7,141 research outputs found

    Advances in Hyperspectral Image Classification Methods for Vegetation and Agricultural Cropland Studies

    Get PDF
    Hyperspectral data are becoming more widely available via sensors on airborne and unmanned aerial vehicle (UAV) platforms, as well as proximal platforms. While space-based hyperspectral data continue to be limited in availability, multiple spaceborne Earth-observing missions on traditional platforms are scheduled for launch, and companies are experimenting with small satellites for constellations to observe the Earth, as well as for planetary missions. Land cover mapping via classification is one of the most important applications of hyperspectral remote sensing and will increase in significance as time series of imagery are more readily available. However, while the narrow bands of hyperspectral data provide new opportunities for chemistry-based modeling and mapping, challenges remain. Hyperspectral data are high dimensional, and many bands are highly correlated or irrelevant for a given classification problem. For supervised classification methods, the quantity of training data is typically limited relative to the dimension of the input space. The resulting Hughes phenomenon, often referred to as the curse of dimensionality, increases potential for unstable parameter estimates, overfitting, and poor generalization of classifiers. This is particularly problematic for parametric approaches such as Gaussian maximum likelihoodbased classifiers that have been the backbone of pixel-based multispectral classification methods. This issue has motivated investigation of alternatives, including regularization of the class covariance matrices, ensembles of weak classifiers, development of feature selection and extraction methods, adoption of nonparametric classifiers, and exploration of methods to exploit unlabeled samples via semi-supervised and active learning. Data sets are also quite large, motivating computationally efficient algorithms and implementations. This chapter provides an overview of the recent advances in classification methods for mapping vegetation using hyperspectral data. Three data sets that are used in the hyperspectral classification literature (e.g., Botswana Hyperion satellite data and AVIRIS airborne data over both Kennedy Space Center and Indian Pines) are described in Section 3.2 and used to illustrate methods described in the chapter. An additional high-resolution hyperspectral data set acquired by a SpecTIR sensor on an airborne platform over the Indian Pines area is included to exemplify the use of new deep learning approaches, and a multiplatform example of airborne hyperspectral data is provided to demonstrate transfer learning in hyperspectral image classification. Classical approaches for supervised and unsupervised feature selection and extraction are reviewed in Section 3.3. In particular, nonlinearities exhibited in hyperspectral imagery have motivated development of nonlinear feature extraction methods in manifold learning, which are outlined in Section 3.3.1.4. Spatial context is also important in classification of both natural vegetation with complex textural patterns and large agricultural fields with significant local variability within fields. Approaches to exploit spatial features at both the pixel level (e.g., co-occurrencebased texture and extended morphological attribute profiles [EMAPs]) and integration of segmentation approaches (e.g., HSeg) are discussed in this context in Section 3.3.2. Recently, classification methods that leverage nonparametric methods originating in the machine learning community have grown in popularity. An overview of both widely used and newly emerging approaches, including support vector machines (SVMs), Gaussian mixture models, and deep learning based on convolutional neural networks is provided in Section 3.4. Strategies to exploit unlabeled samples, including active learning and metric learning, which combine feature extraction and augmentation of the pool of training samples in an active learning framework, are outlined in Section 3.5. Integration of image segmentation with classification to accommodate spatial coherence typically observed in vegetation is also explored, including as an integrated active learning system. Exploitation of multisensor strategies for augmenting the pool of training samples is investigated via a transfer learning framework in Section 3.5.1.2. Finally, we look to the future, considering opportunities soon to be provided by new paradigms, as hyperspectral sensing is becoming common at multiple scales from ground-based and airborne autonomous vehicles to manned aircraft and space-based platforms

    Continental-scale land cover mapping at 10 m resolution over Europe (ELC10)

    Get PDF
    Widely used European land cover maps such as CORINE are produced at medium spatial resolutions (100 m) and rely on diverse data with complex workflows requiring significant institutional capacity. We present a high resolution (10 m) land cover map (ELC10) of Europe based on a satellite-driven machine learning workflow that is annually updatable. A Random Forest classification model was trained on 70K ground-truth points from the LUCAS (Land Use/Cover Area frame Survey) dataset. Within the Google Earth Engine cloud computing environment, the ELC10 map can be generated from approx. 700 TB of Sentinel imagery within approx. 4 days from a single research user account. The map achieved an overall accuracy of 90% across 8 land cover classes and could account for statistical unit land cover proportions within 3.9% (R2 = 0.83) of the actual value. These accuracies are higher than that of CORINE (100 m) and other 10-m land cover maps including S2GLC and FROM-GLC10. We found that atmospheric correction of Sentinel-2 and speckle filtering of Sentinel-1 imagery had minimal effect on enhancing classification accuracy (< 1%). However, combining optical and radar imagery increased accuracy by 3% compared to Sentinel-2 alone and by 10% compared to Sentinel-1 alone. The conversion of LUCAS points into homogenous polygons under the Copernicus module increased accuracy by <1%, revealing that Random Forests are robust against contaminated training data. Furthermore, the model requires very little training data to achieve moderate accuracies - the difference between 5K and 50K LUCAS points is only 3% (86 vs 89%). At 10-m resolution, the ELC10 map can distinguish detailed landscape features like hedgerows and gardens, and therefore holds potential for aerial statistics at the city borough level and monitoring property-level environmental interventions (e.g. tree planting)

