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Abstract –– The 3D reconstruction is an important step for 

the analytical calculation of the Jacobian of the image in a 
process of visual control of robots. In a two-camera stereo 
system that reconstruction depends on the knowledge of the 
rigid transformation between the two cameras and is 
represented by the rotation and translation between them. 
These two parameters are the result of a calibration of the 
stereo pair, but can also be retrieved from the epipolar 
geometry of the system, or from a homography obtained by 
features belonging to a flat object at the scene. In this paper, 
we make an assessment of the latter two alternatives, taking as 
reference an Euclidean reconstruction eliminating image 
distortion. We analyze three cases: the distortion inherent in 
the camera is corrected, without corrected distortion, and 
when Gaussian noise is added to the detection of features.  

 
Keywords –– Rigid transformation, fundamental matrix, 

homography, 3D reconstruction 
 

I.  INTRODUCTION 
 
 The three-dimensional reconstruction of the features 
present in the scene is a necessary process to make visual 
control which determines the image Jacobian by an 
analytical calculation [5], resulting in computational cost, 
increased cycle time control, and availability of 
accumulating errors. Although the visual control based on 
the calculation of the Jacobian of the image where is the 3D 
reconstruction of the point provides good results [2], exists 
as a conducting online research-based visual control systems 
are not calibrated [1] [3] [17] based on the properties of 
epipolar geometry or projective transformations, 
respectively represented by the fundamental matrix and 
homography matrix, which ignores the need to calibrate 
cameras and 3D points reconstructed the scene. In this sense 
in this paper we study the reconstruction based on 
parameters obtained from these two matrices. 

In a system of two externally uncalibrated cameras, we 
can recover the rigid transformation (rotation matrix R and 
translation vector t) between the two chambers from the 
fundamental matrix or homography based on a [4]. In both 
cases, recovers only the direction of the translation vector, 
then it is multiplied by a factor in the case of a homography 
corresponds to the inverse of the distance between the plane 
containing the point and origin of the coordinate system of 
the first camera, while in the case of fundamental matrix 
comes from its projective nature. 

In this paper we discuss two ways to retrieve R t, then with 
these parameters carried out the 3D reconstruction of the 
scene points to the cases: when correcting the distortion of 
the camera itself, without correcting distortion, and when 
Gaussian noise is added in feature detection. It draws on an 
Euclidean reconstruction with removal of image distortion, 
using the method of minimizing the distance between the 
reprojected rays [13]. The R and t needed to obtain 
Euclidean reconstruction are obtained by mean of relating 
the pose (location and orientation) between the patterm and 
both cameras. 

It is known that for a 3D reconstruction [13] Euclidean, it 
is necessary to have the projection matrix P for each camera, 
it depends on the matrix of intrinsic parameters and extrinsic 
(R t). It can also perform a projective reconstruction that 
explicitly depend on the fundamental matrix F [16], in this 
case is no longer necessary intrinsic parameters matrix or 
extrinsic parameters. In this paper we consider an 
intermediate term, needing to rebuild the matrix of intrinsic 
parameters only, while the rotation R and translation t are 
recovered either from the fundamental matrix [10] or from a 
homography [6 ] [15] [20]. 

This article is organized as follows: After this 
introduction, section II describes the recovery of the rotation 
and translation from the fundamental matrix, while in 
Section III the recovery of these parameters from a 
homography. The equipment used, tests and results are 
shown in Sections IV and V respectively, while in Section 
VI conclusions are reported and future work. 

 
II.  RETRIEVING R AND t FROM THE FUNDAMENTAL MATRIX 

 
 In a system of two cameras, the projections in both 
images [ , ]Tu v=m  and ' [ ', ']Tu v=m  (Side coordinates of 
the image) of a 3D point, are related by the epipolar 
constraint equation: 

' 0T =m F m  (1) 

where the characteristics are expressed in projective notation 
(~), and F is a 3x3 matrix known as the fundamental matrix, 
which encapsulates all the information of correspondence 
between m  and 'm  its determination is known as 
projective calibration or calibration weak [8] [12 ]. The 
estimation of the fundamental matrix has been widely 
studied research topic mainly in the 90s, existing linear 
methods, nonlinear and robust [19]. 

Estimation of the rigid transformation between two cameras from the 
Fundamental Matrix VS from Homographies 
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Assuming that the intrinsic parameter matrix is known, 
the essential matrix E of the system from the fundamental 
matrix can be calculated with the following relationship: 

-T -1F = K' EK  (2) 
where K’ y K are intrinsic parameter matrices of the second 
and first camera respectively. 

