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Summary. This is a list of open problems and research topics collected after the Twelfth
Conference on Membrane Computing, CMC 2012 (Fontainebleau, France (23 - 26 Au-
gust 2011), meant initially to be a working material for Tenth Brainstorming Week on
Membrane Computing, Sevilla, Spain (January 30 - February 3, 2012). The result was
circulated in several versions before the brainstorming and then modified according to
the discussions held in Sevilla and according to the progresses made during the meeting.
In the present form, the list gives an image about key research directions currently active
in membrane computing.

Introduction

The idea of compiling a collection of open problems and research topics in mem-
brane computing (MC) occurred during the Twelfth International Conference on
Membrane Computing, CMC 12, held in Fontainebleau, Paris, France, from 23 to
26 of August, 2011 (see http://cmc12.lacl.fr/). The invitation to contribute
to such a collection was formulated during CMC 12 (and after that reinforced by
email) and several researchers answered this call. The result was circulated under
the name of “mega-paper” (mega because it has much more co-authors than any
other paper in MC...), meant to be a working material for the Tenth Brainstorm-
ing Week on Membrane Computing, Sevilla, Spain, January 30 - February 3, 2012
(BWMC 10). During CMC 12 there were also discussions and suggestions regarding
some other topics which are not developed here; for this reason we briefly mention
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(some of) them: exploring more systematically hypercomputation research ideas
within MC area; focussing on translations between different classes of membrane
systems (P systems) and studying complexity aspects related to these translations
(the goal being to import results from a branch of MC to another one); identifying
the most “natural” applications of P systems in modeling biological processes and
producing a set of coherent and convincing case studies (a research volume on
such applications in biology is now in progress); investigate in more details the dP
automata, their efficiency and connections with communication complexity; look
for biological applications of spiking neural P systems.

Before presenting an overview of the paper we mention [7], [8] as key references
for general MC topics. More specific MC topics, like MC and process calculi [1],
interplay between MC and DNA computing [6] and conformon MC systems [3],
are also well-established. Applications of MC in various areas can be found in [2].

The initial “mega-paper” was changed several times, incorporating discussions
and progresses carried out during BWMC 10. The present version is considered
a “closed” one (although such a project can never be closed); for further results
related to the problems collected here the reader is invited to follow the MC website
from [9]. In particular, one can find there the proceedings volumes, with all papers
emerged in connection with the brainstorming.

The texts received from the contributors were revised by their authors after
BWMC 10, and appear below in the final form they have been submitted, with
minimal editorial changes. In most cases, one gives the necessary (minimal) defi-
nitions, as well as the relevant bibliography. Of course, the reader is supposed to
be familiar with basic elements of MC – for instance, from the sources mentioned
at the end of this introduction. A quick introduction to MC is given at the begin-
ning of this paper, just to help the reader not familiar with this research area to
have a flavor of it. At the beginning of each section there are mentioned the main
notions, from MC and from computability in general, supposed to be known in
order to understand the problems which follow (sometimes, part of these notions
are briefly introduced together with the problems). The authors of each “section”
are mentioned, with affiliations and email addresses, so that the interested reader
can contact them for further details, clarifications and cooperation in solving the
problems.

The order in which the problems are given below goes, approximately, from gen-
eral issues to theory and then to applications. In what concerns the computability
topics, there are sections devoted to both power and efficiency of P systems, con-
sidering them as numbers or strings generators or acceptors, in “old” versions
(symport/antiport, catalytic, spiking neural P systems) or in recently introduced
forms (polymorphic, dP systems), looking for generalizations (e.g., for “kernel P
systems”) or for classic notions of language theory not yet extended to MC (such
as control words); computational complexity is a vivid direction of investigation,
addressing both time and space complexity (defining specific complexity classes,
comparing them with existing classes, looking for possibilities of solving computa-
tionally hard problems (typically, NP-complete problems) in a polynomial time,
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by making use of the massive parallelism of P systems and trading-off space for
time, with the space obtained by means of biologically inspired operations, such as
membrane division and membrane creation). The term “fypercomputing” (follow-
ing the model of “hypercomputing” = “passing beyond the Turing barrier”, with
the initial “f” coming from “fast”) tries to call attention to a systematic study
of “passing polynomially beyond the NP barrier”. All classes of P systems are
considered: cell-like, tissue-like, (spiking) neural, and numerical. Moving to appli-
cations, one mentions issues related to the semantics, formal verification, possible
bridges with reaction systems (a younger “sister” research area of natural comput-
ing, inspired from biochemistry). The applications refer both to the simulation of
biological and bio-medical processes and to (somewhat unexpected) applications
in approximate optimization (basically, distributed evolutionary algorithms, with
the distribution controlled by means of membranes, and borrowing ingredients
from MC), robotics (mobile robots controlled by means of numerical P systems),
and computer graphics, as well as to more speculative ideas, dealing, for instance,
with the functioning of the brain.

The nature of questions range from local/technical open problems, asking to
improve existing results, especially for a better delimitation of the borderline be-
tween universality and non-universality, between efficiency and non-efficiency (in
particular, concerning the influence of some qualitative parameters, such as the
number of membranes, the size of the rules, or qualitative features, such as the dif-
ference between deterministic and non-deterministic systems, using or not various
types of rules), to “strategic” issues, for instance, relating MC with other research
areas, such as computer science, biology, ecology, robotics and so on. Of course,
many other precise problems or research ideas circulate within the MC community
(or can be found in recent papers; see also the previous brainstorming volumes,
where many problems are formulated, sometimes given in explicit lists; the “fate”
of some of these open problems is recalled in the paper Gh. Păun, “Tracing Some
Open Problems in Membrane Computing”, Romanian J. of Information Science
and Technology, 10, 4 (2007), 303–314). Similarly, some of the problems proposed
in the present paper or variants of them were already circulated within the MC
community also before, a fact which should call attention to them (as an indication
of both interest and difficulty).

We are aware, on the one hand, that many other authors, who have not an-
swered our request (in time), would have other problems to propose, and, on the
other hand, that many people keep for them, for their immediate research, the
“juicy” topics... Anyway, we hope that this collection will both raise the inter-
est of the reader in approaching MC and, maybe, in participating in the future
editions of the yearly BWMC.

Because several sections below refer to the CMC 12 pre-proceedings and pro-
ceedings volumes, we also mention them below – [4] and [5], respectively.
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6. A. Păun: Computability of the DNA and Cells. Splicing and Membrane Computing.
SBEB Publishing, Choudrant, Louisiana, USA, 2008.
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6. Spiking Neural P Systems (L. Pan, T. Song)
7. Control Words Associated with P Systems (K. Krithivasan, Gh. Păun, A.
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1 A Glimpse to Membrane Computing

Membrane computing (MC) is a branch of natural computing (introduced in [1],
with the report version of the paper circulated as Turku Center for Computer
Science – TUCS Report 208, in November 1998, see www.tucs.fi) which aims to
abstract computing models from the structure and the functioning of the living
cell and from populations of cells (e.g., tissues, organs), including the brain. One
of the basic notions is that of a membrane, understood as a 3D vesicle, separating
“an inside” and “an outside”, where objects can be placed and where specific bio-
chemistries take place. The membranes can be arranged in a hierarchical structure
(like in a cell, hence described by a tree) or in an arbitrary structure (like in tissues,
hence described by a graph). The space between a membrane and the membranes
placed immediately inside it (parent-children, in a tree) is called region or com-
partment. A membrane without any membrane inside is said to be elementary. In
the case of a cell-like arrangement of membranes, the external membrane is called
the skin. The space outside the skin membrane is called the environment (and
similarly is called the space external to all membranes of a tissue-like membrane
structure). A membrane structure can be formally represented by a rooted labeled
tree (each membrane is identified by a label, which is then associated with the node
of the tree associated with the membrane), or, correspondingly, by an expression
of labeled parentheses, with a unique external pair of parentheses, corresponding
to the skin membrane.

The objects are present in the regions of a membrane structure and in the envi-
ronment in the form ofmultisets, sets with their elements present in a given number
of copies (sets with multiplicities of elements). The multiplicity can be finite (ex-
pressed by a natural number) or infinite/arbitrary (we say that an object with this
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property is of ω multiplicity). For the beginning, let us have in mind only atomic
objects, represented by symbols of a given (finite) alphabet, and let us imagine
that they correspond to the chemical compounds, from ions to macromolecules,
which swim in water in the cell compartments. In this framework, it is convenient
to represent the multisets by strings of symbols, with the number of occurrences of
a symbol in a string corresponding to the multiplicity of that object in the multiset
(that is, any permutation of a string represents the same multiset). These objects
react, according to given evolution rules. The basic ones (often simply called “evo-
lution rules”) are the multiset rewriting rules corresponding to the biochemical
reactions taking place in a cell. They are of the form u → v, where u and v are
multisets. Many other types of evolution rules are inspired by other biological op-
erations. We mention here only the basic ones: symport/antiport correspond to
the coupled passage of chemicals through (the protein channels embedded in) the
cell membranes, membrane division corresponds to mitosis, membrane creation
and membrane dissolution can also be associated with biological processes (the
same with exo- and endocytosis, but we do not enter into details). There also are
more complex types of rules, or rules inspired from computer science (broadcast-
ing, communication between two membranes placed in a common environment),
rules mimicking the way the neurons communicate by means of spikes (electrical
impulses of identical shapes). Important is that both the rules and the objects are
placed in compartments and that the rules act locally, on the objects in the same
compartment. Objects can also pass through membranes, both in the cell-like case
and in the tissue-like case, hence the compartments cooperate.

There are several ways the rules are applied (several semantics). The most
investigated one, corresponding to the parallelism of reactions in a solution, is
the maximal parallelism: a maximal multiset of rules is used, where maximality is
defined in the sense of multiset inclusion (no rules can be added to the multiset
so that the obtained multiset of rules is still applicable to the multiset of objects
present in the respective compartment). When several (maximal) multisets can
be applied, the one to use is chosen nondeterministically. Many other possibilities
were considered: sequential, limited parallelism, minimal parallelism (the idea is
that each compartment which can use a rule – hence it is “alive” – has to use at
least one rule, with natural extensions to P systems whose rules are not associated
with compartments – as it is the case of symport/antiport systems, where the rules
are associated with the membranes). In all these cases, the system is synchronized,
a universal clock exists which measures the time in the same way for all membranes
and with rules used, synchronously, in each time unit. The natural counterpart is
that of asynchronous systems.

Such a device, consisting of membranes, objects, evolution rules, is called a
membrane system – currently called also a P system.

Starting from an initial configuration (membranes and objects) of a P system
and using the rules according to a chosen strategy, one obtains computations,
sequences of transitions among configurations. If a configuration is obtained such
that no rule can be applied, we say that the system halts. Several results can be
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associated with a halting computation, for instance, in the form of the number of
objects present in the halting configuration in a designated elementary membrane.
A P system can then be seen as a generative device, generating a set of numbers:
because of nondeterminism, we have several computations, hence several numbers.

Formally, a P system of the basic form (cell-like, with symbol objects, evolving
by multiset rewriting rules) can be given as follows (for an alphabet A, we denote
by A∗ the set of all strings over A, including the empty string λ; A∗ − {λ} is
denoted by A+):

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm, i0), where

m is the degree of the system,

O is the alphabet of objects,

µ is the membrane structure, with m membranes,

w1, . . . , wm ∈ O∗ are multisets associated with the m regions of µ,

R1, . . . , Rm are finite rules of the form u → v where u and v are

multisets over O with the objects in v also having target indications

of the form in, out, here; an object with indication out exits

the membrane, one with the indication here remains in the same region,

and one with the target in enters any of the membranes delimiting

the region from below, nondeterministically choosing the destination,

i0 is the label of the output membrane, the one where the result is obtained.

A transition between two configurations C1, C2 of Π is denoted by C1 =⇒ C2, and
the set of numbers generated by Π is denoted by N(Π).

The rules of the arbitrary form u → v are said to be cooperative, if u ∈ O,
then the rule is called non-cooperative (it corresponds to context-free rules in a
grammar); an intermediate case is that of catalytic rules, which are of the form
ca → cv, where c ∈ O is a catalyst, assisting the object a ∈ O to get transformed
into v ∈ O∗. When applying a rule u → v, the objects from u are consumed and
those from v are produced.

An antiport rule is of the form (u, out; v, in) with u, v ∈ O∗; using such a rule
(associated with a membrane i) means to move the multiset u outside membrane
i, simultaneously with bringing the multiset v inside the membrane. If one of the
multisets u, v is empty, then the rule becomes a symport one.

We do not give here further technical definitions or notations; the interested
reader can consult any of the titles indicated in the end of the Introduction, espe-
cially the Handbook [8].

However, we mention informally a series of notions and of further classes of P
systems. There are many possibilities to extend the previously introduced com-
puting device and its functioning. Instead of counting objects in a compartment,
we can consider as the result of a computation the sequence of objects sent to the
environment (this is the so-called, external output), hence a P system can then
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generate a language. A language is obtained also if we follow the trace of a special
objects across membranes. Then, we can use a (symport/antiport) P system in
the accepting mode: the objects entering the system from the environment are
arranged in a string and we say that the string is accepted if the computation
halts. In the case of tissue P systems, the objects can evolve inside membranes
by multiset rewriting rules and can pass from a membrane to another one by an-
tiport rules. The communication channels among membranes are hence implicitly
defined by the provided rules for communication; a more complex case is that of
population P systems, where there also are rules for establishing channels between
cells and for destroying them. Besides rules for handling objects, we can also have
rules for changing the membrane structure. We mentioned division, creation, and
dissolution rules, exo- and endocytosis, but there also are separation, budding,
gemmation rules. Observe the biological inspiration, although abstracted in a way
which brings us far from biology – in their initial forms, P systems were not meant
to be used as models with a biological relevance. The objects can be described by
symbols, as above, but they can also have a structure, for instance, described by
strings (processed by string operations, such as rewriting, DNA splicing, replica-
tion, insertion-deletion), or even more complex, such as 2D arrays, trees, etc. A
special case is that of numerical P systems, where numerical variables are placed
in the regions of a cell-like membrane structure, evolving by means of programs,
composed of a production function (e.g., a polynomial), and a repartition proto-
col; in each compartment, the local variables are subject of a local production
function, and the value of this function is distributed among the variables in that
region and in the neighboring regions according to the repartition protocol (e.g.,
proportionally with given numbers, part of the program). The model, somewhat
inspired from economics, can both generate sets of numbers, but also compute
functions of several variables, a situation which is completely different from the
generative-accepting functioning of usual object-based P systems. An interesting
variant is that of P systems with objects bound on membranes (as actually is the
case with many chemicals in a cell), and then with the rules evolving at the same
time objects which are free inside regions and these fixed objects.

Finally, let us mention the so-called spiking neural P systems (SN P systems),
where membranes (representing neurons) are placed in the nodes of a graph, whose
links represent synapses, holding several copies of a single object, corresponding
to a spike; the spikes evolve by rules which first check the contents of the neuron
(by means of a regular expression), consume a number of spikes and produce a
number of spikes, which are sent, immediately or with a delay, to all neurons to
which a synapse goes from the neuron where the rule was used. The spikes sent to
the environment by a designated output neuron form the spike train produced by
the system; numbers or strings can be associated with a spike train, hence again
a generative device is obtained.

Up to now, we mentioned only the generative mode (corresponding to gram-
mars) of using a P system. A dual case (corresponding to automata) is the ac-
cepting mode: a number is introduced in a system, e.g., as the multiplicity of a
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specified object in a specified compartment, and the number is accepted if the
computation halts. Strings can also be recognized, by bringing their symbols, one
by one, in a system (e.g., in a symport/antiport one), with the string accepted if
the computation halts.

In all cases, we can also use a P system as a decidability machine: a decision
problem (with YES/NO answer) is introduced in the system, encoded in a specified
way in the form of a multiset, and the system says whether the problem (actually,
its instance introduced in the initial configuration) has an affirmative answer by
halting or by sending a special object yes into the environment. This is the usual
way of investigating the computational complexity of P systems (the time or the
space needed to solve a class of decidability problems).

Most classes of P systems are computationally complete, equivalent with Turing
machines (one also says that they are universal), even in restricted cases: small
number of membranes, using only catalytic rules (with at least two catalysts: the
power of one catalyst P systems is still open), symport/antiport rules of reduced
sizes, SN P systems of restricted forms, etc. Similarly, many classes of P systems
able to create an exponential working space in a linear time (the typical case is that
of P systems using membrane division, also called with active membranes) can solve
NP-complete problems (sometimes even PSPACE problems) in a polynomial
time. The literature of MC abounds in results of these types.

