1,029 research outputs found

    Unambiguous Processing Techniques of Binary Offset Carrier Modulated Signals

    Get PDF

    The PN Technique of Ranging as Applied in the Ranging Subsystem Mark I

    Get PDF
    Pseudo-Noise /PN/ technique of ranging as applied in Ranging Subsystem Mark I - ranging code

    Millimeter-wave Communication and Radar Sensing — Opportunities, Challenges, and Solutions

    Get PDF
    With the development of communication and radar sensing technology, people are able to seek for a more convenient life and better experiences. The fifth generation (5G) mobile network provides high speed communication and internet services with a data rate up to several gigabit per second (Gbps). In addition, 5G offers great opportunities of emerging applications, for example, manufacture automation with the help of precise wireless sensing. For future communication and sensing systems, increasing capacity and accuracy is desired, which can be realized at millimeter-wave spectrum from 30 GHz to 300 GHz with several tens of GHz available bandwidth. Wavelength reduces at higher frequency, this implies more compact transceivers and antennas, and high sensing accuracy and imaging resolution. Challenges arise with these application opportunities when it comes to realizing prototype or demonstrators in practice. This thesis proposes some of the solutions addressing such challenges in a laboratory environment.High data rate millimeter-wave transmission experiments have been demonstrated with the help of advanced instrumentations. These demonstrations show the potential of transceiver chipsets. On the other hand, the real-time communication demonstrations are limited to either low modulation order signals or low symbol rate transmissions. The reason for that is the lack of commercially available high-speed analog-to-digital converters (ADCs); therefore, conventional digital synchronization methods are difficult to implement in real-time systems at very high data rates. In this thesis, two synchronous baseband receivers are proposed with carrier recovery subsystems which only require low-speed ADCs [A][B].Besides synchronization, high-frequency signal generation is also a challenge in millimeter-wave communications. The frequency divider is a critical component of a millimeter-wave frequency synthesizer. Having both wide locking range and high working frequencies is a challenge. In this thesis, a tunable delay gated ring oscillator topology is proposed for dual-mode operation and bandwidth extension [C]. Millimeter-wave radar offers advantages for high accuracy sensing. Traditional millimeter-wave radar with frequency-modulated continuous-wave (FMCW), or continuous-wave (CW), all have their disadvantages. Typically, the FMCW radar cannot share the spectrum with other FMCW radars.\ua0 With limited bandwidth, the number of FMCW radars that could coexist in the same area is limited. CW radars have a limited ambiguous distance of a wavelength. In this thesis, a phase-modulated radar with micrometer accuracy is presented [D]. It is applicable in a multi-radar scenario without occupying more bandwidth, and its ambiguous distance is also much larger than the CW radar. Orthogonal frequency-division multiplexing (OFDM) radar has similar properties. However, its traditional fast calculation method, fast Fourier transform (FFT), limits its measurement accuracy. In this thesis, an accuracy enhancement technique is introduced to increase the measurement accuracy up to the micrometer level [E]

    Economic Galileo E5 Receiver

    Get PDF
    The Galileo system introduces an extremely wideband civil E5 signal for high precision navigation. The structure of the receiver for the E5 signal is complicated due to the signal complexity and the large bandwidth. It is possible to process the whole E5 signal or process separately E5a and E5b parts combining obtained results afterwards (we call here such method as piece-wise processing). The second procedure has three times worse standard deviation of the pseudorange then first one. The main goal of the paper is to present a design of an E5 receiver which we will call the economic E5 receiver (ecoE5). It is built from jointly controlled correlators for the processing of the E5a and E5b signals which are parts of the E5 signal. Control of these partial E5a and E5b correlators is realized by only one delay and one phase lock loops. The performance, i.e. the pseudorange noise and multipath errors, of the receiver equipped with the ecoE5, is only slightly worse (the standard deviation of the pseudorange noise is 10 - 20% larger) than the performance of the optimal E5 receiver and it is much better than the performance of the receiver combining the piecewise (E5a and E5b) measurements. The ecoE5 receiver hardware demands are about one quarter of the hardware demands of the classical E5 receiver