Once the essential matrix E is calculated, and knowing 
that [ ]x=E t R  [7], where [ ]xt  is the skew symmetric matrix 
of t, one can extract the rotation R and scaled translation t 
according to the method proposed by Hartley in [10] based 
on properties SVD singular decomposition of E. By this 
method there are four possible solutions of the type (R | t *): 
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(3) 

Where U  and TV  are orthogonal matrices of the singular 
decomposition TE = UDV , α  is a scalar, and 3u  the third 
column of the matrix U. W is an orthogonal matrix defined 
as: 

0 1 0
1 0 0
0 0 1

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

W  

 
 

(4) 

The choice of the true solution is determined by the 
condition that the points of the workspace should be in front 
of both cameras. This can be achieved by transforming an 
arbitrary point in the workspace, and determine whether it 
meets this condition, thus eliminating three alternatives. 

 
III.  RETRIEVING R AND t FROM A HOMOGRAPHY 

 
A point m1 belonging to a plane 1π is related to a point 

m2 belonging to another plane 2π  by [7] 
2 1λ =m Hm  (5)  

Where λ  is a scalar showing the projective nature of the 
relationship, and H is a 3x3 matrix called homography or 
2D projective transformation, is a linear transformation 
between points belonging to two projective planes. A special 
case is when one of these planes is the plane of the image. A 
second special case is when m1 and m2 are projections of 
images of a point in a plane into the scene (Fig 1). In this 
case H (homography between the planes of the images 
induced by the plane of the scene) is given by 

1
2 1π π

−=H H H  (6) 
being 1πH the homography between the plane and the first 
image, and 2πH the homography between the plane and the 
second image. 

 
Fig. 1 System of two cameras and a plane in the scene. 

 
In a system of two cameras, a point P1 with reference to 

three-dimensional coordinate system of the first camera can 
be expressed as P2 (same point, but represented in the 
system of the second camera) under the relation: 

2 1= +P RP t  (7) 

where R y t are the rotation and translation of the system of 
the first camera with reference to the second camera. 

If P1 is considered belonging to a plane in the scene, (7) 
can be rewritten as [7]: 

1
2 1

1

T

d
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

t nP R P  
 

(8) 

being d1 the distance from the plane to the origin of 
coordinates of the first camera, and n1 is normal to the said 
plane. Projecting both representations of the point in each 
image, and using normalized coordinates ([X / Z,Y / Z,Z / 
Z]T  = [u v 1]T with f = 1) leads to a relationship similar to 
the relationship (5). 

As there is a homography H between points belonging to 
the image planes of the two cameras of the form: 

1

1

T

d
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= +⎜ ⎟
⎝ ⎠

t nH R  
 

(9) 

From (9), it is possible to recover R, n1 and t/d1 through a 
process called decomposition [6]. There are several 
decomposition methods [6] [15] [20], we will describe 
briefly the method of Faugeras [6]: 

Applying SVD decomposition of H: 
T=H UDV  (10) 

For the general case when singular values 1σ , 2σ , and 3σ  of 
D are differents (which corresponds to a position of the 
plane that not contains the optical center of any camera) we 
have: 
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1 1 3 1 3/ ( ) ( ,0, )Td q qσ σ= −t U  ; 1 1 3( ,0, )Tq q=n V  (12) 
where  
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and 
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(14) 

According to the literature ([6] [18]), the decomposition 
produces two sets of solutions for R t/d1 and n1. Methods to 
rule out false solution need a priori information on the 
orientation of the projected plane. This paper proposes a 
way to discriminate the correct solution based on the 
dispersion of a factor that multiplies  to t/d1 
 
A.  Discrimination of the true solution from a homography 
between a 3D plane and an image 

 
If β  is a factor that multiplies to t* (where 1* / d=t t ) for 
each point πm  in the plane and m  is a point in the image 
(normalized coordinates), it holds that:  

*πλ β= +m Rm t  (15) 
in a detailed way: 
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(16) 

where X and Y are assumed known. Multiplying and 
arranging terms, leads to a system: 

β =A b  (17) 
with  
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(18) 

As (17) represents a system of two equations with one 
unknown, to be solved by least squares. 

For each solution, n betas β  belonging to the n points in 
the plane are calculated. For this set of n betas β , 
dispersion is defined as: 
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(19) 

where β  is the average of the n betas β . 
 
