation.

Random Number Generation

In regards to random number generation, I was able to construct a 1-extensible robust coin

flip system inspired by Von Neumann’s randomness extractors that uses unbounded space. I was

also able to rigorously analyze and prove a bound on the bias of this system when its growth is

fixed within a space constraint. When paired with other results from the published version [77], this

upper bound highlights a gap in the power between 1-extensible and 2-extensible systems, which

can generate robust coin flips in O(1)-space.

A direction for future work is the consideration of generalizations of the coin flip problem.

Our partition definition for coin flip systems extends naturally to distributions with more than

two outcomes, as well as non-uniform distributions. What general probability distributions can

be assembled in O(1) space, and with what efficiency? We have also introduced the online

variant of concentration robustness in which species concentrations may change at each step of the

self-assembly process. We have shown in [77] that when such changes are completely arbitrary, coin

flipping is not possible in the aTAM. A relaxed version of this robustness constraint could permit

57

concentration changes to be bounded by some fixed rate. In such a model, how close to a fair coin

flip can a system guarantee in terms of the given rate bound? As an additional relaxation, one could

consider the problem in which an initial concentration assignment may be approximately set by the

system designer, thereby modeling the limited precision an experimenter can obtain with a pipette.

A final line of future work focuses on applying randomization in self-assembly to computing

functions. The parallelization within the abstract tile assembly model allows for substantially faster

arithmetic than what is possible in non-parallel computational models [86]. Can randomization be

applied to solve these problems even faster? Moreover, there are a number of potentially interesting

problems that might be helped by randomization, such as primality testing, sorting, or general

simulation of randomized boolean circuits.

Information Encoding

In regards to information encoding, I was able to utilize the base conversion approach of [15],

[28], [37], [81] to reduce the tile complexity building bit string pads, when limited to O(1) bins and

stages. I was also able to describe how given some constraint of tile types t and constraint on bins b,

O(log log b
log t) stages can be used to uniquely produced all width-2 gap-1 blog(b)c-bit string pads, each

placed in a distinct bin. These constructions correspond to terms in the upper bound for the nearly

optimal construction of bit string pads described in the published version of this work [85], which

nearly matches the lower bound.

The obvious technical question that remains is whether the additive O(log log b
log t) gap between

the upper and lower bounds can be removed. This gap in the optimal bit pad constructions is induced

by the wings built with the method from Section IV, and seems difficult to eliminate, as the wings

serve as our generic solution to assembly labeling and coordinated attachment. As such, the wings

subconstruction might be useful for improving the efficiency of staged assembly for other shape

classes.

58

Shape Replication

In regards to shape replication, I was able to generate a constant set of tiles that can replicate

all hole-free shapes with feature size of at least 9 in a passive model of self-assembly. Previous work

in similar models required the use of stages and global “destroy” operations by an “RNAse enzyme”

molecule. Our work opens up a number of directions for future work. One direction includes

analyzing and improving the rate of replication. Under a reasonable model of replication time, our

construction should costitute a quadratic replicator− in that after time t, Ω(t2) copies of the input

shape are expected. Designing a faster replicator is an open question. In particular, achieving an

exponential replicator is an important goal. Further, to properly consider these questions requires a

formal modelling of replication rates for this model.

Another direction is to further generalize the class of shapes that can be replicated. For

example, can shapes with holes be replicated? This is likely difficult, but might be achievable by

drilling into the input assembly in a carefully engineered way. Achieving such general replication

would be the first example of shape replication that extends beyond genus-0. This seems to require a

shape with more complex glues, which leads to another area of research.

The consideration of variations of the sleek requirements may be of interest. For example,

removing the need for any special tiles from the replication system might be achievable. Or, allowing

for more complex input assemblies could allow for high genus replication, as discussed above.

Finally, determining the lowest necessary temperature and glue strengths needed for replication is

an open question. We use temperature value 10 to maximize clarity of the construction and have not

attempted to optimize this value. To help such optimization, we have included a compiled table

(Table 5.2) showing the inequality specifications induced by our construction for each gadget to help

guide where a modification to the replication algorithm might reduce the temperature needed.

Finally, extending replication to work in a planar fashion is an open question, as the current

construction requires a large assembly to “pop” out of an encased frame. Planar replication systems

might provide insight into extending replication into 3D, while maintaining a spatial construction.

59

Simulation

In regards to simulation, I contributed as the lead developer of VersaTILE. Future directions

for this work would include the support for the kinetic Tile AssemblyModel (kTAM), the two-Handed

Tile Assembly Model, and the Staged Assembly Model. There are also plans to incorporate a 3D

extension of all supported models in the simulator. With the decision to use JavaFX, a mobile

version could be created for Android and iOS devices.

Closing Remarks

Each of these results relates to fundamental primitives for nanotechnology: the ability to

use randomized algorithms, the ability to solve problems invariant of the relative concentrations of

molecules, the ability to encode information into tile assembly systems in the form of bits, and the

ability to “sense” information from unknown objects in the form of shape and to be able to replicate

that shape.

