1,169 research outputs found

    Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric.

    Get PDF
    Thin-film field-effect transistor is a fundamental component behind various mordern electronics. The development of stretchable electronics poses fundamental challenges in developing new electronic materials for stretchable thin-film transistors that are mechanically compliant and solution processable. Here we report the fabrication of transparent thin-film transistors that behave like an elastomer film. The entire fabrication is carried out by solution-based techniques, and the resulting devices exhibit a mobility of โˆผ30โ€‰cm(2)โ€‰V(-1)โ€‰s(-1), on/off ratio of 10(3)-10(4), switching current >100โ€‰ฮผA, transconductance >50โ€‰ฮผS and relative low operating voltages. The devices can be stretched by up to 50% strain and subjected to 500 cycles of repeated stretching to 20% strain without significant loss in electrical property. The thin-film transistors are also used to drive organic light-emitting diodes. The approach and results represent an important progress toward the development of stretchable active-matrix displays

    Photon Generation and Dissipation in Organic Light-Emitting Diodes

    Get PDF
    By using phosphorescent and thermally activated delayed fluorescence emitters, the internal quantum efficiency of organic light-emitting diodes (OLEDs) can now reach 100%. However, a major fraction of generated photons is trapped inside the device, because of the intrinsic multi-layer device structure and the mismatch of refractive indices. This thesis comprises different approaches for the efficiency enhancement of planar OLEDs. In particular, outcoupling strategies to extract trapped photons to obtain highly efficient OLEDs are investigated