B.  Discrimination of the true solution from a Homography 
between both images 
 

For each point of the image1 and its corresponding point 
in the image2 (normalized coordinates in both images) 
generated from a point in a plane in the workspace, it holds 
that: 

2 1 *λ β= +m Rm t  (20) 
(where 1* / d=t t ), in a detailed way: 
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(21) 

multiplying and arranging terms leads to a system of the 
form (17) with: 
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   (22) 

Just as in the previous case, β  is calculated for each point 
by least squares, the dispersion is calculated for each 
solution and applies the criterion of minimum dispersion to 
the true solution 

IV. EXPERIMENTS 
A.  Equipment used 

The equipment used is as follows (Fig. 2): 
A joint system consists of a high-precision positioning 

and its driver, model MM3000 Newport. It has three degrees 
of freedom: two axes of rotation and an axis of translation 
and its theoretical accuracy is one thousandth of a degree 
and a thousandth of an mm. On the last link of the joint 
system is arranged the visual object to be reconstructed, 
formed by a plane containing 25 black squares on a white 
background. 
 

Fig. 2 Experimental equipment. 
 

A vision system consisting of two analog CV-M50 
cameras and a Meteor Matrox II-MC image acquisition card, 
which allows the simultaneous acquisition of both images. 
The cameras, fixed in the workspace, separated 
approximately 700 mm, converging towards the joint system 
at a distance about 1200 mm. The detection of the 
characteristics is with subpixel precision, and with an error 
less than 0.2 pixels 
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B.  Tests realized 
Assuming that the intrinsic parameters of both cameras 

are known, as well as weak calibration of the system 
(fundamental matrix F) obtained by the method of the eight 
points [11] with normalization of input data. 
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Fig. 3 3D Reconstruction with true R and t. 
In order to serve as a framework, the true rotation matrix 

R and translation vector t between the two cameras are 
determined before tests. These parameters can be obtained 
by two methods. The first is through: 

1
2 2 1 1

1 1 1T T T
π π π π

−
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(23) 

where R1π and t1π are elements of the pose between the 
pattern system and the first camera, obtained relating the 
spatial positions of the corners of the pattern and their image 
projections in the first camera, by similar process was 
obtained R2π and t2π relating the 3D positions of the corners 
of the pattern with their image projections in the second 
camera. The second method is the method of Horn [14] from 
the equation of the motion of the rigid body (7) minimizes 
the expression: 

2

2 1( )
n

i i
i

− +∑ P RP t  
 

(24) 

where P1 and P2 are 3D points belonging to the camera 
system 1 and 2 respectively. In this work, R and t have been 
obtained through the first method. 

The tests carried out were three-dimensional 
reconstruction of the corners of 25 black squares belonging 
to the pattern whose image is acquired at different positions 
by both cameras, so that the optical center of any of them 
does not belong to the plane of the pattern to avoid 
singularities. 3D reconstructions (Euclidean) of these 
corners using real rotation and translation using the method 
of minimizing the reprojected rays [13] and eliminating 
distortion in detecting characteristics serve as reference for 

calculation errors. Figure 3 shows the 3D reconstruction of 
three positions of the pattern. 

Subsequently, the 3D reconstruction of the corners 
detected is carried out using the R and t retrieved from: a) 
the homography generated by the points belonging to the 
flat pattern (Fig. 4), b) the fundamental matrix F of the 
system. Reconstruction is done in three situations: 1) 
eliminating image distortion of the detected points, 2) 
without eliminating the distortion of the detected points, and 
3) by adding Gaussian noise (without eliminating the 
distorting) 0.5σ =  or 1σ =  pixels to the detected 
characteristics. It is measured the average Euclidean error 
(in pixels) between the reprojection in the image of the real 
3D reconstructed points and those reconstructed with the 
recovered rotation and translation (expression (25)). Since 
there are two images, the calculated error is the average of 
the errors in both images 

*1 n

i i
i

e
n

= −∑ m m  
 

(25) 

Fig. 4 shows the 3D reconstruction with R and *β t  
(where 1* / d=t t ) retrieved from a homography H for an 
arbitrary value of β . High distortion of the point 
reconstructed is observed (compare with Fig. 3). 
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Fig. 4 3D reconstruction utilizing R and t retrieved from a 
homography H for an arbitrary value of β . 

