10,774 research outputs found

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.

    Cyber Situational Awareness and Cyber Curiosity Taxonomy for Understanding Susceptibility of Social Engineering Attacks in the Maritime Industry

    Get PDF
    The maritime information system (IS) user has to be prepared to deal with a potential safety and environmental risk that can be caused by an unanticipated failure to a cyber system used onboard a vessel. A hacker leveraging a maritime IS user’s Cyber Curiosity can lead to a successful cyber-attack by enticing a user to click on a malicious Web link sent through an email and/or posted on a social media website. At worst, a successful cyber-attack can impact the integrity of a ship’s cyber systems potentially causing disruption or human harm. A lack of awareness of social engineering attacks can increase the susceptibility of a successful cyber-attack against any organization. A combination of limited cyber situational awareness (SA) of social engineering attacks used against IS users and the user’s natural curiosity create significant threats to organizations. The theoretical framework for this research study consists of four interrelated constructs and theories: social engineering, Cyber Curiosity, Cyber Situational Awareness, and activity theory. This study focused its investigation on two constructs, Cyber Situational Awareness and Cyber Curiosity. These constructs reflect user behavior and decision-making associated with being a victim of a social engineering cyber-attack. This study designed an interactive Web-based experiment to measure an IS user’s Cyber Situational Awareness and Cyber Curiosity to further understand the relationship between these two constructs in the context of cyber risk to organizations. The quantitative and qualitative data analysis from the experiment consisting of 174 IS users (120 maritime & 54 shoreside) were used to empirically assess if there are any significant differences in the maritime IS user’s level of Cyber SA, Cyber Curiosity, and position in the developed Cyber Risk taxonomy when controlled for demographic indicators. To ensure validity and reliability of the proposed measures and the experimental procedures, a panel of nine subject matter experts (SMEs) reviewed the proposed measures/scores of Cyber SA and Cyber Curiosity. The SMEs’ responses were incorporated into the proposed measures and scores including the Web-based experiment. Furthermore, a pilot test was conducted of the Web-based experiment to assess measures of Cyber SA and Cyber Curiosity. This research validated that the developed Cyber Risk taxonomy could be used to assess the susceptibility of an IS user being a victim of a social engineering attack. Identifying a possible link in how both Cyber SA and Cyber Curiosity can help predict the susceptibility of a social engineering attack can be beneficial to the IS research community. In addition, potentially reducing the likelihood of an IS user being a victim of a cyber-attack by identifying factors that improve Cyber SA can reduce risks to organizations. The discussions and implications for future research opportunities are provided to aid the maritime cybersecurity research and practice communities

    Strategy and Organisational Cybersecurity: A Knowledge-Problem Perspective

    Get PDF
    Purpose: The purpose of this paper is to frame organisational cybersecurity through a strategic lens, as a function of an interplay of pragmatism, inference, holism and adaptation. The authors address the hostile epistemic climate for intellectual capital management presented by the dynamics of cybersecurity as a phenomenon. The drivers of this hostility are identified and their implications for research and practice are discussed. Design/methodology/approach: The philosophical foundations of cybersecurity in its relation with strategy, knowledge and intellectual capital are explored through a review of the literature as a mechanism to contribute to the emerging theoretical underpinnings of the cybersecurity domain. Findings: This conceptual paper argues that a knowledge-based perspective can serve as the necessary platform for a phenomenon-based view of organisational cybersecurity, given its multi-disciplinary nature. Research limitations/implications: By recognising the knowledge-related vectors, mechanisms and tendencies at play, a novel perspective on the topic can be developed: cybersecurity as a “knowledge problem”. In order to facilitate such a perspective, the paper proposes an emergent epistemology, rooted in systems thinking and pragmatism. Practical implications: In practice, the knowledge-problem narrative can underpin the development of new organisational support constructs and systems. These can address the distinctiveness of the strategic challenges that cybersecurity poses for the growing operational reliance on intellectual capital. Originality/value: The research narrative presents a novel knowledge-based analysis of organisational cybersecurity, with significant implications for both interdisciplinary research in the field, and practice

    Big Data Analysis-based Security Situational Awareness for Smart Grid

    Get PDF
    Advanced communications and data processing technologies bring great benefits to the smart grid. However, cyber-security threats also extend from the information system to the smart grid. The existing security works for smart grid focus on traditional protection and detection methods. However, a lot of threats occur in a very short time and overlooked by exiting security components. These threats usually have huge impacts on smart gird and disturb its normal operation. Moreover, it is too late to take action to defend against the threats once they are detected, and damages could be difficult to repair. To address this issue, this paper proposes a security situational awareness mechanism based on the analysis of big data in the smart grid. Fuzzy cluster based analytical method, game theory and reinforcement learning are integrated seamlessly to perform the security situational analysis for the smart grid. The simulation and experimental results show the advantages of our scheme in terms of high efficiency and low error rate for security situational awareness

    Crime scripting: A systematic review

    Get PDF
    The file attached to this record is the author's final peer reviewed version.More than two decades after the publication of Cornish’s seminal work about the script-theoretic approach to crime analysis, this article examines how the concept has been applied in our community. The study provides evidence confirming that the approach is increasingly popular; and takes stock of crime scripting practices through a systematic review of over one hundred scripts published between 1994 and 2018. The results offer the first comprehensive picture of this approach, and highlights new directions for those interested in using data from cyber-systems and the Internet of Things to develop effective situational crime prevention measures

    Cyber Security Concerns for Emergency Management

    Get PDF
    • …
    corecore