This research is important because it provides constructions, algorithms for designing tile

assembly systems, for solving these interesting problems. There are still many questions left to

answer for the motivated researcher or upcoming graduate students.

60

BIBLIOGRAPHY

[1] J. von Neumann, “Various Techniques Used in Connection with Random Digits,” Journal of

Research of the National Bureau of Standards, vol. 12, pp. 36–38, 1951.

[2] N. C. Seeman, “Nucleic-acid junctions and lattices,” Journal of Theoretical Biology, vol. 99,

pp. 237–247, 1982.

[3] R. Deaton, M. Garzon, R. Murphy, D. Franceschetti, and S. Stevens, “Genetic Search

of Reliable Encodings for DNA Based Computation,” in Proceedings of the 1st Annual

Conference on Genetic Programming, 1996, pp. 9–15.

[4] D. D. Shoemaker, D. A. Lashkari, D. Morris, M. Mittmann, and R. W. Davis, “Quantitative

Phenotypic Analysis of Yeast Deletion Mutants Using a Highly Parallel Molecular Bar-coding

Strategy,” Nature, vol. 16, pp. 450–456, Dec. 1996.

[5] S. Brenner, Methods for Sorting Polynucleotides using Oligonucleotide Tags, US Patent

Number 5,604,097, Feb. 1997.

[6] A. G. Frutos, Q. Liu, A. J. Thiel, A. M. W. Sanner, A. E. Condon, L. M. Smith, and R. M.

Corn, “Demonstration of a Word Design Strategy for DNA Computing on Surfaces,” Nucleic

Acids Research, vol. 25, pp. 4748–4757, Dec. 1997.

[7] M. Garzon, R. Deaton, P. Neathery, D. Franceschetti, and R. Murphy, “A New Metric

for DNA Computing,” in Proceedings of the 2nd Genetic Programming Conference, 1997,

pp. 472–278.

[8] E. Winfree, “Algorithmic self-assembly of DNA,” PhD thesis, California Institute of Technol-

ogy, Jun. 1998.

61

[9] E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, “Design and self-assembly of

two-dimensional DNA crystals.,” Nature, vol. 394, no. 6693, pp. 539–44, 1998.

[10] F. Liu, R. Sha, and N. C. Seeman, “Modifying the surface features of two-dimensional DNA

crystals.,” Journal of the American Chemical Society, vol. 121, no. 5, pp. 917–922, 1999.

[11] C. Mao, W. Sun, and N. C. Seeman, “Designed two-dimensional DNA holliday junction

arrays visualized by atomic force microscopy.,” Journal of the American Chemical Society,

vol. 121, no. 23, pp. 5437–5443, 1999.

[12] C. Mao, T. H. LaBean, J. H. Reif, and N. C. Seeman, “Logical computation using algorithmic

self-assembly of DNA triple-crossover molecules.,” Nature, vol. 407, no. 6803, pp. 493–6,

2000.

[13] P.W.K. Rothemund, “Using lateral capillary forces to compute by self-assembly,”Proceedings

of the National Academy of Sciences, vol. 97, no. 3, pp. 984–989, 2000. doi: 10.1073/pnas.

97.3.984. eprint: http://www.pnas.org/content/97/3/984.full.pdf. [Online].

Available: http://www.pnas.org/content/97/3/984.abstract.

[14] P. W. K. Rothemund and E. Winfree, “The program-size complexity of self-assembled

squares (extended abstract),” in STOC 2000: Proceedings of the Thirty-Second Annual

ACM Symposium on Theory of Computing, 2000, pp. 459–468, isbn: 1-58113-184-4. doi:

http://doi.acm.org/10.1145/335305.335358.

[15] L. M. Adleman, Q. Cheng, A. Goel, and M.-D. Huang, “Running time and program size

for self-assembled squares,” in STOC 2001: Proceedings of the thirty-third annual ACM

Symposium on Theory of Computing, Hersonissos, Greece: ACM, 2001, pp. 740–748, isbn:

1-58113-349-9. doi: http://doi.acm.org/10.1145/380752.380881.

[16] L.M. Adleman, Q. Cheng, A. Goel, M.-D. Huang, and H.Wasserman, “Linear self-assemblies:

Equilibria, entropy and convergence rates,” in In Sixth International Conference on Difference

Equations and Applications, Taylor and Francis, 2001.

62

http://dx.doi.org/10.1073/pnas.97.3.984
http://dx.doi.org/10.1073/pnas.97.3.984
http://www.pnas.org/content/97/3/984.full.pdf
http://www.pnas.org/content/97/3/984.abstract
http://dx.doi.org/http://doi.acm.org/10.1145/335305.335358
http://dx.doi.org/http://doi.acm.org/10.1145/380752.380881

[17] A. Brenneman and A. E. Condon, “Strand Design for Bio-Molecular Computation,” Theoret-

ical Computer Science, vol. 287, no. 1, pp. 39–58, 2001.

[18] J. D. Hartgerink, E. Beniash, and S. I. Stupp, “Self-Assembly and Mineralization of Peptide-

Amphiphile Nanofibers,” Science, vol. 294, no. 5547, pp. 1684–1688, 2001. doi: 10 .

