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Abstract
This thesis presents and evaluates techniques for classical planning with partially
instantiated representations.
All successful state-of-the-art planners ground the problem at hand before they

even start the actual planning. Therefore, sophisticated methods to efficiently
generate compact ground representations have been proposed. In some cases,
grounding still consumes a lot of resources (time as well as memory) and can even
be the bottleneck of the planning procedure. We propose planning algorithms that
circumvent this bottleneck and even handle planning tasks that other planners
are not able to ground in the first place. They gradually ground the planning
problem and solve encodings for partially instantiated representations of it using
incremental SAT solvers. The experimental evaluation confirms that grounding is
unnecessary or even counterproductive in some cases. Moreover, our planners are
capable of solving planning problems from popular planning competitions that no
state-of-the-art classical planner we tested is able to. However, due to the limited
scope of this thesis, our work lacks some common optimizations that are necessary
to be competitive with other SAT based planners across the broad variety of popular
benchmark problem sets.
We also briefly look into parallelization of the grounding and planning routines.

We achieve significant speedups for the grounding time on most complex tasks,
while the imposed synchronisation affects the grounding of some tasks negatively.
Solving encodings for different partially instantiated representations in parallel can
be beneficial for a small number of parallel executions at the cost of increased
memory consumption.

We conclude that our approach is promising and still has much potential for future
work. Our planners might be useful in planner portfolios due to its unconventional
approach.

Zusammenfassung
Diese Arbeit stellt Techniken für klassisches Planen mit partiell instantiierten
Repräsentationen vor und bewertet diese anschließend empirisch.

Die erfolgreichsten aktuellen Planer müssen das gegebene Planungsproblem grun-
den, bevor sie mit dem eigentlichen Planungsprozess beginnen können. Daher wurde
das Grunden in der Vergangenheit intensiv erforscht und Methoden entwickelt, um
kompakte gegrundete Repräsentationen zu generieren. Das Grunden kann dennoch
zu einem erheblichen Zeit- und Speicherverbrauch führen und zum Flaschenhals
des gesamten Planungsprozesses werden. Wir stellen Techniken vor, um diesen Fla-
schenhals zu umgehen und sogar Probleme zu lösen, die andere Planer nicht einmal
grunden können. Im Wesentlichen grunden wir das Problem schrittweise und stellen
partiell instantiierte Repräsentationen des Problems als SAT-Formel dar, welche
wir mittels eines SAT-Solvers versuchen zu lösen. Unsere Auswertungen zeigen, dass
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das Grunden in einigen Fällen unnötig, in manchen sogar kontraproduktiv ist. Mit
unserem Ansatz sind wir in der Lage, Planungsprobleme zu lösen, die keiner der
anderen getesten Planer unter denselben Rahmenbedingungen lösen konnte.

Im Rahmen dieser Arbeit fehlt es der Implementierung dennoch an einigen bekann-
ten Optimierungen, welche notwendig sind um auf den vielseitigen Problemtypen
der Benchmarks gegen die Konkurrenz zu bestehen.
Wir befassen uns auch mit Möglichkeiten, unsere Ansätze für das schrittweise

Grunden und Planen zu parallelisieren. Es stellt sich heraus, dass wir das Grunden
insbesondere von komplexen Problemen beschleunigen können. Das nebenläufige
Lösen von SAT-Formeln für verschiedene partiell instantiierte Repräsentationen des
gleichen Problems beschleunigt zwar den Planer, erhöht jedoch den Speicherbedarf.
Daher ist diese Art der Parallelisierung nur für wenige Threads geeignet.
Insgesamt hat sich der Ansatz als vielversprechend herausgestellt und bietet

viele Möglichkeiten für weitere Forschung. Die vorgestellten Planer können dank
der neuartigen Herangehensweise eine sinnvolle Ergänzung für Planer-Portfolios
darstellen.
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1. Introduction
The study of intelligent agents is central in the field of Artificial Intelligence (AI).
Those agents can be arbitrary devices that perceive their environment and can
perform a set of predefined actions. Therefore, devising a valid sequence of actions
to achieve a given goal is crucial to AI and has been subject of research since the
early sixties. Historically, mostly domain-specific planners were used, which are
intuitively more efficient compared to generic planning systems. We nowadays
deploy autonomous systems using AI for a wide range of applications such as robot
motion planning[LK05], aircraft assembly[Xu+12] and even mars rovers[Bre+05].
Given the high complexity and variety of tasks, efficient general-purpose planners
are of high demand. While many different approaches towards those planners have
been studied, describing planning problems as boolean satisfiability problem (Sat)
and state-space searches have been the most popular.

As recent planning competitions1 2 suggest the dominance of state-space searches
over satisfiability encodings for non-optimal planning, most research is nowadays
focused on finding more sophisticated and advanced search strategies. Nevertheless,
the individual performance of generic planners is highly domain dependant and
planning as satisfiability still outperforms state-space searches on some domains.
The boolean satisfiability problem is one of the most famous and thoroughly

researched NP-complete problems. Consequently, many highly performant general-
purpose SAT-solvers have been developed. Naturally, SAT-based planning ap-
proaches benefit directly from the significant performance improvements over the
past twenty years.
Nevertheless, typical encodings of complex planning tasks can quickly become

too large to handle for SAT solvers. Especially when the plans to find are long,
state-space searches have a natural advantage over SAT-based approaches. Many
techniques for more compact encodings and efficient SAT solver scheduling have
emerged over the time to tackle this problem.

1.1. Our Approach
In real world applications, planning tasks are described with predicates and action
schemas, reminiscent of first-order logic. The majority of planners first compute a
ground representation of the task by generating all possible actions instantiations.
This method has proven to be very successful, as the ground representation allows

1https://ipc2018-classical.bitbucket.io/#results
2http://ada.liacs.nl/events/sparkle-planning-19/results.html
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1. Introduction

for faster, more precise heuristics and more aggressive pruning. Typically however,
only a small fraction of all action instantiations is required to solve the planning
problem. Thus, computing the ground representation often entails a lot unnecessary
work. For the majority of problems this overhead is negligible, but can become a
bottleneck for problems with too many complex operators.
In this thesis we incorporate SAT based planning in the grounding process.

That way the SAT solver has the ability to instantiate actions it deems important.
At the same time we don’t neglect the advantages of a grounded representation
to guide the SAT solver and prune the search space. We show several ways to
combine SAT solving with grounding and discuss challenges and shortcomings arising
with this approach. Also, we look into possibilities to parallelize our approach by
concurrently grounding and encoding partially instantiated representations of the
planning problem.

1.2. Structure of the Thesis
Chapter 1 introduces the general problem setting and motivates the approach taken
in this thesis. In Chapter 2 we formalize definitions and notations used throughout
this thesis. Additionally, we familiarize the reader with the trucking domain to
illustrate some of the notations. Chapter 3 provides an overview over related work.
We present notable publications relevant for or similar to our approach. Further,
we refer the reader to literature to delve into related topics. Our contribution,
SAT based planners using encodings of partially instantiated representations, is
presented in Chapter 4. We then analyze and evaluate our planners in Chapter 5.
Additionally, we compare configurations of our planners to other state-of-the-art
planners. Chapter 6 concludes this thesis and provides suggestions for future work.
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2. Notation and Preliminaries
In this chapter we introduce concepts and definitions used throughout this thesis.
First, we give an intuition of the planning problem by providing a simple running
example. Subsequently, we introduce a formal definition of the planning problem
and briefly explain the Boolean satisfiability problem. We conclude this chapter
with techniques and strategies for SAT-based planning.

2.1. Running Example: Trucking
The trucking domain describes logistic problems involving cities, trucks and parcels.
Trucks can drive between cities that are connected by streets, load parcels and
unload parcels. The goal is to deliver each parcel from their initial city to their
destination city.
Figure 2.1 illustrates such a trucking problem. Here, the goal is to deliver the

parcels located at cities A and B to city C, starting with the truck in city A.
Assuming that the truck can only carry one parcel at a time, a possible solution
to this problem would be to pick up the parcel, drive to city C, unload the parcel,
drive to city B, pick up the parcel and again drive to city C and unload the parcel.
Some details, such as whether every parcel has the same destination, whether

streets are one-way and how many parcels a truck can load depend on the exact
formulation of the problem.

2.2. Planning
While many formalisms for automated planning exist, we will consider the most
simple one, known as the Classical Planning Problem or STRIPS-Planning1. Our
formalism roughly follows the notations of Ghallab et al. in Automated Planning:
Theory and Practice[GNT04, pp. 20 sqq.].

Definition 1 (Planning Task). A planning task is a 5-tuple Π = (S,A, γ, s0, Sg),
where

• S is a finite set of possible states the world can be in,

• A is a finite set of actions that can be performed,
1STRIPS (Stanford Research Institute Problem Solver) is an early planner developed by Fikes
and Nilsson in 1971[FN71].
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2. Notation and Preliminaries

A B C

A B C

Figure 2.1.: A trucking problem with three cities, two parcels and one truck. Streets
connect the city A with B and B with C (in both ways). The upper
and lower configurations show the initial state and the goal, respectively.
The truck’s final location is irrelevant and thus omitted.

• γ : S × A ⊇ X → S is the state transition function,

• s0 ∈ S is the initial state,

• Sg ⊆ S is a set of goal states.

Conceptually, the world is in some initial state and actions can be applied to
change the state. An action a is applicable in state s if γ is defined for (s, a). In
classical planning, the world is

• static, i.e. the state does not change unless an action is performed,

• deterministic, i.e. actions have a fixed effect that is known a priori,

• fully observable, i.e. the current state of the world is always known,

• timeless, i.e. actions are performed instantaneously and their effect applies
instantly.

Given a (possibly empty) sequence of actions τ = 〈a1, . . . , ak〉 with corresponding
states 〈s0, . . . , sk〉 such that si = γ(si−1, ai) for 1 ≤ i ≤ k, we define

γ∗(s0, τ) := γ(· · · γ(γ(s0, a1), a2) · · · , ak).

4



2.2. Planning

A state s is reachable (from s0) if there is a sequence of actions τ such that
γ∗(s0, τ) = s. Likewise, an action a is reachable (from s0) if there is a sequence of
actions τ with a ∈ τ and γ∗(s0, τ) is well-defined.

Definition 2 (Plan). A plan π of length k is a sequence of k actions such that
γ∗(s0, π) ∈ Sg.

Thus, a planning task has a plan if and only if at least one goal state is reachable.
The planning problem is to find a plan for a given planning task. The bounded
planning problem is to decide whether a plan of at most a given length exists and
the planning decision problem asks whether a plan exists at all.

Example 1 (Trucking as Planning Task). We formulate the trucking problem
shown in Figure 2.1 as a planning task. In total we model 48 states, as each parcel
can be at any of the three cities or loaded in the truck (L). Thus

S = {(lP1 , lP2 , lT ) ∈ {A,B,C, L} × {A,B,C, L} × {A,B,C}},

where lP1 , lP2 and lT represent the locations of the parcels P1, P2 and the truck,
respectively. Assuming that the truck can load one parcel at a time, the states
{(L,L, lT ) | lT ∈ {A,B,C}} are unreachable.
The initial state and goal states are

s0 = (A,B,A) and Sg = {(C,C,A), (C,C,B), (C,C,C)}.

Generally, the truck can perform 8 possible actions

A = {driveAtoB, driveBtoA, driveBtoC, driveCtoB,
loadP1, loadP2, unloadP1, unloadP2}.

The semantics of these actions are implicitly given by the state transition function,
which is only defined in the following cases:

γ((lP1 , lP2 , lT ), a) =



(lP1 , lP2 , A) if a = driveBtoA ∧ lT = B,

(lP1 , lP2 , B) if a = driveXtoB ∧ lT = X

(lP1 , lP2 , C) if a = driveBtoC ∧ lT = B,

(L, lP2 , lT ) if a = loadP1 ∧ lP1 = lT ∧ lP2 6= L,

(lP1 , L, lT ) if a = loadP2 ∧ lP2 = lT ∧ lP1 6= L,

(lT , lP2 , lT ) if a = unloadP1 ∧ lP1 = L,

(lP1 , lT , lT ) if a = unloadP2 ∧ lP2 = L.

E.g., loadP1 is only applicable if the truck is currently in the same city as P1 and
P2 is not already loaded.
Finally, a possible plan of length 8 to solve this trucking problem is

π = 〈loadP1, driveAtoB, driveBtoC, unloadP1,
driveCtoB, loadP2, driveBtoC, unloadP2〉.
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2. Notation and Preliminaries

2.2.1. Lifted Representation
In practice, it is often infeasible to enumerate all possible states and actions of a
planning task2. Instead, planning tasks are typically described with the planning
domain definition language (PDDL). PDDL uses a compact and expressive lifted
representation for planning tasks.