Errors generated by the 3D reconstruction with R y β t* 
(from a homography, 1* / d=t t ) or R and α t*  (from the 
fundamental matrix, 3* α=t u ) are calculated for different 
values of β  (o α ). Graphs of Fig. 5-8 are obtained, these 
graphs depicts the error (vertical axis) VS the product 
between β  (o α ) and the norm of t* (horizontal axis) 

*β t     ó    *α t  (1) 

Figure 5 shows results for the recovery from the 
homographies of 3 positions of the pattern, and from the 
fundamental matrix, eliminating the image distortion case. 
Figure 6 shows the same situation but without the 
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elimination of the distortion case. Comparing Fig 5 and Fig 
6, lower values of error for eliminating image distortion case 
are showed. 
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Fig. 5 Reprojection error when image distortion is eliminated. 
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Fig. 6 Reprojection error when image distortion is not eliminated. 
 

Results for the cases when Gaussian noise is added to the 
detection of features, are shown in Figure 7 and Figure 8 
respectively. 

V.  RESULTS 
According to figures 5-8, a parabolic behavior of the error 

increasing downward away from the optimum value of 
*β t  or ( *α t ) is showed. 

Based on Fig 5 and 6 are obtained Table I and based on 
Figs 7 and 8 Table II that show the minimum error and its 
corresponding *β t  for homographies of three positions of 
the pattern. 
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Fig. 7 Reprojection error with added noise 0.5σ = . 
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Fig. 8 Reprojection error with added noise 1σ = . 
 

TABLE I 
MINIMUM ERROR  AND *β t  FROM HOMOGRAPHIES WITH 

DISTORTION CORRECTED AND WITHOUT CORRECTED 
Distortion Parameters H1 H2 H3 

emin 2.2 1.8 1.8 corrected 
*β t  673.1 668.8 737.9 

emin 5.1 3.2 1.6 without  
corrected *β t  773.6 833.4 845.9 

 
TABLA II 

MINIMUM ERROR AND *β t  FROM HOMOGRAPHIES WITH 
ADDED NOISE 

Noise Parameters H1 H2 H3 
emin 2.6 3.2 1.5 0.5σ =  

*β t  815.8 831.4 842.8 
emin 3.0 3.4 1.5 1σ =  

*β t  817.3 837.6 840.6 

7th International Conference on Electrical and Electronics Engineering Research (CIIIEE 2010) 
November 10-12, Aguascalientes, Ags. Mexico. 
www.ciiiee.ita.mx 194 of 308

ISBN: 978-607-95060-3-2 
Supported by  the IEEE Aguascalientes Section and the Instituto Tecnologico de Aguascalientes



 

Given that the true value of the translation t (665.5) is 
known, which serves as a reference, and comparing with the 
values of Tables I, it is seen that values closer to the 
reference are obtained when distortion is corrected, this fact 
shows a significant dependence of the result to the 
correction of the distortion in cameras. Comparing with 
Table II, the added noise does not degrade to a large extent 
the result when the distortion is not corrected. Moreover, the 
results for cases with added noise 0.5σ =  and 1σ =  are 
very similar. 

In the case of recovery from the fundamental matrix 
(Table III) shows a good result when you delete the image 
distortion, while the results are very similar to each other 
(although not very far from the reference value) when 
distortion is not removed or Gaussian noise is added. It is 
also noted that the minimum error values are much larger 
than in the case of recovery from the homographies (Tables 
I and II), which represents a worst estimate of the rotation R 
recovered in the case from homographies. 

TABLA III 
MINIMUM ERROR AND *α t  FROM THE FUNDAMENTAL 

MATRIX 
Parameters without 

distortion 
with 

distortion 
0.5σ =  1σ =  

emin 4.6 8.4 8.7 10.5 
*α t  648.6 712.5 713.4 716.1 

 
V.  CONCLUSION 

The recovery of the rotation R and translation t between 
the coordinate systems of cameras in a stereo system with 
two cameras was performed. This recovery was carried out 
from homographies which is generated by a flat pattern in 
the scene and from the epipolar geometry of the system 
represented by the fundamental matrix F. In both cases, the 
translation t is recovered with a factor due to the projective 
nature of the system. It is shown that both in the case of 
recovery from homography as in the case of recovery from 
the fundamental matrix, we obtain good results if the 
distortion of the cameras is corrected. It is also observed that 
both cases are robust to the addition of noise. We also 
observe that fewer errors are obtained when recovery is 
realized from homographies  

As future work it is desired to obtain optimal values 
*β t  and *α t not dependent of the previous estimation 

of true 3D points. It is also proposed to extend this study to 
a system of three cameras and knowledge of the trifocal 
tensor. 
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