1126/science.1063187. eprint: http://www.sciencemag.org/cgi/reprint/294/

5547/1684.pdf. [Online]. Available: http://www.sciencemag.org/cgi/content/

abstract/294/5547/1684.

[19] A. Marathe, A. Condon, and R. M. Corn, “On Combinatorial DNA Word Design,” Journal

of Computational Biology, vol. 8, no. 3, pp. 201–219, 2001.

[20] P. W. K. Rothemund, “Theory and experiments in algorithmic self-assembly,” PhD thesis,

University of Southern California, Dec. 2001.

[21] L. M. Adleman, Q. Cheng, A. Goel, M.-D. A. Huang, D. Kempe, P. M. de Espanés, and

P. W. K. Rothemund, “Combinatorial optimization problems in self-assembly,” in STOC

2002: Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing,

2002, pp. 23–32.

[22] O. D. King, “Bounds for DNA Codes with Constant GC-content,” Electronic Journal of

Combinatorics, vol. 10, no. 1, #R33 13pp, 2003.

[23] D. C. Tulpan and H. H. Hoos, “Hybrid Randomised Neighbourhoods Improve Stochastic Local

Search for DNA Code Design,” in Lecture Notes in Computer Science 2671: Proceedings

of the 16th Conference of the Canadian Society for Computational Studies of Intelligence,

Y. Xiang and B. Chaib-draa, Eds., New York, NY: Springer-Verlag, 2003, pp. 418–433.

[24] D. C. Tulpan, H. H. Hoos, andA. Condon, “Stochastic Local Search Algorithms for DNAWord

Design,” in Lecture Notes in Computer Science 2568: Proceedings of the 8th International

Workshop on DNA-Based Computers, M. Hagiya and A. Ohuchi, Eds., New York, NY:

Springer-Verlag, 2003, pp. 229–241.

63

http://dx.doi.org/10.1126/science.1063187
http://dx.doi.org/10.1126/science.1063187
http://www.sciencemag.org/cgi/reprint/294/5547/1684.pdf
http://www.sciencemag.org/cgi/reprint/294/5547/1684.pdf
http://www.sciencemag.org/cgi/content/abstract/294/5547/1684
http://www.sciencemag.org/cgi/content/abstract/294/5547/1684

[25] H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean, “DNA-Templated Self-

Assembly of Protein Arrays and Highly Conductive Nanowires,” Science, vol. 301, no.

5641, pp. 1882–1884, 2003. doi: 10.1126/science.1089389. eprint: http://www.

sciencemag.org/cgi/reprint/301/5641/1882.pdf. [Online]. Available: http:

//www.sciencemag.org/cgi/content/abstract/301/5641/1882.

[26] P. W. Rothemund, N. Papadakis, and E. Winfree, “Algorithmic self-assembly of DNA

Sierpinski triangles,” PLoS Biology, vol. 2, no. 12, pp. 2041–2053, 2004.

[27] G. Aggarwal, Q. Cheng, M. H. Goldwasser, M.-Y. Kao, P. M. de Espanés, and R. T. Schweller,

“Complexities for generalized models of self-assembly,” SIAM Journal on Computing, vol.

34, pp. 1493–1515, 2005, Preliminary version appeared in SODA 2004.

[28] Q. Cheng, G. Aggarwal, M. H. Goldwasser, M.-Y. Kao, R. T. Schweller, and P. M. de Espanés,

“Complexities for generalized models of self-assembly,” SIAM Journal on Computing, vol.

34, pp. 1493–1515, 2005.

[29] P. Gaborit and O. D. King, “Linear constructions for DNA codes,” Theoretical Computer

Science, vol. 334, pp. 99–113, 2005.

[30] P. W. K. Rothemund, “Design of dna origami,” in ICCAD’05: Proceedings of the 2005

IEEE/ACM International conference on Computer-aided design, San Jose, CA: IEEE Com-

puter Society, 2005, pp. 471–478, isbn: 0-7803-9254-X.

[31] F. Becker, I. Rapaport, and E. Rémila, “Self-assembling classes of shapes with a minimum

number of tiles, and in optimal time,” in FSTTCS 2006: Foundations of Software Technology

and Theoretical Computer Science, 2006, pp. 45–56.

[32] A. M. Kalsin, M. Fialkowski, M. Paszewski, S. K. Smoukov, K. J. M. Bishop, and B. A.

Grzybowski, “Electrostatic Self-Assembly of Binary Nanoparticle Crystals with a Diamond-

Like Lattice,” Science, vol. 312, no. 5772, pp. 420–424, 2006. doi: 10.1126/science.

1125124. eprint: http://www.sciencemag.org/cgi/reprint/312/5772/420.pdf.