In a lifted representation, states are composed of first-order predicates and actions
are generalized to operators. Variables (denoted in lowercase) in the predicates and
operators take values from a finite domain, the constants (denoted in uppercase). A
term is either a constant or a variable. Each predicate has a unique name, some
valence and takes terms as arguments. If p is a predicate with valence n and
t1, . . . , tn are terms then p(t1, . . . , tn) is called an atom. An atom is an instance of
another atom if it can be obtained by replacing some of the variables of the other
atom with constants. If t1, . . . , tn contain no variables, the atom is ground. Possible
atoms for the trucking domain are

street(A,B), truckAt(l), parcelAt(p,A), loaded(P2).

A literal is an atom with a polarity. It is either positive or negative, written as a
or ¬a for an atom a, respectively. Literals can be conjugated, that is a = ¬a and
¬a = a. An operator is a 3-tuple o = (param(o), precond(o), effects(o)), where
param(o) is a list of variables, called parameters. All variables that appear in the
operator must also appear in its parameters. precond(o) and effects(o) are sets of
literals, called preconditions and effects, respectively. An operator from the trucking
domain might look like this:

drive(l1, l2)
Preconditions: truckAt(l1), street(l1, l2)
Effects: ¬truckAt(l1), truckAt(l2)

An assignment σ = {v1 7→ c1, . . . , vk 7→ c1} maps distinct variables v1, . . . , vk to
constants c1, . . . , ck. An operator o can be instantiated with an assignment σ
by replacing v in the preconditions and effects with c and removing v from the
parameters for each v 7→ c ∈ σ. The resulting operator is denoted as σ(o) and called
an instance of o. An operator is ground if its parameters are empty and thus every
literal in the preconditions and effects is ground. Operator instances that are not
ground are called partially instantiated. To give some examples,

(1) drive(l2)
Preconditions: truckAt(B), street(B, l2)
Effects: ¬truckAt(B), truckAt(l2)

(2) drive()
Preconditions: truckAt(A), street(A,B)
Effects: ¬truckAt(A), truckAt(B)

2A trucking problem with 15 cities, 5 trucks and 10 parcels already has ∼1030 states.
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2.2. Planning

are instances of the operator drive(l1, l2), with σ = {l1 7→ B} for (1) and σ = {l1 7→
A, l2 7→ B} for (2). (1) and (2) can be denoted as drive(l1, A) and drive(A,B),
respectively. drive(A,B) is a ground instance, since it has no parameters left.

Definition 3 (Lifted Representation). A planning task in lifted representation is
given by ΠL = (C,O, s0, g) with

• the finite domain, a set of constants C,

• a finite set of operators O,

• a set of ground atoms, the initial state s0,

• a set of ground literals, the goal g.

The set of predicates appearing in the description of O, s0 and g is denoted as
P (ΠL). The finite set of possible ground atoms over C of all predicates in P (ΠL) is
denoted as P (ΠL). Finally, O(ΠL) is the set of all ground operators instantiatable
from operators in O. We omit ΠL and write P , P and O if the representation is
clear from the context. The states of the planning task then are subsets of P . A
ground atom holds in a state if and only if it is contained in the state (closed world
assumption). For any set of literals L we define L+ to be all atoms that are positive
in L and likewise L− to be all atoms that are negated in L. L is consistent, if and
only if it does not both contain both a and ¬a for any atom a. A state s satisfies L
if and only if

L+ ⊆ s and L− ∩ s = ∅.

Specifically, a state can satisfy the goal g and preconditions of ground operators.
A ground operator is applicable in a state if its preconditions are satisfied by the
state. Applying a ground operator in a state removes all negative effects from the
current state and adds all positive effects. We therefore assume that the effects
of all operators are consistent3. Formally, the planning task Π = (S,A, γ, s0, Sg)
described by ΠL has the following properties.

• S ⊆ 2P

• A = O

• For all (s, a) ∈ S × A with a applicable in s,

γ(s, a) = (s \ effects(a)−) ∪ effects(a)+

and γ undefined for all other (s, a) ∈ S × A.

• s0 ∈ S
3PDDL does not have this restriction. Here, negative effects are removed from the state before
positive effects are added.
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2. Notation and Preliminaries

• Sg = {s ∈ S | s satisfies g}

A predicate is rigid if it does not appear in the effects of any operator in O. Ground
atoms of rigid predicates are therefore always true or always false in every reachable
state. Consequently, a planning problem is trivially unsolvable if the subset of
literals of rigid predicates in g is not satisfied in s0.

Example 2 (Lifted Representation for Trucking). We show a lifted representation
of the planning task depicted in Figure 2.1. The constants in this representation are
C = {P1, P2, A,B,C}, analogous to Example 1. The operators in schematic form
are

drive(l1, l2)
Preconditions: truckAt(l1), street(l1, l2)
Effects: ¬truckAt(l1), truckAt(l2)

load(l, p)
Preconditions: truckAt(l), parcelAt(p, l), ¬loaded(P1),¬loaded(P2)
Effects: ¬parcelAt(l), loaded(p)

unload(l, p)
Preconditions: truckAt(l), loaded(p)
Effects: parcelAt(p, l), ¬loaded(p)

with the initial state and goal

s0 = {truckAt(A), parcelAt(P1, A), parcelAt(P2, B),
street(A,B), street(B,A), street(B,C), street(B,C)}

g = {parcelAt(P1, C), parcelAt(P2, C)}.

2.2.2. Grounding
A lifted representation is an instance of another lifted representation if all its
operators are instances from operators of the other representation while the constants,
initial state and goal stay the same. The operators of an instance of a lifted
representation must be such that at least one plan for the initial planning task
must remain findable. In particular, instances of representations may contain no
operators if there was no plan for the corresponding planning task. A representation
is ground (also called a ground representation) if all operators are ground. Thus, it
contains no variables and atoms decay to Boolean propositions. Grounding describes
the process of generating an instance of a lifted representation that is ground. A
representation instance is called partially instantiated if it is not ground.

Generally, the number of possible ground instances of an operator is exponential
in its valence4. Thus, enumerating all ground operators can be infeasible in practice
if the maximum valence or the number of constants is large. However, oftentimes

4An n-ary operator has n|C| ground instances.

8



2.2. Planning

only a small fraction of all ground instances is needed to solve a given problem.
Therefore, partially instantiated representations do not necessarily preserve all pos-
sible ground instances but can omit operators that are unreachable or otherwise not
useful. Pruning operators during grounding can oftentimes mitigate the enumeration
problem and potentially speed up the actual planning due to the smaller search
space. Many grounding strategies have been proposed (see Section 3.1).

2.2.3. Complexity
The theoretical complexity of the planning decision problem depends on the used
representation. With an explicit representation (i.e. with lists of states and actions)
of the planning task, the problem is in P, as it can be reduced to a reachability test
in a directed graph. The vertices and edges of this graph indicate states and possible
state transitions, respectively. A plan exists if and only if any vertex representing
a goal is reachable from the vertex representing the initial state. Both the graph
construction and the reachability test are polynomial.

However, the planning decision problem is most commonly studied with a ground
representation and referred to as PlanSat. While actions in a ground representation
correspond to actions in the explicit representation, the set of possible states is given
implicitly with the set of (ground) atoms. Many complexity results about PlanSat
and variants thereof have been presented by Bylander[Byl91], most notably that
PlanSat is PSPACE-complete. The outline of the proof is as follows. We show
that PlanSat is in NPSPACE and PSPACE-hard. Since NPSPACE = PSPACE
(see [Sav70]), this proves PSPACE-completeness. Let n be the number of atoms that
appear in the ground representation of a planning task. Then, the number of states
of the task is at most 2n since every atom is ground. As the shortest plan (if one
exists) revisits no state, it has at most 2n actions.

• PlanSat is in PSPACE, since a nondeterministic Turing machine can decide
PlanSat with polynomial space complexity by iteratively selecting an action
and applying it until either a goal state is reached (accept) or 2n actions
have been applied (reject). The current state can be stored with n cells, an
action can be selected and applied in polynomial space and the action counter
requires n cells to count up to 2n.

• PlanSat is PSPACE-hard, since each problem decidable by a Turing machine
with polynomial space complexity can be reduced to PlanSat in polynomial
time by simulating the corresponding Turing machine (w.l.o.g., assume a
binary alphabet). The relevant cells of the tape, possible head positions and
internal states of the Turing machine are represented by 0-ary predicates. Each
combination of head position and transition is represented by an operator.
Preconditions ensure that the operator is only applicable if the current head
position, tape content and internal state are as intended. The effects model the
internal state transition, tape modification and head movement. The number

9
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and size of the operators is polynomial in the size of the Turing machine and
since all predicates are 0-ary, all operators are ground.

The planning problem with the planning task given in lifted representation is
EXPSPACE-complete (see [GNT04, pp. 61 sqq.]). Intuitively, this is because the
number of possible states is doubly exponential in the number of atoms. The proof
is similar to the proof for the PSPACE-completeness of PlanSat but requires
additional work to represent the tape of the Turing machine.

2.3. Boolean Satisfiability Problem
A Boolean formula is an formal expression with Boolean variables, conjunctions
(∧), disjunctions (∨) and negations (¬). A Boolean variable can take values from
{true, false}. A literal is either a Boolean variable or the negation of a Boolean
variable. An assignment of values from true and false to each variable is a model
for a Boolean formula if the formula evaluates to true under that assignment. A
formula is satisfiable if there is a model for it.

The Boolean satisfiability problem (Sat) is to determine whether a given Boolean
formula is satisfiable. Sat instances are typically given in conjunctive normal form
(CNF). That is, the formula is a conjunction of clauses. A clause is a disjunction
of literals. A unit clause is a clause containing exactly one literal. A Boolean
formula in CNF is satisfiable if there is a model that satisfies every clause. For
example, the formula (a ∨ ¬b ∨ c) ∧ (¬a ∨ b) with variables {a, b, c} is in CNF, the
clauses are (a ∨ ¬b ∨ c) and (¬a ∨ b). The formula is satisfiable, a possible model is
{a 7→ false, b 7→ false, c 7→ true}.

Sat was the first problem proven to be NP-complete (see [Coo71]) and is still
actively researched. Sophisticated heuristics and solving strategies enable modern
Sat algorithms to solve formulae with millions of clauses, making them feasible for
many practical combinatorial problems. In practise, it is commonly required for
SAT-solvers to provide a model in case the given formula is satisfiable.

2.4. SAT-based Planning
Encoding planning tasks as Sat instances was first proposed by Kautz, Selman,
et al. in 1992[KS+92]. It can be assumed that constructing a Boolean formula that
is satisfiable if and only if a corresponding PlanSat instance is true is inherently
exponential, since PlanSat is PSPACE-hard and Sat is in NP. Therefore, generating
and solving such a formula can quickly exceed time and memory limits. To mitigate
this problem, the planning task can be encoded incrementally: Given a fixed horizon
h, we construct Boolean formulae Fh that are true if and only if a plan within
the horizon h exists. Intuitively, Fh can be organized in h steps, where each step
contains a state and actions to be applied to constitute the state of the next step. A
SAT solver successively tries to solve Fh with increasing h until it finds a satisfiable
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formula. This method is especially efficient if a plan exists that is significantly
shorter than theoretically possible (see Section 2.2.3). We usually want Fh to be
constructive, that is one can easily obtain a plan from a model for Fh.

2.4.1. Step Semantics
If an encoding allows only one action to be applied in each step, it uses sequential
step semantics. The horizon (makespan) then directly corresponds to the maximum
length of a plan that can be found. This restriction can be alleviated to allow multiple
actions to be performed in one step, yielding parallel step semantics. Parallel step
semantics have two major advantages over sequential step semantics[RHN06]. First,
plans can be found within a smaller horizon, so fewer formulae have to be solved and
the encodings stay smaller. Second, total orderings of actions in one step are not
encoded and thus considered by the SAT-solver, so fewer possible action orderings
have to be checked. For parallel step semantics, the concept of parallel plans is
useful.

Definition 4 (Parallel Plan). A parallel plan is a sequence of sets of actions
S = 〈A1, . . . , Ak〉, such that there is a sequence of states 〈s0, . . . , sk〉 with

1. si = γ∗(si−1, τi) for some ordering τi of Ai for 1 ≤ i ≤ k and

2. the concatenation of all τi is a plan.

