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Abstract— Personal robots are set to assist humans in their 
daily tasks. Assisted living is one of the major applications of 
personal assistive robots, where the robots will support health 
and wellbeing of the humans in need, especially elderly and 
disabled. Indoor environments are extremely challenging from 
a robot perception and navigation point of view, because of the 
ever-changing decorations, internal organizations and clutter. 
Furthermore, human-robot-interaction in personal assistive 
robots demands intuitive and human-like intelligence and 
interactions. Above challenges are aggravated by stringent and 
often tacit requirements surrounding personal privacy that 
may be invaded by continuous monitoring through sensors. 
Towards addressing the above problems, in this paper we 
present an architecture for "Ambient Intelligence" for indoor 
intelligent mobility by leveraging IoTs within a framework of 
Scalable Multi-layered Context Mapping Framework. Our 
objective is to utilize sensors in home settings in the least 
invasive manner for the robot to learn about its dynamic 
surroundings and interact in a human-like manner. The paper 
takes a semi-survey approach to presenting and illustrating 
preliminary results from our in-house built fully autonomous 
electric quadbike.  

Keywords—ambient, assistive, autonomous, intelligent, 
mobility, robot, navigation 

I. INTRODUCTION  
Robots that assist humans in their daily tasks will 

revolutionize the way we live our lives. Personal assistive 
robots that help the elderly to be more independent [3], or 
robots that help the blind [4] or robots that assist with 
rehabilitation [5] are some of the emerging applications of 
personal assistive robots. The robots will assist humans in 
many day to day tasks such as personal hygiene, mobility 
guidance [6], dressing support [7], feeding support [8], and 
rehabilitation support. The opportunities with assistive robots 
are numerous and it is expected that personal robots will 
form an integral part of future smart living environments. 
However, for assistive robots to become ubiquitous in our 
daily lives, several challenges need to be tackled. 

There are many challenges in assistive robotic 
technology that need to be overcome. One of the challenges 
is Robust object recognition. Assistive robots are required to 
interact with objects of varying size, shape, and degree of 
mobility and hence must be equipped with the ability to 
process dynamic sensor data to react adequately and 
seamlessly adapting to environmental changes. Robust object 
recognition in real-life settings is still a major challenge that 
need to be overcome [9]. Human Robot Interaction is 
another challenge in assistive robots. Knowing what human 
subjects are doing is a key attribute for robots to plan and 
execute it’s duties. Therefore, human activity recognition 
forms an integral part of human robot interaction. Human 

activity recognition involves, posture analysis, gait analysis 
[6] and skeletal tracking [7]. Another key attribute of human 
robot interaction is to understand the human emotional 
behaviour [10]. Knowing the emotional state of a human 
subject is crucial for a robot to react appropriately (e.g. 
inform care takers, perform risk mitigation operations). The 
third challenge is Robot Navigation in Cluttered 
environments: robot navigation involves safe movement of 
robot without coming in to collision with obstacles. For 
example, an autonomous vehicle that drives on its own in 
road environments has to move safely without having 
accidents. However, when considering indoor environments 
navigation become complex due to the clutter in home 
environments, constantly changing environments due to the 
position of furniture and due to walls and furniture blocking 
line-of-sight sensors. Due to these reasons navigation in 
indoor environments is still an enormous challenge when 
training personal assistive robots [11]. Finally, one of the 
most crucial requirements of personal robots, especially 
within applications of physical assistance, is to deal with 
unpredictable events [8] and uncertain information [12], i.e. 
the events for which the robot was not trained before or 
information that is ambiguous. Robust adaptive control 
techniques to deal with such situations would be required for 
safe operation of the robots.  