64

http://dx.doi.org/10.1126/science.1089389
http://www.sciencemag.org/cgi/reprint/301/5641/1882.pdf
http://www.sciencemag.org/cgi/reprint/301/5641/1882.pdf
http://www.sciencemag.org/cgi/content/abstract/301/5641/1882
http://www.sciencemag.org/cgi/content/abstract/301/5641/1882
http://dx.doi.org/10.1126/science.1125124
http://dx.doi.org/10.1126/science.1125124
http://www.sciencemag.org/cgi/reprint/312/5772/420.pdf

[Online]. Available: http://www.sciencemag.org/cgi/content/abstract/312/

5772/420.

[33] M.-Y. Kao and R. T. Schweller, “Reducing tile complexity for self-assembly through

temperature programming,” in SODA 2006: Proceedings of the 17th Annual ACM-SIAM

Symposium on Discrete Algorithms, 2006, pp. 571–580.

[34] Z. Tang, Z. Zhang, Y. Wang, S. C. Glotzer, and N. A. Kotov, “Self-Assembly of CdTe

Nanocrystals into Free-Floating Sheets,” Science, vol. 314, no. 5797, pp. 274–278, 2006.

doi: 10 . 1126 / science . 1128045. eprint: http : / / www . sciencemag . org / cgi /

reprint/314/5797/274.pdf. [Online]. Available: http://www.sciencemag.org/

cgi/content/abstract/314/5797/274.

[35] H.-L. Chen, R. Schulman, A. Goel, and E. Winfree, “Reducing facet nucleation during

algorithmic self-assembly,” Nano Letters, vol. 7, no. 9, pp. 2913–2919, Sep. 2007. doi:

10.1021/nl070793o. [Online]. Available: http://dx.doi.org/10.1021/nl070793o.

[36] U. Majumder, T. H. LaBean, and J. H. Reif, “Activatable tiles for compact error-resilient

directional assembly,” in DNA 13: 13th International Meeting on DNA Computing, Memphis,

Tennessee, June 4-8, 2007., 2007.

[37] D. Soloveichik and E. Winfree, “Complexity of self-assembled shapes,” SIAM Journal on

Computing, vol. 36, no. 6, pp. 1544–1569, 2007, Preliminary version appeared in DNA 10.

[38] E. D. Demaine, M. L. Demaine, S. P. Fekete, M. Ishaque, E. Rafalin, R. T. Schweller, and

D. L. Souvaine, “Staged self-assembly: Nanomanufacture of arbitrary shapes with o(1) glues,”

Natural Computing, vol. 7, no. 3, pp. 347–370, 2008.

[39] M.-Y. Kao and R. T. Schweller, “Randomized self-assembly for approximate shapes,” in Inter.

Coll. on Automata, Languages, and Programming, ser. Lecture Notes in Computer Science,

vol. 5125, 2008, pp. 370–384.

65

http://www.sciencemag.org/cgi/content/abstract/312/5772/420
http://www.sciencemag.org/cgi/content/abstract/312/5772/420
http://dx.doi.org/10.1126/science.1128045
http://www.sciencemag.org/cgi/reprint/314/5797/274.pdf
http://www.sciencemag.org/cgi/reprint/314/5797/274.pdf
http://www.sciencemag.org/cgi/content/abstract/314/5797/274
http://www.sciencemag.org/cgi/content/abstract/314/5797/274
http://dx.doi.org/10.1021/nl070793o
http://dx.doi.org/10.1021/nl070793o

[40] L. M. Adleman, J. Kari, L. Kari, D. Reishus, and P. Sosík, “The undecidability of the infinite

ribbon problem: Implications for computing by self-assembly,” SIAM Journal on Computing,

vol. 38, no. 6, pp. 2356–2381, 2009, Preliminary version appeared in FOCS 2002. [Online].

Available: http://dx.doi.org/10.1137/080723971.

[41] E. S. Andersen, M. Dong, M. M. Nielsen, K. Jahn, R. Subramani, W. Mamdouh, M. M. Golas,

B. Sander, H. Stark, C. L. P. Oliveira, J. S. Pedersen, V. Birkedal, F. Besenbacher, K. V.

Gothelf, and J. Kjems, “Self-assembly of a nanoscale dna box with a controllable lid,” Nature,

vol. 459, no. 7243, pp. 73–76, May 2009, issn: 0028-0836. doi: 10.1038/nature07971.

[Online]. Available: http://dx.doi.org/10.1038/nature07971.

[42] R. D. Barish, R. Schulman, P. W. Rothemund, and E. Winfree, “An information-bearing seed

for nucleating algorithmic self-assembly,” Proceedings of the National Academy of Sciences,

vol. 106, no. 15, pp. 6054–6059, Mar. 2009. doi: 10.1073/pnas.0808736106. [Online].

Available: http://dx.doi.org/10.1073/pnas.0808736106.

[43] H. Chandran, N. Gopalkrishnan, and J. H. Reif, “The tile complexity of linear assemblies,” in

36th International Colloquium on Automata, Languages and Programming, vol. 5555, 2009.

[44] D. Doty, J. H. Lutz, M. J. Patitz, S. M. Summers, and D. Woods, “Random number selection

in self-assembly,” in UC, 2009, pp. 143–157.