The parallel plan S has a makespan of k.

A model for an encoding with parallel step semantics corresponds to a parallel
plan, where for each step there is a set of actions. An encoding has ∀-step semantics
if every ordering within each action set of the parallel plan obtained by a model
yields the same successor state. For that to hold, all actions have to be applicable
in the state and no two actions must interfere in each step. Two ground operators
o1 and o2 interfere if either

(a) ∃l ∈ precond(o1) : l ∈ precond(o2),

(b) ∃l ∈ effects(o1) : l ∈ effects(o2),

(c) ∃l ∈ effects(o1) : l ∈ precond(o2),

(d) ∃l ∈ precond(o1) : l ∈ effects(o2).

In case (c) o1 disables o2 and in case (d) o2 disables o1.

Example 3 (Parallel Plans for Trucking). For the sake of this example we assume
that the truck can load multiple parcels at once.

11
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A valid parallel plan with makespan 3 for the example in Figure 2.1 then would
be

S = 〈{load(A,P1), drive(A,B)},
{load(B,P2), drive(B,C)},
{unload(C,P1), unload(C,P2)}〉.

However, S does not adhere to ∀-step semantics, as load(A,P1) is not applicable
after drive(A,B). The shortest parallel plan (in terms of the makespan) with ∀-step
semantics is

S = 〈{load(A,P1)},
{drive(A,B)},
{load(B,P2)},
{drive(B,C)},
{unload(C,P1), unload(C,P2)}〉

with makespan 5.

Rintanen et al.[RHN06] proposed ∃-step semantics, which are more relaxed. An
encoding has ∃-step semantics if the actions in each step can be applied in some
order to get to the state of the next step. All actions have to be initially applicable
and the union of all effects has to be consistent5. The first parallel plan in Example 3
adheres to ∃-step semantics.

Other step semantics such as relaxed ∃-step semantics and R2-exists-step semantics
are discussed in Section 3.2.

2.4.2. Base Encoding
Most SAT encodings for planning found in the literature assume a ground repre-
sentation. These representations are unsuited for our use case. We introduce a
base encoding for lifted representations of planning tasks. The formulae of this
encoding are shared by all subsequent encodings. The base encoding allows for
multiple actions to be applied in one step, provided they are applicable and the
union of their effects is consistent. Also, at most one instance of each operator
can be applied in each step. However, no further restrictions on the operators are
imposed. Therefore, the encoding itself is not incomplete and further restrictions
are required for a proper encoding. The following naming conventions are taken
from [BS] and adjusted accordingly for lifted representations.
Let ΠL = (C,O, s0, g) be the planning task to encode and h the horizon. We

construct Fh such that we can extract the applied actions from a model of Fh
efficiently. Let L be the set of all ground literals of P . For each ground atom a ∈ A

5Rintanen et al. proposed other, less restricted ∃-step semantics, which they deemed impractical.
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we have the Boolean variables ista for t ∈ {0, . . . , h}. They indicate whether a holds
in step t (and after the last step). The variables doto for t ∈ {0, . . . , h− 1} express
whether an instance of operator o is applied in step t ∈ {0, . . . , h − 1}. Finally
we have the Boolean variable mt

o,v 7→c for each operator o, v ∈ param(o) and c ∈ C.
It indicates whether c is assigned to v in the instance of o that is applied in step
t ∈ {0, . . . , h− 1}.
The precondition support PSl for a ground literal l is the set of all pairs of

operators and inclusion-wise minimal assignments (o, σ) such that l is contained in
the preconditions of σ(o). Some precondition supports induced by the operators
from Example 2 are:

PSstreet(B,C) = {(drive(l1, l2), {l1 7→ B, l2 7→ C})}
PS¬street(A,B) = {}
PStruckAt(A) = {(drive(l1, l2), {l1 7→ A}), (load(l, p), {l 7→ A}),

(unload(l, p), {l 7→ A})}
PS¬loaded(P1) = {(load(l1, l2), {})}

The effect support ESl is defined analogously as the set of all pairs of operators and
inclusion-wise minimal assignments (o, σ) such that l is contained in the effects of
σ(o). Given an operator o and an assignment σ, we define

Doto,σ := doto ∧
∧

v 7→c∈σ
mt
o,v 7→c, (2.1)

which expresses that an instance of σ(o) is applied in step t.
Fh is the conjunction of the formulae given below. Each of them constrains

the Boolean variables in order to establish their semantics. We do not necessarily
give the formulae in CNF and use implications (→), thus the formulae have to be
converted to CNF using trivial transformations in order to be valid input for SAT
solvers.

1. The initial state holds in step 0:

∧
a∈A

is0
a if a ∈ s0,
¬is0

a otherwise.
(2.2)

2. Ensuring that the goal literals are satisfied after the last step:

∧
l∈g

ishl if l is positive,
¬ish

l
if l is negative.

(2.3)

The following formulae are instantiated for each step t ∈ {0, . . . , h− 1}.

3. At most one constant can be assigned to each parameter of any operator o:

∀v ∈ param(o) :
∧

c1,c2∈C
c1 6=c2

¬mt
o,v 7→c1 ∨ ¬m

t
o,v 7→c2 (2.4)
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4. Each operator o needs to be ground in order to be applied:

∀v ∈ param(o) : doto →
∨
c∈C

mt
o,v 7→c (2.5)

5. If an operator is applied, its preconditions need to be satisfied:

∀l ∈ L, (o, σ) ∈ PSl : Doto,σ →

istl if l is positive,
¬ist

l
if l is negative.

(2.6)

6. Likewise, the effects change the state of the next step:

∀l ∈ L, (o, σ) ∈ ESl : Doto,σ →

ist+1
l if l is positive,
¬ist+1

l
if l is negative.

(2.7)

7. Frame axioms. Variables representing the same atom in consecutive steps only
differ if an action is applied to support the change from false to true

∀a ∈ A : (¬ista ∧ ist+1
a )→

∨
(o,σ)∈ESa

Doto,σ (2.8)

or from true to false:

∀a ∈ A : (ista ∧ ¬ist+1
a )→

∨
(o,σ)∈ES¬a

Doto,σ. (2.9)

2.4.3. Step scheduling
Trying to solve every formula F0, F1, . . . until a solvable formula is found additionally
proves that no plan within a smaller horizon exists. This method therefore yields a
shortest plan if sequential step semantics are used. In general however, the horizon
does not carry any practical meaning. Since proving unsolvability for the last
unsolvable formula is often much more difficult to than it is to find a model for
the first solvable formula ([RHN06]), we can employ more efficient step scheduling
strategies. On the one hand, one wants to skip all hard unsolvable formulae and
find an easy solvable formula. On the other hand, skipping solvable formulae can
make the formula unnecessarily large. Therefore, heuristics have to be employed to
predict the easiest solvable formula. A common step scheduling strategy introduced
by Rintanen[Rin14] to increase the horizon by a constant factor γ > 1 and solve the
formulae Fdγ0e, Fdγ1e, . . . successively.

2.4.4. Incremental SAT Solving
We expect to prove unsatisfiability for multiple formulae in succession. If these
formulae are very similar in that they mostly build up on each other, we speak of

14
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incremental SAT solving. Incremental SAT solving is a common pattern for many
applications, among them is planning. Thus, SAT solvers have been developed for
this specific use case. They maintain a growing set of clauses to satisfy and a list of
assumptions. Assumptions are literals that are added as unit clauses only for the
next solving attempt and removed afterwards. The solver “carries over” knowledge
from previous solving attempts.
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3. Related Work
The literature about automated planning in general is very broad. In this chapter
we give an overview of the work that covers similar topics to this thesis and discuss
their relevance to our approach.

3.1. Grounding
Almost all state-of-the-art planners ground the PDDL planning task in an early
stage prior to the actual planning. The Fast Forward planning system by Hoffmann
and Nebel[HN01] grounds operators step by step and prunes them as soon as
their rigid preconditions become unsatisfiable. Once all operators are ground,
it filters out unreachable operators utilizing a planning graph (Blum and Furst
introduced planning graphs for their novel Graphplan[BF95] planner). Edelkamp
and Helmert proposed an efficient method for generating a ground finite domain
representation [EH99] for planning tasks. In contrast to propositional representations,
variables in finite domain representations can take a finite number of values instead
of only true and false. Finite domain representations are generally more expressive
and are often more concise. Their original method was only applicable to a small
subset of PDDL features but was later extended and refined by Helmert[Hel09].
The grounding procedure itself is based on delete relaxation, a concept introduced
by Hoffmann and Nebel[HN01] and converts the planning task into a datalog
program for the actual grounding. Datalog is a logic programming language, which
allows the generation of the reachable ground operators without first generating
all possible ground operators. Their grounding procedure performs very well in
practice, thus many planners from the latest International Planning Competition1

(IPC) and Sparkle Planning Challenge2 rely on it (e.g., [Kat+18][HRK11][FBS19]).
The advantages of finite domain representations are evident to us, yet for our
foundational research we rely on Boolean atoms throughout this thesis.
Above grounding strategies are most effective when a ground representation is

desired. Especially the reachability analysis is only tangible with ground operators.
Less research has been published regarding partial grounding and planning with
lifted representations in general. Ridder and Fox presented a technique to derive
a partially grounded representation from a lifted relaxed planning graph[RF14].
In particular, they showed how to handle the complexity blowup entailed with
generating the relaxed planning graph in a lifted setting. In a recent publication,

1https://ipc2018-classical.bitbucket.io/
2http://ada.liacs.nl/events/sparkle-planning-19
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Gnad et al. described how to employ machine learning for grounding[Gna+19].
Their algorithm predicts which operators are relevant for the planning process
und thus should be grounded next. At some point, they try to solve the planning
problem with the already grounded operators. This might fail if the ground operators
are insufficient to find a plan. In that case, they continue the grounding process
and retry. The main difference to our approach is that their representations are
incomplete and are extended when needed. Also, the actual planning is exclusively
done with ground operators, while we allow partially instantiated operators in the
representation to encode.

3.2. SAT-based Planning
As already mentioned in Section 2.4, Kautz, Selman, et al. were the first to represent
planning problems as SAT formulae. They initially proposed an encoding based on
a ground representation using sequential step semantics, but later ([KMS96]) added
encodings that supported ∀-step semantics and lifted representations. Using SAT
solvers for planning has since then been a popular approach, given the fast advances
in SAT solving techniques (e.g., CDCL3). Consequently, many improvements to
the original encodings as well as entirely novel approaches have been proposed.
Besides the ability to find shortest plans, SAT-based planning was popular to find
shortest parallel plans with ∀-step semantics. Rintanen et al.[RHN06] argued that
the makespan of parallel plans lacks practical importance and proposed ∃-step
semantics (see Section 2.4.1), based on ideas from Dimopoulos et al.[DNK97]. ∃-step
semantics allow more actions to be applied in one step, given they could be applied
one after the other. They presented multiple encodings for ∃-step semantics with
various restrictions, but all required the actions of each step to be initially applicable.
Relaxed ∃-step semantics, introduced by Wehrle and Rintanen[WR07], expand this
idea by dropping this requirement. Still, effects had to be consistent in each step.
Balyo lifted this restriction by proposing a further relaxation [Bal13]: With R2-
exists-step semantics, effects are allowed to disable effects of previous actions in the
same step.

Step scheduling is an important factor for the efficiency of SAT-based planners if
optimal makespans are not required. Many makespan scheduling strategies, such as
parallel solving and preemption, are discussed in [RHN06].
An entire different approach to planning as SAT was also presented by Kautz

and Selman with the planner Blackbox[KS98]. This planner generates a planning
graph for a fixed number of layers and encodes that graph as a SAT formula. If
this formula is unsolvable, the planning graph needs to be extended to generate a
solvable formula.

Although SAT based planning has recently lost popularity in favor of state-space
searches, it is still competitive in many areas. The Madagascar planner family[Rin14]
by Rintanen is a set of highly optimized SAT based planners with a handcrafted

3Conflict driven clause learning (CDCL) is based on DPLL and was first proposed in [MS96]
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SAT solving backend. It ranked highly in the IPC 20144 and is often used in planner
portfolios[Rina].

3.2.1. Lifted encodings
Kautz et al. proposed the first encodings for lifted representations, but they were
limited to sequential step semantics[KMS96]. Transferring their encodings with
parallel step semantics to a lifted representation allows for only one instantiation per
operator in each step. Robinson et al. were the first to propose a lifted encoding that
was able to find makespan-optimal parallel plans with ∀-step semantics[Rob+09].
They achieve this by selecting a set of preconditions and effects to be applied in each
step. Each operator whose preconditions and effects are selected is then considered
as applied. Selecting consistent sets of preconditions and effects however entails the
complexity of grounding the operators and requires a much more complex encoding.