An important part of the research in MC deals with applications. Using P sys-
tems for modeling processes taking place in a cell or in complexes of cells, such as
populations of bacteria, is expected; the model starts from biology, hence it is natu-
ral to return to biology. Several features make P systems attractive for the biologist
(especially in comparison with the models based on differential equations): the di-
rect connection with the biochemistry, which also means a high understandability,
the multicompartmental structure, the easy scalability, the intrinsic discrete na-
ture of the model, the easy programmability, the possibility to attach probabilities
(reaction rates, stoichiometric coefficients) to the evolution rules, the emergent
behavior of a P system (the overall evolution is not at all a “sum” of the parts
evolution). All these applications are based on simulation programs (there are sev-
eral such programs available – see the webpage of the domain, mentioned in the
bibliography of the Introduction, [9]). Most of them run on the usual sequential
computers, but there also are attempt to implement P systems on dedicated hard-
ware, clusters and grids, on parallel hardware (such as NVIDIA graphical cards).
A specialized programming language, P-lingua, was also elaborated.

Also somewhat expected are the applications in modeling and simulating eco-
systems (we have “membranes” where several agents interact, like the chemicals in
a cell). Not so expected however are the applications in approximate optimization
(distributed evolutionary computing), computer graphics (following the style of L
systems based graphics, but also recent attempts to process images in the parallel
framework of P systems), while the recent applications of numerical P systems in
controlling mobile robots is completely unexpected.
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Problems and research topics about most of these issues will be found in the
sections below. Of course, the previous bird’s eye view about MC is not enough
to technically address these problems, many details were omitted or given in an
approximate way, but at least the reader can have an image of this research area,
of its many branches, of the richness of results and applications, but also of the
fact that many issues still wait for clarifications. The frontiers of MC are still
moving, after more than 13 years since this research area was initiated, it still can
be considered as an “Emergent Research Front in Computer Science”, as it was
called already in 2003 by Thomson-Reuters Institute for Scientific Information,
ISI, with [1] considered a “fast breaking paper”, see http://esi-topics.com.
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2 Some General Issues

Jacob Beal

BBN Technologies, Cambridge, MA, USA
jakebeal@bbn.com

Comment. Jacob Beal was one of the invited speakers at CMC 12 (title of
talk: “Bringing Biology and Engineering Together with Spatial Computing”). After
the meeting, he was asked to express his thoughts about MC, taking into account
that he comes from outside the MC community, more importantly, from applied
computer science. What follows is part of an e-mail message he sent to M.Gh.
around the end of August 2011.

Required Notions: general knowledge of MC, membrane structure, multiset pro-
cessing, distribution, parallelism

With regards to my thoughts on directions for the membrane computing com-
munity, I think there is something very interesting and unique about the combi-
nation of chemical, compartmentalized, and tree-structured computation that P
systems give access to. But I think that it is important to try to articulate what
that is and why it is important.

In particular, the questions that I might pose would be:

• What are the most important research questions for membrane computing?
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• What does membrane computing have to offer researchers who are not in the
field of membrane computing?

More specifically:

• What should other computational theorists learn from the family of P systems
computational models?

• What is the practical advantage of P systems models over their competitors in
biological modeling or other fields?

• How might P systems models be applied to improve representations or archi-
tectures for parallel computing?

• What is quantitatively advantageous about SN P systems over other spiking
models?

• How can P systems inform the theory or design of distributed algorithms?

I do not expect that any of these questions will have any one answer – in fact,
I am sure that many researchers in the field will have wildly different answers. But
every researcher should have clear and concise answers that they can make a good
case for.

For my own part, I think that the most important research questions are:

1. How can distributed systems notions like self-stabilization be applied to P
systems?

2. What consequences does the P systems model have for conventional comput-
ing?

3. What sort of complex P systems computations can be generated from high level
programming languages, and what sort of languages fit best with P systems
for various purposes (e.g., biological modeling, networking)?

Those priorities, however, are of course a consequence of my own research
interests and biases, and I expect that others would have different answers: the
important thing is the discussion of reasons.
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3 The Power of Small Numbers

Artiom Alhazov

Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Chişinău, Republic of Moldova, and

Università degli Studi di Milano-Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione
Milano, Italy
artiom@math.md, aartiom@yahoo.com

Comment. Artiom Alhazov was also an invited speaker at CMC 12; his talk,
“Properties of Membrane Systems”, is cited in the references below and can be
helpful in clarifying some of the notions mentioned in the following problems.

Several problems related to the optimality of certain parameters appearing in
characterization of the computing power of various classes of P systems (sym-
port/antiport, insertion-deletion, with active membranes) and of their efficiency;
in particular, questions about the languages described (in the external mode) by
P systems are formulated.

Required Notions: symport/antiport, external output, active membranes, min-
imal parallelism, insertion-deletion

Note: in case the underlying definitions are not clear, all bibliography items in-
clude URLs of the associated publications (freely accessible .PDF files or springer-
link references). This made it possible to formulate the problems more concisely.

3.1 Minimal Parallelism and Number of Membrane Polarizations
(2006)

It is known, [1, 2] that under minimal parallelism, P systems with polarized active
membranes can solve intractable problems in a polynomial number of steps, even
without non-elementary membrane division and without membrane creation. How-
ever, the best known results deal with P systems using 6 (six!) polarizations, or 4
polarizations if non-standard rule types (evolution rules are applied sequentially
and may change the polarization) are used. Are these numbers optimal?

3.2 Membrane Systems Language Class (2010)

A fundamental family of languages is still not characterized: languages gener-
ated (in the sense of external output) by non-cooperative membrane systems.
It is known, [5, 4] that the best known lower bound for LOP (ncoo, tar) is
REG · Perm(REG) (strict inclusion), while the best known upper bound is
CS ∩ SLIN ∩P. An example of a difficult language in this family is
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{ Perm((abc)2k0)Perm((a′b′c′)2k1) · · · Perm((abc)2k2t)Perm((a′b′c′)2k2t+1)

| k0 = 1, 0 ≤ ki ≤ 2ki−1, 1 ≤ i ≤ 2t+ 1, t ≥ 0}.

Open questions concerning comparison of the P systems language family with
particular language families and concerning particular closure properties are also
formulated in the above mentioned papers.

3.3 Dynamical Properties (2011)

It is well-known, e.g., that catalytic P systems are computationally complete, while
deterministic catalytic P systems are not.

In [3], an overview of a number of dynamical properties of P systems is given,
the most important one being determinism. In particular, five variants are recalled
where nondeterminism seems an essential source of the computational power (al-
though, as far as we know, no formal proof of power separation has been obtained),
with informal justification for the word “seems”:

1. P systems with active membranes, where except membrane separation, the
rules are non-cooperative and the membrane structure is static (solving SAT).

2. Non-cooperative P systems with promoters or inhibitors of weight not re-
stricted to one (universality).

3. Minimal combinations of alphabet size/number of membranes or cells (univer-
sality).

4. P systems without polarizations (universality).
5. Conditional uniport (universality).

The open question is, for any of the variants above, to formally prove that deter-
minism decreases the computational power of the corresponding systems (as it is
in the case of catalytic systems).

The post-proceedings version of [3] (i.e., the version appearing the LNCS vol-
ume) also proposes to study 6 new formal properties inspired by self-stabilization
concept.

3.4 Exo-Insertion/Deletion (2011)

This is the only open problem in this list that concerns P systems with string
objects. Consider P systems with string objects and operations of right or left
insertion or deletion of given strings. The problem is to find a characterization of
the power of P systems with exo-insertion of weight one and exo-deletion of weight
one without contexts (“exo” means leftmost or rightmost).

There exist the following partial results:

• Not computationally complete if operations (even both with weight two) are
performed anywhere in the string.

• Computationally complete if insertion has weight two.
• Computationally complete if deletion has weight two.
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• Computationally complete for tissue P systems.
• Computationally complete if deletion has priority over insertion (even without

deletion on the right).
• The lower bound is the family of regular languages (even with all operations

on one side).

3.5 Symport-3 in One Membrane (2005)

Reaching for universality by moving objects across a single membrane leads to
interesting combinatorial questions. While antiport roughly corresponds to rewrit-
ing, symport does not provide such an intuitive counterpart, although it remotely
resembles insertion/deletion or vector addition.

It is well known that the minimal size of symport rules for the universality in
one membrane is 3, [6]. The computational completeness is achieved there with 7
additional objects in the skin. It is not difficult to see that at least one object is
necessary, or only finite sets are generated.

Indeed, the only way to increase the number of objects is to send something out,
so that something comes back in, bringing something else. Generating any infinite
set means that such a procedure must be iterated. Hence, sending all objects out
cannot lead to halting.

Therefore, the lower bound for LOP1(sym3) is N7RE, while the upper bound
is N1RE ∪NFIN . It is an open problem to bridge (or at least decrease) the gap
by investigating what sets containing numbers smaller than 7 can be generated.
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Polymorphic P systems are briefly introduced (systems where the evolution
rules are produced dynamically, during the computation) and several problems
about their power and efficiency are formulated.

Required Notions: cell P systems, active membrane, complexity

Polymorphic P systems introduce a new feature into membrane computing.
This time the inspiration does not come from biology, but rather from conventional
computing and namely from von Neumann architecture. The point is in not fixing
the rules in the structural description of the P system, but rather storing them as
contents of membranes. This new construction has not yet been studied properly;
very little is known about the computational power of polymorphic P systems.

Formally, we define a polymorphic P system as a tuple

P = (O, T, µ, ws, w1L, w1R, . . . , wmL, wmR, φ, iout).

The set O is a finite alphabet, T ⊆ O is the set of output objects, µ is a tree
structure consisting of 2m + 1 membranes bijectively labeled with the elements
of H = {s} ∪ {iL, iR | 1 ≤ i ≤ m}. The skin membrane is labeled with s. It is
required that the parent membrane of iL is the same as the parent membrane of
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iR for all 1 ≤ i ≤ m. The string wh, h ∈ H, is the initial content of the membrane
with label h. The label iout indicates the region where the output of the system
will be read from. We will describe the mapping φ later on.

Observe that the description of the system does not include any rule. Instead,
the contents of the membranes with labels iL and iR are interpreted as the left-
hand side and right-hand side of the rule i respectively. At every step, the rules are
applied in the usual way. As a result of application of the rule i, the right-hand side
of the rule (the content of iR) is injected into φ(i). The latter mapping is defined as
follows: φ : {1, . . . ,m} → Tar, Tar = {inj | j ∈ H is an inner membrane of p} ∪
{out, here}, where p ∈ H is the label of the membrane containing the rule i (the
membranes iL and iR). For further information we refer the reader to [1].

Polymorphic P systems have not yet been explored sufficiently well. In the
following paragraphs we list some open problems which we find of interest.

• Solve hard problems. It has been shown that polymorphic P systems can solve
certain problems faster than any other P system model (for example, they
generate n2 in O(1) and generate 22

n

in O(n)). So far, only relatively simple
problems were considered, but we believe that the polymorphic model has the
potential to facilitate solving much harder problems. For example, possibilities
to find the Gröbner basis using polymorphic P systems are currently being
considered.

• Characterize problems which may be solved faster. A more general question, on
the other hand, is to define the class of problems which can be solved more
efficiently using polymorphic P systems. It has been observed that, for mul-
tiplication, linear speed-up was introduced; a much more systematic research
in this direction is necessary. In particular, it is unclear whether it is possi-
ble to use the polymorphism to construct exponential workspace for solving
intractable problems in polynomial time.

• Polymorphic P systems with active membranes. Polymorphic P systems are
a fairly simple model at the moment. This means, in particular, that certain
extensions are possible. We would like to particularly stress the perspectives of
considering polymorphic P systems with active membranes, where the mem-
brane structure itself does not stay constant. Such a combination is a very
powerful one, therefore it is important to establish some restrictions which will
define an as simple as possible, yet sufficiently powerful, construct.

• The power of the most restricted variant. Another way to explore polymorphic
P systems is characterizing the power of models with the minimal number of
additional ingredients (non-cooperative rules, no rules with empty left-hand
side, no target indications). In [1] it is shown that even this model can easily
achieve superexponential growth; it is important to know how powerful poly-
morphism on its own is.

• Self-assembly. Finally, we make the observation that rules in polymorphic P
systems may be treated as results of interaction of couples of initially indepen-
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dent membranes, which have gained additional capabilities by connecting to
each other. The whole polymorphic P system may be treated as a stage in the
process of interaction of membranes in a system of membranes. This brings
about, in particular, the question of self-assembly of membrane structures.
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Required Notions: tissue-like P system, P colony, dP automaton

5.1 P Colonies

P colonies are variants of very simple tissue-like P systems, modeling a community
of very simple cells living together in a shared environment (for basic information
see [8]).

In the basic model, the cells (or agents) are represented by a collection of
objects and rules for processing these objects. The agents are restricted in their
capabilities, i.e., only a limited number of objects, say, k objects, are allowed to
be inside any cell during the functioning of the system. Number k is said to be
the capacity of the P colony. The rules of the cells are either of the form a → b,
specifying that an internal object a is transformed into an internal object b, or
of the form c ↔ d, specifying the fact that an internal object c is sent out of
the cell, to the environment, in exchange of the object d, which is present in the
environment. After applying these rules in parallel, a cell containing the objects
a, c will contain the objects b, d. With each cell, a set of programs composed of
such rules is associated. In the case of P colonies of capacity k, each program has
k rules; the rules of the program must be applied in parallel to the objects in the
cell.

The cells of a P colony execute a computation by synchronously applying their
programs to objects inside the cells and outside in the environment. At the be-
ginning of the computation, performed by a given P colony of capacity k, the
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environment contains arbitrarily many copies of a distinguished symbol e, called
the environmental symbol (and no other symbols); furthermore, each cell contains
k copies of e. When a halting configuration is reached, that is, when no more rules
can be applied, the result of the computation is read as the number of certain
types of objects present in the environment.

P colonies have been extensively examined during the years. It was shown that
these simple constructs are computationally complete computing devices even with
very restricted size parameters and with other syntactical or functioning restric-
tions. Several extensions of the model have already been investigated as well: P
colonies with dynamically varying environment (eco-P colonies) [1] or PCol au-
tomata [2], constructs where the behavior of the cells is influenced by direct im-
pulses coming from the environment step-by-step. In the case of a PCol automaton
a tape with an input string is given with the P colony, i.e., the model is augmented
with a string put on an input tape to be processed by the P colony.

Except PCol automata, P colonies have been considered as generating devices,
but the construct can also be considered as a (multiset) accepting device (called
accepting P colony or P colony acceptor), possibly working in an automaton-like
fashion as well. In the following we propose problems and problem areas in this
direction.

To define such a model, suppose that we have a P colony Π of capacity k and
initialize the environment with a given finite multiset of symbols M where each
symbol is different from the environmental symbol e. Let also consider an initial
configuration, i.e., let us dedicate an initial state to any cell and let us distinguish
a set of accepting configurations. Then, we say that M is accepted by Π, if after
performing a finite computation (in some computation mode) the environment
consists of only symbols e.

It is easy to see that we may consider several variants of this model. For ex-
ample,

• we can limit the number of symbols in the environment (not necessarily with
a finite constant, but with some function of the size of the P colony) and
study the computational power of these systems with limited workspace for
the computation,

• we can consider the multisets in the environment during the computation as
permutations of words (or map them to words in some other way) being on
the input tape of an automata and study the relation of these constructs and
classical automata;

• we can map the sequences of multisets of objects entering each cell during the
computation to words being on the input tape of a multitape or multihead
automata and describe the correspondence between these constructs and the
classical multitape or multihead automata variants.

By introducing double alphabets as in the case of dP automata for describing
two-way multihead finite automata ([3]), automata with two-way motion of heads
can also be interpreted in the framework of accepting P colonies.
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The concept of accepting P colonies can be extended in some other manners
as well. For example, we do not fix the number of cells in the P colony in ad-
vance but it is determined by the number of non-environmental symbols in the
environment at the beginning. Spatial P colonies can also be defined. In this case
spatial parameters are added to the cells and a neighborhood relation among the
components is given; a cell can import only such symbols from the environment
which were issued by its neighbors (are placed in its own environment).

