593 research outputs found

    Automatic construction of robust spherical harmonic subspaces

    Get PDF
    In this paper we propose a method to automatically recover a class specific low dimensional spherical harmonic basis from a set of in-the-wild facial images. We combine existing techniques for uncalibrated photometric stereo and low rank matrix decompositions in order to robustly recover a combined model of shape and identity. We build this basis without aid from a 3D model and show how it can be combined with recent efficient sparse facial feature localisation techniques to recover dense 3D facial shape. Unlike previous works in the area, our method is very efficient and is an order of magnitude faster to train, taking only a few minutes to build a model with over 2000 images. Furthermore, it can be used for real-time recovery of facial shape

    Automatic construction of robust spherical harmonic subspaces

    Get PDF
    In this paper we propose a method to automatically recover a class specific low dimensional spherical harmonic basis from a set of in-the-wild facial images. We combine existing techniques for uncalibrated photometric stereo and low rank matrix decompositions in order to robustly recover a combined model of shape and identity. We build this basis without aid from a 3D model and show how it can be combined with recent efficient sparse facial feature localisation techniques to recover dense 3D facial shape. Unlike previous works in the area, our method is very efficient and is an order of magnitude faster to train, taking only a few minutes to build a model with over 2000 images. Furthermore, it can be used for real-time recovery of facial shape

    Cross-calibration of Time-of-flight and Colour Cameras

    Get PDF
    Time-of-flight cameras provide depth information, which is complementary to the photometric appearance of the scene in ordinary images. It is desirable to merge the depth and colour information, in order to obtain a coherent scene representation. However, the individual cameras will have different viewpoints, resolutions and fields of view, which means that they must be mutually calibrated. This paper presents a geometric framework for this multi-view and multi-modal calibration problem. It is shown that three-dimensional projective transformations can be used to align depth and parallax-based representations of the scene, with or without Euclidean reconstruction. A new evaluation procedure is also developed; this allows the reprojection error to be decomposed into calibration and sensor-dependent components. The complete approach is demonstrated on a network of three time-of-flight and six colour cameras. The applications of such a system, to a range of automatic scene-interpretation problems, are discussed.Comment: 18 pages, 12 figures, 3 table

    Estimation of the rigid transformation between two cameras from the Fundamental Matrix VS from Homographies.

    Get PDF
    The 3D reconstruction is an important step for the analytical calculation of the Jacobian of the image in a process of visual control of robots. In a two-camera stereo system that reconstruction depends on the knowledge of the rigid transformation between the two cameras and is represented by the rotation and translation between them. These two parameters are the result of a calibration of the stereo pair, but can also be retrieved from the epipolar geometry of the system, or from a homography obtained by features belonging to a flat object in the scene. In this paper, we make an assessment of the latter two alternatives, taking as reference an Euclidean reconstruction eliminating image distortion. We analyze three cases: the distortion inherent in the camera is corrected, without corrected distortion, and when Gaussian noise is added to the detection of features

    Automatic face recognition using stereo images

    Get PDF
    Face recognition is an important pattern recognition problem, in the study of both natural and artificial learning problems. Compaxed to other biometrics, it is non-intrusive, non- invasive and requires no paxticipation from the subjects. As a result, it has many applications varying from human-computer-interaction to access control and law-enforcement to crowd surveillance. In typical optical image based face recognition systems, the systematic vaxiability arising from representing the three-dimensional (3D) shape of a face by a two-dimensional (21)) illumination intensity matrix is treated as random vaxiability. Multiple examples of the face displaying vaxying pose and expressions axe captured in different imaging conditions. The imaging environment, pose and expressions are strictly controlled and the images undergo rigorous normalisation and pre-processing. This may be implemented in a paxtially or a fully automated system. Although these systems report high classification accuracies (>90%), they lack versatility and tend to fail when deployed outside laboratory conditions. Recently, more sophisticated 3D face recognition systems haxnessing the depth information have emerged. These systems usually employ specialist equipment such as laser scanners and structured light projectors. Although more accurate than 2D optical image based recognition, these systems are equally difficult to implement in a non-co-operative environment. Existing face recognition systems, both 2D and 3D, detract from the main advantages of face recognition and fail to fully exploit its non-intrusive capacity. This is either because they rely too much on subject co-operation, which is not always available, or because they cannot cope with noisy data. The main objective of this work was to investigate the role of depth information in face recognition in a noisy environment. A stereo-based system, inspired by the human binocular vision, was devised using a pair of manually calibrated digital off-the-shelf cameras in a stereo setup to compute depth information. Depth values extracted from 2D intensity images using stereoscopy are extremely noisy, and as a result this approach for face recognition is rare. This was cofirmed by the results of our experimental work. Noise in the set of correspondences, camera calibration and triangulation led to inaccurate depth reconstruction, which in turn led to poor classifier accuracy for both 3D surface matching and 211) 2 depth maps. Recognition experiments axe performed on the Sheffield Dataset, consisting 692 images of 22 individuals with varying pose, illumination and expressions

    Object Detection and Tracking Using Uncalibrated Cameras

    Get PDF
    This thesis considers the problem of tracking an object in world coordinates using measurements obtained from multiple uncalibrated cameras. A general approach to track the location of a target involves different phases including calibrating the camera, detecting the object\u27s feature points over frames, tracking the object over frames and analyzing object\u27s motion and behavior. The approach contains two stages. First, the problem of camera calibration using a calibration object is studied. This approach retrieves the camera parameters from the known locations of ground data in 3D and their corresponding image coordinates. The next important part of this work is to develop an automated system to estimate the trajectory of the object in 3D from image sequences. This is achieved by combining, adapting and integrating several state-of-the-art algorithms. Synthetic data based on a nearly constant velocity object motion model is used to evaluate the performance of camera calibration and state estimation algorithms

    Object Detection and Tracking Using Uncalibrated Cameras

    Get PDF
    This thesis considers the problem of tracking an object in world coordinates using measurements obtained from multiple uncalibrated cameras. A general approach to track the location of a target involves different phases including calibrating the camera, detecting the object\u27s feature points over frames, tracking the object over frames and analyzing object\u27s motion and behavior. The approach contains two stages. First, the problem of camera calibration using a calibration object is studied. This approach retrieves the camera parameters from the known locations of ground data in 3D and their corresponding image coordinates. The next important part of this work is to develop an automated system to estimate the trajectory of the object in 3D from image sequences. This is achieved by combining, adapting and integrating several state-of-the-art algorithms. Synthetic data based on a nearly constant velocity object motion model is used to evaluate the performance of camera calibration and state estimation algorithms

    In Defense of the Eight-Point Algorithm

    Get PDF
    Abstract—The fundamental matrix is a basic tool in the analysis of scenes taken with two uncalibrated cameras, and the eight-point algorithm is a frequently cited method for computing the fundamental matrix from a set of eight or more point matches. It has the advantage of simplicity of implementation. The prevailing view is, however, that it is extremely susceptible to noise and hence virtually useless for most purposes. This paper challenges that view, by showing that by preceding the algorithm with a very simple normalization (translation and scaling) of the coordinates of the matched points, results are obtained comparable with the best iterative algorithms. This improved performance is justified by theory and verified by extensive experiments on real images. Index Terms—Fundamental matrix, eight-point algorithm, condition number, epipolar structure, stereo vision
    corecore