[45] ——, “Random number selection in self-assembly,” in UC 2009: Proceedings of The Eighth

International Conference on Unconventional Computation, ser. Lecture Notes in Computer

Science, vol. 5715, Springer, 2009, pp. 143–157.

[46] J. Maňuch, L. Stacho, and C. Stoll, “Step-assembly with a constant number of tile types,”

in ISAAC 2009: Proceedings of the 20th International Symposium on Algorithms and

Computation, Honolulu, Hawaii: Springer-Verlag, 2009, pp. 954–963, isbn: 978-3-642-

10630-9. doi: http://dx.doi.org/10.1007/978-3-642-10631-6_96.

66

http://dx.doi.org/10.1137/080723971
http://dx.doi.org/10.1038/nature07971
http://dx.doi.org/10.1038/nature07971
http://dx.doi.org/10.1073/pnas.0808736106
http://dx.doi.org/10.1073/pnas.0808736106
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-10631-6_96

[47] Z. Abel, N. Benbernou, M. Damian, E. D. Demaine, M. L. Demaine, R. Flatland, S. D.

Kominers, and R. Schwelle, “Shape replication through self-assembly and rnase enzymes,” in

Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms, ser.

SODA ’10, Austin, Texas: Society for Industrial and Applied Mathematics, 2010, pp. 1045–

1064, isbn: 978-0-898716-98-6. [Online]. Available: http://dl.acm.org/citation.

cfm?id=1873601.1873686.

[48] Z. Abel, N. Benbernou, M. Damian, E. Demaine, M. Demaine, R. Flatland, S. Kominers,

and R. Schweller, “Shape replication through self-assembly and RNase enzymes,” in SODA

2010: Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms,

Austin, Texas: Society for Industrial and Applied Mathematics, 2010.

[49] D. Doty, “Randomized self-assembly for exact shapes,” SIAM Journal on Computing, vol.

39, no. 8, pp. 3521–3552, 2010, Preliminary version appeared in FOCS 2009.

[50] D. Doty, M. J. Patitz, D. Reishus, R. T. Schweller, and S. M. Summers, “Strong fault-tolerance

for self-assembly with fuzzy temperature,” in FOCS 2010: Proceedings of the 51st Annual

IEEE Symposium on Foundations of Computer Science, IEEE, 2010, pp. 417–426.

[51] H. Gu, J. Chao, S.-J. Xiao, and N. C. Seeman, “A proximity-based programmable dna

nanoscale assembly line,” Nature, vol. 465, no. 7295, pp. 202–205, May 2010, issn: 0028-

0836. doi: 10.1038/nature09026. [Online]. Available: http://dx.doi.org/10.1038/

nature09026.

[52] K. Lund, A. J. Manzo, N. Dabby, N. Michelotti, A. Johnson-Buck, J. Nangreave, S. Taylor,

R. Pei, M. N. Stojanovic, N. G. Walter, E. Winfree, and H. Yan, “Molecular robots guided

by prescriptive landscapes,” Nature, vol. 465, no. 7295, pp. 206–210, May 2010, issn:

0028-0836. doi: 10.1038/nature09012. [Online]. Available: http://dx.doi.org/10.

1038/nature09012.

67

http://dl.acm.org/citation.cfm?id=1873601.1873686
http://dl.acm.org/citation.cfm?id=1873601.1873686
http://dx.doi.org/10.1038/nature09026
http://dx.doi.org/10.1038/nature09026
http://dx.doi.org/10.1038/nature09026
http://dx.doi.org/10.1038/nature09012
http://dx.doi.org/10.1038/nature09012
http://dx.doi.org/10.1038/nature09012

[53] N. Bryans, E. Chiniforooshan, D. Doty, L. Kari, and S. Seki, “The power of nondeterminism

in self-assembly,” in SODA 2011: Proceedings of the 22nd Annual ACM-SIAM Symposium

on Discrete Algorithms, SIAM, 2011, pp. 590–602.

[54] H.-L. Chen, D. Doty, and S. Seki, “Program size and temperature in self-assembly,” in ISAAC

2011: Proceedings of the 22nd International Symposium on Algorithms and Computation,

ser. Lecture Notes in Computer Science, vol. 7074, Springer-Verlag, 2011, pp. 445–453.

[55] M. Cook, Y. Fu, and R. T. Schweller, “Temperature 1 self-assembly: Deterministic assembly

in 3D and probabilistic assembly in 2D,” in Proc. of the 22nd ACM-SIAM Sym. on Discrete

Algorithms, ser. SODA’11, 2011, pp. 570–589.

[56] E. D. Demaine, S. Eisenstat, M. Ishaque, and A. Winslow, “One-dimensional staged self-

assembly,” in Proceedings of the 17th international conference on DNA computing and

molecular programming, ser. DNA’11, Pasadena, CA, 2011, pp. 100–114.

[57] E. D. Demaine, M. J. Patitz, R. T. Schweller, and S. M. Summers, “Self-assembly of arbitrary

shapes using RNAse enzymes: Meeting the kolmogorov bound with small scale factor,” in

STACS 2011: Proceedings of the 28th International Symposium on Theoretical Aspects of

Computer Science, 2011.