    Multipath Mitigation Techniques for Satellite-Based Positioning Applications

    Get PDF
    This chapter addressed the challenges encountered by a GNSS signal due to multipath propagation. A wide range of correlation-based multipath mitigation techniques were discussed and the performance of some of these techniques were evaluated in terms of running average error and root-mean-square error. Among the analyzed multipath mitigation techniques, RSSML, in general, achieved the best multipath mitigation performance in moderate-to-high C/N0 scenarios (for example, 30 dB-Hz and onwards). The other techniques, such as PT(Diff2) and HRC showed good multipath mitigation performance only in high C/N0 scenarios (for example, 40 dB-Hz and onwards). The other new technique SBME offered slightly better multipath mitigation performance to the well-known nEML DLL at the cost of an additional correlator. However, as the GNSS research area is fast evolving with many potential applications, it remains a challenging topic for future research to investigate the feasibility of these multipath mitigation techniques with the multitude of signal modulations, spreading codes, and spectrum placements that are (or are to be) proposed.publishedVersionPeer reviewe

    A Survey on Low-Power GNSS

    Get PDF
    With the miniaturization of electronics, Global Navigation Satellite Systems (GNSS) receivers are getting more and more embedded into devices with harsh energy constraints. This process has led to new signal processing challenges due to the limited processing power on battery-operated devices and to challenging wireless environments, such as deep urban canyons, tunnels and bridges, forest canopies, increased jamming and spoofing. The latter is typically tackled via new GNSS constellations and modernization of the GNSS signals. However, the increase in signal complexity leads to higher computation requirements to recover the signals; thus, the trade-off between precision and energy should be evaluated for each application. This paper dives into low-power GNSS, focusing on the energy consumption of satellite-based positioning receivers used in battery-operated consumer devices and Internet of Things (IoT) sensors. We briefly overview the GNSS basics and the differences between legacy and modernized signals. Factors dominating the energy consumption of GNSS receivers are then reviewed, with special attention given to the complexity of the processing algorithms. Onboard and offloaded (Cloud/Edge) processing strategies are explored and compared. Finally, we highlight the current challenges of today’s research in low-power GNSS.Peer reviewe

    A Novel Single Differencing Measurement for Multipath Detection

    Get PDF
    Increased global dependence on Global Navigation Satellite Systems (GNSSs) has resulted in a high demand for greater precision and reliable measurements from GNSS receivers. The multipath problem is the single largest source of errors in modernised GNSSs. Double differencing techniques, such as Code Minus Carrier (CMC) have been shown to accurately detect and measure multipath, allowing for corrections to be made via Ground Base Augmentation Systems (GBAS), for example. However, these techniques require at least two receivers and the protection provided is not extended to stand-alone receivers. This paper introduces a new single differencing technique for the accurate detection of multipath in standalone GNSS receivers receiving modernised Binary Offset Carrier (BOC)-modulated signals. Similarities to CMC are drawn before the novel measurement, Code minus Subcarrier, (CMS) is characterised statistically and a threshold for multipath detection is determined. The effectiveness and sensitivity of this novel measurement as a multipath detection technique are analysed through simulation and multipath error envelope analysis. It will be shown that multipath echos capable of inducing a psuedorange error larger than the threshold are detectable at any amplitude. The method is finally verified using simulated fixed offset multipath, confirming that when code and subcarrier early–late spacings are optimal, all ranges of multipath delays, even as small as 21 meters, are detectable. This novel method of multipath detection requires no additional complex correlators than already exist in the chosen tracking algorithm, thus, providing excellent detection with minimum complexity added to the receiver structure

    The Global Navigation System Scope (GNSScope): a toolbox for the end-to-end modelling simulation and analysis of GNSS