Accepting P colonies can be related to cellular automata as well. One natural
idea is to define P colonies corresponding to one-way cellular automata, which
are linear arrays of identical copies of deterministic finite automata, called cells,
working synchronously at discrete time steps. Each cell is connected to its imme-
diate neighbors to the right. The cells are identified by positive integers. The state
transition depends on the current state of a cell itself and the current state of its
neighbor. An input word is accepted by a one-way cellular automaton if at some
step in the course of the computation the leftmost cell enters an accepting state.

A particular variant of one-way cellular automata is the one where only a fixed
number, say k, cells are given. This works similarly to the unrestricted case, but
the input is processed in a different manner, namely, the input is not given at the
beginning, but it is processed by the rightmost cell, symbol by symbol. Since the
neighborhood can be defined in P colonies with emitting special symbols (signals)
in the environment and any cell in the P colony may have only a finite number
of configurations (states), the reader may observe that the two computational
models, the accepting P colony and the k-cell one-way cellular automaton are
strongly related.

Obviously, more general cellular automata models can also be described by P
colony acceptors. For example, the above extension of the concept of P colonies
where the number of cells is determined by the number of initial non-environmental
symbols can correspond to the unrestricted case. We can also model d-dimensional
cellular automata (d ≥ 1) by defining the neighborhood relation between cells of
P colonies in an appropriate manner. Cellular automata theory has been a highly
elaborated field of nature-motivated, parallel computing (see, for example, [5],
[6], [7]), thus by building bridges between P colony theory and cellular automata
theory, many interesting problems can also be studied.

5.2 dP Automata

In addition to comparing accepting P colonies to variants of classical automata, we
may explore the differences and similarities between these constructs and (finite)
dP automata as well. A detailed study in this direction would also help in better
understanding the nature of these two constructs.

P automata are variants of antiport P systems accepting strings in an
automaton-like fashion (for a summary on P automata, see Chapter 6 of [8]). The
notion of a distributed P automaton (dP automaton in short) was introduced in
[9]. Such a system consists of a finite number of component P automata which have
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their separate inputs and which also may communicate with each other by means
of special antiport-like rules. A string accepted by a dP automaton is obtained
in [9] as the concatenation of the strings accepted by the individual components
during a computation performed by the system. A dP automaton is called finite
if it has only a finite number of different configurations.

The computational power of dP automata was studied in [9], [4], [10], and
[11]. In [3] a connection between finite dP automata and non-deterministic multi-
head finite automata was explored. It was shown that the language of a non-
deterministic one-way multi-head finite automaton and the language of a non-
deterministic two-way multi-head finite automaton can be obtained as so-called
weak agreement language or strong agreement language of a one-way, i.e., a usual
finite dP automaton, and a two-way finite dP automaton.

The reader may easily observe that finite dP automata, P colony acceptors and
cellular automata are closely related concepts. Their comparative study would be
a promising and very useful area in P systems theory.

Acknowledgement. Work supported in part by the Hungarian Research Fund
“OTKA”, project K75952.
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Applications of spiking neural P systems are proposed and some problems
related to such applications are formulated.

Required Notions: spiking neuron, SN P system, spiking neural network

Spiking neural P systems (SN P systems, for short) were introduced in [4] as
a class of distributed and parallel computing models inspired by spiking neurons.
In an SN P system, the neurons are placed in the nodes of a directed graph.
The content of each neuron consists of a number of copies of a single object type,
called the spike. Each neuron contains a number of firing and forgetting rules.
Firing rules allow a neuron to send information to other neurons in the form of
electrical impulses (also called spikes) which are accumulated at the target cells.
The applicability of each rule is determined by checking the content of the neuron
against a regular set associated with the rule. A forgetting rule removes a specified
number of spikes from the neuron. In each time unit, if a neuron can use some of
its rules, firing or forgetting, then one of the rules must be used. The rule to be
applied is nondeterministically chosen.

One of the neurons is designated as the output neuron of the system, and
its spikes are also sent to the environment; their sequence is called the spike train
generated by the system. Several results of a computation can be defined associated
with the spike train (strings or numbers).

SN P systems use individual spikes allowing to incorporate spatial and temporal
information in computation, which corresponds to the fact that neurons use spatial
and temporal information of incoming spikes to encode their message to other
neurons, where the number and timing of spikes matters. In the above sense, SN
P systems fall into the third generation of neural network models [6].

Many computational properties of SN P systems have been studied (but many
of them raise further research topics, but we do not refer to them here). SN P sys-
tems were proved to be computationally complete as number computing devices
[4], language generators [1, 2], and function computing devices [8]. SN P systems
were also used to (theoretically) solve computationally hard problems in a feasible
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time [5, 7]. In contrast with the relatively rich theoretical results, the practical
applications of SN P systems are few (although some attempts are already made,
e.g., Hebbian learning in the framework of SN P systems [3]). However, as a repre-
sentative of the third generation of neural network models, spiking neural networks
(SNNs) could have very hands-on applications such as speech recognition, learn-
ing, associative memory, function approximation (see, e.g., Information Processing
Letters, 95, 2005), and have proved to be useful in neuroscience. It is interesting
to move the SN P systems investigations towards applications. In the following,
we list some problems which we find of interest.

• In SN P systems, the use of spike timing information is based on regular ex-
pressions, which can be considered as an integrate-and-fire scheme. The scheme
of regular expressions is quite different from the traditional ones, such as the
sigmoidal scheme. What is the advantage of the scheme of regular expressions
from the application point of view? Can the two schemes (the regular expres-
sion and the sigmoidal one) be related?

• What ingredients can be added to SN P systems for practical applications
(maybe, noise, randomness)?

• What are the specific real world problems where SN P systems have a practical
advantage over other SNNs?

• How can some variants of SN P systems be designed such that they would deal
with features of more biological plausibleness?
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Ways to associate a control word with a computation in a P system are pro-
posed and some of the problems which are natural to be investigated in this respect
are mentioned.

Required Notions: Szilard language, Chomsky hierarchy, cell P system, SN P
system, parallelism

Control words are almost never considered in membrane computing – actually,
we know no paper dealing with this issue, although generating or recognizing
languages are central research topics (with the languages identified by the sequence
of symbols entering or leaving a P system, or by traces of certain symbols in their
passage across membranes). The reason is the fact that in the same step of a
computation several rules are used, possibly with several labels, hence the control
word is not clearly defined. On the other hand, a sort of bidimensional control
word was introduced already during the first BWMC, in [1], under the name of
Sevilla carpet, as a way to describe the rules used in a computation and their
multiplicity in each step, but not as a way to define a control language associated
with the computations in a P system.

A possible solution to the above difficulty is to consider a sequence of multi-
sets of labels, those labels associated with all rules applied in a given step. Then,
a string of symbols can be obtained following the ideas also used for accepting
P systems: take a function from multisets to strings and build the string(s) ob-
tained by concatenating the strings associated with the multisets. For instance, all
permutations of the labels in a multiset can be considered, as in [3], or only one
specific string (maybe a symbol) associated with the multiset, like in [2].

Another idea was recently introduced in [4], starting from the following restric-
tion: all rules used in a computation step should have the same label, or they can
also be labeled with λ.

The definition in [4] is given for SN P systems, but it works for any type of P
systems, not only for SN P systems.
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Indeed, let us consider a P systemΠ, of any type, with the total set of rules (the
union of all sets of rules associated with compartments, membranes, neurons – as
it is the case) denoted with R. Consider a labeling mapping l : R → B∪{λ}, where
B is an alphabet. We consider only transitions s =⇒b s′, between configurations
s, s′ of Π, which use only rules with the same label b and rules labeled with λ. We
say that such a transition is label restricted. With a label restricted transition we
associate the symbol b if at least one rule with label b is used; if all used rules have
the label λ, then we associate λ to this transition. Thus, with any computation in
Π starting from the initial configuration and proceeding through label restricted
transitions we associate a (control) word. Consider also a criterion C of the correct
termination of a computation (e.g., halting or reaching a configuration from a
given set F of final configurations, or both of these, etc.) The language of control
words associated with all label restricted computations in Π which are correctly
terminated (with respect to C) is denoted by SzC(Π) (with Sz coming from Szilard,
as usual in language theory).

Now, a series of natural problems can be formulated: investigate the languages
of control words for (i) various classes of P systems, with (ii) various criteria C, in
particular, (iii) allow only transitions which use at least a rule labeled by b ∈ B.
When λ transitions are accepted, characterizations of RE languages are expected,
but when each step produces a symbol, there is no possibility for “hidden work”,
the computation has the same length as the control string, so that the generated
language is recursive. In this latter case the comparison with language families in
Chomsky hierarchy is of interest (with the conjecture that languages of the forms
{xx | x ∈ V ∗}, {xxR | x ∈ V ∗}, where card(V ) ≥ 2 and xr is the mirror image of
x, cannot be obtained as the language of control words of a P system.

In particular, the languages SzC(Π) can be associated with SN P systems,
with or without anti-spikes. We expect interesting (language theory) results in
this research area.
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The issue of efficient parallelization of languages with respect to dP automata
is discussed (especially, the dependence on the multiset-to-strings functions which
are used to define the input language).

Required Notions: Regular language, context-sensitive language, P automata
and dP automata (accepted multiset sequence, input mapping, accepted language)

This section deals with the possibility of speeding up P automata computations
(in a similar sense as a linear speedup for Turing machines is possible), a problem
which is important from the point of view of the efficiency of the parallelization of
P automata computations with distributed P automata.

A P automaton, introduced in [2], is an antiport P system placed in an environ-
ment, from where a sequence of input multisets is read during the computation. A
multiset sequence is accepted, if the computation ends in an accepting configura-
tion, and the accepted multiset sequence is interpreted as a string (a sequence of
symbols) using a so called input mapping f : V ∗ → 2T

∗
where T is a finite alphabet

and V is the object alphabet of the P automaton. (We assume that f is noneras-
ing, that is, f(u) is the empty word for some multiset u ∈ V ∗, if and only if u is
empty.) The language accepted by a P automaton Π with respect to f is defined
as L(Π, f) = {f(v1) . . . f(vs) | v1, . . . , vs is an accepted multiset sequence of Π}.

It is obvious that the choice of the mapping f has a great influence on the
accepting power of the P automaton, so let us take a closer look at the mappings
we can use.

Let f : V ∗ → 2T
∗
, and (1) let us denote f with fperm, if and only if V = T ,

and for all v ∈ V ∗, we have f(v) = {u | u is a permutation of v}. Moreover, (2)
we say that f ∈ TRANS, if and only if for any v ∈ V ∗, we have f(v) = {w}
for some w ∈ T ∗ which is obtained by applying a finite transducer to the string
representation of the multiset v (as w is unique, the transducer must be constructed
in such a way that all string representations of the multiset v as input result in the
same w ∈ T ∗ as output, and moreover, as f should be nonerasing, the transducer
produces a result with w ̸= λ for any nonempty input).

Let us recall from [6] that there are simple linear languages which cannot be
accepted by P automata with fperm, for example L = {(ab)n(ac)n | n ≥ 1} is
such a language. On the other hand, the class of languages accepted with fperm
also contains non-context-free context-sensitive languages ({anbncn | n ≥ 1} for
example), which means that it is incomparable with the class of linear and of
context-free languages. (Although it contains all regular languages, see [3].) In
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contrast to these results, systems with input mappings from the class TRANS
characterize the class of context-sensitive languages (see [1] for details).

The notion of distributed P automaton (dP automaton) was introduced in
[5] to incorporate a “different kind of parallelism” into P systems: the compo-
nents of a dP automaton are P automata which process different parts of the
input in parallel. The language L ⊆ T ∗ accepted by a dP automaton consists of
words of the form w1w2 . . . wk where wi ∈ T ∗ are strings accepted by the com-
ponent Πi, 1 ≤ i ≤ k, during a successful computation. Let f = (f1, . . . , fk)
be a mapping f : (V ∗)k → (2T

∗
)k with fi : V ∗ → 2T

∗
, 1 ≤ i ≤ k, being non-

erasing, and let L(dΠ, f) = {w1 . . . wk ∈ T ∗ | wi ∈ fi(vi,1) . . . fi(vi,si), 1 ≤ i ≤
k, where vi,1, . . . , vi,si is an accepted multiset sequence of the component Πi}.

A language is efficiently parallelizable, as defined in [5], if it can be accepted
by a dP automaton in “less” computational steps than by any non-distributed
P automaton, that is, L is (k, l,m)-efficiently parallelizable with respect to a class
of mappings F , for some k,m > 1, l ≥ 1, if L can be accepted with a dP automaton
dΠ with k components, such that L = L(dΠ, f) for some f ∈ F with Com(dΠ) ≤
l, and moreover, for all P automata Π and f ′ ∈ F such that L = L(Π, f ′),

limx∈L,|x|→∞
timeΠ(x)

timedΠ(x)
≥ m

where timeX(x) denotes the number of computational steps that a device X needs
to accept the string x, and where Com(dΠ) denotes the maximal amount of com-
munication (measured in some reasonable way, see [5]) between the components
of the dP automaton dΠ during an accepting computation.

By looking at the quotient in the definition above, we might see that a language
cannot satisfy the requirement of efficient parallelizability if the dividend (that is,
the time that a non-distributed P automaton needs to accept the language) can be
made arbitrarily small. This leads us to the problem of the possibility of speeding
up P automata computations.

Recall that for Turing machines, a linear speedup is always possible by appro-
priately encoding the contents of the worktapes, but as the input usually has to
remain in its original form on the input tape, the resulting time complexity can-
not be less than the length of the input word (see, for example, [4]). Such a lower
bound does not necessarily exist in the case of P automata, while the input itself
is also “encoded” by the input mapping, so using different mappings, it might be
possible to “read” the same word in several different ways, possibly also in different
numbers of computational steps.

To demonstrate this, let us recall from [8] that for any regular language L and
constant c > 0, there exists a P automaton Π such that L = L(Π, f) for some
f ∈ TRANS, and for any w ∈ L with |w| = n it holds that timeΠ(w) ≤ c ·n. This,
as we outlined above, implies that there are no efficiently parallelizable regular
languages with respect to the class of input mappings TRANS. The situation
is different, however, if instead of an input mapping from the class TRANS, we
consider fperm. There are regular languages (called “frozen” in [7]) where the
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order of no two adjacent symbols can be exchanged, thus, each of them has to
be read in different computational steps, which means that the computation of
the P automaton cannot be shorter than the length of the input. Thus, it is not
surprising that there are efficiently parallelizable regular languages with respect
to fperm, as shown in [5].

So far all cases of efficient parallelizability were demonstrated with respect to
the input mapping fperm, which makes it interesting to ask the following.

Problem. Are there languages (over some finite alphabet T ) accepted by P au-
tomata with object alphabet V which are (k, l,m)-efficiently parallelizable for some
k,m > 1, l ≥ 1, with respect to some input mapping f : V ∗ → 2T , such that
f ̸= fperm?

In this context, it would also be interesting to prove the impossibility of efficient
parallelization of not just the regular, but also of some more general language
classes with respect to a class of input mappings different from fperm (with respect
to TRANS for example). To this aim, it would be sufficient to find a general method
which (similarly to the case of Turing machines) would enable us to show that with
a certain type of input mappings (TRANS for example, as it is the case for regular
languages) a linear speedup of P automata is always possible.

Acknowledgement. Work supported in part by the Hungarian Research Fund
“OTKA”, project K75952.

References
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The title is self-explanatory – it should be mentioned that the Milano team
has important contributions related to the (time and space) complexity issue, and
mainly open problems related to these results are formulated below.

Required Notions: active membranes, computational complexity theory (includ-
ing counting problems and oracle Turing machines), space complexity for P systems

Problem 1 (P systems with elementary active membranes). P systems
with active membranes [8] are known to be able to solve computationally hard
problems in polynomial time by creating exponentially many membranes via di-
vision. The most recent result in this area [6] shows that polynomial-time Turing
machines having access to an oracle for a PP [1] problem (whose computing power
includes the polynomial hierarchy [10]) can be simulated by uniform families [4]
of P systems with active membranes where the only membranes subject to divi-
sion are elementary (i.e., not containing further membranes), and no dissolution
rules are needed. This result is stated, in symbols, as PPP ⊆ PMCAM(−d,−n).
On the other hand, this kind of P systems cannot solve in polynomial time any
problem outside PSPACE [9], in symbols PMCAM(−d,−n) ⊆ PSPACE. Neither
inclusion is known to be proper.

Is PMCAM(−d,−n) = PSPACE or, more generally, is there a precise charac-
terization of PMCAM(−d,−n) in terms of complexity classes for Turing machines?