    ๊ธˆ์† ์‚ฐํ™”๋ฌผ ๋ฐ ์ด์ฐจ์› ๋‚˜๋…ธ ๋ฌผ์งˆ ๊ธฐ๋ฐ˜์˜ ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ: ์„ฑ๋Šฅ ์ตœ์ ํ™” ๋ฐ ์–‘์ž์  ๋ฐœ๊ด‘ ๋‹ค์ด์˜ค๋“œ์— ๋Œ€ํ•œ ์‘์šฉ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021.8. ๊ณฝ์ •ํ›ˆ.๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ๋ฅผ ์ง‘์ ํ•œ ์ „์ž ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๊ฐœ๋ฐœ์€ ๋›ฐ์–ด๋‚œ ์žฅ์ ์œผ๋กœ ์ธํ•ด ํฐ ๊ด€์‹ฌ์„ ๋ฐ›์•„์™”๋‹ค. ์ง€๋‚œ ์ˆ˜์‹ญ ๋…„ ๋™์•ˆ ๋Šฅ๋™ ๋งคํŠธ๋ฆญ์Šค ์•ก์ • ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐ ์œ ๊ธฐ ๋ฐœ๊ด‘ ๋‹ค์ด์˜ค๋“œ์™€ ๊ฐ™์€ ํ‰ํŒ ๋””์Šคํ”Œ๋ ˆ์ด์— ๋Œ€ํ•œ ์—ฌ๋Ÿฌ ์—ฐ๊ตฌ๊ฐ€ ๋ณด๊ณ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์šฐ์ˆ˜ํ•œ ์„ฑ๊ณผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , pํ˜• ์‚ฐํ™”๋ฌผ/๋‚˜๋…ธ ๋ฐ˜๋„์ฒด์˜ ๊ฐœ๋ฐœ๊ณผ ๋ฐฑํ”Œ๋ ˆ์ธ ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ๋กœ ๊ตฌ๋™๋˜๋Š” ์–‘์ž์  ๋ฐœ๊ด‘ ๋‹ค์ด์˜ค๋“œ์˜ ๊ตฌ๋™์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ์ œํ•œ์ ์ž…๋‹ˆ๋‹ค. pํ˜• ๋ฐ˜๋„์ฒด์˜ ์ „๊ธฐ์  ํŠน์„ฑ์€ ์ด๋™๋„๊ฐ€ ๋‚ฎ๊ณ , ์˜คํ”„ ์ „๋ฅ˜๊ฐ€ ๋†’์œผ๋ฉฐ, ์†Œ์ž์˜ ๋ถˆ์•ˆ์ •์„ฑ์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์˜๋ฏธ์—์„œ ์šฐ๋ฆฌ๋Š” ์•ž์„œ ์–ธ๊ธ‰ํ•œ ์‘์šฉ์„ ์œ„ํ•œ p-ํ˜• ์‚ฐํ™”๋ฌผ/๋‚˜๋…ธ ๋ฌผ์งˆ ๊ธฐ๋ฐ˜ ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ์™€ ์ฝœ๋กœ์ด๋“œ ์–‘์ž์  ๋ฐœ๊ด‘ ๋‹ค์ด์˜ค๋“œ๋ฅผ ์—ฐ๊ตฌํ–ˆ์Šต๋‹ˆ๋‹ค. ๋จผ์ €, ์šฐ๋ฆฌ๋Š” ์œ ์—ฐํ•œ ์ „์ž ์žฅ์น˜์— ์ž ์žฌ์ ์œผ๋กœ ๋งค๋ ฅ์ ์ธ ๋‚˜๋…ธ ์™€์ด์–ด ๊ตฌ์กฐ๋กœ ํ˜•์„ฑ๋œ ๋Œ€์ฒด ์ „๊ทน์œผ๋กœ ์ „๊ธฐ์  ํŠน์„ฑ์„ ์œ„ํ•ด ์Šคํ”„๋ ˆ์ด ์ฝ”ํŒ…๋œ ๋‹จ์ผ๋ฒฝ ํƒ„์†Œ๋‚˜๋…ธ ํŠœ๋ธŒ๋ฅผ ์†Œ์Šค ๋ฐ ๋“œ๋ ˆ์ธ ์ „๊ทน์œผ๋กœ ์‚ฌ์šฉํ•˜๋Š” p ํ˜• ์ฃผ์„ ์‚ฐํ™”๋ฌผ (SnO) ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ๋ฅผ ๊ตฌํ˜„ํ–ˆ์Šต๋‹ˆ๋‹ค. ํด๋ฆฌ๋จธ ์—์น˜ ์Šคํ† ํผ ์ธต์— SU-8์ด ์žˆ๋Š” SnO ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ์†Œ์ž ๊ตฌ์กฐ๋Š” SnO ์ฑ„๋„ ์ธต์˜ ์—ดํ™” ์—†์ด ์›ํ•˜๋Š” ์˜์—ญ์—์„œ ๋‹จ์ผ๋ฒฝ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ์˜ ์„ ํƒ์  ์—์นญ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ ๋‹จ์ผ๋ฒฝ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ ์ „๊ทน์œผ๋กœ ์‚ฌ์šฉํ•˜๋Š” SnO ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ๋Š” ์ ์ ˆํ•œ ์ฑ„๋„ํญ๊ณผ ์ •๊ทœํ™”๋œ ์ „๊ธฐ์  ์ปจํƒ ํŠน์„ฑ (~ 1 kฮฉ cm), ์ „๊ณ„ ํšจ๊ณผ ์ด๋™์„ฑ (~ 0.69 cm2/Vs), ๋ฌธํ„ฑ์ „์••์ดํ•˜ ์Šค์œ™ (~ 0.4 V/dec) ๋ฐ ์ „๋ฅ˜ ์˜จ-์˜คํ”„ ํŠน์„ฑ (Ion/Ioff ~ 3.5ร—103)์„ ์„ฑ๊ณต์ ์œผ๋กœ ๊ตฌํ˜„ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ ์˜จ๋„์— ๋”ฐ๋ฅธ ์ „๊ธฐ์  ์ปจํƒ ๋ฐ ์ฑ„๋„ ํŠน์„ฑ์€ Ni ์ „๊ทน์— ํ•„์ ํ•˜๋Š” ์ ์ ˆํ•œ ์ ‘์ด‰ ์ €ํ•ญ๊ณผ ํ•จ๊ป˜ ๋ฌด์‹œํ•  ์ˆ˜ ์žˆ๋Š” ์ˆ˜์ค€์˜ ๊ฐ€์ „์ž๋  ํ…Œ์ผ ์Šคํ…Œ์ดํŠธ์˜ 3 x 10-3 eV ํ™œ์„ฑํ™” ์—๋„ˆ์ง€๋กœ SnO ์ฑ„๋„ ์ „์†ก์„ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค. ๋‘˜์งธ, ์šฐ๋ฆฌ๋Š” ๋จผ์ € ์ƒ๋ณดํ˜• ํŠธ๋žœ์ง€์Šคํ„ฐ๋ฅผ ๊ตฌํ˜„ํ•˜์—ฌ p (๋˜๋Š” n ํ˜•) MoTe2 ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ์— ์˜ํ•ด ์ œ์–ด๋˜๋Š” ์–‘์ž์  ๋ฐœ๊ด‘ ๋‹ค์ด์˜ค๋“œ ๊ตฌ๋™์„ ์‹œ์—ฐํ•ฉ๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” MoTe2 ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ์œ ํ˜• ๋ณ€ํ™˜์„ ์œ„ํ•ด Poly-L-lysine (PLL)์— ์˜ํ•œ ๋ถ„์ž ๋„ํ•‘์„ ๋„์ž…ํ•˜๊ณ , ์–‘์ž์  ๋ฐœ๊ด‘ ๋‹ค์ด์˜ค๋“œ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด ํ‘œ๋ฉด ๋ฆฌ๊ฐ„๋“œ ๋ณ€ํ˜•์„ ํ™œ์šฉํ•ฉ๋‹ˆ๋‹ค. ์ด์™€ ๊ด€๋ จํ•˜์—ฌ PLL ์ฒ˜๋ฆฌ๋Š” ์ „๊ธฐ์  ํŠน์„ฑ์˜ ์ €ํ•˜์—†์ด MoTe2 ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ๋›ฐ์–ด๋‚œ ์œ ํ˜• ๋ณ€ํ™˜์„ ๋‹ฌ์„ฑํ•˜์—ฌ, ์•ˆ์ •์ ์ธ p (๋˜๋Š” n ํ˜•) ์œ ํ˜• ์žฅ์น˜๋ฅผ ํ™•๋ณดํ•˜์—ฌ ๋ณด์™„ ํšŒ๋กœ์˜ ๊ฐ€์šฉ์„ฑ์„ ๋ณด์žฅํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ์˜ฅํ‹ธ ์•„๋ฏผ์œผ๋กœ ๋ฆฌ๊ฐ„๋“œ ์น˜ํ™˜๋œ ์–‘์ž์ ์€ ์–‘์ž์  ๋ฐœ๊ด‘ ๋‹ค์ด์˜ค๋“œ์—์„œ ๊ท ํ˜• ์žกํžŒ ์ „์ž/์ •๊ณต ์ฃผ์ž…์„ ์ƒ์„ฑํ•˜์—ฌ, ์ „๋ฅ˜ ํšจ์œจ (ฮทA = 13.9 cd/A)์ด ๊ฐœ์„ ๋˜๊ณ  ์ˆ˜๋ช…์ด ๋” ๊ธธ์–ด์ง‘๋‹ˆ๋‹ค (L0 = 3000 cd/m2์—์„œ T50 = 66 h). ๊ฒฐ๊ณผ์ ์œผ๋กœ MoTe2 ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ๋Š” ์ ์ ˆํ•œ ์Šค์œ„์นญ ํŠน์„ฑ์„ ๊ฐ€์ง„ ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐฑํ”Œ๋ ˆ์ธ ํŠธ๋žœ์ง€์Šคํ„ฐ, ๊ด‘ ์ „๋ฅ˜ ์ƒ์„ฑ์— ๋Œ€ํ•œ ๋‚ด์„ฑ ๋ฐ ์ž‘๋™ ์•ˆ์ •์„ฑ์„ ํฌํ•จํ•˜์—ฌ ์–‘์ž์  ๋ฐœ๊ด‘ ๋‹ค์ด์˜ค๋“œ๋ฅผ ๊ตฌ๋™ํ•˜๋Š” ๋Šฅ๋ ฅ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ ์šฐ๋ฆฌ๋Š” ์œ ๋งํ•œ ์‘์šฉ์„ ์œ„ํ•œ ์‚ฐํ™”๋ฌผ/๋‚˜๋…ธ ๋ฌผ์งˆ ๊ธฐ๋ฐ˜ ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ์™€ ๋ฆฌ๊ฐ„๋“œ ์น˜ํ™˜ ๊ธฐ์ˆ ์ด ์ ์šฉ๋œ ํ›„๋ฉด ๋ฐœ๊ด‘ ์ ์ƒ‰ ์–‘์ž์  ๋ฐœ๊ด‘ ๋‹ค์ด์˜ค๋“œ์— ๋Œ€ํ•ด ๋…ผ์˜ํ•ฉ๋‹ˆ๋‹ค. ๋ฐฑํ”Œ๋ ˆ์ธ ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šค๋กœ pํ˜• SnO์™€ MoTe2๋ฅผ ์‚ฌ์šฉํ•˜๊ณ , ์ƒˆ๋กœ์šด ๋””์Šคํ”Œ๋ ˆ์ด ์žฅ์น˜๋กœ CdSe ์–‘์ž์  ๋ฐœ๊ด‘ ๋‹ค์ด์˜ค๋“œ๋ฅผ ์‚ฌ์šฉํ•œ ์šฐ๋ฆฌ์˜ ์—ฐ๊ตฌ ์„ฑ๊ณผ๋Š” ์œตํ•ฉ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•œ ๊ตฌ์ƒ ๋ถ„์•ผ์—์„œ ์ž ์žฌ์ ์œผ๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.The development of electronic displays integrated with Thin Film Transistors (TFTs) has been great interests due to their superb merits. For the past decades, several studies have been reported for the flat-panel displays (FPDs) such as active-matrix liquid crystal display (LCD) and organic light-emitting diode (OLED). Despite of these excellent achievements, progress of p-type oxide/nano semiconductors and operation of quantum dot light-emitting diode (QLED) driven by backplane TFTs are limited. This is because the electrical characteristics of p-type semiconductor have low mobility, high off current, and device instability. In this sense, we investigated p-type oxide/nano material-based TFTs and colloidal quantum dot light-emitting diodes (QLEDs) for the afore-mentioned application. First, we implemented p-type tin oxide (SnO) TFTs with spray-coated single-wall carbon nanotube (SWNTs) as source and drain electrodes for their electrical characteristics as alternative electrodes formed of nanowire structures, which are potentially attractive for flexible electronics. The device architecture of SnO TFTs with a polymer etch stop layer (SU-8) enables the selective etching of SWNTs in a desired region without the detrimental effects of SnO channel layers. In addition, SnO TFTs with SWNT electrodes as substitutes successfully demonstrate decent width normalized electrical contact properties (~1 kฮฉ cm), field effect mobility (~0.69 cm2/Vs), sub-threshold slope (~0.4 V/dec), and current on-off ratio (Ion/Ioff ~ 3.5ร—103). Furthermore, temperature-dependent electrical contact and channel properties elucidate SnO channel transports with an activation energy of 3ร—10-3 eV, interpreted as a negligible level of valence-band tail states, together with decent contact resistance comparable to that of Ni electrodes. Second, we firstly demonstrated the QLEDs