The key to address the above challenges associated with 
personal assistive robots is to understand the context of the 
environment in which it operates. Context of a system can be 
regarded as understanding the situation and making sense of 
the status of the environment [13]. Low cost connected 
sensors that continuously monitor various environmental 
parameters, known as Internet of Things (IoT), enables to 
capture the context of an environment. To capture the 
context through IoTs, the data streams generated by the IoTs 
need to be processed and analysed using machine learning 
and pattern recognition algorithms. While a personal 
assistive robot cannot have all the sensors that are necessary 
to capture useful context, it can rely on IoT in an indoor 
environment to understand the context and react 
appropriately. Personal assistive robots that are seamlessly 
connected to IoTs in home environments give rise to so 
called Ambient Intelligence. Ambient Intelligence can be 
defined as the process by which a digital environment 
(sensor and device network) senses, computes interactions, 
and assists people in their daily lives  [13]. 

Towards achieving ambient intelligence in indoor 
environments, this paper presents an architecture for IoT 
enabled Scalable Multi-layered Mapping for Indoor Robot 
Control. After presenting the general concept of Scalable 
Multi-layered Mapping, we will focus on indoor robot 
navigation as a use-case of this platform.  
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The rest of this paper is organized as follows: In section 
II we present the motivation and generalized architecture IoT 
driven Scalable Multi-layered Mapping for ambient 
intelligence. Section III presents the architecture for use case 
on indoor robot navigation followed by a technology review 
of IoTs for the use case. Section IV describes the architecture 
for the use case on indoor-robot navigation and introduces 
our inhouse built autonomous quad-bike and section V 
concludes the paper. 

II. IOT ENABLED SCALABLE MULTI-LAYERED MAPPING FOR 
AMBIENT INTELLIGENCE 

In this section we will describe the proposed Scalable 
Multilayer Mapping architecture for ambient intelligence. 
The objective of this architecture is to utilize different kinds 
of multimodal connected sensors to capture environmental 
context to enable intelligent control systems. We will explain 
the components of the architecture by referring to an intuitive 
use case. 

A. Futuristic use case of a care home  
Consider a use case of future care home. In this care 

home there are different kinds of residents mostly elderly 
occupants, with different health implications. Multitude of 
sensors some body worn, such as heart rate and temperature 
monitors, and some embedded on infrastructure such as 
CCTV cameras, microphones, temperature monitors and 
moisture sensors capture data about its environment. There 
are multiple care-taker robots in this environment that assist 
human care-takers in various duties: such as personal 
hygiene, dressing up, feeding, and assisting with mobility. 
The care home learns personal requirements and behaviour 
traits of the individuals in the home and keeps a close eye on 
the emotions of the residents. There are multiple health 
monitoring applications that utilize body worn sensors of the 
residents to predict anomalies in health conditions. 

B. Requirements Generation 
To realize the above use case several technology 

components would be necessary. One sensor modality cannot 

capture all the context. Therefore, multiple sensors that are 
connected to a central processing system is needed. 
Secondly, the data captured by different sensors would be of 
little use, if they are not analysed to capture various 
parameters of context. Therefore, advanced machine learning 
algorithms would be necessary to make sense of the sensor 
data streams. There is a constant need for communication 
between the sensors, central processing system and the 
actuators (robots). Therefore, data transmissions have to be 
light weight, but if necessary the actuators and applications 
should be able to request for more data. Robots would have 
specialized sensors, and when it is capturing additional data 
during an anomalous situation, the captured data needs to be 
utilized to update the context information. Considering the 
context layers, the actuators and robots will react 
appropriately to assist the human subjects. 

C. Architecture Description 
We propose a scalable multi-layer context mapping for 

ambient intelligence. The architecture for the above use case 
can be illustrated Fig. 1. The architecture has four layers: 
Sensing layer, Data Analysis layer, Multi-layered context 
representation, and Application layer. The data analysis layer 
constitutes of data pre-processing, data fusion and pattern 
recognition. The multi-layered context representation will 
store the captured context to enable different applications.  
The application layer will communicate with the context 
representation layer to acquire location dependent context 
information. To cater to the requirement of scalability for 
context information, the context representation layer will 
classifies the context information into different categories 
according to its complexity, location, resolution, and 
steadiness.. A requirement for scalability is that different 
applications would require different levels of context 
information. For example a dressing robot would not 
necessarily need context information regarding ambient 
noise. Furthermore, scalability can be realized as temporal 
and spatial resolution or based on uncertainty of 
observations. The data analysis and context storing will 
happen in centralized data processing system. 