Problem 2 (Space complexity of P systems with active membranes). A
measure of space complexity for P systems has been recently introduced [5] in
order to supplement the already rich literature about computational complexity
issues in membrane computing [3]. We say that the space required by a P system
is the maximal size it can reach during any computation, measured as the sum
of the number of membranes and the number of objects. A uniform family Π of
recognizer P systems [4] is said to solve a problem in space f : N → N if no P sys-
tem in Π associated to an input string of length n requires more than f(n) space.
Under this notion of space complexity, the class of problems solvable in polyno-
mial space by P systems with active membranes, denoted by PMCSPACEAM,
coincides with PSPACE [7]. Furthermore, during the 10th Brainstorming Week
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on Membrane Computing it was also proved that the problems solvable in expo-
nential space by that variant of P systems and by Turing machines coincide, in
symbols EXPMCSPACEAM = EXPSPACE.

The techniques used to prove these results do not seem to apply when the space
bound is less strict, i.e., super-exponential. Do these kinds of P systems with active
membranes also exhibit the same computing power as Turing machines working
under the same space constraints?

It might also be interesting to analyze the behavior of families of P systems
with active membranes working in logarithmic space. In this case, there are two
complications. First of all, we must slightly change the notion of space complex-
ity, in order to allow for a “read-only” input multiset that is not counted when
the space required by the P system is measured (similarly to the input tape of a
logspace Turing machine). Furthermore, the notion of uniformity used to define
the families of P systems should be weakened, since polynomial-time Turing ma-
chines constructing the families might be able to solve the problems altogether by
themselves. More general forms of uniformity have already been investigated [2],
and that work is going to be useful when attacking this problem.
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The P conjecture deals with the power of polarizations associated with the
membranes of a P system with active membranes (looking for the borderline be-
tween efficiency and non-efficiency in this framework).

Required Notions: active membranes (without charges), weak non-elementary
membrane division, elementary membrane division, dissolution rules, recognizer P
systems, uniform families

Conjecture 1 (The P-conjecture (Problem F in [8])). The class of all decision prob-
lems solvable in polynomial time by active membranes without charges, using evo-
lution, communication, dissolution, and division rules for elementary membranes,
is equal to P.

Attempting to resolve the P-conjecture and its restrictions [1, 3, 4, 5, 9, 10] has
resulted in many interesting new techniques, such as dependency graphs [3], for
proving upper-bounds on membrane systems. Hopefully solving the P-conjecture
will need new tools that yield deep revelations and open new questions into the
nature of P-systems.

If the P-conjecture is proved to be true, then membrane systems with elemen-
tary division rules characterize P while those with weak non-elementary division
rules characterize PSPACE [1, 9]. The deterministic class P is also the 0th level
of Polynomial Hierarchy [6]. The complete problems of each successive level of
the hierarchy seem to require increasing interleaving of nondeterminism and co-
nondeterminism. The union of all levels is referred to as PH which is contained in
PSPACE.

Characterizing each level of the Polynomial Hierarchy with a single model
might give us clues to the role of nondeterminism in P systems. For example,
could it be that division of different numbers of nested membranes is the membrane
computing equivalent of alternating universal and existential nondeterminism?

Conjecture 2. Uniform families of active membrane systems using weak non-
elementary division, without charges, and with a membrane structure of depth
d + 1 can solve exactly those problems complete for the dth level of the Polyno-
mial Hierarchy.

Some ideas for showing the lower-bound of this conjecture can be found in [7].
Continuing with the idea of hierarchies, a characterization of each level of

the NC (or AC) hierarchy [6] may shed new light on the role of parallelism in
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membrane systems. The NC hierarchy represents a spectrum of problems ranging
from constant time, to parallel logarithmic time, up to and (it is conjectured) not
including the seemingly inherently sequential P [2]. A good place to start learning
more about the factors that limit and permit parallelism in P systems might be

a membrane characterization of the NC
?
= P problem (the so called “frontier of

parallelism”).

Problem 3. Is it possible to parameterize a resource or rule of a membrane com-
puting model such that when the parameter is i it characterizes the ith level of
the NC or AC hierarchy.
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11 Seeking Sharper Frontiers of Efficiency
in Tissue P Systems
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In a P system, there are several ingredients which concur to their efficiency;
varying them, one can get efficient systems (able to solve computationally hard
problems in polynomial time) or non-efficient systems (e.g., solvingNP-hard prob-
lems in an exponential time). The borderline between efficiency and non-efficiency
is thus a problem of a central interest. This issue is explored here for tissue P
systems, where the respective research started later than for cell P systems.

Required Notions: tissue P systems, complexity classes, cell division, cell sepa-
ration, symport/antiport rule

A tissue P system with symport/antiport rulesΠ = (Γ, E ,M1, . . . ,Mq,R, iout),
of degree q ≥ 1 can be viewed as a set of q cells, labeled by 1, . . . , q, with an
environment labeled by 0 which initially have an arbitrary number of copies of some
kind of objects, and a set of rules which can be of several types: communication,
division or separation (see [3, 4] for details).

For each natural number k ≥ 1, TDC(k) (respectively, TDS(k) or TDA(k))
is the class of recognizer tissue P systems with cell division and communication
rules (allowing only symport or antiport rules, respectively) of length at most
k. Similarly, by considering separation rules instead of division rules, we denote
TSC(k), TSS(k) and TSA(k) respectively. We denote by PMCR the set of all
decision problems which can be solved in a uniform way and polynomial time by
means of families of systems from a class R of recognizer tissue P systems.

(A) Tissue P systems with cell division and with cell separation

By using the dependency graph technique, it has been proved that P =
PMCTDC(1) = PMCTSC(1) [2, 3]. Furthermore, efficient and uniform solutions
to the SAT problem by using systems from TDC(3) [1] and from TSC(8) [3] have
been given. Recently, the last result has been improved to SAT ∈ PMCTSC(3) [6].

Problem 1. Assuming P ̸= NP, in the framework of tissue P systems with cell
division/cell separation, a frontier of the tractability is obtained when passing from
communication rules with length 1 to communication rules with length at most 3.
Does passing from 1 to 2, amounts to passing from non–efficiency to efficiency?



Frontiers of Membrane Computing 203

Conjecture: NP ∪ co-bfNP ⊆ PMCTDC(2).

(B) The role of direction in communication rules

Next, we deal with complexity aspects of tissue P systems with cell divison/celll
separation where only symport or antiport rules are allowed. We have: P =
PMCTDA(1) = PMCTSA(1), and NP ∪ co−NP ⊆ PMCTDA(3) ∩PMCTSA(3).
Thus, assuming P ̸= NP, a first frontier between efficiency and non-efficiency is
obtained in the above framework when passing from communication rules with
length 1 to communication rules with length at most 3.

Problem 2. What about the complexity classes PMCTDA(2), PMCTSA(2),
PMCTDS(k) and PMCTSS(k), for all k ≥ 1?

Conjecture: P = PMCTSA(2), and for all k ≥ 1, P = PMCTSS(k).

If this conjecture is true, then passing from symport rules to antiport rules
with length at least three, amounts to passing from non–efficiency to efficiency, in
the framework of tissue P systems with cell separation.

(C) The role of the environment

Classical tissue P systems have a special alphabet associated with the envi-
ronment, whose elements appear at the initial configuration of the system, in an
arbitrary large amount of copies. What may happen if this property is removed,
that is, if the alphabet associated to the environment were empty? We use a “hat”
to indicate the case when the environment is initially empty.

Recently, have been proved that, for each k ≥ 1, PMCT DC(k) =
PMCT̂ DC(k) [5], that is, in the framework of tissue P systems with cell division

the role of the environment is not relevant from the complexity point of view.

Conjecture: For each k ≥ 1, P = PMCT̂ SC(k).

If this conjecture is true, then in the framework of tissue P systems with cell
communication the following holds: (a) passing from separation rules to division
rules (length at least three) amounts to passing from non–efficiency to efficiency;
and (b) the environment provides a new borderline of efficiency.
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12 Time-Free Solutions to Hard Computational Problems
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P systems are usually synchronized, a unique clock marks the time for all com-
ponents, and in each time unit each component evolves (usually, in the maximal
parallel manner). In time-free (and clock-free) systems, this strong assumption is
removed. Up to now, the efficiency of P systems was not investigated also for this
case.

Required Notions: Time-free P system, synchronization, recognizing P system,
uniform/semi-uniform solution.

12.1 Motivations

Living cells have division rates that are highly heterogeneous (even in identical
environmental conditions), consequence of their stochastic gene expression, [1].
Therefore, the possibility of programming living cells should not assume the pres-
ence of uniform replication rates. Ideally, one should construct “cellular comput-
ers” whose functioning is independent of cellular division rates. We suggest that
such problem can be addressed in the framework of membrane computing by ex-
tending the notion of time-freeness ([4]) to the idea of semi-uniform solutions of
computational problems based on membrane divisions ([3]).

12.2 Timed Recognizer P Systems

From [4] we recall the notion of timed P system.
A timed P system Π(e) can be constructed by adding to a (standard) P system

Π a time-mapping e : R −→ N, where R is the set of rules of Π. The time-mapping
specifies the execution times for the rules.

A timed P system Π(e) works in the following way. We suppose to have an
external clock that marks time-units of equal length (called steps), starting from
step 0, when the system is present in its initial configuration.
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At each step, all the rules that can be started, in each region, and for each
membrane have to be started (maximal parallel and nondeterministic use of rules).
When a rule r is started at step j, then its execution terminates (the rule is com-
pleted) at step j + e(r), that means the rule lasts e(r) steps. The objects and the
membranes produced by the rule are available – can be subject of other rules – only
starting from the step j+e(r)+1. When a rule r is started, then the occurrences of
symbol-objects and the membrane subject by this rule cannot be anymore subject
of other rules.

A computation halts when no rule can be started in any region and there
are no rules in execution (such configuration is called halting). We say that the
computation halts in k steps, if the external clock marks step k when the last rules
of the computations are completed.

From [3] we recall the notion of recognizer P systems. A decision problem X
is a pair (IX , ΘX) where IX is a countable language over a finite alphabet (the
elements are called instances), and ΘX is a predicate (a total boolean function)
over IX .

A recognizer P system is a P system such that: (i) the working alphabet contains
two distinguished elements yes and no; (ii) all computations halt; and (iii) if C is
a computation of the system, then either object yes or object no (but not both)
must have been released into the environment, and only when the last rules of the
computation have been completed.

We extend recognizer P systems by proposing the following timed variant: a
recognizer timed P system is a timed P system with properties (i), (ii), (iii) above.

In recognizer timed P systems, we say that a computation is an accepting com-
putation (respectively, rejecting computation) if the object yes (respectively, no)
appears in the environment associated with the corresponding halting configura-
tion.

12.3 Time-Free Solutions to Decision Problems

Let X = (IX , ΘX) be a decision problem. Let Π = Πu, u ∈ IX , a (countable)
family of recognizer P systems.

We say that the family Π is sound (with respect to X) if for each instance of
the problem u ∈ IX such that there exists an accepting computation of Πu, we
have ΘX(u) = 1.

We say that the family Π is complete (with respect to X) if for each instance of
the problem u ∈ IX such that ΘX(u) = 1, every computation of Πu is an accepting
computation.

We say that the family Π is polynomially bounded if there exists a polynomial
function p(n) such that, for each u ∈ IX , all computations in Πu halts in, at most,
p(|u|) steps.

We can now formalize the original motivations: A solution to a problem is time-
free if its soundness, its completeness and its polynomial bound do not depend on
the time of execution associated to the rules of the constructed systems.
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We say that the family Π is time-free sound (with respect to X) if, for any
time-mapping e, the family Πe = Πu(e), u ∈ IX , is sound with respect to X.

We say that the family Π is time-free complete (with respect to X) if, for any
time-mapping e, the family Πe = Πu(e), u ∈ IX , is complete with respect to X.

We say that the family Π is time-free polynomially bounded if, for any time-
mapping e, the family Πe = Πu(e), u ∈ IX , is polynomially bounded.

We can now adapt the definition of semi-uniform solutions, as given in [3], and
consider time-free semi-uniform solutions.

Let X = (IX , ΘX) a decision problem. We say that X is solvable in a time-
free polynomial time by a family of recognizer P systems Π = Πu, u ∈ IX , if the
following are true:

• the family Π is polynomially uniform by a Turing machine; that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Πu from the instance u ∈ IX .

• the family Π is time-free polynomially bounded.
• the family Π is time-free sound and time-free complete (with respect to X).

We say that the family Π is a time-free semi-uniform solution to the decision
problem X.

In other words, to provide a time-free solution one must construct the family of
systems Π in polynomial time (sequential time by deterministic Turing machines)
and the constructed family must be “fast” (polynomially bounded), sound and
complete with respect to the considered problem X, and these properties must
be independent of the execution time of the rules (i.e., they must be fulfilled
independently of the time-mapping considered).

The definition of time-free semi-uniform solution captures the problem infor-
mally discussed in the Motivations. The basic question consists in finding a class
of membrane systems for which it is possible to construct time-free semi-uniform
solutions to hard computational problems. The simplest possibility is to transform
the solutions already present in literature into time-free solutions (e.g., could the
solution given in [2] be adapted to become a time-free solution?).

Another interesting problem is to find classes of membrane systems that are
powerful enough to solve complex problems, but simple enough to allow an auto-
matic (i.e., algorithmic) checking of their time-freeness.
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Following the model of hypercomputation (computing beyond the “Turing bar-
rier”), we propose here the term fypercomputation to name the research area of
“solving polynomially problems which are (at least) NP-complete”. Some ideas
from/for MC are mentioned.

Required Notions: membrane division, membrane creation, hypercomputing,
SN P system, reaction system, accelerated P system

Looking for ideas which would lead to computing devices able to compute “be-
yond the Turing barrier” is already a well established research area of computing
theory; such devices are said to be able of doing hypercomputations. It is also a
dream and a concern of computability to speed-up computing devices; a name
was proposed in [7] (the idea was further elaborated in [8]) for the case when this
leads to polynomial solutions to problems known to be (at least) NP-complete:
fypercomputing – with the initial F coming from “fast”.

In short: fypercomputing means going polynomially beyond NP.
The model we have in mind is that of hypercomputations, already with a large

literature (we only mention the recent survey from [10]). More than a dozen of
ideas were proposed and proved to reach the goal of computing “beyond Turing”:
oracles (already considered by Turing), introducing real numbers in the device,
accelerating the functioning of machines, using ingredients of an analogical nature
and so on. Many of these ideas can probably lead not only to hypercomputations,
but also to fypercomputations, both in MC and in other frameworks.

Although not clustered under a good name, such as hypercomputation (there
are periodical meetings dedicated to this research direction), there also are many
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papers which can be placed under the flag of fypercomputing. They exploit ideas
from physics, such as [9], propose analogical computations, such as [1]. Also the
area of DNA computing is full of such ideas.

The literature of membrane computing abounds in papers dealing with fyper-
computations. In most cases, polynomial solutions to NP-complete problems –
often, also of PSPACE-complete problems – are obtained, by making use of a
space-time trade-off, with the space obtained during the computation, by means
of operations inspired from biology. The most investigated operations of this kind
are membrane division (with variants: separation, budding, etc.) and membrane
creation.

Further two similar ideas were also explored. The first one is based on string
replication (see [3] for details), the second one is that of considering arbitrarily large
pre-computed resources (see, e.g., [6]), but the last idea is only briefly investigated
so far. Issues related to the conditions to be imposed to the given pre-computed
resources should be further considered.

Three more ideas, essentially different from the previous ones, were proposed
in [8] and need additional research efforts.

(1) The first candidate is the acceleration, an old one in computer science: a
“clever” computing device learns from its own functioning; after performing a step
in a time unit, it performs better for the second step, which is completed in half
of the time necessary for the first step – and so on, at each step halving the time
with respect to the previous step. If the first step takes one time unit, then the
second one takes 1/2 time units, the third one 1/4 and so on, hence in two time
units the computation ends.

Important: we have here two clocks, an internal one, of the machine, and an
external one, of the observer. The internal clock is faster and faster, so that the
computation ends in two time units measured by the external clock, that of the
observer/user.

Accelerated Turing machines can solve the halting problem, hence they com-
pute what usual Turing machines cannot. See references in [2], where the idea is
extended to P systems: starting from the biological observation that “smaller is
faster” and using membrane creation rules to create “faster reactors” (inner mem-
branes), in an unbounded hierarchy, one can obtain P systems which “compute
the uncomputable”.