3.2.2. Parallel Planning
There are a few different approaches towards parallel SAT based planning. One is
to solve multiple formulae simultaneously. Rintanen et al. describes in [RHN06]
how multiple horizons can be tested in parallel. The hope is that not all processes
try to solve hard, unsatisfiable formulae. The algorithm finishes as soon as one
satisfiable formula is solved. Since generating a model for a solvable formulae
generally requires much less time than proving that a formula is unsolvable, this
approach can theoretically scale arbitrarily. Another approach is to use a portfolio
of different encodings and/or SAT solvers. This approach does not scale very well
but is applied successfully for hard combinatorial problems (e.g. [BSS15]). Finally,
one can trivially parallelize SAT based planning by using parallel SAT solvers such
as Glucose-Syrup[AS14] or Plingeling[Bie13].

4https://helios.hud.ac.uk/scommv/IPC-14
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4. Planning with Partially
Instantiated Representations

In this chapter we present our approaches to utilize partially instantiated repre-
sentations for the planning process in detail. At first, we outline the scope of our
approaches and introduce our algorithms. We then describe its key components and
justify critical design decisions.

4.1. Outline
The main idea is to ground, encode and solve the planning problem in an interleaving
or parallel fashion. We therefore eliminate the need to ground the planning task
beforehand and can take advantage of encodings for lifted representations. The
grounder maintains a partially instantiated representation of the initial planning
task. This representation can then be repeatedly refined. These intermediate
representations can serve multiple purposes. Firstly, we can add constraints about
the pruned operators to an existing encoding in order to guide the SAT solver.
Secondly, we can re-encode these representations as they might yield more compact
formulae for the SAT-solver.
We further present a parallel variant of our planner. This planner concurrently

grounds the planning task and tries to solve formulae for intermediate representations.
Also, we also parallelize the grounding process itself.

4.2. Grounding
In this chapter we describe the grounding algorithm in detail and present the
options we explored for its subroutines. The key feature of our grounder is the
stepwise grounding of the initial lifted representation. More precisely, given a target
groundness, the grounder refines the representation until this groundness is reached.
The grounding can then be resumed at a later time aiming for a higher groundness.
Operators are pruned while grounding to reduce the size of the representations. We
give a tractable definition of prunablility and present different methods to identify
prunable operators.

As the grounding routine stops when a given groundness is reached, we first define
the metric to measure the groundness.
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Definition 5 (Groundness). Given a lifted representation ΠL, the groundness rΠL

of representation Π′L instantiated from ΠL is

rΠL
(Π′L) := |O

′|+ |O(ΠL) \O(Π′L)|
|O(ΠL)|

, (4.1)

where O′ are the operators of Π′L. Intuitively, rΠL
expresses the fraction of all

operators that are present in Π′L or pruned from ΠL to all possible ground operators.
Thus, rΠL

(·) ∈ [0, 1]. We write r for rΠL
if ΠL is clear from context.

The higher r, the more operators are instantiated or pruned. It is r(Π′L) = 1 if and
only if all operators in Π′L are ground1. The grounding procedure iteratively refines
and prunes operators until the desired groundness is reached. Refining an operator
is to select a subset of the parameters and replace the operator with all its instances
that have constants assigned to exactly these parameters. These instances are refined
operators of the original operator. Algorithm 1 shows this procedure. It takes a
lifted representation ΠL = (C,O, s0, g) of a planning task and the target groundness
rt as input and outputs a partially instantiated representation Π′L with r(Π′L) >= rt.
Since the intermediate groundness (line 2) increases monotonically and converges
towards 1 with refining and pruning, the algorithm always terminates. In the

Algorithm 1: Iterative Grounding
Data: Lifted representation ΠL = (C,O, s0, g) and groundness rt ≤ 1
Result: Partially instantiated representation Π′L such that r(Π′L) ≥ rt

1 O′ ← O;
2 while r((C,O′, s0, g)) < rt do
3 o← selectOperator(O′);
4 V ← selectParameters(o);
5 O′ ← O′ \ {o};
6 forall assignments σ with variables from V do
7 if prune(σ(o)) = false then
8 O′ ← O′ ∪ {σ(o)};
9 end

10 end
11 end
12 filter(O′);
13 Π′L ← (C,O′, s0, g);
14 return Π′L

following, we discuss the main parts of the algorithm. The method selectOperator
in line 3 selects the next operator to refine and selectParameters (line 4) chooses

1This is not true for the pathological case where |C| = 1, since each operator then only has one
instantiation.
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the parameters to refine with. The instances of o are added back to O′ unless they
can be pruned (line 7). The filtering (line 12) again removes prunable operators
from the final representation. Although the partially instantiated representations
obtained with rt < 1 might differ depending on the operator and parameter selection,
the ground representation obtained with rt = 1 is the same regardless of these
selections.

4.2.1. Pruning
Oftentimes, a large portion of the operators is not needed to find a plan. Pruning
operators not only reduces the encoding size and therefore planning time, but also
can make grounding itself feasible in the first place. On the one hand, we want to
prune as many operators as possible, on the other hand we must not prune operators
that might be required to find a plan. An operator can be pruned if no instance of
it is reachable or has useful effects to reach the goal. As it is PSPACE-hard to decide
whether an operator is reachable (consider the preconditions of a ground operator
as goal), we relax these constraints and only identify a subset of all operators that
can safely be pruned. We extend the definition of rigidness to ground atoms and
introduce the concept of uselessness.
Given a lifted representation of a planning task, a ground atom a is rigid true

if it holds in the initial state and no operator can be instantiated such that it has
¬a as effect. Similarly, it is rigid false if it does not hold in the initial state and no
operator can be instantiated such that it has a as effect. Thus, all ground atoms of
rigid predicates are either rigid true or rigid false. Rigid atoms either hold in every
reachable state or in no reachable state.

A ground atom a is useless if neither a nor ¬a are a goal and no operator can be
instantiated such it has a or ¬a as precondition. Whether or not a useless atom
holds is irrelevant for the goal and the applicability of any operator.
We call an operator prunable if all its ground instances

a) have at least one precondition that requires a rigid true atom to not hold, or

b) have at least one precondition that requires a rigid false atom to hold, or

c) have all effects changing useless atoms or uphold rigid atoms.

We check only if one of the cases applies to all ground instances of an operator
so that we do not need to generate all ground instances but can instead test the
ground literals of each precondition and effect independently. However, this method
does not detect all prunable operators as early as possible. Consider the following
operator:

do(x)
Preconditions: precond(x)
Effects: eff(x)
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Given that the constants are {A,B} and only precond(A) is rigid false and only
eff(B) is useless, the operator can be pruned because either case b) or case c) applies
for each ground instance but neither case is applicable to all ground instances.
Nevertheless, prunable ground operators are always detected, thus the instances of
prunable operators are pruned eventually.
Since it might be computationally expensive to generate all ground literals for

each precondition and effect, we present three pruning policies.

Eager generates all ground literals of all preconditions and effects to check if they
render the operator prunable. This policy detects prunable operators earlier
than the other policies but is the most computationally expensive.

Ground only checks preconditions and effects that are already ground. This policy
does not necessarily detect all prunable operators found by the Eager policy
unless the operator is ground. In particular, case c) can only be considered if
all effects are ground. Thus, detecting a prunable operator might be delayed
until it is sufficiently refined.

Rigid is a relaxed version of the Ground policy. It only considers ground pre-
conditions of rigid predicates and ground effects. As ground atoms might be
rigid true or rigid false even though the corresponding predicate is not rigid,
this policy does not detect all prunable operators. Nevertheless, it is the least
expensive policy to compute.

Pruning operators might render other operators prunable. Therefore, O′ might still
contain prunable operators after the loop finished. The filtering in line 12 iteratively
removes all prunable operators from O′.

4.2.2. Operator Priority
We use a first-in-first-out (FIFO) queue to determine which operator is selected
to be refined next. After refining an operator, the refined operators are inserted
into the queue. Ground operators cannot be refined anymore and are therefore not
inserted back.
This method aims to balance the partially instantiated representation. That

is, we want to avoid some operators to be ground while others still have a high
valence. Although not further considered, we can think of more sophisticated
operator selection algorithms. For example, one could try to prioritize operators
that have many instances applicable in one step of the encoding. Since only one
instance per operator can be applied in each step (see Section 2.4.2), this strategy
could effectively shorten the makespan required to find a plan.

4.2.3. Parameter Selection
The parameters to refine the operator with have to be selected carefully. If few
parameters are selected, the chance to prune operators after refinement is low.
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Thus, the pruning of other operators might be delayed. This delay can lead to the
refinement of operators that could have been pruned if another operator was further
refined. Also, the groundness progresses slowly in each iteration and operators
might be required to be refined multiple times. Selecting many parameters at once
however might be infeasible because refining generates exponentially many operator
instances in terms of the selected parameters. Additionally, generating the instances
entails unnecessary work if many of the instances are pruned anyway. We propose
multiple strategies to deal with parameter selection.

Most Frequent selects the parameter that occurs most often within the operator.
Grounding with this strategy is potentially slow but avoids combinatorial
blowup while refining. The idea is that selecting the most frequent parameter
is more likely to yield ground preconditions than other parameters. Ground
preconditions are desirable for detecting prunability since they can be checked
for rigidness efficiently. This strategy is used as fallback for the other strategies
if they otherwise would not select any parameter.

Min Ground identifies the precondition that has the fewest ground instances and
selects all parameters occurring in that precondition. Thus, the strategy
aims to keep the number of refined operators low but guarantees that one
precondition will be ground in every refined operator.

Min New tries to ground preconditions early while keeping the number of refined
operators low. To do so, it identifies the precondition that has the fewest
potentially satisfiable ground instances and selects all parameters occurring
in that precondition. A ground literal is potentially satisfiable if it is either
positive and its atom not rigid false or negative and its ground atom not
rigid true. All refined operators with preconditions that are not potentially
satisfiable are thus never applicable. If the Rigid pruning policy is used,
only preconditions of rigid predicates are accounted for when counting the
potentially satisfiable ground instances. The number of potentially satisfiable
ground instances of the selected precondition is an upper bound for the actual
number of refined operators that are not pruned. A refined operator might
still be detected as prunable because of other preconditions.

Max Pruned is similar to Min New. This strategy prunes operators early to
avoid refining operators that are later pruned anyways. It therefore identifies
the precondition that has the most unsatisfiable ground instances and selects
all parameters occurring in that precondition. A ground literal is unsatisfiable
if it is either positive and its ground atom is rigid false or negative and
its ground atom is rigid true. Again, if the Rigid pruning policy is used,
only preconditions of rigid predicates are accounted for when counting the
unsatisfiable ground instances. The number of unsatisfiable ground instances
of the selected precondition is a lower bound for the number of pruned refined
operators since all refined operators that are prunable because of the selected
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precondition are detected as such. Additionally, refined operators might be
prunable independently of this precondition.

Effects selects the parameters occurring in an arbitrary effect that is not ground.
As the frame axiom formulae (Equations (2.8) and (2.9)) are in DNF (dis-
junctive normal form, a disjunction of conjunctions of literals), they grow
exponentially when converting them to CNF. This strategy aims to remove
non-ground effects to make the frame axiom encoding more efficient (Equa-
tions 2.8 and 2.9). Ground effects do not contribute to the combinatorial
explosion when converting the frame axiom encoding from DNF to CNF. In
fact, if all assignments in one effect support are empty (i.e., the corresponding
effects are ground), the frame axiom formula for that effect support is in CNF.

The different grounding strategies are evaluated regarding grounding time and
operators of intermediate representations in Section 5.4.1.

4.2.4. Parallel Grounding
Multiple aspects of our grounding algorithm can be subject to parallelization. We
focused on concurrently refining multiple operators. The parallel algorithm is given
in Algorithm 2. The parallel grounding algorithm is nondeterministic and might yield

Algorithm 2: Parallel Grounding
Data: Lifted representation ΠL = (C,O, s0, g), threads p, groundness rt ≤ 1
Result: Partially instantiated representation Π′L such that r(Π′L) ≥ rt

1 O′ ← O;
2 foreach i ∈ [0, . . . , p− 1] parallel do
3 while r((C,O′, s0, g)) < rt do
4 o← selectOperator(O′);
5 V ← selectParameters(o);
6 O′ → O′ \ {o};
7 forall assignments σ with variables from V do
8 if prune(σ(o)) = false then
9 O′ ← O′ ∪ {σ(o)};

10 end
11 end
12 end
13 end
14 filter(O′);
15 Π′L ← (C,O′, s0, g);
16 return Π′L

different partially instantiated representations for r < 1 than the sequential version.
The differences regard the operator selection (line 4) and the final groundness.
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The parallel version selects multiple operators concurrently and thus might refine
operators that would not yet be considered by the sequential version. Also, the
parallel version generally refines more operators than necessary to reach the given
groundness due to the refinement of multiple operators in parallel.