[58] M. Patitz, R. Schweller, and S. Summers, “Exact shapes and turing universality at temperature

1 with a single negative glue,” in DNA Computing and Molecular Programming, ser. LNCS,

vol. 6937, 2011, pp. 175–189, isbn: 978-3-642-23637-2. doi: 10.1007/978-3-642-23638-

9_15. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-23638-9_15.

[59] J. H. Reif, S. Sahu, and P. Yin, “Complexity of graph self-assembly in accretive systems and

self-destructible systems,” Theoretical Computer Science, vol. 412, no. 17, pp. 1592–1605,

2011, issn: 0304-3975. doi: http://dx.doi.org/10.1016/j.tcs.2010.10.034.

[Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0304397510005967.

68

http://dx.doi.org/10.1007/978-3-642-23638-9_15
http://dx.doi.org/10.1007/978-3-642-23638-9_15
http://dx.doi.org/10.1007/978-3-642-23638-9_15
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2010.10.034
http://www.sciencedirect.com/science/article/pii/S0304397510005967
http://www.sciencedirect.com/science/article/pii/S0304397510005967

[60] S. Cannon, E. D. Demaine, M. L. Demaine, S. Eisenstat, M. J. Patitz, R. Schweller, S. M.

Summers, and A. Winslow, “Two hands are better than one (up to constant factors),” Arxiv

preprint arXiv:1201.1650, 2012.

[61] H. Chandran, N. Gopalkrishnan, and J. Reif, “Tile complexity of linear assemblies,” SIAM

Journal on Computing, vol. 41, no. 4, pp. 1051–1073, 2012. doi: 10.1137/110822487.

eprint: http://dx.doi.org/10.1137/110822487. [Online]. Available: http://dx.

doi.org/10.1137/110822487.

[62] H.-L. Chen and D. Doty, “Parallelism and time in hierarchical self-assembly,” in SODA 2012:

Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,

2012.

[63] D. Doty, J. H. Lutz, M. J. Patitz, R. Schweller, S. M. Summers, and D. Woods, “The tile

assembly model is intrinsically universal,” in FOCS 2012: Proceedings of the 53rd IEEE

Conference on Foundations of Computer Science, 2012.

[64] B. Fu, M. Patitz, R. Schweller, and R. Sheline, “Self-assembly with geometric tiles,” in

Automata, Languages, and Programming, ser. LNCS, vol. 7391, 2012, pp. 714–725, isbn:

978-3-642-31593-0. doi: 10.1007/978- 3- 642- 31594- 7_60. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-31594-7_60.

[65] Y. Ke, L. L. Ong, W. M. Shih, and P. Yin, “Three-dimensional structures self-assembled from

dna bricks,” Science, vol. 338, no. 6111, pp. 1177–1183, 2012.

[66] R. Schulman, B. Yurke, and E. Winfree, “Robust self-replication of combinatorial information

via crystal growth and scission,” PNAS, vol. 109, no. 17, pp. 6405–6410, 2012.

[67] N. Bryans, E. Chiniforooshan, D. Doty, L. Kari, and S. Seki, “The power of nondeterminism

in self-assembly,” Theory of Computing, vol. 9, no. 1, pp. 1–29, 2013, Preliminary version

appeared in SODA 2011. doi: 10.4086/toc.2013.v009a001. [Online]. Available:

http://www.theoryofcomputing.org/articles/v009a001.

69

http://dx.doi.org/10.1137/110822487
http://dx.doi.org/10.1137/110822487
http://dx.doi.org/10.1137/110822487
http://dx.doi.org/10.1137/110822487
http://dx.doi.org/10.1007/978-3-642-31594-7_60
http://dx.doi.org/10.1007/978-3-642-31594-7_60
http://dx.doi.org/10.4086/toc.2013.v009a001
http://www.theoryofcomputing.org/articles/v009a001

[68] S. Cannon, E. D. Demaine, M. L. Demaine, S. Eisenstat, M. J. Patitz, R. Schweller, S. M.

Summers, and A. Winslow, “Two hands are better than one (up to constant factors): Self-

assembly in the 2ham vs. atam,” in Proceedings of the 30th International Symposium on

Theoretical Aspects of Computer Science (STACS 2013), ser. LIPIcs, vol. 20, 2013, pp. 172–

184, isbn: 978-3-939897-50-7. [Online]. Available: http://dblp.uni-trier.de/db/

conf/stacs/stacs2013.html#CannonDDEPSSW13.

[69] E. Demaine, M. Patitz, T. Rogers, R. Schweller, S. M. Summers, and D. Woods, “The

two-handed tile assembly model is not intrinsically universal,” in Proceedings of the 40th

International Colloquium on Automata, Languages and Programming (ICALP 2013), Riga,

Latvia, 2013.

[70] D. Doty, L. Kari, and B. Masson, “Negative interactions in irreversible self-assembly,”

Algorithmica, vol. 66, no. 1, pp. 153–172, 2013, issn: 1432-0541. doi: 10.1007/s00453-

012-9631-9. [Online]. Available: http://dx.doi.org/10.1007/s00453-012-9631-

9.