    Salford postgraduate annual research conference (SPARC) 2012 proceedings

    Get PDF
    These proceedings bring together a selection of papers from the 2012 Salford Postgraduate Annual Research Conference (SPARC). They reflect the breadth and diversity of research interests showcased at the conference, at which over 130 researchers from Salford, the North West and other UK universities presented their work. 21 papers are collated here from the humanities, arts, social sciences, health, engineering, environment and life sciences, built environment and business

    Upscaling Wetland Methane Emissions From the FLUXNET-CH4 Eddy Covariance Network (UpCH4 v1.0): Model Development, Network Assessment, and Budget Comparison

    Get PDF
    Wetlands are responsible for 20%-31% of global methane (CH4) emissions and account for a large source of uncertainty in the global CH4 budget. Data-driven upscaling of CH4 fluxes from eddy covariance measurements can provide new and independent bottom-up estimates of wetland CH4 emissions. Here, we develop a six-predictor random forest upscaling model (UpCH4), trained on 119 site-years of eddy covariance CH4 flux data from 43 freshwater wetland sites in the FLUXNET-CH4 Community Product. Network patterns in site-level annual means and mean seasonal cycles of CH4 fluxes were reproduced accurately in tundra, boreal, and temperate regions (Nash-Sutcliffe Efficiency similar to 0.52-0.63 and 0.53). UpCH(4) estimated annual global wetland CH4 emissions of 146 +/- 43 TgCH4 y(-1) for 2001-2018 which agrees closely with current bottom-up land surface models (102-181 TgCH4 y(-1)) and overlaps with top-down atmospheric inversion models (155-200 TgCH4 y -1). However, UpCH4 diverged from both types of models in the spatial pattern and seasonal dynamics of tropical wetland emissions. We conclude that upscaling of eddy covariance CH4 fluxes has the potential to produce realistic extra-tropical wetland CH4 emissions estimates which will improve with more flux data. To reduce uncertainty in upscaled estimates, researchers could prioritize new wetland flux sites along humid-to-arid tropical climate gradients, from major rainforest basins (Congo, Amazon, and SE Asia), into monsoon (Bangladesh and India) and savannah regions (African Sahel) and be paired with improved knowledge of wetland extent seasonal dynamics in these regions. The monthly wetland methane products gridded at 0.25 degrees from UpCH4 are available via ORNL DAAC (https://doi.org/10.3334/ ORNLDAAC/2253).Plain Language Summary Wetlands account for a large share of global methane emissions to the atmosphere, but current estimates vary widely in magnitude (similar to 30% uncertainty on annual global emissions) and spatial distribution, with diverging predictions for tropical rice growing (e.g., Bengal basin), rainforest (e.g., Amazon basin), and floodplain savannah (e.g., Sudd) regions. Wetland methane model estimates could be improved by increased use of land surface methane flux data. Upscaling approaches use flux data collected across globally distributed measurement networks in a machine learning framework to extrapolate fluxes in space and time. Here, we train and evaluate a methane upscaling model (UpCH4) and use it to generate monthly, globally gridded wetland methane emissions estimates for 2001-2018. The UpCH4 model uses only six predictor variables among which temperature is dominant. Global annual methane emissions estimates and associated uncertainty ranges from upscaling fall within state-of-the-art model ensemble estimates from the Global Carbon Project (GCP) methane budget. In some tropical regions, the spatial pattern of UpCH4 emissions diverged from GCP predictions, however, inclusion of flux measurements from additional ground-based sites, together with refined maps of tropical wetlands extent, could reduce these prediction uncertainties

    Upscaling Wetland Methane Emissions From the FLUXNET-CH4 Eddy Covariance Network (UpCH4 v1.0):Model Development, Network Assessment, and Budget Comparison

    Get PDF
    Wetlands are responsible for 20%–31% of global methane (CH4) emissions and account for a large source of uncertainty in the global CH4 budget. Data-driven upscaling of CH4 fluxes from eddy covariance measurements can provide new and independent bottom-up estimates of wetland CH4 emissions. Here, we develop a six-predictor random forest upscaling model (UpCH4), trained on 119 site-years of eddy covariance CH4 flux data from 43 freshwater wetland sites in the FLUXNET-CH4 Community Product. Network patterns in site-level annual means and mean seasonal cycles of CH4 fluxes were reproduced accurately in tundra, boreal, and temperate regions (Nash-Sutcliffe Efficiency ∼0.52–0.63 and 0.53). UpCH4 estimated annual global wetland CH4 emissions of 146 ± 43 TgCH4 y−1 for 2001–2018 which agrees closely with current bottom-up land surface models (102–181 TgCH4 y−1) and overlaps with top-down atmospheric inversion models (155–200 TgCH4 y−1). However, UpCH4 diverged from both types of models in the spatial pattern and seasonal dynamics of tropical wetland emissions. We conclude that upscaling of eddy covariance CH4 fluxes has the potential to produce realistic extra-tropical wetland CH4 emissions estimates which will improve with more flux data. To reduce uncertainty in upscaled estimates, researchers could prioritize new wetland flux sites along humid-to-arid tropical climate gradients, from major rainforest basins (Congo, Amazon, and SE Asia), into monsoon (Bangladesh and India) and savannah regions (African Sahel) and be paired with improved knowledge of wetland extent seasonal dynamics in these regions. The monthly wetland methane products gridded at 0.25° from UpCH4 are available via ORNL DAAC (https://doi.org/10.3334/ORNLDAAC/2253).</p