4.3. Encodings
In this section we present multiple SAT encodings that are designed for lifted
representations and feature different step semantics. All encodings share the formulae
of the base encoding described in Section 2.4.2 thus we only describe modifications
of the base encoding for each encoding. We discuss advantages and shortcomings
as well as the encoding size of each modification. Let ΠL = (C,O, s0, g) be the
planning task and h the horizon to encode. We adopt the notations introduced for
the base encoding. The formulae below are instantiated for every t ∈ {0, . . . , h− 1}
unless otherwise specified.

As discussed in Section 4.2.3, frame axioms grow exponentially when converting
to CNF. One option is to introduce new variables to linearize the conversion, similar
to the Tseytin transformation [Tse83]. As this is a trade-off between the number of
clauses and number of variables, we introduce the DNF threshold dmax to control the
maximum number of disjunctions allowed in a DNF before linearizing it. We also
investigate the option to reduce this exponential blowup by implying the operator
for each parameter and removing doto from Doto,σ whenever possible. To do so, we
add these formulae for each operator o ∈ O in each step t ∈ {0, . . . , h− 1}

∀v ∈ param(o) :
∧
c∈C

mt
o,v 7→c → doto (4.2)

and change the definition of Doto,σ in Equation (2.1) to

Doto,σ :=

doto if σ = ∅,∧
v 7→c∈σmt

o,v 7→c otherwise.
(4.3)

We evaluate the performance of the following encodings and the presented options
to handle conversions to CNF in Section 5.4.5.

Sequential. This encoding realizes sequential step semantics and only allows one
action in each step. Thus, for every two distinct operators o1 and o2 we add

¬doto1 ∨ ¬do
t
o2 . (4.4)

Sequential step semantics generally require greater horizons in order to find plans
compared to parallel step semantics and have several other disadvantages, as
discussed in Section 2.4.1. Nevertheless, this encoding only adds O(|O|2) clauses, so
it thus might be preferable if interference is expensive to encode.

27
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Foreach. To encode ∀-step semantics, we need to forbid interfering actions to be
applied in one step. Note that only cases (c) and (d) of interference are relevant,
since cases (a) and (b) can never occur in one step due to Equations (2.6) and (2.7).
We establish ∀-step semantics with

∀l ∈ L :
∧

(o1,σ1)∈ESl,
(o2,σ2)∈PS

l
,

o1 6=o2

¬Doto1,σ1 ∨ ¬Do
t
o2,σ2 . (4.5)

The number of added clauses is in O(|C|vp · |O|2), with vp denoting the maximum
valence of all predicates. These interference clauses can dominate the overall size
of the encoding. Note that this encoding is generally more restrictive than ∀-step
semantics allow. It is only possible to apply one ground instance for each encoded
operator in each step, while ∀-step semantics allow multiple ground instances of
one operator in one step. As the potential parallelism of this encoding increases
if multiple instances of the same operator are encoded as distinct operators, the
horizon required to find a plan decreases with representations of higher groundness.

Restricted Foreach. We can further restrict the ∀-step semantics described above
by only allowing operators to be applied in the same step if they have no interfering
instances. This restriction yields a more compact encoding: For operators o1 and o2
that have interfering instances we add

¬doto1 ∨ ¬do
t
o2 . (4.6)

This encoding requires only O(|O|2) additional clauses but forbids potentially non-
interfering actions to be applied in the same step. The restricted foreach encoding
is equivalent to the sequential encoding if all operators have interfering instances.
However, it approaches the step semantics of the foreach encoding with increasing
groundness. In fact, it equals the foreach encoding if all operators are ground since
no two ground operators can have interfering instances without being interfering
themselves.

Exists. We encode ∃-step semantics similar to the idea of Rintanen et al. in [RHN06,
Section 3.4.4]. We impose a fixed ordering o1 < · · · < o|O| on the operators in O and
define rank(σ(oi)) := i for any assignment σ. This ordering determines the order in
which actions in each step are applied. Hence, we allow ground instances o and o′ to
be applied in the same step if o disables o′ only if rank(o) > rank(o′). The encoding
uses the concept of disabling chains. Operators activate disabling chains for their
effects when applied. At the same time, they cannot be applied if a disabling chain
for any precondition was activated by an operator with higher precedence (hence
the name). We introduce helper variables cta,o and ct¬a,o for every a ∈ A, o ∈ O and
t ∈ {0, . . . , h− 1} to encode the disabling chains for every ground literal. Figure 4.1
illustrates the encoding of disabling chains. Since ¬l is a precondition of σk(ok), this
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Dotoi,σi
Dotoj ,σj

. . . ctl,oi
ctl,oi+1

. . . ctl,ok
. . .

Dotoi,σ′
i

Dotok,σk

l as effect

l as precondition

Figure 4.1.: Disabling chain for a ground literal l with i < j = k − 1. Arrows
between formulae indicate implication, crossed out arrows indicate
implication of the negation. In this example, (oi, σ′i), (ok, σk) ∈ PSl and
(oi, σi), (oj, σj) ∈ ESl.

operator must not be applied if another operator with lower rank has l as effect. In
this case, both σi(oi) and σj(oj) have lower rank than σk(ok) and l as effect. Thus,
if any ground instance of σi(oi) or σj(oj) is applied, ctl,ok

is set to true and prevents
any ground instance of σk(ok) from being applied in the same step. The encoding
then is as follows. The helper variables form a chain

∀l ∈ L, i ∈ {1, . . . , |O| − 1} : ctl,oi
→ ctl,oi+1

, (4.7)

effects activate a chain

∀l ∈ L :
∧

(o,σ)∈ESl,
rank(o)<|O|

Doto,σ → ctl,orank(o)+1
(4.8)

and active chains deactivate operators with corresponding preconditions

∀l ∈ L, (o, σ) ∈ PSl : ctl,o → ¬Doto,σ. (4.9)

These constraints add O(|A| · |O|) clauses, therefore the exists encoding is smaller
than the foreach encoding on most instances. Also, this encoding is always at least
as permissive as the foreach encoding, because every two operators that can be
applied in one step according to ∀-step semantics can also be applied in one step
with this encoding. However, this encoding requires O(|A| · |O|) additional variables,
which can harm the SAT solver’s performance. Compared to the encoding proposed
by Rintanen et al. for ground representations, this encoding is more restrictive. Since
the ordering in our encoding is imposed on the operators of O, every ground instance
of o1 has lower rank than any ground instance of o2. The higher the groundness,
the more precise orderings are allowed.
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4.4. Planning Algorithms
In this section we present our planning algorithms. They each use different strategies
to schedule the grounding process and SAT solving. These strategies involve
heuristics to determine whether to proceed grounding, trigger a new SAT solving
attempt and when to stop a SAT solver. The planning algorithms are evaluated
regarding time to find plans and memory usage in Section 5.4.3.

4.4.1. Smallest Encoding
The idea of this planning algorithm is to scan partially instantiated representations
of different groundness to find the one yielding the smallest encoding. The SAT
solver then uses this encoding to find a plan. More precisely, given a granularity
k ≥ 1, we generate F1 for each partially instantiated representation with groundness
i
k
, i ∈ [0, . . . , k] and select the smallest formula of them. Experiments suggest that

using the number of variables is a sensible metric for encoding size (see Section 5.4.3).
The pseudo-code for this planning algorithm is given in Algorithm 3. A time limit
can be imposed to the loop in line 3 to ensure that solving is attempted for planning
tasks where grounding would exceed the total time limit.

Algorithm 3: Smallest Encoding
Data: Lifted representation ΠL = (C,O, s0, g), granularity k ≥ 1, step factor

γ > 1
Result: Plan P

1 Π̂L ← ΠL;
2 i← 1;
3 while i ≤ k do
4 ΠL ← proceedGrounding(ΠL,

i
k
);

5 if |encode(ΠL)| < |encode(Π̂L)| then
6 Π̂L ← ΠL;
7 end
8 i← i+ 1;
9 end

10 m← solve(Π̂L, γ);
11 return toPlan(m);

The method encode takes the representation to encode as an argument and returns
the corresponding boolean formula. proceedGrounding takes a representation and a
target groundness as argument and grounds the given representation until the target
groundness is reached (see Section 4.2). Note that the groundness is calculated with
respect to the initial lifted representation. The solve routine repeatedly encodes
the representation with horizons dγ0e, dγ1e, . . . until a satisfiable formula is found
and the model can be returned. As Rintanen mentioned in [Rin14], proving the
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unsatisfiability of formulae is much harder for SAT solvers than showing satisfiability.
To prevent the planner from spending too much time on unsatisfiable formulae, we
introduce step skipping. Initially, each SAT solving attempt is interrupted after a
given timeout. If a solving attempt is interrupted, the current formula is deemed
unsolvable and the encoding for the next horizon is solved. The step skipping
parameter controls how many attempts in a row may fail due to the timeout before
the timeout is lifted.

We can also make use of information about pruned operators if the representation
with the smallest encoding is not the representation with the highest groundness.
For each tuple of operator o in the representation to encode and assignment σ where
σ(o) is pruned in the representation with the highest groundness, we can add

¬Doto,σ (4.10)

for each step t to the encoding.

4.4.2. Interruptive Planning
This approach tries to solve encodings for partially instantiated representations
with increasing groundness. Basically, we alternate between grounding and SAT
solving. If the SAT solver takes too long to solve a formula, the encoding is deemed
infeasible and dismissed in favor of an encoding for a representation with higher
groundness.
This approach can be advantageous over the previous one if the encoding size

does not correlate with the difficulty to find a model for the encoding. Also, it might
be necessary to encode a representation with high groundness albeit it has a large
encoding if plans are very long and the increased step parallelism is required to keep
the horizon low (see Section 4.3). A disadvantage is that solving attempts might be
interrupted prematurely. That is, time is spent solving encodings that might later
be discarded in favor of inferior encodings. Algorithm 4 illustrates the described
approach. The trySolve method essentially does the same as solve but terminates
after the given timeout. If the timeout occurs before a model to a satisfiable formula
can be found, the returned model is empty.

We can interleave the individual SAT solving attempts with grounding instead of
grounding after trySolve times out. Information about pruned operators can then
be incorporated in subsequent SAT solving attempts for higher horizons analogous
to Equation (4.10).
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Algorithm 4: Interruptive SAT Planning
Data: Lifted representation ΠL = (C,O, s0, g), granularity k ≥ 1, solving

timeout t, step factor γ > 1
Result: Plan P

1 i← 1;
2 while i < k do
3 m← trySolve(ΠL, γ, t);
4 if m 6= ∅ then
5 return toPlan(m);
6 else

// trySolve timed out
7 ΠL = proceedGrounding(ΠL,

i
k
);

8 i← i+ 1;
9 end

10 end
11 ΠL = proceedGrounding(ΠL, 1);
12 m← solve(ΠL, γ);
13 return toPlan(m);

4.4.3. Parallel Planning
We extend the idea of the interruptive planning by parallelizing the approach. Con-
currently solving multiple encodings at once mitigates the problem with premature
interruption of solving attempts. However, this approach consumes more memory
since multiple SAT solvers have to be maintained simultaneously. The parallel ver-
sion is given in Algorithm 5. This approach can also make use of the parallel version
of the grounding routine. Since the planning task needs to be further grounded
prior to a new solving attempt (line 7), all threads that are not currently occupied
with solving an encoding can participate in the grounding process. Specifically,
p− i−1 threads can concurrently ground the task to groundness i+1

p−1 . The algorithm
terminates as soon as any thread returns a plan (line 4).
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Algorithm 5: Parallel Grounding and SAT solving
Data: Lifted representation ΠL = (C,O, s0, g), threads p ≥ 2, step factor

γ > 1
Result: Plan P

1 foreach i ∈ [0, . . . , p− 1] do
2 in new thread do
3 m← solve(ΠL, γ);
4 return toPlan(m);
5 end
6 if i 6= p− 1 then
7 ΠL = proceedGrounding(ΠL,

i+1
p−1); // By p− i− 1 threads

8 ;
9 end

10 end
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5. Experimental Results
We first describe implementation details of the components of our planners and
present our hardware and software setup. We then introduce the planning tasks
we used for the experimental evaluation. We also show how we attain a reasonable
configuration of the tuning parameters mentioned in the implementation details
and the previous chapter. We further evaluate the performance of the proposed
grounding procedure (see Section 4.2) and the planning algorithms (see Section 4.4)
in combination with the different encodings presented in Section 4.3. Finally, we
compare the performance of our planners with other successful, openly available
planning systems.