 
Fig. 1. Architecture for Ambient Intelligence for example use case on intelligent care homes 



In the next section we will illustrate how a scalable multi-
layered context capturing can be utilized for  indoor robot 
localization and navigation. 

III. AMBIENT INTELLIGENCE DRIVEN INDOOR ROBOT 
NAVIGATION AND LOCALIZATION 

As discussed in our introduction, there are several 
challenges to address to make personal assistive robots a 
commercial success. Among these challenges is the 
requirement for robust navigation of robots in indoor 
environments. In this section we will describe how the 
proposed IoT driven scalable context gathering framework 
presented in the previous section can be utilized to address 
the challenge of robot navigation. The section is organized in 
two parts: the proposed scalable architecture for context 
gathering derived by the specific challenges in robot 
navigation and localization, followed by a technology review 
of IoT for robust context gathering. 

A. Challenges in Indoor Robot Navigation and 
Localization 

Robot navigation involves movement of the robot while 
avoiding obstacles. The obstacles in a home environment 
keeps changing its form, appearance, and position. The robot 
uses its onboard sensors such as cameras and LiDARs to 
perceive its environment to recognize these obstacles. 
Furthermore, the robot has to understand the human subjects 
in its environment and activities they are performing. 
However, the biggest challenge for robot navigation in 
indoor environments such as homes is that the line of sight of 
its sensors are often blocked by walls and furniture. 
However, for robust robot navigation in home environments, 
the robot has to effectively see through the walls so that it 
can detect events such as the elderly falling over in the 
bathroom.  

Another key aspect of robot control is localization of the 
robot. Localization is the process by which a robot 
understands its location. While in outdoor environments it is 
possible to utilize GPS data, in indoor environments GPS is 
not reliable enough.  

Both these problems can be effectively overcome by our 
proposed scheme on Ambient Intelligence. However, we 
need to identify appropriate sensors and context to develop 
an architecture for ambient intelligence to suit this use case. 
Therefore, in the next subsection, we will perform a 
technology review to identify suitable sensors and context 
gathering algorithms.. 

B. Technology review of suitable IoT sensors for robot 
navigation and control 

This section is mainly organized in two segments: review 
of localization algorithms and review of activity recognition.   

1) Indoor localization 
GPS based localization schemes are not suitable in indoor 

environments, due to the significant attenuation of satellite 
signal power when passing through building material.  

Radio Frequency based fingerprinting involves storing 
the RF characteristics at different locations in an indoor 
environment in a database and comparing those 
characteristics (known as fingerprints) of the unknown target 
location with those stored to find an approximate location of 
the target. A WiFi based fingerprinting algorithm combining 
deterministic and probabilistic location estimation for 
localization of moving IoT targets was proposed in [14]. 
Radio signal based approach for localization is both a low 
complexity and a cost effective solution [14]. Fingerprint 
based positioning technology requires multiple wireless 
access points (APs) to improve its localization accuracy. To 
overcome the requirement for multiple wireless APs, authors 
in [15] proposed an indoor localization system that uses a 
single Wi-Fi AP to locate terminals by utilizing channel state 
information (CSI) to compute the direct path length between 
a single AP and terminals. 