This trick can be used also in complexity, but we have to be cautious: we ac-
celerate in order to get a speed-up... In two (external) time units we solve any
problem, whatever complex it is. A way to make the things interesting is to ac-
celerate only parts of a P system, thus having several levels of time speed. For
instance, we can accelerate only (i) some elementary membranes, or (ii) only some
rules (a given rule takes one time unit for the first application, half for the second
application, and so on), or (ii) to have “accelerated objects” (the descendants of
an object react faster than the father object, irrespective which are the rules which
act on them and irrespective of the membranes where they are). Precise definitions
should be found and their usefulness explored.
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(2) The previous ideas suggest the following speculation. We mentioned that
we have (at least) two clocks, an external one, of the observer (or of the higher
membranes in the structure) and the local clock(s), of the accelerated element,
membrane, rule, object. Always, the inner clock is (much) faster than the external
one, it performs sometimes an exponential number of steps while the external one
only ticks once. We can then imagine that the inner time is orthogonal to the
external time, hence the time has a 2D structure: the observer only senses one
dimension of time, but certain “processors” can run along the other dimension,
doing computations at-no-time for the observer. This looks very much as using
oracles. Again, good definitions have to be found and explored.

(3) One further idea, proved in [8] to lead to fypercomputations comes from
the recently introduced reaction systems (we call them R systems) – see [4], [5].
One of the crucial postulates of R systems concerns the fact that one works with
ω multisets: an object either is not present, or it is present in arbitrarily many
copies. This assumption can be extended also to P systems. More exactly, we
consider P systems which contain certain distinguished elementary membranes,
whose objects are present in arbitrarily many copies (for instance, if an object
a is introduced from outside in such a membrane, then inside the membrane it
immediately becomes aω). In [8], such a system is called ωP system and it is
proved that SAT can be solved (in a uniform way) in a polynomial time by an ωP
system.

The construction in [8] uses cooperative rules; we do not know whether the
result can be improved by imposing the restriction to use only non-cooperative
rules.
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1Department of Automatic Control and Systems Engineering
Politehnica University of Bucharest, Romania
{cvasile, apavel, idumitrache}@ics.pub.ro
2Institute of Mathematics of the Romanian Academy
Bucharest, Romania, and

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla, Spain
gpaun@us.es

Extensions of numerical P systems motivated by using such systems in robot
controlling are mentioned and problems occurring in this framework are formu-
lated.

Required Notions: numerical P system, complexity, promoters-inhibitors, cata-
lyst

Numerical P systems are a class of computing models (introduced in [5]; see
also Chapter 23.6 of [6]) inspired both from the cell structure and economics:
numerical variables evolve in the compartments of a cell-like structure by means of
so-called production–repartition programs. The variables have a given initial value
and the production function is usually a polynomial, whose value for the current
values of variables is distributed among variables in the neighboring compartments
according to the “repartition protocol”. In this way, the values of variables evolve;
all positive values taken by a specified variable are said to be computed by the P
system.

These systems were recently used in a series of papers (see references in [1]) for
implementing controllers for mobile robots; in this framework the P systems work
in the computing mode: an input is introduced in the form of the values of some
variables and an output is produced, as the value of other variables. Furthermore,
in the robot control context, the so-called enzymatic numerical P systems were
introduced and used, [2], [3], [4]. Such systems correspond to catalytic P systems
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in the “general” membrane computing: a program is applied only if the value of
the associated enzyme is strictly greater than the smallest value of any variable
involved in the production polynomial. Enzyme variables are not consumed or
produced by the rules which they catalyze, but can be changed by the rules for
which they do not act as catalysts. Therefore, their values can evolve during the
computational process.

Tissue numerical P systems are also considered in [8], with parallel use of
programs. If in each membrane, at each step, we use a maximal set of programs
(programs are selected nondeterministically, and a set of programs is applied only
if it is maximal, no further program can be added to it in such a way that the new
set is still applicable). Two possibilities appear: (i) a variable can appear only in
one production function, and this is the only restriction in choosing (nondetermin-
istically) the programs to apply in a step, and (ii) if two or more programs which
are enabled at a computation step, i.e., they satisfy the condition imposed by the
associated enzymes, share variables in their production functions, then they will
all use the current values of those variables (we denote this with allP).

A large variety of classes of numerical P systems appears in this way: (1)
enzymatic or non-enzymatic, (2) deterministic or nondeterministic, (3) sequential,
all-parallel, one-parallel, (4) used in the generating, computing, accepting mode;
further variants can be added. By combining all these, a plethora of classes of
numerical P systems appear.

We do not recall here the definition of numerical P systems, with or without
enzyme control, but we refer the reader to the papers mentioned above.

We only mention that the family of sets of numbers N+(Π) computed by
numerical P systemsΠ with at mostmmembranes, production functions which are
polynomials of degree at most n, with integer coefficients, with at most r variables
in each polynomial, is denoted by N+Pm(polyn(r), seq), m ≥ 1, n ≥ 0, r ≥ 0,
where the fact that we work in the sequential mode (in each step, only one program
is applied) is indicated by seq. If one of the parameters m,n, r is not bounded, then
it is replaced by ∗. (Both in N+(Π) and in N+Pm(polyn(r), seq), the superscript
+ indicates the fact that as the result of a computation we only consider positive
natural numbers, zero excluded. If any value is accepted, then we remove the
superscript +.) When tissue systems are used, we write NtPm(polyn(r), α, β).

Here are a few results from [5] and [8].

Theorem 1. NRE = N+P8(poly
5(5), seq) = N+P7(poly

5(6), seq) =
NP7(poly

5(5), enz, seq) = NtP∗(poly
1(11), enz, oneP ) =

NP254(poly
2(253), enz, allP, det).

Whether or not the parameters appearing in these results are optimal or not
is an open problem.

Only a few of the many cases mentioned above were so far investigated, the
other ones wait for research efforts.

In particular, we have seen that enzymes improve the universality results in
terms of the complexity of used polynomials, both in the cell-like case and the
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tissue-like case, provided that the evolution programs are used in a parallel manner.
However, two different types of parallelism were used in the two cases; can the one-
parallel mode (used for tissue P systems) be used also in the cell-like case?

Similar extensions of “general” notions in membrane computing to numerical P
systems remain to be examined, and this is a rich research topic. For instance, other
ways of using the programs can be considered: minimally parallel, with bounded
parallelism, asynchronously. Then, we can also consider rules for handling mem-
branes, such as membrane division and membrane creation. These operations are
the basic tools by which polynomial solutions to computationally hard problems,
typically,NP-complete problems, are obtained in the framework of P systems with
symbol objects. Is this possible also for numerical P systems?

A current issue in membrane computing is to find classes of P systems which
are not universal. This extends also to numerical P systems.

Of course, a natural research topic is to further explore the use of numerical P
systems in controlling robots. In this framework, an important question is to de-
velop a complexity theory based on numerical P systems: define specific complexity
classes, compare them with existing classes, look for ways to speed-up computa-
tions (see also the previous suggestion, to bring to numerical P systems further
ideas investigated for symbol object P systems, in particular, tools to create an
exponential working space in polynomial time).

And so on and so forth, a wealth of research ideas, which supports our belief
that numerical P systems deserve further research efforts.
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Issues related to formal verification (through model checking) and model-based
testing of various classes of P systems are mentioned – especially,extensions of
existing results are pointed out, either using new tools or tackling classes of P
systems useful in various frameworks.

Required Notions: cell P system, active membrane, tissue P system, model
checking, model based testing, P-lingua

In the last years, more complex applications of P systems have been built and
used to study the behaviour of various systems in biology, economics and linguis-
tics. Models based on P systems have been introduced to investigate problems
in distributed computing and process synchronisation. All these applications and
models allow to simulate the systems studied and to identify their various prop-
erties. It is important that all these applications are correctly implemented and
produce the right results. In order to check their correctness, formal verification
and testing methods and tools are employed. Formal verification based on model
checking and model-based testing will be presented below.

15.1 Formal verification of P systems through model checking

Model checking is an automated technique for verifying if a state-based model
of a system meets a given specification. Using a temporal logic formula searches
through the entire state space to check whether the property holds or fails are
executed. If a property violation is discovered, then a counterexample is returned
[3]. Formal verification of P systems using model checking has attracted a signifi-
cant amount of research in recent years, using tools such as Maude [1], PRISM [2],
NuSMV [8], Spin [9] or ProB [7]. The decidability of model checking properties for
P systems has also been studied in [4]

Most research has focussed on cell P systems with a static structure, but,
more recently, P systems with active membranes, in particular with division rules,
have also been investigated [10]. This is a significant advance from a practical
point of view since P systems with division rules are commonly used to devise
efficient solutions to computationally hard problems. However, the state explosion
problem normally associated with model checking still hampers such approaches,
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in particular in the case of P systems with cell division, for which the number
of states can grow exponentially. To address this, more efficient implementations,
as well as ways of reducing the number of states through the construction of
approximate state-based models (possibly using inference techniques such as that
presented in [11]) might be investigated.

The following problems regarding the formal verification of P systems are ex-
pected to be investigated:

• new methods and techniques for formally verifying variants of P systems with
a dynamical structure used to model systems solving problems from computer
science or engineering;

• identification of invariants using Daikon, a tool which dynamically detects pro-
gram properties based on execution traces;

• developing an integrated environment for specifying and formally verifying P
systems using P-lingua, Daikon, and one or more model checking tools;

• extending the existing approaches to other classes of P systems (e.g., tissue P
systems).

15.2 Model-based testing of P systems

Testing is the main means of software validation and an essential part of system
development; all software applications, irrespective of their use and purpose, are
tested before being released. In testing, programs are run on a set of sample data
in order to expose faults in the code. This means that an essential (and in many
cases the most time consuming) part of testing is selecting such sample data. This
process is called test generation. As in the last years there have been significant
developments in using the P systems paradigm to model, simulate and formally
verify various systems (in biology, economics, linguistics, graphics, computer sci-
ence, etc.), test generation methods for systems modelled as P systems must also
exist.

In the last years, a number of approaches to testing P systems have been
developed. One approach involves the definition of a number of coverage criteria
(such as simple rule coverage, in which each rule of the P system must be covered
at least once, and more complex variants) and the selection of test data to meet
these criteria [5]. An extension of this strategy involves mutation analysis: here, a
test selection criterion is defined by producing a slightly modified version of the
system (called a mutant) and the selected test data must distinguish between the
original model and the mutant [8]. Another approach to P system testing is based
on finite state machine conformance techniques [6]. This involves the construction
of a state-based approximation of the P system (called a deterministic finite cover
automaton) and the application of conformance testing techniques for such a finite
state model [12].

Essentially, all the aforementioned techniques have been developed in the con-
text of cell P systems with a fixed structure. The challenge for the future is to
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extend these to P systems with active membranes, as well as to other types of
membrane systems. In particular, the development of a testing approach for tissue
P systems, for which the interaction with the environment is conceptually close to
the input/output behaviour of interactive systems, is expected, and may have an
important practical impact. Ultimately, suitable tools will have to be developed
and integrated within the aforementioned modeling, verification and testing.

Acknowledgement. This work was partially supported by project MuVet, Roma-
nian National Authority for Scientific Research (CNCS UEFISCDI) grant number
PN-II-ID-PCE-2011-3-0688.
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16 Causality, Semantics, Behavior
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gabriel@info.uaic.ro,oanaag@iit.tuiasi.ro

The connection of MC with process algebra is not very much explored, although
this is a very promising research direction. Some issue related to causality, behavior
equivalence, type systems, relationships with the Chemical Abstract Machine are
mentioned here.

Required Notions: cell P system, maximal parallelism, synchronization, seman-
tics, event, (bi)simulation

16.1 Causality

Consider standard transition P systems with promoters and inhibitors and disso-
lution; they can be described, up to simulating one transition step with several
others, by transition P systems with just one membrane (and with promoters and
inhibitors).

In [3] we have defined causality at both specific and general level for transition
P systems with one membrane and without any other ingredients; specific causality
depends on a certain evolution step, while general causality takes into consider-
ation all possible evolution steps. Two questions arise immediately: whether this
construction is extendible to P systems involving promoters and inhibitors and
whether causality can be defined in a more static manner, without involving the
membrane system. One of the results of [3] (Theorem 15) indicates that the latter
problem is solvable by using the more dynamic notion of general causality.

A different problem related to causality concerns the relation between various
forms of evolution in transition P systems: maximal parallelism, local maximal
parallelism and unrestricted parallelism. How do causal relations change when we
change the form of evolution for a given P system? We have works in progress con-
cerning the relationship between maximal parallelism and unrestricted parallelism
which we hope will also be useful in having a clearer image of what causality
means for membrane systems. Moreover, we ask how are such causal relations
connected with the object-based event structures we introduced in [2], where the
focus was not on rule application but on the objects being produced. As always, we
have to ask in what manner do results change if additional ingredients (especially
promoters and inhibitors) are introduced.

Finally, the idea of “computing backwards” [1], which was also mentioned in [8],
is strongly related to the notion of causality and it would be interesting to see how
it can be used to clarify or even solve the problems proposed above.
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16.2 Chemical Abstract Machine and P systems

The Chemical Abstract Machine (CHAM) [5] is suited to model asynchronous
concurrent computations such as algebraic process calculi. Intuitively, the state of
a system is like a chemical solution in which floating molecules can interact with
each other according to reaction rules; a “magical” mechanism stirs the solution,
allowing for possible contacts between molecules. In chemistry, this is the result of
Brownian motion. The solution transformation process is obviously truly parallel:
any number of reactions can be performed in parallel, provided that they involve
disjoint sets of molecules.

The chemical abstract machine presents molecules in a systematic way as terms
of algebras and refining the classification of rules. Some molecules do not exhibit
interaction capabilities; those which are ready to interact are called ions. A so-
lution can be heated to break complex molecules into smaller ones up to ions.
Conversely, a solution can be chilled to rebuild heavy molecules from components.
Furthermore, to deal with abstraction and hierarchical programming, a molecule
is allowed to contain a sub-solution enclosed in a membrane, which can be some-
what porous to allow communication between the encapsulated solution and its
environment. The chemical abstract machines all obey a simple set of structural
laws. Each particular machine is given by adding a set of simple rules that specify
how to produce new molecules from old ones. Unlike the inference rules classically
used in structural operational semantics, the specific rules have no premises and
are purely local.

Since P systems and CHAM start from the same premises, but use different
notions, notations, and operational semantics and have different goals, it would be
interesting to study the connections between these two fields.

16.3 Type Systems

Type theory is fundamental both in logic and computer science. Theory of types
was introduced by B. Russell [9] in order to solve some contradictions of set theory.
In computer science, type theory refers to the design, analysis and study of type
systems. Generally, a type system is used to prevent the occurrences of errors dur-
ing the evolution of a system. A type inference procedure determines the minimal
requirements to accept a system or a component as well-typed.

P systems consider cells as mechanisms working in a maximal parallel and
nondeterministic manner. However, the living cells do not work in such a way: a
chemical reaction takes place only if certain quantitative constraints are fulfilled.
In order to cope with such constraints, P systems should be enriched by adding a
quantitative type discipline, and making use of type inference and principal typing
[10]. We associate to each reduction rule a minimal set of constraints that must
be satisfied in order to assure that by the application of this rule to a well-formed
P system, we get a well-formed P system as well. A first step in this direction was
done in [4] where a type system for P system with symport/antiport rules is given.
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The type systems can be used in defining more general and simpler rules for P
systems. For example, if N1 and N2 are some basic types, by considering a set of
typed objects V = {X1 : N1, X2 : N1, X3 : N1, A : N2}, the evolution rules of
the form Xi → Xj , Xj → A, 1 ≤ i ≤ 3, 1 ≤ j ≤ 3, can be replaced by rules of a
more general form:

1. N1 → N1 (any object of type N1 can evolve in any object of type N1);
2. N1 → N2 (any object of type N1 can evolve in any object of type N2).

16.4 Behavior Equivalence

Behavior equivalence is an important concept in biology needed for analyzing and
comparing the organs behavior. For example, an artificial organ is the functional
equivalent of the natural organ, meaning that both behave in a similar manner up
to a given time; e.g. the artificial kidney has the same functional characteristics as
an “in vivo” kidney. Recently, it is shown in [7] that the vas deferens’ of the human,
canine, and bull are equivalent in many ways, including histological similarities.
In [6] are presented different methods for comparing protein structures in order to
discover common patterns.