5.1. Implementation
We implemented our planners with C++17. We compiled the programs using g++

version 9.2.0 with optimizations -O3 -march=native enabled.
The planning process consists of reading and parsing the input, normalizing and

grounding the planning task, encoding the planning task as SAT instances and
solving these instances with a SAT solver. We implemented all but the SAT solver
ourselves and have no third-party dependencies. Our implementation supports
IPASIR, a C header to interface with incremental SAT solvers [Bal+16]. Thus, our
implementation can utilize any SAT solver that implements the IPASIR interface
by linking against it.
The time and memory resources required to perform input processing as well

as the normalizing are negligible for all tested inputs and therefore not explicitly
considered in our experiments.

As PDDL has type support for constants, variables and parameters, we use that
additional information when available to restrict the number of possible ground
atoms and ground operators.

5.1.1. Grounding
Implementing the grounding routine efficiently is crucial to the performance of our
planners. As discussed earlier, the number of operators in a ground representation
might be exponential in the number of parameters of the operators in the lifted
representation. Therefore, both time efficiency and memory consumption have to
be considered. In the following we present how we select the next operator to refine,
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compute the groundness and speed up the pruning test. Lastly, we discuss the
measures we take to parallelize the grounding process.

Operator Selection. The grounder maintains a list of the operators comprising
the current partially instantiated representation. The grounding itself consists of
repeatedly refining each operator in the list. The refined operators are first buffered
in a new list. After all operators of the list are refined, we replace the operator
list with the buffer. For the purpose of fast iterating through the list and keeping
allocation costs low, both the current list and the buffer are continuous in memory.
The number of all refined operators of the operators currently in the list can be
overestimated to preallocate the buffer.

Computing the Groundness. The groundness of the partially instantiated repre-
sentation maintained by the grounder is computed online. Whenever an operator
is pruned, we add the number of possible ground operators of that operator to
a counter. Then the groundness is the size of the operator list plus that counter
divided by the total number of possible ground operators.

Detecting Prunability. Depending on the pruning policy (see Section 4.2.1), test-
ing whether an operator is prunable is computationally expensive and can dominate
the time required to ground a planning task. Unless rigid pruning is used, we
repeatedly need to check if a ground atom is useless, rigid true or rigid false in
order to test an operator for prunability. Thus, a naïve approach is to check if any
operator in the operator list contradicts the rigidness or uselessness of the ground
atom to check. We speed up this check by caching information about previously
checked ground atoms.

• Successful Caching. The idea is to cache rigid and useless atoms. Once we
determine that a ground atom has any of those properties, we insert it into a
corresponding hash map. If we later check this ground atom again, we find it in
the hash map and can skip iterating over all operators. Thus, repeated checks
of rigid or useless ground atom do not require to iterate over all operators
again. Once a ground atom is determined to be rigid or useless, it keeps this
property for the whole grounding process, therefore the caches do not need to
be cleared.

• Unsuccessful Caching. We extend this idea to also cache unsuccessful checks.
That is, whenever we determine that a ground atom is not rigid or useless, we
insert it into corresponding hash maps. In order to be accurate, this cache
would have to be cleared whenever an operator is pruned as this can render
the effects rigid and the preconditions useless. At the cost of occasional false
negatives when checking ground atoms for rigidness or usefulness, we clear
the cache every time after all operators in the current operator list have been
refined.
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While checking if an operator can be pruned, we additionally simplify it by removing
unnecessary preconditions and effects. A precondition is unnecessary if it always
holds (i.e., requires either a rigid true atom to hold or a rigid false atom to not
hold). An effect is unnecessary if it either affects useless atoms or upholds rigid
atoms. Simplifying operators reduces the memory usage during grounding, can
speed up the tests for rigidness and usefulness and reduces the size of the encoding,
thus benefiting the SAT solver.

Parallel Grounding. The implementation of our parallel grounding approach is
straightforward. The list of operators is equally divided up between all participating
threads. To avoid contention on the buffer of refined operators, each thread maintains
its own buffer. Each time after all operators in the list have been refined, the threads’
buffers are merged to replace the operator list.
Since multiple threads access the caches concurrently, we need to make them

thread-safe. We do so by guarding every reading and writing access to them with
mutexes. To reduce the contention when accessing the caches, we use one mutex for
each predicate that guards only the part of the cache containing ground atoms of
this predicate.

5.2. Experimental Setup
We conduct all experiments on a computer equipped with an AMD EPYC 7702P
processor with 64 cores running at 2.0 GHz and 1 TB of DDR3 RAM. The operation
system is Ubuntu 19.10 using version 5.3.0-40-generic of the linux kernel.
Each experiment for parameter tuning was executed on a dedicated core and

repeated three times. All data for repeated runs is arithmetically averaged. For
the comparison with other planners we ran each planner once for each planning
task. We impose a time limit of 5 minutes and a memory limit of 10 GB for each
run and inform the planners about these limits when possible. We run as many
experiments in parallel as possible such that each planner has a dedicated core and
enough memory is exclusively available.
All experiments were scheduled, supervised and evaluated using the Downward

Lab [Sei+17]. All plans have been validated with the external plan validator
VAL [HLF04].

5.3. Planning Tasks
All planning tasks are given in a lifted representation in the PDDL format to the
planners. Planning tasks in PDDL are comprised of two files. The domain file
contains the operators as well as information about the types and predicates (the
domain of the task). The problem file contains the constants, the initial state and
the goal. Typically, there are multiple planning tasks that share the same domain
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file. Tasks using the same domain file naturally share many characteristics and are
therefore often grouped together by their domain. Unless otherwise noted, we use
the geometric mean to summarize data from experiments with different problems of
the same domain.

The main sources of planning tasks we use for our experiments are the International
Planning Competition and the Sparkle Planning Challenge. Detailed information
about the planning tasks can be found in Appendix A. In total we conducted
experiments on 558 planning tasks.
We only use the 508 planning tasks from the IPC 2014 and the IPC 2018 (the

IPC set) for the parameter tuning. While we also compare our planners to the
competition on these tasks, the 50 tasks from the Sparkle Planning Challenge 2019
(the Sparkle set) are exclusively used for the comparison with other planners. Note
that our planners are optimized for the imposed time and memory constrains.
All planning tasks we use in our experiments are solvable. SAT based planning

as presented is particularly unsuited to prove that no plan exists for a given task.
Thus, we try to find a plan until the resources are exhausted. Every task for which
we fail to find a plan is counted as unsolved.

5.4. Parameter Tuning
Before evaluating the performance of our planners and comparing them to the
competition, we need to find optimal settings for the available tuning parameters.
Our grounding routine as well as the planning algorithms themselves offer many
opportunities for tuning and configuration. We first perform tests to analyze our
grounding routine independently from the actual planning. We then analyze the
influence of tuning parameters and encodings to our planning algorithms. Finally,
we test different SAT solvers for our planner.

In this section, the term coverage is, depending on the context, either the number
of planning tasks the grounder is able to ground or the number of planning tasks
the planner is able to solve within the time and memory constraints. We often use
cactus plots to display the coverage. The coverage is on the x-axis and the time
on the y-axis. A point on a curve then gives the number of tasks grounded/solved
within the corresponding time per task.

The size of a representation is the number of operators the representation uses.
We use the same resource limitations for the parameter tuning as we do for the
other experiments.

5.4.1. Grounding
For the purpose of tuning the grounding process we consider the time it takes to
fully ground the planning tasks, the size of intermediate representations as well as
the size of the fully grounded representation. We also look at memory consumption,
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Pruning policy Rigid
Parameter selection Most frequent
Caching None

Table 5.1.: Grounder baseline
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Figure 5.1.: The impact of caching and different pruning policies to the grounding
coverage. The eager and ground pruning policies are tested without
caching, the successful caches and both caches, respectively. Rigid
pruning cannot make use of caching.

although no measures are taken by our grounder to react to memory limitations.
The configuration of our baseline grounder is given in Table 5.1.

Pruning Policy. To evaluate the presented pruning policies, we first look into the
effects of caching. Since rigidness and uselessness can be computed very efficiently
with the rigid pruning policy, we only consider caches for the other two policies.
Figure 5.1 shows the coverage for the pruning strategies with different caching
methods as a cactus plot. Table 5.2 gives the coverage broken down by domain.
Without the use of caching, rigid pruning clearly dominates the other policies in
terms of coverage. Generally, the ground policy performs worst. Using only the
successful cache does not significantly improve any policy. When using both caches,
eager pruning outperforms rigid pruning slightly (7 more tasks grounded). We
further consider only configurations that either use both caches or the rigid pruning
policy. While the ground pruning policy is inferior on every domain, both rigid
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Domain Pruning Policy
Rigid Ground Eager

barman (34) 34 34 34
childsnack (30) 30 30 30
data-network (40) 22 22 33
floortile (30) 30 30 30
ged (40) 40 40 40
hiking (40) 40 40 40
openstacks (40) 40 40 40
organic-synthesis (40) 40 40 40
snake (40) 40 40 40
termes (40) 40 40 40
tetris (37) 37 7 36
thoughtful (20) 8 5 5
transport (37) 37 37 37
visitall (40) 40 40 40
Sum (508) 478 445 485

Table 5.2.: Comparison of the number of grounded problems per domain with
different pruning policies. Ground and eager pruning both use successful
and unsuccessful caching. The most frequent parameter selection strategy
is used for all policies. Bold numbers indicate single best values.
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Figure 5.2.: The groundness progress during grounding for the first task of the
domain “barman”. Each data point represents the groundness after all
operators in the operator list have been refined.

and eager pruning excel on some domains. Only the domains “data-network” and
“thoughtful” contain tasks that could not be grounded by any configuration.

The pruning policy controls if and when operators are detected as prunable during
grounding, so the number of operators generated during grounding as well as in the
size of the final representation depend on the policy. The number of operators for
any given groundness is in increasing order for the eager, ground and rigid policy.
However, the ground representation is the same with eager and ground pruning.
With the rigid policy, only a subset of operators pruned by the other policies are
pruned, thus the final representation generally has more operators. Figure 5.2 shows
this behaviour exemplary for one task from the domain “barman”. Note that the
number of operators does not necessarily increase monotonically. If this is the case,
all refined instances of an operator are detected as prunable, however the original
operator was not detected as prunable before (see Section 4.2.1 for details). The
ground pruning policy evidently does not offer any advantage over any other policy
and thus is not considered further.
Figure 5.3 shows that only very few tasks can be grounded with rigid pruning

that cannot also be grounded with eager pruning. Finally, Table 5.3 lists the size of
the ground representation and memory consumption by domain. The additional
memory required by the eager policy is marginal in most cases. The only outlier
is the domain “visitall”, where the memory usage is higher by a factor of 3.45.
However, the memory conserved by pruning more operators with the eager policy
can be significant. Most notably is the domain “data-network”, where only 2.4% of
the memory is required compared to rigid pruning. While the number of operators
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Figure 5.3.: Comparison of the time to ground each task with the eager and rigid
pruning policy. Marks beyond the red lines indicate that this task
was not grounded with the corresponding policy and tasks that were
grounded by neither approach are omitted.

is the same for some domains with both policies, it is notably lower for the domains
“snake” and “tetris” (factor ∼10).