Another potential approach for indoor localization could 
be realized by utilizing the lighting infrastructure of a 
building. For example, a visible light based location 
fingerprinting scheme was proposed in [16], where a square 
wave modulation scheme is employed to allow each of the 
LED luminaires to be identified by a photodiode-based 
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Fig. 2.: Proposed Ambient Intelligence Architecture for Robot Navigation and Localization 



receiver using Fast Fourier Transform (FFT). Several 
approaches for indoor localization based on visible light 
communication (VLC) have been proposed in the recent past 
[17], [18]. While the obvious advantage of VLC for 
localization includes the use of an existing infrastructure 
without additional investment, so far such schemes have 
been demonstrated only in Line of Sight environments.  

Both WiFi based localization and VLC based localization 
requires specific infrastructure to be installed. However, 
authors in [19] proposed a localization approach that does 
not need any additional infrastructure other than a 
smartphone with a microphone. The main hypothesis in [19], 
was that every location has a distinct set of acoustic 
characteristics which is a result of constant background 
noises and modulation of those noises by physical 
characteristics of the surrounding material, and these 
characteristics can be utilised effectively for localization 
based on an acoustic fingerprint. The background noises 
could be generated by humming of computer fans and air 
conditioning systems. In [19], acoustic fingerprints are 
extracted from the training data by filtering out transient 
sounds from the background noise spectrum, and an SVM 
classifier is trained on the features. During the online 
location estimation phase, the acoustic signal characteristics 
are fed to the classifier for a location estimate.  

Another method of indoor localization based on ambient 
Television (TV) signals was presented in [20], which 
leverages frequency-selective multipath fading of radio 
signals that is a physical phenomenon sensitive to receiver's 
location. However, the lack of TV enabled mobile devices is 
a major constraint for the widespread use of this technology.  

The above indoor localization schemes based on single 
type of fingerprints is susceptible to the changing 
environment and on its own tends to have low accuracy in 
certain settings. Therefore, fusing different fingerprints will 
enable robust method of localization [21]. Similarly, in [22] a 
coarse localization result from WiFi fingerprinting was 
refined using vision based localization by visual feature 
matching. 

2) Activity Recognition  
The use of ambient wireless signals to recognize human 

activities has received quite a lot of research interest in the 

recent past. Utilizing wireless signals for activity recognition 
is particularly interesting due to two main reasons: firstly the 
wireless signals penetrate through walls and hence can be 
useful for sensing non-line of sight events (detect falls in 
bathrooms) and secondly, its researchers may not necessarily 
need cooperation of subjects due to the lack of body 
instrumentation (in office environments). Two pioneering 
efforts were demonstrated using USRP N200 software 
defined radio units to recognize body gestures [23] and 
location of humans [24]. To overcome the need for dedicated 
hardware and firmware updates, [25] proposed an activity 
recognition system by learning the received signal strength 
indicator (RSSI) fingerprint of six different activities. In [26], 
a survey of recent advancements in human activity 
recognition using WiFi channel status information (CSI) has 
been conducted. The authors in  [26] concluded that 
techniques such as Long Short Term Memory (LSTM) 
networks can be effectively utilized to recognize human 
activities by time series analysis of CSI. However, the robust 
detection of activities in different dynamic environments, 
and how to identify the behaviours of multiple users remain a 
significant challenge.  

Various different sensors such as smart phone sensors, 
cameras, depth sensors and LiDARs have all been 
investigated for human activity recognition. An extensive 
survey of IoT based human activity recognition can be found 
here. 

C. The proposed Ambient Intelligence Architecture for 
Robot Navigation 

Based on the review of related IoT sensors, we can derive 
an architecture for robot navigation and control as illustrated 
in Fig. 2. In this architecture, different sensors such as 
cameras, noise (sound), light and WiFi sensing can be 
utilized. The sensor data streams can be analysed to identify 
objects and humans, recognize human activities and to 
calculate the location of individual objects relative to the 
robot. These contexts are gathered in scalable layers, and can 
be utilized to control the navigation of the robot in indoor 
environment. In the next section, we will illustrate our in-
house built robotic platform that can benefit from this 
architecture. 
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Fig. 3: Integration of Robot with the Ambient Intelligence Architecture 



IV. PERSONAL ASSISTIVE ROBOT SYSTEM DEVELOPMENT 
In this section we will describe how to integrate a mobile 

robot with the ambient intelligence architecture proposed in 
section III. This section sets out a futuristic vision for the 
intelligent control of robots with the aid of IoT. 