operation modulated by p (or n-type) MoTe2 TFTs with the realization of complementary type transistor. In this study, molecular doping by Poly-L-lysine (PLL) as an electron dopant is adopted for a type conversion of MoTe2 TFTs, and surface ligand modification is utilized for the improvement of QLED performance. In this regard, the PLL treatment achieves the outstanding type conversion of MoTe2 TFTs without any degradation of electrical properties, leading to securing reliable p (or n-type) devices, thus, availability of complementary circuits. Furthermore, ligand modified QDs capped with octylamine result in balanced electron/hole injection in QLEDs, yielding improved current efficiency (ฮทA =13.9 cd/A) and longer lifetimes (T50 = 66 h at L0 = 3000 cd/m2). As a result, MoTe2 TFTs demonstrate their capabilities to drive the QLEDs for the envisioned application including display backplane transistor with decent switching properties, immunity for generation of photocurrent, and operation stability. In this thesis, we discuss the oxide/nano material based TFTs and ligand modified bottom emitting red QLEDs for many promising applications. Our research achievements using p-type SnO and MoTe2 as backplane TFTs, and CdSe QLED as novel display device can be used in potentially envision fields for the convergence research.Chapter 1 1 1.1 An Overview of Thin Film Transistors 1 1.2 An Overview of Quantum Dot Light-Emitting Diodes 8 1.3 Outline of Thesis 13 Chapter 2 15 2.1 Materials 15 2.1.1 Synthesis of ZnO Nanoparticles 15 2.1.2 Synthesis of Red Light-Emitting CdSe/Cd1-xZnxS Quantumd Dots 15 2.2 Device Characterization of Thin Film Transistors 17 2.2.1 Characterization for Thin Film Transistor 17 2.2.2 Characterization of Light Response 18 2.3 Device Characterization of Quantum Dot Light-Emitting Diodes 18 2.3.1 Current-voltage-luminance Measurement of QLEDs 18 2.3.2 Efficiency Calculation Methods 21 2.3.3 Other Characterization Methods 22 Chapter 3 24 3.1 Devic Fabrication of SnO TFTs with Spray-Coated Single Walled Carbon Nanotubes as S/D Electrodes 26 3.2 Electrical Performance of SnO TFTs 30 3.3 Contact Resistance of Spray-coated SWNTs as S/D Electrodes 33 3.4 Summary 40 Chapter 4 41 4.1 Description of QLED display driven by MoTe2 TFTs 45 4.2 Ligand Modification of Red CdSe/Cd1-xZnxS Quantum Dots 49 4.3 Type Conversion of MoTe2 TFTs via Electron-Donated Charge Enhancer 54 4.4 Light-Insensitive Behaviors on Photocurrent Generation in MoTe2 TFTs 61 4.5 Operation of QLEDs Driven by Channel-type Controlled MoTe2 TFTs 66 4.6 Summary 70 Chapter 5 71 Bibilography 73 ํ•œ๊ธ€ ์ดˆ๋ก 81๋ฐ•

    High Photovoltaic Quantum Efficiency in Ultrathin van der Waals Heterostructures

    Get PDF
    We report experimental measurements for ultrathin (< 15 nm) van der Waals heterostructures exhibiting external quantum efficiencies exceeding 50%, and show that these structures can achieve experimental absorbance > 90%. By coupling electromagnetic simulations and experimental measurements, we show that pn WSe2/MoS2 heterojunctions with vertical carrier collection can have internal photocarrier collection efficiencies exceeding 70%.Comment: ACS Nano, 2017. Manuscript (25 pages, 7 figures) plus supporting information (7 pages, 4 figures
    • โ€ฆ
    corecore