Parameter Selection. The parameter selection for refinement influences the num-
ber of refined operators during the grounding process. However, it does not affect
the size of the final ground representation. Figure 5.4 shows the impact of parameter
selection to the number of grounded tasks. We are able to ground every planning
task in the test suite (508) with the rigid pruning policy using the max pruned
parameter selection for refinement. Every configuration using min ground, min new
or max pruned is superior to any configuration with effects or most frequent. The
eager pruning policy yields the highest coverage with the min ground parameter
selection (505), closely followed by max pruned selection (499).
Figure 5.5 shows that the size of intermediate representations can vastly differ

depending on the selection strategy. Also, the shapes of the curves for each selection
strategy are dissimilar across the domains. As no strategy dominates the others, we
cannot predict their performance in our planners domain-independently.
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Domain Rigid Eager
Operators Mem. (MiB) Operators Mem. (MiB)

barman (34) 2165.02 17.77 1794.52 17.51
childsnack (30) 3714.38 23.42 3714.38 23.44
data-network (22) 2085.27 1306.17 1868.92 30.80
floortile (30) 371.30 15.32 371.30 15.50
ged (40) 2008.91 18.21 1966.46 18.27
hiking (40) 9673.10 44.27 9673.10 44.28
openstacks (40) 13 897.78 49.81 13 897.78 50.14
organic-synthesis (40) 170 203.22 127.57 65 908.24 70.95
snake (40) 272 776.55 486.53 22 716.04 61.99
termes (40) 1072.22 16.32 958.75 16.21
tetris (7) 43 255.28 92.35 4511.25 23.15
thoughtful (5) 40 308.00 932.45 38 885.40 928.80
transport (37) 15 022.36 59.02 15 022.36 54.56
visitall (40) 1810.56 21.10 1810.56 72.97

Table 5.3.: Comparison of the number of grounded problems as well as required
memory per domain. Eager pruning uses both successful and unsuccessful
caching. The most frequent parameter selection strategy is used for both
policies. Only tasks groundable with both policies are considered. The
number of these tasks is indicated in parentheses in the domain column.
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Figure 5.4.: The impact of parameter selection strategies to the number of grounded
tasks.
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Figure 5.5.: The change of the number of operators in intermediate representations
for different parameter selection strategies shown for selected tasks.
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5.4.2. Parallel Grounding
We conduct experiments with the parallel grounder presented in Section 4.2.4
with eager pruning and min ground parameter selection. Figure 5.6 shows that
parallelization improves the overall grounding time. Table 5.4 gives the grounding
times exemplary for some tasks, the speedup on these tasks for up to 16 threads is
shown in Figure 5.7. As Figure 5.8 shows, we can achieve significant speedups on
tasks that are difficult to ground. For some tasks, mostly from the “tetris” domain,
we achieve almost linear speedup. On some tasks of the “tetris” and “thoughtful”
domains, the grounding time is more than halved with 2 threads. This effect is
most likely due to caching the rigid and useless ground atoms. Refining multiple
operators at once fills the caches more quickly, making pruning more efficient. Also,
parallel grounding is more robust against an unfavorable operator selection order.
However, the parallel grounder solves fewer tasks the more threads are used.

While the sequential grounder is able to ground almost all tasks, the imposed
synchronisation overhead for parallelization impacts the performance negatively on
some domains. This overhead is most severe for the “data-network” domain where
we only can ground 29 tasks with 4 threads compared to 39 tasks with sequential
grounding. For most tasks that take only a short time (<1 s) to ground sequentially,
the performance gets worse the more threads are used.
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Figure 5.6.: Parallel grounding with eager pruning and min ground parameter selec-
tion. The legend shows the number of threads used. The data of the
“sequential” curve is obtained by the sequential grounder with the same
configuration.

Task Threads
seq 2 4 8 16

data-network p21 4.45 7.55 13.79 11.58 13.75
data-network p24 29.98 75.51 53.99 - -
organic-synthesis p05 0.29 1.42 1.94 3.36 5.67
snake p33 7.54 5.49 3.91 2.42 2.58
tetris p40 193.56 77.17 47.33 25.93 17.98
thoughtful p06 90.98 67.53 40.60 30.59 28.54
thoughtful p20 169.09 80.39 67.90 50.64 -

Table 5.4.: The time needed to ground various tasks depending on the number of
used threads. The values for the “seq” column are obtained from the
sequential grounder.
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Figure 5.7.: The speedup for the tasks listed in Table 5.4.
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Figure 5.8.: Weak scaling on “hard” tasks. That is, the curve for t threads shows
the speedup for tasks that take the sequential grounder more than 2t s
to ground and are also grounded by the parallel grounder.

5.4.3. Baseline Planner

In this section we establish a baseline to tune our planners. Our planners share
many tuning parameters, which we tune in the following sections using our baseline
planner.

Table 5.5 lists parameters shared by all planners along their baseline configuration.
Using these settings, we first examine planning with fixed groundness. We therefore
sample representations with groundness g ∈ [0, 0.2, 0.4, 0.6, 0.8, 1] for each task and
solve them using the baseline configuration. The groundness of some representations
can differ from g, since the groundness increases in discrete steps during ground-
ing. The coverage for the planners with different grounder configurations is given

Step factor γ 1.4
Max step skip smax 0
Step timeout tstep -
Encoding foreach
DNF threshold dmax 4
Parameter implies action no
Sat solver Glucose [AS09] version 4.0

Table 5.5.: Baseline configuration
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Configuration Groundness Virtual
0 0.2 0.4 0.6 0.8 1 best

Rigid Min Ground 112 92 105 107 103 108 144
Effects 121 113 111 104 103 114 155
Max Pruned 120 123 125 112 109 115 156
Min New 120 111 102 121 116 114 153
Most Frequent 121 109 115 108 106 109 157

Eager Min Ground 124 110 120 115 110 136 175
Effects 124 125 121 121 116 123 160
Max Pruned 123 128 133 118 114 138 174
Min New 123 119 112 126 118 135 172
Most Frequent 123 128 125 121 115 129 173

Table 5.6.: The planner coverage with different grounder configurations. The ground-
ness is fixed for each run. “Virtual best” indicates the coverage that a
planner would achieve if the optimal groundness was chosen for each
task individually. Bold values indicate the best groundness for each
configuration.

in Table 5.6.
The results show that eager pruning is evidently superior to rigid pruning. Full

grounding performs best with eager pruning for all but the effects parameter selection.
The configuration using max pruned yields the overall highest coverage for any fixed
groundness (138). However, the min ground parameter selection enables the planner
to potentially solve the most tasks (175) if the optimal groundness was chosen for
each task. Figure 5.9 indicates that not grounding the task at all is the best option
for many tasks. Overall, only few tasks are solved best with groundness other than
0 or 1. With a groundness of 1, more tasks are solved the fastest with min ground
(56) than with max pruned (43). Nevertheless, two tasks are solved more using
the latter selection strategy. Generally, both selection strategies seem to perform
similarly well. We only consider eager pruning with the min ground parameter
selection strategy for further experiments.

Grounding can also be counterproductive, as Figure 5.10 shows. The tasks solved
with either no grounding or full grounding are very dissimilar. This observation
matches the fact that the number of tasks solvable with the optimal individual
groundness is 25 % to 40 % higher than the highest achieved coverage, depending on
the grounder configuration. Our planners try to exploit this discrepancy by solving
planning tasks with partially instantiated representations of varying groundness.
Very few tasks are solved with no grounding in the latter half of the running time.

For tuning the parameters mentioned in Table 5.5, we use the smallest encoding
planner (see Section 4.4.1). It determines the groundness yielding the representation
with the smallest encoding and tries to solve the task using that representation.
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Figure 5.9.: The bars indicate the number of tasks that are solved the fastest with the
corresponding groundness. All shown configurations use eager pruning.

The number of tasks solved using the smallest encoding depends on the measure of
encoding size. Table 5.7 lists the number of potentially solvable tasks with different
size measures. It shows that the encoding size in general is a good indicator for the
success of the planner. All of the listed measures yield a better coverage than the
best fixed groundness. Our smallest encoding planner uses the number of variables
as measure. We use a sampling granularity k = 3 and a time limit of 60 s to find
the smallest encoding as baseline.

Configuration Clauses Variables Geom. mean
Min Ground 145 151 149
Max Pruned 145 150 150

Table 5.7.: The number of hypothetically solved tasks using different measures of
encoding size. A task is counted as solved if it is solved by the planner
using the fixed groundness that also yields smallest encoding. “Clauses”
and “Variables” use the number of clauses and variables in the formula
as metric, respectively. “Geom. mean” is the geometric mean of clauses
and variables.
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Figure 5.10.: Comparison of the time to solve each task with no grounding versus
full grounding using eager pruning and the min ground parameter
selection. Marks beyond the red lines indicate that the corresponding
task could not be solved within the time limit.
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Figure 5.11.: The coverage of the smallest encoding planner for some combinations
of values for smax, tstep and γ.

5.4.4. Step Scheduling

The three tuning parameters γ, smax and tstep controlling the step scheduling are
intuitively strongly interdependent. On the one hand, if a high horizon is needed to
find a plan, either the step factor must be high or many unsolvable steps have to be
skipped. On the other hand, if a tasks requires only a low horizon but is hard to solve,
it is disadvantageous to skip steps early. We experiment with skipping 2 to 5 steps,
step timeouts 10 s, 20 s, 30 s and 60 s and step factors 1.2, 1.4, 2 and 3. The coverage
for some of the combinations including the baseline without step skipping are shown
as a cactus plot in Figure 5.11. The best configurations in terms of coverage are
given in Table 5.8. All of them use a step factor of γ = 1.4, which is therefore used
by all our planners. For the smallest encoding planner and the parallel planner we
use smax = 4 and tstep = 60. This configuration not only solves the most tasks, but
also has the highest diversity of solved tasks across the domains. The interruptive
planner uses considerably lower time limits for each solving attempt. We therefore
use smax = 4 and tstep = 30 for the interruptive planner, as this configuration is well
suited for shorter time limits according to Figure 5.11. Figure 5.12 compares the
two step scheduling configurations as scatter plot and confirms that most tasks are
solved faster with the configuration used by the interruptive planner despite fewer
tasks are solved with that configuration.
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Configuration Coverage
smax tstep γ

2 10 1.4 161
2 30 1.4 165
2 60 1.4 162
3 30 1.4 165
3 60 1.4 166
4 30 1.4 163
4 60 1.4 166
5 60 1.4 163

Table 5.8.: The best step scheduling configurations for the smallest encoding planner.
The highest coverage is bold.
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Figure 5.12.: Comparison of the two configurations used by our planners tested with
the smallest encoding planner.
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Figure 5.13.: The coverage using different encodings. The legend is sorted ascending
after the allowed step parallelism.

5.4.5. Encoding

We have presented multiple encodings for partially instantiated representations
in Section 4.3. To build the implication chain for the exists encoding, we need to
order the operators. For our experiments we use the order in which our grounding
routine outputs the operators. We first compare the performance of the encodings
and then analyze the impact of the techniques to mitigate the combinatorial explosion
due to the frame axioms (as discussed in Section 4.3).

Figure 5.13 shows that the exists encoding is clearly superior to the others, thus
all our planners use that encoding. Even though the foreach encoding allows a
superset of actions to be applied in one step compared to the actions allowed by
the restricted foreach encoding, the latter surpasses the former eventually.
The coverage for varying DNF thresholds dmax with and without the option

to imply the action from its parameters (see Equations 4.2 and 4.3) is shown
in Figure 5.14. The techniques to handle the frame axioms are clearly required, as
the graph for dmax = 0 without the “imply action” option is not competitive with any
other configuration. The plot suggests that parameters implying the corresponding
action generally improves the performance. However, with dmax = 4, the difference
is negligible. The configuration using dmax = 8 and the option to imply the action
from its parameters enabled is the most successful and therefore selected for all our
planners.
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Figure 5.14.: Comparison for different values for dmax. Solid and dashed plots of
the same color use the same value for dmax. The latter use the “imply
action” option, which means that Equations 4.2 and 4.3 are used in
the encoding.

5.4.6. SAT Solver
All our planners can be used with every SAT solver that implements the IPASIR
interface. We compare the coverage of the smallest encoding planner using different
SAT solvers. Besides Glucose, we also test Lingeling [Bie13] version bcj and
MiniSat [ES03] version 2.2.0. Figure 5.15 shows that Glucose is the superior SAT
solver for our application, solving 8 tasks more than the runner-up, Lingeling.

5.4.7. Smallest Encoding Planner
Table 5.9 shows the average selected groundness by domain with granularity 3 (the
representations are sampled with groundness 0, 0.33, 0.67 and 1). Either groundness
0 or 1 yields the smallest encoding for almost all tasks of one domain consistently,
with exception of the “organic-synthesis” domain. We therefore set the sampling
granularity g to 3.

5.4.8. Interruptive Planner
The granularity (i.e., the number of times we interrupt the current solving attempt
and start a new one) is a decisive parameter of the interruptive planner. If set too low,
we might subsample the groundness and only try to solve suboptimal representations.
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Figure 5.15.: Performance of the smallest encoding planner using all three
SAT solvers.