In membrane computing, two P systems are considered to be equivalent when-
ever they have the same input/output behavior. Such an equivalence does not take
care of the evolution of the two systems. What does it mean that two P systems
have equivalent (timed) behavior? Defining several equivalences, we offer flexibility
in selecting the right one when verifying biological systems and comparing them.
When a P system can be replaced in a context with another one such that the
observed behavior is the same?
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The issue of a common generalization of several classes of P systems is proposed,
and some basic ideas towards such a goal are presented.

Required Notions: tissue P system, P system with dynamic structure, regular
expression

Different variants of P systems have been used for specifying simple algorithms
[5, 2], classes of NP-complete problems [7] and various applications [6]. More
specific classes of P systems have been recently considered for modeling some
distributed algorithms and problems [8]. In many cases the evolution of the system
investigated requires some specific behavior or the use of certain rules, maybe
with some constraints, which are not always the same as the ones exhibited by
the model in its initial definition. It helps in many cases to have some flexibility
with the modeling approach, especially in the specification stage, as it shortens the
model and makes it clearer. Although there is a powerful specification language,
called P-lingua, with implementations for various variants of P systems [9], there
is no unified framework that allows us to simulate, verify and test the behavior of
the specified systems. In this respect, it is suggested here a kernel P system (kP
system, for short) that, in the first stage, will be a low level specification language
including the most used concepts from P systems.

The generic structure of a kP system might be a graph-like structure as in
tissue P systems. Such a model uses a set of symbols, labels of membranes, rules
of various types and a certain strategy to run them against the multiset of ob-
jects available in each region. The rules in each compartment will be of two types:
(i) object processing rules which transform and transport objects between com-
partments or exchange objects between compartments and environment, and (ii)
system structure rules responsible for changing the system’s topology. Each rule
has a guard, defined using activators and inhibitors in a general way. The execution
strategy is defined such that maximally parallel or sequential manners are captured
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and each compartment has its own strategy. Rewriting and communication rules
based on promoters and inhibitors are considered together with a special set of
symport/antiport rules. Additional features like membrane division, creation, dis-
solution, bond creation and destruction are used to deal with the system structure.

The key concept of a compartment is first introduced and then the definition
of a kP system.

Definition 1. Given an alphabet A, of elements named objects, and an alphabet
L of labels, a compartment is a tuple C = (l, w0, R

σ), where l ∈ L is the label
of the compartment, w0 is the initial multiset over A, and Rσ denotes “the DNA
code”, i.e., the set of rules, denoted R, applied in this compartment and a regular
expression, σ, over Lab(R), the labels of the rules of R.

Definition 2. A kernel P system is a tuple kΠ = (A,L, IO, µ,C1, . . . , Cn), where
A and L are, as in Definition 1, the alphabet of objects and the set of labels,
respectively; IO is a multiset of objects from A, called environment; µ defines
the membrane structure, which is a graph, (V,E), where V are vertices, V ⊆ L
(the nodes are labels of these compartments), and E edges; C1, . . . , Cn are the n
compartments of the system – the inner part of each compartment is called the
region which is delimited by a membrane; the labels of the compartments are from
L and initial multisets are over A.

We first discuss various types of rules. It is assumed that the rules below
belong to the same compartment, Ci, labeled li. Each rule might have a regular
expression associated with. When a rule involves more than a compartment, then
each compartment might have its own regular expression attached to it. RE(A∪Ā)
denotes the set of regular expressions over A∪ Ā; each such regular expression de-
fines conditions involving promoters, elements from A, and/or inhibitors, elements
from Ā. The interpretation of a regular expression g ∈ RE(A ∪ Ā), associated
with a rule, is that all the promoters appearing in g must be present in the current
multiset and none of the inhibitors must appear there. We call this regular expres-
sion, g, guard. A rule with such a guard is applicable when this is evaluated to true.

A rule can have one of the following types:

• rewriting and communication rule: x → y {g}, where x ∈ A+, y ∈ A∗,
g ∈ RE(A ∪ Ā); the right hand side, y, has the form y = (a1, t1) . . . (ah, th),
where aj ∈ A and tj ∈ L, 1 ≤ j ≤ h, is an object and a target (i.e., the label
of a compartment), respectively; the target tj must be either the label of the
current compartment, li (more often ignored) or of an existing neighbor of it
((li, tj) ∈ E) or an unspecified one, ∗; otherwise, the rule is not applicable;
if a target tj refers to a label that appears more than once, then one of the
involved compartments will be nondeterministically chosen; if tj is ∗, then the
object aj is sent to a compartment arbitrarily chosen;

• input-output rule, is a form of symport/antiport rule: (x/y) {g}, where x, y ∈
A∗, g ∈ RE(A ∪ Ā); x from the current region, li, is sent to the environment
and y from the environment is brought into the current region;
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• system structure rules; the following types are considered:
– membrane division rule: []li → []li1 . . . []lih {g}, where g ∈ RE(A∪Ā); the

compartment li will be replaced by h compartments obtained from li, i.e.,
the content of them will coincide with that of li; their labels are li1 , . . . , lih ,
respectively; all the links of li are inherited by each of the newly created
compartments;

– membrane dissolution rule: []li → λ {g}; the compartment li will be
destroyed together with its links;

– link creation rule: []li ; []lj → []li − []lj {cg}; the current compartment li
is linked to lj and, if more than one lj exists, then one of them will be
nondeterministically picked up; cg, called compound guard, describes an
expression li.g1 op lj .g2, where g1, g2 are regular expressions referring to
compartments li and lj , respectively; op is either and or or, standing for
either both guards are true or at least one is true. If one of the guards
is empty then op is no longer used; a compound guard defines a Boolean
condition across the two compartments;

– link destruction rule: []li − []lj → []li ; []lj {cg}; this is the opposite of link
creation and means that compartments li, lj are disconnected; as usual,
when more than a link, (li, lj) ∈ E, exists, then only one is considered by
this rule; cg is a compound guard.

The usual behavior of P systems requiring that rewriting and communication,
and symport/antiport (input-output) rules are applied in a maximal paral-
lel way (or sequentially in some cases), whereas membrane division, creation,
dissolution rules and creation and destruction of links are executed one per
membrane, will be considered in this context as well, but in a rather more
general way.

The main challenges of this approach are

1. a rigorous definition of the syntax and semantics of kP systems;
2. comparisons between (fragments) of kP systems and well-known variants of P

systems;
3. establishing general algorithms to translate different classes of P systems into

kP systems (similar to [1, 4]);
4. defining operational semantics for kP systems and providing implementations

in model checkers, like Spin, Maude, similar to [3].

Further steps in developing this unified framework might consist of adding other
useful modeling features like the possibility of defining rules and compartments
using indexes, a certain concept of a module, various other semantics. It is intended
to keep the kernel system as generic as possible such that some of the above
mentioned extensions will be introduced in a rather syntactical manner allowing
to map them into the basic variant, without additional semantics.

Acknowledgement. This work was partially supported by project MuVet, Roma-
nian National Authority for Scientific Research (CNCS, UEFISCDI) grant number
PN-II-ID-PCE-2011-3-0688.
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1. A. Alhazov, L. Pan, Gh. Păun: Trading polarizations for labels in P systems with
active membranes. Acta Informatica, 41 (2004), 111–144.

2. A. Alhazov, D. Sburlan: Static sorting P systems. In [6], 2006, 215–252.
3. O. Andrei, G. Ciobanu, D. Lucanu, A rewriting logic framework for operational

semantics for membrane systems. Theoretical Computer Sci., 373 (2007), 163–181.
4. R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, S. Tini: Membrane systems working

in generating and accepting modes: Expressiveness and encodings. Membrane Com-
puting, 11th International Conference, CMC2010, Jena, Germany, August 2010 (M.
Gheorghe et al., eds), LNCS 6501, Springer, 2011, 103–118.

5. R. Ceterchi, C. Mart́ın-Vide: P systems with communication for static sorting. Pre-
Proc. Brainstorming Week on Membrane Computing, Tarragona, February 2003 (M.
Cavaliere et al., eds.), Technical Report no 26, Rovira i Virgili Univ., Tarragona, TR
26/03, URV, 2003, 101–117.
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Some possibilities of bridging MC (P systems) and reaction systems are dis-
cussed, the basic idea being of importing ideas from a research area to another
one.

Required Notions: cell P system, multiset, reaction system, halting, fypercom-
puting

Reaction systems (we call them R systems) form a recently introduced research
area aiming to model the evolution of (bio)chemicals by means of (bio)reactions,
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in a framework based on the following two fundamental assumptions (we recall
them in the formulation from [1]):

The way that we define the result of a set of reactions on a set of elements
formalizes the following two assumptions that we made about the chemistry of a
cell:

(i) We assume that we have the “threshold” supply of elements (molecules) –
either an element is present and then we have “enough” of it, or an element is
not present. Therefore we deal with a qualitative rather than quantitative (e.g.,
multisets) calculus.

(ii) We do not have the “permanence” feature in our model: if nothing happens to
an element, then it remains/survives (status quo approach). On the contrary,
in our model, an element remains/survives only if there is a reaction sustaining
it.

With these postulates in mind, let us consider first some possibilities of passing
from R systems to P systems.

Moving from multisets, which are basic in P systems, to sets (actually, to mul-
tisets with an infinite multiplicity of their elements, called ω multisets in Section
13) is a fundamental assumption, which changes completely the approach; for in-
stance, we can no longer define computations with the result expressed in terms
of counting molecules: the total set of molecules is finite, any molecule is either
absent or present in infinitely many copies.

However, as we have mentioned in Section 13, considering P systems with ω
multisets leads in an easy way to fypercomputations.

The second assumption of the reaction systems theory (no permanence of ob-
jects) looks easier to handle in terms of MC. The immediate idea is to simply
remove (by a “deletion rule”) any element which does not evolve by means of a
reaction; somewhat equivalently, if we want to preserve an object a which is not
evolving, we may provide a dummy rule for it, of the type a → a, changing nothing.

Still, many technical problems appear in this framework. The presence of such
dummy rules makes the computation endless, while halting is the “standard” way
to define successful computations in MC. Moreover, the rules are nondeterminis-
tically chosen, hence the dummy rules can interfere with the “computing rules”.

While the second difficulty is a purely technical one, the first one can be over-
passed by considering other ways of defining the result of a computation in a P
system, and there are many suggestions in the literature. We mention here three
possibilities: (i) the local halting (the computation stops when at least one mem-
brane in the system cannot use any rule), (ii) signal-objects (the result consists
of the number of objects in a specified membrane at the moment when a distin-
guished object appears in the system), (iii) signal-events (the result consists of the
number of objects in a specified membrane at the moment when a distinguished
rule is used in the system). Such possibilities were considered in various papers in
MC.

Part of these possibilities are checked in [7] from where we recall the following
result:
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Theorem 2. Transition P systems of degree 2, using cooperative rules, without
the permanence of objects, are computationally complete when the successful com-
putations are defined by local halting or signal-objects. The same result holds true
for symport/antiport P systems (of degree 2 and of weight 2) for the case of local
halting.

An interesting open problem in this framework is the case of catalytic P systems,
known to be universal in the “permanence” assumption.

The case of defining the result of a computation of symport/antiport P systems
by means of signals – objects or events – also remains as an open problem. (Con-
sidering a priority relation on each set of rules can easily solve this problem.) The
symport/antiport P system used in the proof of Theorem 2 [7] contains antiport
rules of sizes (2, 1) and (1, 2), which is “large” for universality results in the case
when objects are persistent. Can the size of rules be decreased also in the case
discussed here?

The R systems area has a series of notions of the dynamical systems type which
were not too much investigated for P systems (time, events, modules, structure,
causality, and so on), and this is also a promising direction of research.

Let us now briefly explore the other direction, from P to R.
The R systems are not meant to define computations, their behavior is de-

terministic, from a set of symbols we precisely pass to a unique set of symbols.
However, starting from an R system, a “generative device” can be defined, based
on passing from a configuration to another one (without input from the environ-
ment), provided that some nondeterminism is introduced in the R system function-
ing. Three possibilities of this kind were proposed in [7]: (i) working with tabled
R systems, as in Lindenmayer systems (in each step, a table is used, nondetermin-
istically chosen), (ii) considering also a finite multiplicity for some of the objects,
and (iii) by introducing a general threshold k on the number of rules which can use
the same molecule. All these three possibilities remain to be investigated: prop-
erties of the obtained computation graphs, possible links with computing devices
from formal language and automata theory, influence of the introduced parameters
(number of tables, threshold k), possible hierarchies.

Of course, a general research topic is to find other ways of building a (string
or graph) computing device in terms of R systems. A possible question is also the
possibility to introduce membranes in the R systems area or other MC ingredients
– thus getting a sort of PR systems. (An attempt of this kind is reported in [5],
where so-called reaction automata are introduced, but these devices violates both
postulates of R systems and use so many ingredients of P systems – multisets,
parallelism, nondeterminism, halting – that they are just P automata with a new
name.)
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Problems related to the so-called membrane algorithms (actually, distributed
evolutionary computing, with the distribution controlled by means of membranes,
as well as with other MC ingredients used) are mentioned, both in the direction of
improving the optimization techniques and in looking for more complex/practical
applications.

Required Notions: evolutionary computing, cell P system, active membranes,
membrane algorithm

As a relatively young branch of natural computing, MC has gone through thir-
teen years of intensive research involving areas of theoretical computer science as
well as applications in various fields, including systems biology, graphics, linguis-
tics, parallel and distributed computing. However, these applications, in terms of
varieties and types, are relatively small compared to a very broad range of appli-
cations of evolutionary computing. A natural question would be, whether some
combinations of these two models might benefit from the large scope of applica-
tions evolutionary computing has already shown so far, and the rigorous and sound
theoretical development membrane systems have proved for all its variants.
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The possible interplay between MC and evolutionary computation may produce
three kinds of research topics:

Membrane-inspired evolutionary algorithms (MIEAs): Since mem-
brane computing was initiated in 1998, a large number of theoretical results, such
as various variants of membrane systems and their computational power and effi-
ciency came forth [1]. On the one hand, the way MC is extended into real-world
applications is not easy to be addressed and represents an ongoing issue. On the
other hand, the hybridization of different computing techniques is an attractive
research topic in the area of evolutionary computing, due to a better performance
than their counterpart approaches. What can the young paradigm of MC bring
to evolutionary computation? Fortunately, MIEAs, formerly called membrane al-
gorithms [2, 3], create a bridge between MC and various real-world applications.
MIEA concentrates on generating new evolutionary algorithms for solving opti-
mization problems by using the hierarchical or network structures of membranes
and rules of P systems, and the concepts and principles of meta-heuristic search
methodologies [3, 4]. The comparative analysis of dynamic behaviors of an instance
of MIEAs shows the appropriate combination of MC and evolutionary computa-
tion can produce a better capability to balance exploration and exploitation [5],
which are two contradictory factors directly related to the performance of an opti-
mization algorithm. Until now, MIEAs have been studied in conjunction with cell
P systems with a fixed membrane structure and by considering an evolutionary
computing approach as a subalgorithm put inside a membrane [1, 6, 7]. Further
research topics are listed below.

1. Consider further combinations of features that make full use of the characteris-
tics of both MC models and evolutionary computing, such as the consideration
of cell P systems with active membranes, tissue P systems and population P
systems.

2. Usually, in an MIEA an evolutionary algorithm is used as a subalgorithm
placed inside a membrane. This idea can be extended. A membrane structure
can be used as a framework of the organization of several different types of
evolutionary operators, as shown in [8], or several distinct kinds of evolutionary
mechanisms, such as a genetic algorithm, evolutionary programming, evolution
strategy, differential evolution and particle swarm optimization. Furthermore,
the flexible communication rules can be used at the level of genes, instead of
at the level of individuals shown in [6, 4].

3. The single-objective problems are usually involved in the investigations re-
ported in the literature. The framework of P systems can offer better popula-
tion diversity in MIEAs, hence further work can turn to solve problems in a
complex environment, such as multi-objective, dynamic, peaked optimization
problems, and with/without constraints, to check whether P systems can bring
a better performance to evolutionary algorithms.

4. More real-world application problems, such as power system optimization,
software/hardware co-design and vehicle route plan, can be solved by using
MIEAs.
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5. A deep performance analysis and evaluation of MIEAs is necessary to reveal
the roles of P systems played in the hybrid optimization algorithms, on the
basis of the previous work [5].