    Get PDF
    The thesis provides a detailed overview of the work carried out by the author over the course of the research for the award of the degree of Doctor of Philosophy at the University of Westminster, and the performance results of the novel techniques introduced into the literature. The outcome of the work is collectively referred to as the Global Navigation System Scope (GNSScope) Toolbox, offering a complete, fully reconfigurable platform for the end-to-end modeling, simulation and analysis of satellite navigation signals and systems, covering the signal acquisition, tracking, and range processing operations that take place in a generic Global Navigation Satellite System (GNSS) receiver, accompanied by a Graphical User Interface (GUI) providing access to all the techniques available in the toolbox. Designed and implemented entirely in the MATLAB mathematical programming environment using Software Defined Radio (SDR) receiver techniques, the toolbox offers a novel new acquisition algorithm capable of handling all Phase-Shift Keying (PSK) type modulations used on all frequency bands in currently available satellite navigation signals, including all sub-classes of the Binary Offset Carrier (BOC) modulated signals. In order to be able to process all these signals identified by the acquisition search, a novel tracking algorithm was also designed and implemented into the toolbox to track and decode all acquired satellite signals, including those currently intended to be used in future navigation systems, such as the Galileo test signals transmitted by the GIOVE satellites orbiting the Earth. In addition to the developed receiver toolbox, three novel algorithms were also designed to handle weak signals, multipath, and multiple access interference in GNSScope. The Mirrored Channel Mitigation Technique, based on the successive and parallel interference cancellation techniques, reduces the hardware complexity of the interference mitigation process by utilizing the local code and carrier replicas generated in the tracking channels, resulting in a reduction in hardware resources proportional to the number of received strong signals. The Trigonometric Interference Cancellation Technique, used in cross-correlation interference mitigation, exploits the underlying mathematical expressions to simplify the interference removal process, resulting in reduced complexity and execution times by reducing the number of operations by 25% per tracking channel. The Split Chip Summation Technique, based on the binary valued signal modulation compression technique, enhances the amount of information captured from compressing the signal to reveal specific filtering effects on the positive and negative polarity chips of the spreading code. Simulation case studies generated entirely using the GNSScope toolbox will be used throughout the thesis to demonstrate the effectiveness of the novel techniques developed over the course of the research, and the results will be compared to those obtained from other techniques reported in the literature

    Performance of precise marine positioning using future modernised global satellite positioning systems and a novel partial ambiguity resolution technique

    Get PDF
    The International Maritime Organisation (IMO) established a set of positioning requirements for future Global Navigation Satellite System (GNSS) constellations in IMO resolution A.915. It is important to be able to determine if these requirements can be met, and what shore infrastructure would be required. This thesis describes the collection of data in a marine environment and the analysis of these data with regards to the requirements. The data collection exercise was held at the beginning of May 2008 and saw THV Alert navigate into Harwich Harbour whilst Global Positioning System (GPS) observation data were recorded from onboard the vessel and from shore-based reference stations. Additional data were obtained from nearby Ordnance Survey reference stations, and two total stations were used to track the vessel’s passage to provide a truth model. Several modernised GPS satellites were tracked. The data were processed under different scenarios, using software developed at UCL, and the positioning performance was analysed in the context of the IMO requirements. Potential performance improvements from modernised GPS and Galileo were then discussed. Providing integrity through single-epoch real-time kinematic positioning, required to meet the strictest IMO requirements, is particularly difficult. The identification of phase observation outliers is not possible before the integer ambiguities are resolved, but an undetected outlier could prevent successful ambiguity resolution. It will not always be necessary to fix all the ambiguities to achieve the required positioning precision, particularly with a multi-GNSS constellation. This thesis introduces a new algorithm for partial ambiguity resolution in the presence of measurement bias. Although computationally intensive, this algorithm significantly improves the ambiguity resolution success rate, increasing the maximum baseline length over which the highest requirements are met with dual-frequency GPS from 1 km to 66 km
    corecore