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Integrating Technology Into Wildlife Surveys

    Get PDF
    Technology is rapidly improving and being incorporated into field biology, with survey methods such as machine learning and uncrewed aircraft systems (UAS) headlining efforts. UAS paired with machine learning algorithms have been used to detect caribou, nesting waterfowl and seabirds, marine mammals, white-tailed deer, and more in over 19 studies within the last decade alone. Simultaneously, UAS and machine learning have also been implemented for infrastructure monitoring at wind energy facilities as wind energy construction and use has skyrocketed globally. As part of both pre-construction and regulatory compliance of newly constructed wind energy facilities, monitoring of impacts to wildlife is assessed through ground surveys following the USFWS Land-based Wind Energy Guidelines. To streamline efforts at wind energy facilities and improve efficiency, safety, and accuracy in data collection, UAS platforms may be leveraged to not only monitor infrastructure, but also impacts to wildlife in the form of both pre- and post-construction surveys. In this study, we train, validate, and test a machine learning approach, a convolutional neural network (CNN), in the detection and classification of bird and bat carcasses. Further, we compare the trained CNN to the currently accepted and widely used method of human ground surveyors in a simulated post-construction monitoring scenario. Last, we establish a baseline comparison of manual image review of waterfowl pair surveys with currently used ground surveyors that could inform both pre-construction efforts at energy facilities, along with long-standing federal and state breeding waterfowl surveys. For the initial training of the CNN, we collected 1,807 images of bird and bat carcasses that were split into 80.0% training and 20.0% validation image sets. Overall detection was extremely high at 98.7%. We further explored the dataset by evaluating the trained CNN’s ability to identify species and the variables that impacted identification. Classification of species was successful in 90.5% of images and was associated with sun angle and wind speed. Next, we performed a proof of concept to determine the utility of the trained CNN against ground surveyors in ground covers and with species that were both used in the initial training of the model and novel. Ground surveyors performed similar to those surveying at wind energy facilities with 63.2% detection, while the trained CNN fell short at 28.9%. Ground surveyor detection was weakly associated with carcass density within a plot and strongly with carcass size. Similarly, detection by the CNN was associated with carcass size, ground cover type, visual obstruction of vegetation, and weakly with carcass density within a plot. Finally, we examined differences in breeding waterfowl counts between ground surveyors and UAS image reviewers and found that manual review of UAS imagery yielded similar to slightly higher counts of waterfowl. Significant training, testing, and repeated validation of novel image data sets should be performed prior to implementing survey methods reliant upon machine learning algorithms. Additionally, further research is needed to determine potential biases of counting live waterfowl in aerial imagery, such as bird movement and double counting. While our initial results show that UAS imagery and machine learning can improve upon current techniques, extensive follow-up is strongly recommended in the form of proof-of-concept studies and additional validation to confirm the utility of the application in new environments with new species that allow models to be generalized. Remotely sensed imagery paired with machine learning algorithms have the potential to expedite and standardize monitoring of wildlife at wind energy facilities and beyond, improving data streams and potentially reducing costs for the benefit of both conservation agencies and the energy industry

    Evaluating the effects of alternative model structures on dynamic storage simulation in heterogeneous boreal catchments

    Full text link
    Estimating dynamic storage as a metric can be used to make an overall assessment of catchment resilience to extreme weather events such as droughts and floods. Because of the complexity of direct empirical measurements, bucket-type hydrological models can be a suitable tool to simulate the catchment storage across a broad range of scales as they require minimal input data. However, these models consist of one or more conceptual structures based on several linear or nonlinear reservoirs and connections between these reservoirs. Therefore, choosing the most appropriate model structure to represent storage-discharge functioning in catchments is difficult. To bridge this gap, this study evaluated the performance of three different HBV model structures on 14 heterogeneous boreal catchments classified into four distinct catchment categories. The results showed that the three-bucket structure performed better in larger catchments with deeper sediment soils. In contrast, a single reservoir structure is sufficient to predict the storage-discharge behavior for a lake-influenced catchment with lower elevation above the stream network. Moreover, our results indicate that while the estimates of mean catchment storage varied between the different model structures, the ranking between the catchments largely agreed for the different structures. Hence, our results suggest that instead of a single model structure, using an ensemble averaging approach would not only better address the structural uncertainty but also facilitate further storage comparison between different catchments. Finally, based on Spearman rank correlation results, we found that catchment size and sediment soil were positively correlated with dynamic storage estimation
    • …
    corecore