2,331 research outputs found

    The intelligent room for elderly care

    Get PDF
    Daily life assistance for elderly is one of the most promising and interesting scenarios for advanced technologies in the present and near future. Improving the quality of life of elderly is also some of the first priorities in modern countries and societies where the percentage of elder people is rapidly increasing due mainly to great improvements in medicine during the last decades. In this paper, we present an overview of our informationally structured room that supports daily life activities of elderly. Our environment contains different distributed sensors including a floor sensing system and several intelligent cabinets. Sensor information is sent to a centralized management system which processes the data and makes it available to a service robot which assists the people in the room. One important restriction in our intelligent environment is to maintain a small number of sensors to avoid interfering with the daily activities of people and to reduce as much as possible the invasion of their privacy. In addition we discuss some experiments using our real environment and robot

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    IoT driven ambient intelligence architecture for indoor intelligent mobility

    Get PDF
    Personal robots are set to assist humans in their daily tasks. Assisted living is one of the major applications of personal assistive robots, where the robots will support health and wellbeing of the humans in need, especially elderly and disabled. Indoor environments are extremely challenging from a robot perception and navigation point of view, because of the ever-changing decorations, internal organizations and clutter. Furthermore, human-robot-interaction in personal assistive robots demands intuitive and human-like intelligence and interactions. Above challenges are aggravated by stringent and often tacit requirements surrounding personal privacy that may be invaded by continuous monitoring through sensors. Towards addressing the above problems, in this paper we present an architecture for "Ambient Intelligence" for indoor intelligent mobility by leveraging IoTs within a framework of Scalable Multi-layered Context Mapping Framework. Our objective is to utilize sensors in home settings in the least invasive manner for the robot to learn about its dynamic surroundings and interact in a human-like manner. The paper takes a semi-survey approach to presenting and illustrating preliminary results from our in-house built fully autonomous electric quadbike

    Mixed reality participants in smart meeting rooms and smart home enviroments

    Get PDF
    Human–computer interaction requires modeling of the user. A user profile typically contains preferences, interests, characteristics, and interaction behavior. However, in its multimodal interaction with a smart environment the user displays characteristics that show how the user, not necessarily consciously, verbally and nonverbally provides the smart environment with useful input and feedback. Especially in ambient intelligence environments we encounter situations where the environment supports interaction between the environment, smart objects (e.g., mobile robots, smart furniture) and human participants in the environment. Therefore it is useful for the profile to contain a physical representation of the user obtained by multi-modal capturing techniques. We discuss the modeling and simulation of interacting participants in a virtual meeting room, we discuss how remote meeting participants can take part in meeting activities and they have some observations on translating research results to smart home environments

    Percepcija u inteligentnim prostorima: kombinirana primjena distribuiranih i robotskih senzora

    Get PDF
    This work considers the joint use of robot onboard sensors and a network of sensors distributed in the environment for tracking the position of the robot and other objects. This is motivated by our research on Intelligent Spaces, which combine the use of distributed sensors with mobile robots to provide various services to users. Here we analyze the distributed sensing using the extended information filter and computation issues that arise due to correlations between estimates. In turn we show how the correlations can be resolved with the use of Covariance Intersection at a cost of conservative estimates, and analyze two special cases where the issues related to correlations can be reduced.Ovaj rad razmatra kombiniranu primjenu senzora na mobilnim robotima i mreže senzora distribuiranih u prostoru za praćenje položaja robota i ostalih objekata. Rad je dio istraživanja o "inteligentnim prostorima", gdje se koriste distribuirani senzori i mobilni roboti sa svrhom pružanja različitih usluga korisnicima prostora. Analizirana je upotreba proširenog informacijskog filtra za distribuiranu percepciju te računski problem uzrokovan korelacijama u procesu estimacije. Potom je objašnjeno rješenje problema korelacija korištenjem metode presjeka kovarijanci (Covariance Intersection), koje međutim daje konzervativne rezultate, te je dana analiza dva specijalna slučaja kod kojih je moguće ublažiti utjecaj korelacija

    PEIS stol: autonomni robotski stol za kućanstva

    Get PDF
    There are two main trends in the area of home and service robotics. The classical one aims at the development of a single skilled servant robot, able to perform complex tasks in a passive environment. The second, more recent trend aims at the achievement of complex tasks through the cooperation of a network of simpler robotic devices pervasively embedded in the domestic environment. This paper contributes to the latter trend by describing the PEIS Table, an autonomous robotic table that can be embedded in a smart environment. The robotic table can operate alone, performing simple point-to-point navigation, or it can collaborate with other devices in the environment to perform more complex tasks. Collaboration follows the PEIS Ecology model. The hardware and software design of the PEIS Table are guided by a set of requirements for robotic domestic furniture that differ, to some extent, from the requirements usually considered for service robots.U uslužnoj robotici i robotici za kućanstva postoje dva glavna trenda. Klasičan pristup teži razvoju jednog složenog uslužnog robota koji je sposoban izvršavati složene zadatke u pasivnom okruženju. Dok drugi, nešto noviji pristup, teži rješavanju složenih zadataka kroz suradnju umreženih nešto jednostavnijih robota prožetih kroz cijelo kućanstvo. Ovaj članak svoj doprinos daje drugom pristupu opisujući PEIS stol, autonomni robotski stol koji se može postaviti u inteligentnom okruženju. Robotski stol može djelovati samostalno, navigirajući od točke do točke ili može surađivati s ostalim uređajima u okruženju radi izvršavanja složenijih zadataka. Ta suradnja prati PEIS ekološki model. Dizajn sklopovlja i programske podrške PEIS stola prati zahtjeve za robotsko pokućstvo koji se donekle razlikuju od zahtjeva koji se inače postavljaju za uslužne robote
    corecore