Domain Groundness
barman 0.00
childsnack 0.00
data-network 1.00
floortile 1.00
ged 0.03
hiking 0.00
openstacks 1.00
organic-synthesis 0.35
snake 0.00
termes 0.03
tetris 1.00
thoughtful 0.00
transport 0.00
visitall 1.00

Table 5.9.: The arithmetic mean of the groundness selected by the smallest encoding
planner by domain.
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Figure 5.16.: The coverage of the interruptive planner using different values for
granularity g and grounding timeout tground.

Oversampling on the other hand reduces the time for each solving attempt. The
peaks at groundness 0 and 1 in Figure 5.9 suggest that the interruptive planner
has the best chances to solve tasks either with no grounding or with full grounding.
The planner allocates tground seconds for each grounding iteration (see line 7 of the
interruptive planner algorithm). The remaining time is split equally between the
solving attempts. Thus, every solving attempt has a timeout of 300−tground∗g

g+1 seconds
with granularity g. Figure 5.16 shows the coverage for different granularities
g ∈ [1, 2, 3, 4] and tground of 30 s and 60 s. We use g = 1 and tground = 30 s, since this
configuration yields the highest coverage.

5.4.9. Parallel Planner
The parallel planner does not impose further tuning parameters. The more threads
we use to concurrently solve encodings for representations of different groundness,
the more likely we find a representation that can efficiently be solved. However,
this parallelization does not scale well in practise, since only few tasks are best
solved with groundness other than 0 or 1. The parallel planner utilizes the parallel
grounder as described in Section 4.4.3.
Figure 5.17a shows the coverage for 2, 4, 6 and 8 threads compared to the

interruptive planner in its final configuration. The more threads we use, the faster
the tasks get solved. However, the parallel planner does not solve more tasks than
the interruptive planner. This is due to the memory limitations, as each thread

57



5. Experimental Results

50 100 1500

100

200

300

Coverage

tim
e
in

s
sequential
2 threads
4 threads
6 threads
8 threads

(a) The coverage of the parallel planner with various
threads.

Threads Time in s
1 5500.57
2 2064.21
4 1749.37
6 1453.57
8 1403.50

(b) The accumulated time to
solve all tasks that are
solved with every number of
threads (154 tasks in total).

Figure 5.17.: The performance of the parallel planner with different threads. The
plot for one thread is the interruptive planner in its final configuration.

holds one SAT solver instance, each of which requires increasing memory the longer
the solving takes (the formulae only increases with higher steps). As expected, the
increase in speedup using two threads is significantly higher than for any higher
number of threads (see Table 5.17b).

5.4.10. Summary
We briefly summarize the final parameter configuration for all our planners in Ta-
ble 5.10. Figure 5.18 compares their performance with a cactus plot. The smallest
encoding planner and the interruptive planner behave very similarly, while the
parallel planner is generally faster but solves slightly fewer tasks.
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SE I P
Grounding

Pruning policy Eager
Parameter selection Min ground
Grounding timeout 60 s 30 s 60 s

SAT
Encoding Exists
DNF threshold dmax 8
Parameter implies action Yes
SAT solver Glucose

Step scheduling
Step factor γ 1.4
Max step skip smax 4
Step timeout tstep 60 s 30 s 60 s
Granularity/Threads 3 1 2

Table 5.10.: Final configuration for the smallest encoding planner (SE), the inter-
ruptive planner (I) and the parallel planner (P). The grounding timeout
for the interruptive planner and the parallel planner are per iteration.
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Figure 5.18.: Comparison of our planners in their final configuration.
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5.5. Comparison
We compare our planners to the following planners on both the IPC set we used for
parameter tuning as well as the Sparkle set.

LAMA 2011 is a configuration of the Fast Downward planning system [RWH11].
It placed first in the sequential satisficing track of the International Planning
Competition 2011. The planner is based off of a state-space search. We follow
the remarks from Rintanen in [Rin11] and set the time limit for LAMA’s
invariant synthesis to 60 s to adjust the planner to our time limit of 5 min.

Fast Forward (FF) [HN01] participated very successfully in the International
Planning Competition 2000 and 2002. Fast Forward is a state-space planner
that popularized the relaxed planning graph heuristic.

Madagascar [Rin14] is a SAT based planner with hand-crafted SAT solver. We
include the versions M and MpC in our comparison, which placed third and
second in the agile track of the International Planning Competition 2014,
respectively.

The coverage for each planner is given domain-wise in Table 5.11. The results
are visualized in Figure 5.19a and Figure 5.19b for the IPC set and the Sparkle set,
respectively. We cannot compete with LAMA 2011 with regards to the number
of solved tasks on the IPC set, as it solves more than twice the tasks we can solve.
However, we outperform FF and are on par with version M of Madagascar. There
are multiple reasons why it is difficult for our planner to compete with LAMA and
comparable planners. Rintanen states that “The planning competition benchmarks
are in general quite favorable to planners that use explicit state space search [. . .],
in comparison to other types of planning problems”[Rinb]. Also, the planners
we developed are in a state that is not as optimized as today’s state-of-the-art
planners yet. Madagascar is currently the state of the art in SAT based planning.
Nevertheless, the approaches we explored have proven to be beneficial on many
domains in comparison to the other planners. All our planners are able to solve
the most tasks of the domain “childsnack” compared to the competition. On the
domain “hiking” we significantly outperform both Madagascar variants by solving
more than twice as many tasks, while still being subpar in comparison to LAMA.
On the IPC set, we perform worst on the domains “openstacks”, “transport” and
“visitall”.

While our planners perform quite similar on most domains, the discrepancy among
them is the highest on the domain “thoughtful”. While both the parallel and the
interruptive planner solve 5 tasks, the smallest encoding planner cannot solve a single
task of that domain. The plans for tasks of that domain are comparably long. The
smallest encoding planner chooses to encode the representation without grounding
(see Table 5.9), but the higher step parallelism of the ground representation is
needed to solve these tasks.
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Domain Planner
LAMA FF M MpC SE I P

barman (34) 33 6 4 18 4 2 3
childsnack (30) 15 3 27 15 30 29 29
data-network (40) 31 24 19 23 22 21 21
floortile (30) 9 1 30 30 22 22 15
ged (40) 38 24 20 34 20 20 20
hiking (40) 37 21 12 14 29 29 29
openstacks (40) 40 3 10 26 3 3 0
organic-synthesis (40) 24 0 16 19 19 14 19
snake (40) 17 14 2 23 6 5 6
termes (40) 31 7 1 1 1 0 0
tetris (37) 34 5 11 25 12 19 18
thoughtful (20) 15 12 5 5 0 5 5
transport (37) 30 19 14 19 8 8 9
visitall (40) 40 18 12 20 5 5 3
Sum (508) 394 157 183 272 181 182 177
agricola (10) 1 0 0 0 2 2 2
chairGame (10) 3 7 2 3 5 10 10
parking (10) 10 4 0 4 0 0 0
pipegrid (10) 0 0 10 10 10 10 10
pizza (10) 0 0 0 0 0 0 0
utc-distribution (10) 10 10 3 10 4 7 2
Sum (60) 24 21 15 27 21 29 24

Table 5.11.: Comparison of the smallest encoding planner (SE), the interruptive
planner (I), the parallel planner (P) with 2 threads to the competition.
The upper part is the domain set we used to tune our planners, the
lower part are domains from the Sparkle Challenge. The number in
parentheses is the number of tasks of that domain.
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5. Experimental Results
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(a) Comparison of our planners to the competition on the IPC set.
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(b) Comparison of our planners to the competition on the Sparkle set.
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5.5. Comparison

The picture is different on the tasks of the Sparkle set. Here, our interruptive
planner solves the most tasks among all planners. The main contributor to the
solved tasks compared to the other planners is the domain “chairgame”. Tasks of
that domain are very hard to ground. In fact, LAMA is only able to ground three
out of ten tasks. No planner (including ours) can ground all tasks of this domain.
However, all tasks of that domain are very easy to solve (the interruptive planner
requires less than 2 s in total for each task) without grounding. The reason why the
smallest encoding planner fails to solve all ten tasks is that the memory resources
are exhausted during the search of the smallest encoding.
The domain “pipegrid” seems to be hard for both state-space searches but easy

for all planners that utilize SAT solvers, as both Madagascar variants as well as all
our planners solve all ten tasks. The domain “pizza” however is seemingly hard for
all planners, as no one is able to solve a single of its tasks.

In general, the performance of our planners is complementary to the others on some
domains and to LAMA specifically, which confirms the value of our approach. Most
notably in that regard are “barman”, “openstacks”, “termes”, “visitall”, “chairgame”
and “parking”, where either LAMA or one of our planners performs significantly
better than all other planners. Although our planners are not competitive with
LAMA on the IPC set, they can be of value when used in a planner portfolio. Also,
the presented techniques may be optimized further into more sophisticated planners
to cover a wider range of domains.
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6. Discussion

6.1. Conclusion
In this thesis we motivated the problem of automated planning and presented
previous work on this field related to ours. We proposed novel approaches towards
planning by incorporating SAT based planning into the grounding process. We
therefore introduced the notion of groundness and heuristically determined advanta-
geous representations to use for solving. We developed and thoroughly analyzed a
hand-tailored grounding routine. After fine-tuning implementations of our planners,
we compared them with their best configurations to state-of-the-art competition.
While we cannot match the performance of the best state-space searches on the di-
verse IPC set, our planner complements the competition very well. Various planning
tasks in our benchmark are only solvable by our planner. As our implementation
is only a proof-of-concept, these results indicate that further investigations in our
approaches are worthwhile. We believe that our approach can be especially valuable
in planner portfolios.
Also, we briefly explored possibilities to parallelize our implementation with

multiple threads and shared memory. Our experiments regarding parallelization
have not been exhaustive but show that the grounding process can be sped up for
most hard to ground tasks. Parallel SAT solving can also decrease the planning
time, however the potential to parallelize our approach in the way we presented it
is limited. Using two threads can generally lead to significant speedups, provided
that enough memory is available.

6.2. Future work
This thesis covers many aspects of the pipeline from parsing and preprocessing the
planning tasks to solving them with SAT solvers. Naturally, there is a lot of room
for improvement on most of these parts. the most promising topics to work on in
the future from the authors’ perspective are given below.

PDDL We currently only support a subset of the PDDL specification. While
this subset is sufficient to describe a variety of interesting domains, more advanced
features such as conditional effects and axioms would enable our planners to compete
on a broader spectrum of problems and improve their comparability.
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6. Discussion

Grounding The operator selection method we use is rather basic. Heuristics could
be employed to select favourable operators first. Further, one could prune operators
with a relaxed reachability analysis, similar to the grounder used by Fast Downward.

Encodings The exists encoding is the most successful among the ones we experi-
mented with. However, much more sophisticated encodings with better performance
have been proposed (see [RHN06]). It certainly is worthwhile to test these encodings
in the context of partially instantiated representations.

Step scheduling The step scheduling measures we took to improve our plan-
ners’ performance are not as sophisticated as the ones employed by Madagascar.
Combining our approach with Madagascar’s step scheduling mechanisms is very
promising.

Parallelization The parallelization of our algorithm still has a lot of potential.
We only parallelized on the dimension of groundness. As Rintanen[Rin14] showed,
solving formulae for multiple steps at once can also be very efficient and generally
scales better than the approach presented in this thesis. Finally, parallel SAT solvers
have been proposed. We could also speed up the actual SAT solving by utilizing
parallel SAT solvers.
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A. Planning Tasks

We used a subset of the planning tasks of recent planning competitions for our
experiments. The list of planning tasks by domain are given in the tables below
sorted by the respective planning competition. The lists give the number of planning
tasks for each domain. As some tasks occurred multiple times among the sources,
we removed all duplicates. Also, we deemed domains unsuitable for our experiments
if they make use of PDDL features we do not support or if they are already given
in a ground representation.

A.1. IPC 2014

Detailed descriptions for the domains as well as download links can be found at
https://helios.hud.ac.uk/scommv/IPC-14/domains.html

Domain #Tasks
barman 34
childsnack 30
floortile 30
ged 40
hiking 40
openstacks 40
tetris 37
thoughtful 20
transport 37
visitall 40

Total number of tasks: 348

A.2. IPC 2018

The repository containing the planning tasks is located at https://bitbucket.
org/ipc2018-classical/domains/
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A. Planning Tasks

Domain #Tasks
data-network 40
organic-synthesis 40
snake 40
termes 40

Total number of tasks: 160

A.3. Sparkle Planning Challenge 2019
The list of testing domains and download links are provided at http://ada.liacs.
nl/events/sparkle-planning-19/benchmarks.html

Domain #Tasks
agricola 10
chairgame 10
pipegrid 10
parking 10
utc-distribution 10
pizza 10

Total number of tasks: 60
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