[71] A. Keenan, R. Schweller, and X. Zhong, “Exponential replication of patterns in the signal tile

assembly model,” Proceedings of the 19th International Meeting on DNA Computing, Sep.

2013.

[72] J. E. Padilla, M. J. Patitz, R. Pena, R. T. Schweller, N. C. Seeman, R. Sheline, S. M. Summers,

and X. Zhong, “Asynchronous signal passing for tile self-assembly: Fuel efficient computation

and efficient assembly of shapes,” English, in Unconventional Computation and Natural

Computation, ser. LNCS, vol. 7956, 2013, pp. 174–185, isbn: 978-3-642-39073-9. doi:

10.1007/978-3-642-39074-6_17. [Online]. Available: http://dx.doi.org/10.

1007/978-3-642-39074-6_17.

[73] R. Schweller and M. Sherman, “Fuel efficient computation in passive self-assembly,” in

SODA 2013: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms,

SIAM, 2013, pp. 1513–1525.

70

http://dblp.uni-trier.de/db/conf/stacs/stacs2013.html#CannonDDEPSSW13
http://dblp.uni-trier.de/db/conf/stacs/stacs2013.html#CannonDDEPSSW13
http://dx.doi.org/10.1007/s00453-012-9631-9
http://dx.doi.org/10.1007/s00453-012-9631-9
http://dx.doi.org/10.1007/s00453-012-9631-9
http://dx.doi.org/10.1007/s00453-012-9631-9
http://dx.doi.org/10.1007/978-3-642-39074-6_17
http://dx.doi.org/10.1007/978-3-642-39074-6_17
http://dx.doi.org/10.1007/978-3-642-39074-6_17

[74] E. Demaine, M. Demaine, S. Fekete, M. Patitz, R. Schweller, A. Winslow, and D. Woods,

“One tile to rule them all: Simulating any tile assembly system with a single universal tile,”

in Automata, Languages, and Programming, ser. LNCS, vol. 8572, 2014, pp. 368–379,

isbn: 978-3-662-43947-0. doi: 10.1007/978-3-662-43948-7_31. [Online]. Available:

http://dx.doi.org/10.1007/978-3-662-43948-7_31.

[75] D. Doty, “Producibility in hierarchical self-assembly,” in Proceedings of Unconventional

Computation and Natural Computation (UCNC) 2014, 2014, pp. 142–154.

[76] A. Keenan, R. Schweller, M. Sherman, and X. Zhong, “Fast arithmetic in algorithmic self-

assembly,” in Unconventional Computation and Natural Computation, ser. LNCS, vol. 8553,

2014, pp. 242–253.

[77] C. Chalk, B. Fu, A. Huerta, M. Maldonado, E. Martinez, R. Schweller, and T.Wylie, “Flipping

tiles: Concentration independent coin flips in tile self-assembly,” in DNA Computing and

Molecular Programming, A. Phillips and P. Yin, Eds., ser. Lecture Notes in Computer Science,

vol. 9211, Springer International Publishing, 2015, pp. 87–103.

[78] S. P. Fekete, J. Hendricks, M. J. Patitz, T. A. Rogers, and R. T. Schweller, “Universal

computation with arbitrary polyomino tiles in non-cooperative self-assembly,” in Proc. of the

25th ACM-SIAM Sym. on Discrete Algorithms, ser. SODA’15, SIAM, 2015, pp. 148–167.

[79] S. Fekete, R. Schweller, and A. Winslow, “Size dependent tile self-assembly: Constant-

height rectangles and instability,” in The 26th International Symposium on Algorithms and

Computation, 2015.

[80] T. Fochtman, J. Hendricks, J. E. Padilla, M. J. Patitz, and T. A. Rogers, “Signal transmission

across tile assemblies: 3d static tiles simulate active self-assembly by 2d signal-passing tiles,”

Natural Computing, vol. 14, no. 2, pp. 251–264, 2015, issn: 1572-9796. doi: 10.1007/

s11047-014-9430-0. [Online]. Available: http://dx.doi.org/10.1007/s11047-

014-9430-0.

71

http://dx.doi.org/10.1007/978-3-662-43948-7_31
http://dx.doi.org/10.1007/978-3-662-43948-7_31
http://dx.doi.org/10.1007/s11047-014-9430-0
http://dx.doi.org/10.1007/s11047-014-9430-0
http://dx.doi.org/10.1007/s11047-014-9430-0
http://dx.doi.org/10.1007/s11047-014-9430-0

[81] D. Furcy, S. Micka, and S. Summers, “Optimal program-size complexity for self-assembly at

temperature 1 in 3d,” English, in DNA Computing and Molecular Programming, ser. Lecture

Notes in Computer Science, A. Phillips and P. Yin, Eds., vol. 9211, Springer International

Publishing, 2015, pp. 71–86, isbn: 978-3-319-21998-1. doi: 10.1007/978-3-319-21999-

8_5. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-21999-8_5.