Automated design of membrane computing models (ADMCMs): The
automated synthesis of some types of MC models or of a high level specification
of them is envisaged to be obtained by applying various evolutionary algorithms.
ADMCMs aim to circumvent the programmability issue of membrane based models
for complex systems [9]. This is quite a complex problem as it involves a great
number of parameters (rules, objects, combination of rules) and many semantics
associated with P systems.

Membrane evolutionary algorithms (MEAs): MEAs will focus on im-
plementing evolutionary algorithms within a P system environment in order to
take advantage of the parallelism and distribution of MC, given that recent inves-
tigations are studying the implementation of P systems on parallel or multi-core
hardware platforms. An important challenge for any of the above research devel-
opments will be to apply them to complex real life systems.
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20 Metabolic P Systems
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A dynamical inverse problem for MP systems is formulated, then a possible
topological extension of P systems is suggested.

Required Notions: Multiset, multiset rewriting systems, P systems, discrete
dynamical systems, metabolism, function approximation.

20.1 A (precise) dynamical problem

A membrane system is a form of compartmentalized rewriting structure based
on two main ingredients: multisets of objects and membranes, where multisets of
objects and rules are internally placed. Rules transform and move objects among
membranes. Metabolic P systems, shortly MP systems, were introduced for mod-
eling real biochemical systems in terms of multiset rewriting. In the last years they
have been widely investigated by Verona MNC (Models of Natural Computing and
Bioinformatics) group. A brief introduction on MP systems and references can be
found in the Scholarpedia page “Metabolic P Systems”.

One of the most recent results about MP systems was the discovery of a
methodology for solving dynamical inverse problems, in the sense we are going
to explain [2, 3, 4].

A time series XT = (X[i] | i ≤ T ∈ N) is a sequence of real values intended as
“equally spaced” in time (N is the set of natural numbers).

An MP grammar G is a “generator” of time series, determined by the structure
(n,m ∈ N)

G = (M,R, I, Φ),

where:
1. M = {X1, X2, . . . , Xn} is a finite set of elements calledmetabolites. Ametabolic

state is given by a list of n values, each of which is associated with a metabolite
(parameters can possibly be added to determine a metabolic state).

2. R = {αj → βj | j = 1, . . . ,m} is a set of rules, or reactions, with αj and βj

multisets over M , for j = 1, . . . ,m;
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3. I are initial values of metabolites, that is, a list X1[0], X2[0], . . . , Xn[0] provid-
ing the metabolic state at step 0;

4. Φ = {φ1, . . . , φm} is a list of functions, called regulators, one for each rule,
which, for each metabolic state, provide the fluxes, the matter quantities con-
sumed/produced by the rules in that state.

An MP graph is a natural graphical representation of G. An MP grammar becomes
an MP system when values for the time interval, the population unit, and the
metabolite masses are added. An MP grammar G generates the (infinite) time
series (X[i] | i ∈ N), from the initial values I, for X ∈ {X1, X2, . . . , Xn}, according
to the following Equational Metabolic Algorithm (EMA), where γ(X) denotes the
multiplicity of X in the multiset γ and s[i] is the metabolic state at step i:

X[i+ 1]−X[i] =

m∑
j=1

(βj(X)− αj(X))φj(s[i]).

DIP formulation for MP: Given n time series Y T
1 , Y T

2 , . . . , Y T
n , corresponding

to some “observed” variables, related by transformation/influence relations among
them, find an MP grammar G, expressing the known relations among variables,
and generating, for i ≤ T , exactly, or even approximately enough, the time series
Y T
1 , Y T

2 , . . . , Y T
n .

Many DIP problems of interest for biological/pathological phenomena were
solved in terms of MP systems. The solutions obtained resulted from suitable
combinations of several ingredients: i) a linear algebra formulation of EMA (to
which a stoichiometric expansion can be applied in terms of matrix tensor prod-
uct), ii) the Least Square Evaluation method, iii) the Stepwise Linear Regression
method, and iv) some suitable statistical tests based on Fischer’s distributions.

A possible field of investigation could concern other classes of DIP problems,
in such a way that other kinds of DIP solutions could be found, for these problems,
by suitable discrete dynamical systems based on membranes.

20.2 A (vague) topological problem

Membrane computing is based on the intuition of a membrane as a spatial entity
closing a subspace (inside/frontier/outside). Cells are the most evident biologi-
cal realization of this notion. However, if we want to keep this intuition close to
the biological reality, the only inclusion relation of membrane containment is too
weak. In fact, in the MC literature, some extensions of the original notion of mem-
brane were proposed in terms of tissue-like and neuron-like membrane structures.
Even these enrichments are not expressive enough for dealing with aspects were
membranes are not framed in a fixed membrane structure hosting computations,
but they are subjected to topological transformations exploring and determin-
ing forms. This perspective requires a calculus on membranes rather than calculi
within, or among, membranes. Some ideas along this line of investigation arose
in a research [1] devoted to multimembranes, for translating, in a pure membrane
setting, computations which can be easily expressed by MP grammars.
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A possible field of investigation could concern the formulation of topological (in
wide sense) operations among membranes on which calculi can be defined which
resemble what happens at the level of morphogenesis in biological systems.
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21 Unraveling Oscillating Structures by Means
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Issues arising from the use of P systems in modeling biological processes are
discussed – especially concerning various circular evolutions of biological processes.

Required Notions: circadian rhythm, cellular dynamics, backtracking

21.1 Motivation

Endogenous oscillations have been identified to be essential for the function of
numerous systems found in biology as well as engineering [1]. A common prop-
erty of these systems lies in their necessity to synchronize and coordinate inherent
chemical or physical activities based on periodically iterated trigger signals [4].
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Exploration of chronobiological systems emerges as a growing research field within
bioinformatics focusing on various applications in medicine, agriculture, and ma-
terial sciences [8]. Particularly, circadian rhythms embody an interesting biological
phenomenon that can be seen as a widespread property of life. The coordination
of biological activities into daily cycles provides an important advantage for the
fitness of diverse organisms [6]. Based on self-sustained biochemical oscillations,
circadian clocks are characterized by a natural period close to but not exactly of
24h that persists under constant conditions (like constant darkness or constant
light). Their ability for compensation of temperature variations in the physiolog-
ical range enables them to maintain the period in case of environmental changes.
Furthermore, circadian clocks can be entrained. This property allows a gradual
reset of the underlying oscillatory system for adjustment by exposure to external
stimuli like daily variations of brightness or daytime-nighttime temperature cycles.

There are numerous types of controllable core oscillators found in circadian
clocks. The majority reveals the Goodwin type, a cyclic gene regulatory network
composed of mutual activating and inhibiting gene expressions [8]. The most ef-
fective way to influence its frequency is modification of protein degradation rates.
Furthermore, core oscillators can be of post-translational type [7], exploiting a
cyclic scheme of protein phosphorylation, complex formation, or decomposition.
Here, the involved catalysts affect the frequency. The third and most complex type
of core oscillators includes compartmental dynamics [4] aimed to be advantageously
modeled using P systems combining a representation of dynamical structures with
tracing their spatiotemporal behavior.

21.2 Resulting Challenges

Within the domain of strictly continuous signals quantified by real numbers, mod-
eling and analysis of oscillating behavior has been well-studied [1]. Chemical re-
action networks assumed to reside in a homogeneous environment give a typical
example: Each species is represented by its concentration which is allowed to vary
continuously over time. From the static network topology together with the stoi-
chiometry of the reactions, a corresponding ordinary differential equation system
(ODE) can be derived that specifies the reaction rates for each species. Inclusion of
parameterized kinetic laws accomplishes a mapping between species concentration
and effective reaction rate. The resulting ODE can easily be tested for its capabil-
ity of undamped oscillating species concentrations. To this end, the eigenvalues of
the Jacobian matrix obtained from the ODE right hand side are sufficient. Limit
cycles indicate the oscillatory behavior in detail. In case of sinusoidal or almost
sinusoidal oscillatory waveforms, even properties of the entrainment behavior can
be obtained analytically.

The main advantage of analytical ODE-based methods unequivocally exploits
the fact that essential characteristics and properties of a system under study can
be directly derived from the underlying mathematical model without any need for
a numerical simulation of its dynamical behavior. This makes the evaluation and
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automated testing of candidate systems resulting from experimental data rather
efficient. In contrast, there is currently a lack of corresponding methods within the
field of P systems modeled in a discrete manner. Here, system properties mainly
emerge from exhaustive simulation studies. Conduction of those studies still re-
quires an extensive amount of human resources. Particularly in case of involved
active membranes, compartmental plasticity, and dynamical structures, a tool-
box for automated analysis would be helpful. In an ongoing project, we intend to
generate sustained oscillatory systems by artificial evolution in silico [5]. In this
context, the fitness evaluation should answer the question whether the system can-
didates are able to oscillate endogenously or not and how the periodicity can be
controlled. Ideally, this task should be done by a piece of software [3]. Questions
concerning a toolbox for systems analysis also coincide with the need to identify
appropriate evolutionary operators affecting compartmental structures on the fly.
Those operators can be inspired by biological processes found in living cells like
division, degeneration, dissolution, creation, separation, merge, endocytosis, exo-
cytosis, or gemmation. Some of these operators can be found in recent frameworks
of P systems, but others still lack a detailed specification of their effects to sets
of molecular objects and local reactions and transportation rules (configuration
update schemes).

21.3 First Ideas

There are different oscillatory scenarios in biological systems. On the one hand,
periodicity might also be reflected in temporal changes of the compartmental struc-
ture. On the other hand, signalling molecules are often available in low concen-
trations ranging from single molecules to several thousand copies. Both aforemen-
tioned scenarios have in common to prevent pure ODE-based modeling techniques
due to the discrete manner of involved key entities. Motivated by the need for
an appropriate toolbox covering description, simulation, and analysis of discon-
tinuously considered biological reaction processes, we plan to extend the concept
of spatiotemporal P systems with kinetic laws [2, 5] towards an underlying back-
tracking mechanism able to explore the nature of undamped oscillations beyond
variations of species concentration. Following the idea of backtracking, the trace
of configurations passed by a P system becomes recorded in a suitable way. By
monitoring the overall configurations over time, a derivation tree is obtained that
provides a comprehensive data pool for further analysis by automated backtrack-
ing. Sustained oscillations are expected to appear as recurring, but nonadjacent
overall configurations along a path through the derivation tree. In particular, we
wish to employ this technique for identification and description of biochemically in-
spired computational devices equipped with clocks, counters, or frequency scalers.
Moreover, we aim for gaining insight into the function of dedicated circadian clocks
by reverse engineering using backtracking P systems. This approach could benefit
from the flexibility regarding dynamical structures.
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22 Simulating Cells Using P Systems
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Possibilities and difficulties encountered in (Ruston group) research on mod-
eling biological processes by means of P systems are discussed, with emphasis on
complexity, noise, implementations.

Required Notions: P system models, Gillespie’s algorithm, mass action law

To achieve a greater understanding of the biological processes the technology
will need to improve and evolve from the current state of “big populations” to dis-
crete events. By big populations we mean the following fact: to be able to perform
a specific experiment, the researcher needs a large number of “elements” (say cells)
in the same state that is investigated and only then the experiment can reach a
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conclusion. Once the number of “elements” in the experiment is decreasing, most of
our methods to investigate properties of those “elements” become hard/impossible
to describe/investigate. Obviously this statement is rather broad and there are
some techniques such as FRET analysis that look at discrete events/elements, but
we claim that the majority of the current bio-molecular techniques do require large
multiplicities of the “element” investigated.

The aforementioned fact has to be understood by the researcher looking to
model/simulate cells. It describes the state of the research tools in that area. The
modeler can help that particular area by offering better insight into the sub-cellular
processes through simulation and prediction. One could immediately point out that
since we have a “technological” problem (as stated before) which is precluding us
to gain insight into the “discrete” processes, then how can one hope to simulate the
sub-cellular mechanisms. The answer is two-fold: (1) cells prove to respond mostly
in the same fashion to similar stimuli, meaning that the inherent stochasticity
of these systems does not “break” the response pathways (making the simulation
from this perspective “easy” as we need to simulate the “important” events, not all
the noise associated with the gene regulation mechanisms and their stochasticity);
(2) even if we do not know a mechanism, once a model is built based on our best
knowledge and we see it diverging from reality in a specific point, we know where
to start investigating for other processes/reactions.

There is also a philosophical motivation to using P systems for a cell simu-
lator: P systems were defined to capture the compartmentalized structure of the
eukaryotic cells, and indeed this compartmentalization could prove one of the best
features of a cell simulator. Furthermore: due to the current biomolecular tech-
niques involving large multiplicities for a species the simulation techniques in the
area focussed on ordinary differential equations (ODE) as continuous mathematics
both has powerful tools and are easily implemented. But we claim that a continu-
ous mathematics approach in this area of sub-cellular simulation may not be the
best approach as some processes have been seen to behave discretely, and in sev-
eral pathways we can see the multiplicity of some multiprotein complexes appear
in very small numbers (below 10). In such cases a discrete simulation technique
such as Gillespie’s algorithm would be preferable to the simulators based on ODE
[4].

Incidentally we have also defined a discrete simulation technique in [2] which
was repeatedly improved (see references in [5]) and was lately named NWA with
memory. The motivation behind the NWA algorithm was simple: we wanted a dis-
crete mathematics based simulation technique that would be faster than Gillespie’s
algorithm.

22.1 Brief Description for Current Cellular Models and Simulators

In order to plausibly model the biochemistry of life, individual biochemical interac-
tions need to occur asynchronously over different lengths of time. The model relies
on the law of mass action. The law states that reaction rate is directly propor-
tional to the number of reactants available in the system. In other words, the time



Frontiers of Membrane Computing 235

required to execute a rule in the cell is dependent on the number of its reacting
species. We note that the rule application is not considered to be instantaneous;
the kinetics that are giving the reaction speed model the time required by the
molecules involved in the rule to couple together (if the reaction is of second order
or higher) as well as the time required for the actual reaction to take place.

The law of mass action gives us the power to temporally describe the evolving
configurations of our system. To understand the asynchrony of rule execution, we
need to discuss the kinetic rates pertaining to the law of mass action. The kinetics
of a chemically reactive system are often described as concentration-based values.
This is common for the types of experiments used to derive the rates, typically in-
volving enormous populations (millions) of cells. The cells are often lysed as a large
population, molecules are measured in terms of light intensity and data are given
as concentrations of species across cell population. These values can be averaged
across the cell population, yielding concentrations per cell. We rely on these values
to fit our models, but the values are derived from entire cell populations instead of
individual cells. Hence, the interesting phenotypic, biochemical and physiological
characteristics of individual cells can be sometimes overgeneralized (or lost) in lieu
of the behavior of the majority of the cells in the population.

Some labs employ techniques to measure single-cell dynamics. For example,
interesting results/models on p53 have been reported in [7], where it is shown that
individual cells undergo not dampened oscillations, as reported in [1], but each
individual cell instead exhibits a different numbers of oscillations. The average
behavior for the cell population appeared to be dampened, but individual cells did
not behave this way.

We are collaborating with Mark DeCoster’s biomedical laboratory from
Louisiana Tech University in order to study single cell data via a high-speed imag-
ing system. It is our hope that future collaborations will help unlock some of the
secrets behind Fas-induced apoptosis. Regardless of whether data comes from large
cell populations or single cell dynamics, we, as modelers, must remain vigilant and
build the best models with the data available to us.

Using the law of mass action and discrete kinetic constants we can define the
Waiting Time (WT ) of a reaction in the P system. The WT is a value assigned
to each reaction, signifying the next timepoint for a single execution of the reac-
tion. As molecular multiplicities will change throughout a simulation, from one
configuration to the next, so will the WTs of reactions utilizing those molecules.

We used a min-heap for sorting reactions, where the top of the heap is the
reaction with the smallest WT – i.e., the next reaction to be executed. However, we
need to use nonstandard methods for maintaining the heap, due to the asynchrony
of the rules and the sharing of reactants. These nonstandard methods are similar
to those proposed by Gibson and Bruck [3] in their modification to the Gillespie
algorithm.

To clarify, when a rule is applied, multiple nodes can have changes to their WT,
since the multiplicities of particular species of the system have changed. These
species can be shared over multiple reactions. Hence, multiple WT potentially
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can fail the min-heap property throughout the tree simultaneously at each new
configuration. In order to handle this, we use heap maintenance methods similar
to those proposed by Gibson and Bruck [3] in their modification of the Gillespie
algorithm.