[82] J. Hendricks, M. J. Patitz, and T. A. Rogers, “Replication of arbitrary hole-free shapes

via self-assembly with signal-passing tiles,” in Unconventional Computation and Natural

Computation: 14th International Conference, UCNC 2015, Auckland, New Zealand, August

30 – September 3, 2015, Proceedings. Cham: Springer International Publishing, 2015,

pp. 202–214, isbn: 978-3-319-21819-9. doi: 10.1007/978-3-319-21819-9_15. [Online].

Available: http://dx.doi.org/10.1007/978-3-319-21819-9_15.

[83] A. Keenan, R. Schweller, and X. Zhong, “Exponential replication of patterns in the signal

tile assembly model,” Natural Computing, vol. 14, no. 2, pp. 265–278, Jun. 2015. doi:

10.1007/s11047-014-9431-z.

[84] C. Chalk, E. D. Demaine, M. L. Demaine, E. Martinez, R. Schweller, L. Vega, and T. Wylie,

“Universal shape replicators via self-assembly with attractive and repulsive forces,” ArXiv

preprint arXiv:1608.00477, 2016.

[85] C. Chalk, E. Martinez, R. Schweller, L. Vega, A. Winslow, and T. Wylie, “Optimal staged

self-assembly of general shapes,” in Proceedings of the 24th European Symposium on

Algorithms (ESA), 2016.

[86] A. Keenan, R. Schweller, M. Sherman, and X. Zhong, “Fast arithmetic in algorithmic

self-assembly,” Natural Computing, vol. 15, no. 1, pp. 115–128, 2016, issn: 1572-9796. doi:

10.1007/s11047-015-9512-7. [Online]. Available: http://dx.doi.org/10.1007/

s11047-015-9512-7.

72

http://dx.doi.org/10.1007/978-3-319-21999-8_5
http://dx.doi.org/10.1007/978-3-319-21999-8_5
http://dx.doi.org/10.1007/978-3-319-21999-8_5
http://dx.doi.org/10.1007/978-3-319-21819-9_15
http://dx.doi.org/10.1007/978-3-319-21819-9_15
http://dx.doi.org/10.1007/s11047-014-9431-z
http://dx.doi.org/10.1007/s11047-015-9512-7
http://dx.doi.org/10.1007/s11047-015-9512-7
http://dx.doi.org/10.1007/s11047-015-9512-7

[87] M. J. Patitz, T. A. Rogers, R. Schweller, S. M. Summers, and A. Winslow, “Resiliency to

multiple nucleation in temperature-1 self-assembly,” in DNA Computing and Molecular

Programming, Springer International Publishing, 2016.

[88] A. Winslow, “A brief tour of theoretical tile self-assembly,” in Proceedings of the 22nd

International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA),

ser. LNCS, vol. 9664, Springer, 2016, pp. 26–31.

[89] S. M. Summers, “Reducing tile complexity for the self-assembly of scaled shapes through

temperature programming,” Algorithmica, to appear.

[90] M. A. Wikia, Replicator, http://memory-alpha.wikia.com/wiki/Replicator.

73

http://memory-alpha.wikia.com/wiki/Replicator

BIOGRAPHICAL SKETCH

Eric Martinez was born in Harlingen, TX on March 8, 1989. He attended the University

of Texas-Pan American and later the University of Texas-Rio Grande Valley earning his Bachelor

of Science in Computer Science degree and Master of Science in Computer Science degree in

2016. He was a research assistant and member of the Algorithmic Self-Assembly Research Group

(led by Dr. Robert Schweller) and has co-authored several publications in the area of algorithmic

self-assembly. Prior to graduation, he worked as a freelance web developer, marketing consultant,

and advertising consultant for startups and businesses across the US.

Permanent Address: 1917 River Oaks Dr., Harlingen, TX 78552

Permanent E-mail Address: eric.michael.mtz@gmail.com

74

	Randomness, information encoding, and shape replication in various models of DNA-inspired self-assembly
	Recommended Citation

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	CHAPTER I Introduction
	Tile-based Self-Assembly
	Summary of Contributions

	CHAPTER II Background
	Abstract Tile Assembly Model (aTAM)
	Staged Tile Assembly Model
	2-Handed Tile Assembly Model (2HAM)

	CHAPTER III Random Number Generation
	Introduction
	Unbounded Space, 1-Extensible, Robust Coin Flipping
	Fixed Space, 1-Extensible, Robust Coin Flipping
	The Big Picture

	CHAPTER IV Information Encoding
	Introduction
	Unique Bit String Pads in Separate Bins
	Fattening
	Encoding Via Tile Types
	Winged Bit String Pads
	The Big Picture

	CHAPTER V Shape Replication
	Introduction
	Shape Replication Systems
	Overview of Replication Process
	Replication Gadgets
	Universal Shape Replication
	The Big Picture

	CHAPTER VI Simulation
	The Big Picture

	CHAPTER VII Conclusion
	Random Number Generation
	Information Encoding
	Shape Replication
	Simulation
	Closing Remarks

	Biographical Sketch