22.2 Improving the Simulators

The following “open problems” are mostly for the simulator developed by our
group but should be relevant for other simulators as well.

1. increase the stochasticity at the level of the heap by applying a modified
Monte Carlo simulation technique for the first 3 levels of the heap (the fastest 7
reactions),

2. faster implementation such as using C rather than C++ or Java,
3. GPU implementation of the simulator for parallel simulations and identifying

“decision points” in the pathway; also running the same model several times could
identify the minority from the majority (this information could be lost in an ODE
framework for simulation),

4. bigger and better models for sub-cellular mechanisms,
5. using Manca’s Log-gain theory to gather stoichiometric data to be used in

simulations [6],
6. implementing the simulation framework as a plug-in in CoPasi for broader

dissemination and usage.
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Deterministic and stochastic P system models are discussed in the context of
specifying fairly complex biological systems; their usage for systems and synthetic
biology is also presented.

Required Notions: metabolic P systems, dynamical inverse problem, stochastic
P systems, Gillespie algorithm, systems biology, synthetic biology

The approaches based on P systems aiming to provide coherent descriptions
of fairly complex biological systems are either deterministic or stochastic [5]. Two
such variants are discussed below, but some more variants of the above mentioned
types of P systems are available in the current literature, see [15] and Sections 21
and 22 of this paper.

Metabolic P systems (MP systems for short) were introduced in 2004 as a par-
ticular kind of P systems devised for modeling metabolic processes [7]. Their main
goal consists in solving dynamical inverse problems (DIPs) by means of discrete
systems. A general algorithm, called Log-Gain Stoichiometric Stepwise Regression
(LGSS), providing MP solutions to DIPs was obtained, in a systematic way, by
integrating finite difference recurrent equations, least square method, stepwise re-
gression, and related Fisher tests, within a suitable linear algebra framework where
solutions can be expressed as ordinary and tensor products among matrices [11].
A MATLAB implementation of LGSS was developed by Luca Marchetti [12].

Many successful applications of MP theory to biological dynamics were devel-
oped, starting from classical examples (Lotka-Volterra, Brusselator, Mitotic Oscil-
lator) [10]. Presently, the two main applications under investigation concern the
insulin-glucose dynamics in diabetes pathologies and genetic expression in a kind of
breast cancer (in cooperation with endocrinologists and clinicians in Italy, Verona
and in USA, Detroit). A synthetic description and references is given by Vincenzo
Manca in [8, 9].
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Stochastic P systems, SP system for short, are rule-based discrete and stochas-
tic multicompartmental systems used as abstract structures to model stochastic
cellular systems [14]. The key difference between the original P systems and SP
systems consists in a stochastic constant that is specifically associated with each
rule. This constant is used to determine in a specific state or configuration of the
system the probability of applying the corresponding rule and the time elapsed
between rule applications according to Gillespie’s stochastic simulation algorithm
[6].

SP systems allow the incremental and parsimonious design of models by pro-
viding modelers with the feature of modularity explicitly [4]. A P system module
consists of a finite set of rewriting rules that may contain some free variables in
their objects, labels and stochastic constants. Modules can be arranged in libraries
so they can be reused to define the rewriting rules of different models. In this re-
spect, modules act like macros that get expanded once the corresponding module
variables are instantiated with specific molecular species names, numerical values
for the stochastic constants and compartment names.

A variant of SP systems, lattice population P systems [18], allow modelers to
represent multi-cellular systems with specific geometries by distributing copies of
given individual stochastic P systems over the points of a finite geometrical lattice.

SP systems have been implemented in the software tool for the specification,
simulation, analysis and optimization of systems and synthetic biology models,
Infobiotics workbench [3].

These systems have been used to model signal transduction pathways [13, 1],
bacterial gene regulation [17], bacterial populations [16], metapopulations [2] and
synthetic biology problems [19].

Membrane computing has made very significant contributions in certain areas
of computer science and has produced some impact with respect to a number of
applications. It remains a challenge to show how it copes with complex applica-
tions, especially in systems and synthetic biology. Some of these challenges are
listed below:

• identify more complex systems to be specified by one of the variants of P
systems described above or presented in [15];

• extend the current variants with additional features in order to cope with more
complex applications;

• create a repository of illustrative biological case studies;
• develop additional complementary approaches that help analyzing biological

systems – data sensitivity analysis, property data extraction and verification,
hierarchies of languages allowing to map P system specifications into bio-
chemical reactions;

• implement adequate tools exploiting the latest technologies and create bench-
mark problems to assess them.
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24 Biologically Plausible Applications of SN P Systems for
an Explanation of Brain Cognitive Functions

Adam Obtulowicz
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Some conjectures about the possibility of using SN P systems and extension
of them for modeling features of the brain (such as learning, modularity) are
formulated.

Required Notions: spiking neuron, SN P system, learning

The (hierarchical) clustering (scene segmentation in particular) and binding
(feature integration) problem solution in cortical neural networks together with
cortical subnetworks realizing Radial Basic Functions (briefly RBFs) represent,
among others, the cognitive functioning of brain. Recently, various network mod-
els of clustering, binding problem solution, and realization of RBFs in cortical
networks have been proposed, where spiking neural networks are the most biolog-
ically plausible models, see [16], [17], [2], [3], [12], [14], [15], and [11] for a review.
The main common feature of these models is Hebbian learning which provides
their biological evidence. On the other hand, a transformation of an idea of Heb-
bian learning from a framework of spiking neural networks to a framework of SN
P systems (cf. [10]) has been proposed in [8]. Thus, one formulates the following
question:

Do SN P systems provide biologically plausible mathematical models of
brain cognitive functions?

We approach the question and an answer to it by the following discussion of
conjectures and setting open problems.

Papers [5], [9] contain promising applications of SN P systems for solving topic
problems related to some cognitive brain functions. But biological evidence of these
applications seems problematic because Hebbian learning procedures approach is
not considered for them.

On the other hand, the Hebbian learning modeled by SN P systems with only
input neurons and one output neuron presented in [8] and solution of XOR problem
by spiking neural networks equipped with a Hebbian learning procedure and with
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only three input neurons and one output neuron described in [4] gives rise to the
following conjecture:

Conjecture 1. There exists a learning problem, understood as in [8], whose output
is an SN P system solving XOR problem.

If we compare precise timing of spikes approach for spiking neural networks to
the number of spikes approach for SN P systems, then the latter seems coarse and
hence less biologically plausible than the spiking neural network approach.

On the other hand, the precise timing of spikes approach for spiking neural
networks is less biologically plausible than probabilistic spiking neural networks
because a relevant amount of noise is contained in the behavior of neurons (cf. [7]).
Therefore it is worth to initiate a research of probabilistic SN P systems.

The view that human mind is “massively modular” (cf. [6], [13]) argued by
massively parallel functioning of brain neural network modules, gives rise to a
question of approaching these massive modularity and massive parallelism of mind
and brain by application of a concept of a network of communicating SN P sys-
tems equipped with Hebbian learning procedures, respectively. The SN P systems
constituting that network could correspond to brain network modules realizing
simultaneously various cognitive functions, respectively.

On the other hand, since SN P systems seem more coarse with respect to an
approach to time than spiking neural networks with precise timing of spikes, like,
e.g., in [2], we propose the following conjecture.

Conjecture 2. A biologically plausible modularity of brain could be represented
(modeled) by the following hybrid constructs:

1. a two-level construct of a spiking super-neural P system which is an SN P sys-
tem whose neurons are superneurons, i.e., multi-layer spiking neural networks
with a precise timing of spikes like, e.g., in [2],

2. a three-level construct of a spiking sub-super-neural P system which is a spik-
ing super-neural P system as above, where the neurons of superneurons are
P systems approaching neurons as cells which produce and transport copies of
molecules between electrically charged membranes.

The construct in 1) gives rise to multi-layer spiking networks which could learn
themselves like in [2] their modular structure of spiking super-neural P systems
and hence which could explain emergence of cognitive capabilities of brain.

It is worth to discuss the above constructs with regard to the possibility of their
molecular implementation which is suggested by recent findings outlined in [1].
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25 Computer Vision
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Some possibilities to employ MC techniques in computer vision (especially in
thresholding, smoothing, homology theory) are discussed.

Required Notions: array grammar, array-rewriting P system, cell and tissue P
systems

Computer vision is probably one of the challenges for computer scientists in the
next years. From a biological point of view, vision is an extremely complex process
involving the transformation of the light energy into a signal which leaves the eye
by way of the optic nerve and arrives to the brain, where it is interpreted. From a
computational point of view, a digital image is a function from a two dimensional
surface which maps each point form the surface to a set of features as bright or
color.

In MC, there is a large tradition in handling information structured as two
dimensional objects (see, e.g., [2, 3, 9, 16]). The main motivation for these studies
is to bring together P systems and picture grammars. From a technical point of
view, arrays are two-dimensional objects placed inside the membranes as strings
are one-dimensional objects in the model of P systems with string objects [13].

In [3], the model of array-rewriting P systems was presented on the basis of
the transition P systems: Rules are of type A → B(tar) where A is the array to be
rewritten, B is the new one, and tar ∈ {here, in, out} indicates the place of the
picture after the substitution has been made.

Recently, a new research line has been open by applying well-known MC tech-
niques for solving problems from digital imagery. For example, segmentation is the
process of assigning a label to every pixel in an image such that pixels with the
same label share certain visual characteristics. Segmentation has shown its util-
ity, for example, in bordering tumors and other pathologies or computer-guided
surgery. In [5, 8, 10, 11] we can find several approaches to this problem with MC
techniques. Other problems, as thresholding [4] or smoothing [18] have also been
considered in the framework of MC. Special attention deserves [14], where the sym-
metric dynamic programming stereo (SDPS) algorithm [15] for stereo matching was
implemented by using simple P modules with duplex channels.

A different approach to computer vision can also be obtained from computa-
tional topology. In particular, algebraic topology provides techniques and algo-
rithms for handling digital images from a topological point of view. Recently, the
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links between algebraic topology and MC have started to be explored via homology
theory [6, 7, 12]. Homology theory is a branch of algebraic topology that attempts
to distinguish between spaces by constructing algebraic invariants that reflect the
connectivity properties of the space. Homology groups (related to the different
n-dimensional holes, connected components, tunnels, cavities, etc., of a geometric
object) are invariants from algebraic topology which are frequently used in digital
image analysis and structural pattern recognition.

In a similar way with other applications of P systems, the theoretical advan-
tages of the MC techniques for computer vision need a powerful software and
hardware for an effective implementation. The use of these new technologies for
the parallel implementation of P systems techniques applied to computer vision
have started to be explored with promising experimental results [1, 17, 18].

An appropriate combination of MC techniques together with an efficient par-
allel implementation on the new hardware architectures can provide competitive
algorithms to different problems from computer vision. Among them, we can cite
dealing with textures, colors and/or 3D objects (or even 4D objects, where the
evolution of objects in time is also considered). From algebraic topology, the cal-
culus of complex topological invariants of 2D and 3D objects can be a source of
new open problems for MC.
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26 Open Problems on Simulation of Membrane Computing
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Research ideas related to the extension of the P-lingua dedicated languages
and on the implementation of P systems on reconfigurable or parallel hardware
(e.g., NVIDIA architectures) are mentioned.

Required Notions: P system models, GPU computing, P-Lingua, MeCoSim

The development of P system simulators, and of other related software tools,
becomes a critical point in the processes of model validation and virtual experi-
mentation. For this purpose, a software framework for specifying and simulating



246 M. Gheorghe, Gh. Păun, M.J. Pérez-Jiménez, eds.

P systems, called P-Lingua, was developed [7]. Moreover, a generic software to
generate graphical applications based on P-Lingua, called MeCoSim, was also de-
veloped. Finally, in order to accelerate the simulation by implementing P systems
parallelism on high performance platforms, some simulators were developed by
using GPU computing [5]. Research in all these directions are under development.

(A) Simulation Framework: P-Lingua and PLinguaCore

P–Lingua has been successfully applied to ecosystem modeling problems [6],
formal model checking and to solve computationally hard problems [7]. It supports
several P system models, such as active membrane models [7], Tissue P system
models and Spiking Neural P Systems (SN P) [9] systems.

Nevertheless, there is still plenty to do in order to extend the capabilities of
P-Lingua. Both expressivity and functionality issues should be improved to renew
the P-Lingua menu and attract new users. First, inclusion of parsing directives
should be implemented in order to, say, modify the behavior of existing models. A
fast learner example would be the ’asynchronous’ behavior, that is, cracking the
universal clock that reigns the computation process in most of standard models
(this is already included for the case of SN P Systems). Then, integration of new
models, such as numerical P systems and some specific types of SN P Systems,
incorporating weights and astrocytes with their different flavors, remains unex-
plored. Finally, re-factoring of the work done to bring some exotic elements of the
reaction systems.

(B) Generic end-user graphical applications: MeCoSim

In the last few years, there have been some interesting, user-friendly, successful
software applications for modeling and simulating P systems, mainly focused on
biological systems: MetaPlab [4] for internal mechanisms of biological systems by
means of MP System; BioSimWare [1] and Infobiotics [2] for P system based multi-
compartmental stochastic simulations of complex biological systems, the last one
including Synthetic Biology; and EcoSim [6], a family of probabilistic simulators
for different ecosystems.

However, a general application for the study, analysis, modeling, visual simu-
lation, model checking, optimization of as many as possible variants of P systems
has not been provided. A first approach has been developed with MeCoSim [10].
Some plugins have been developed to provide some analysis and model checking
capabilities. It has been successfully applied as an assistant tool for the iterative
design of ecosystem models, and to solve computationally hard problems by using
tissue and SN P system models.

Nevertheless, there are many challenges to solve. The core of the visual appli-
cation should include more analysis and modeling tools to ease the work of the P
systems designer. Also, some interfaces to communicate with different simulation
engines should be developed to run simulation against simulators implemented in
different local or remote platforms and architectures. It should integrate with dif-
ferent applications for formal model checking, enabling the user to extract and/or
validate properties of the studied models. Eventually, new P systemsmodels should
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be added to MeCoSim, providing the general functionalities and new possible plu-
gins to many potential P systems designers.

(C) Simulation on High Performance Platforms: GPU computing

So far, there have been many efforts on the development of GPGPU based
simulators for P systems. In fact, the following P systems models have been suc-
cessfully simulated by means of GPUs: P systems with active membranes and
division rules [5], a family of P systems with active membranes solving SAT in
linear time [5], SN P systems (SNP) with and without delays [3], and ENPSs [8].

On the other hand, there exist many other models which, to the best of our
knowledge, are yet to be simulated by means of GPGPU. These models include
tissue P systems, population dynamics P systems, stochastic P systems, hyperdag
P systems, numerical P systems and string P systems, to name just a few.

Another challenge is the integration of GPU simulators on end-user MC soft-
ware frameworks. Although some steps have been taken in this direction with the
P-Lingua automatic generation [7] of P system files to be parsed by GPU simula-
tors [5], there is still a long way to walk for an efficient interaction between these
two kinds of technological tools.

Last but not least, a thorough performance comparison between GPU simula-
tors and other HPC approaches is yet to be developed. These approaches include
reconfigurable hardware (FGPA, DSP), computer clusters with OpenMP and MPI,
etc. The need for some works on this direction has been previously noticed [5, 8].
Finally, it is also interesting to port current developments of GPU simulators to
the last GPU platforms, based on both NVIDIA and AMD ATI architectures, and
on GPU based clusters.
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Closing Remarks

As also said in the Introduction, this collection of open problems and research
topics in MC was initially meant to be a working material, for 10th BWMC, and
it was updated and completed several times. However, no such list can be com-
plete, neither uniform, in what concerns the type of problems, their technicality,
difficulty, range of interest. As expected, some problems are local, others are very
general, while the sections are not at all uniform in style (we have preserved in a
great extent the contributors writing). Moreover, many further research ideas wait
to be addressed in MC, for instance, in the P and dP automata area, the SN P
systems area, complexity, dynamical systems approach – not to speak about ap-
plications (from biology and bio-medicine, to ecology, robot control, approximate
optimization). Still, we believe that such a list is useful, on the one hand, because
it can entail cooperation about the co-authors of the paper and the readers, and,
on the other hand, because it points out active research areas of MC, indicating
its “frontiers”. Actually, this “mega-paper” proved already to be useful during the
10th BWMC, where several of the proposed research topics were addressed – the
paper incorporates some changes due to these recent progresses.
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