A. Robot Integration with Ambient Intelligence 
Framework 
A mobile robot will utilize a multitude of sensors to 

perceive and understand its environment. These sensors 
include, cameras, ultrasound sensors, LiDARs and Radars. 
The building blocks of a typical indoor mobile robot and its 
integration to the ambient intelligence framework is 
illustrated in Fig. 3.  

To address the challenges of indoor navigation, the 
robot will communicate with the context gathering system 
through wireless communication. The location dependent 
context communicated by the system will provide 
information about location of human subjects, human 
activities and obstacles. The context information can then be 
utilized by robot navigation control system to localize itself 
and then to take navigation decisions such acceleration, 
braking and steering control.  

Scalability of the context gathering framework is 
utilized in several ways: while the robot can get obstacle 
information surrounding it, depending on the steering 
controls high resolution information can be acquired. At the 
same time, the robot senses high resolution 3-dimensional 
environmental context through its sensors and communicates 
with the context gathering layer to update the centrally stored 
context layers. 

B. Description of the Test bed  
An experimental test bed was constructed to demonstrate 

various applications related to intelligent mobility. The 
overall objective was to develop an autonomous test bed that 
could traverse both indoors and outdoors alike. We expect to 

utilize this robot to investigate research questions related to 
autonomous driving and assistive robots such as robust 
navigation and free space detection, multimodal data 
collection and fusion and adaptive control algorithms.  

The developed test bed is illustrated in Fig. 4. The test 
bed is composed of a front facing wide angle camera, a rear 
facing camera, and a LiDAR scanner tagged to an electric 
quad bike. However, in this paper we are focused on fusing 
only the front facing wide angle camera output with the 
LiDAR scanner output.  

The Velodyne VLP-16 LiDAR, which is used in the test 
bed, a compact low power light-weight optical sensor, has a 
maximum range of 100 metres. The sensor supports 16 
channel communications taking a total of 300,000 
measurements per second. Data is captured over 360° on the 
horizontal axis and 30° on the vertical, utilizing 16 
laser/detector pairs.  

The wide angle camera utilized in the setup is a 360Fly 
camera that is enclosed in a 61mm diameter sphere with a 
single fish eye lens mounted on the top. The field of view is 
360o on the vertical and 240o horizontal. Standard 360o video 
that is output from this camera is a flat equi-rectangular 
video displayed as a sphere. 

Our initial tests have shown that ... 

To demonstrate the benefits of the ambient intelligence 
architecture proposed in this paper we will further our initial 
research on free space detection. Free space detection as 
illustrated in Fig. 5 is to detect areas that are obstacle free. 
We will use this platform to demonstrate robust approaches 
for free space detection, and localization of the robot in 
indoor environments. 

V. CONCLUSIONS AND FUTURE WORK 
The wide spread availability of Internet of Things has 

enabled to gather complex multimodal context of 
environments. This paper proposed a scalable multi-layered 
mapping architecture to represent various context gathered 
through advanced analysis of IoT sensor data to facilitate 
ambient intelligence to cater various adaptive control 
algorithms. This paper particularly focused on personal 
assistive robots and discussed how to address the challenges 
of robot navigation and localization in complex and dynamic 
indoor environments. Future work will be to investigate the 
.... using our in-house built fully autonomous test bed in a 
controlled environment with mobile obstacles. 

 
Fig. 4. The experimental Test bet for Intelligent Mobility 

 
Fig. 5. Free Space Detection: Initial results: Green color 

indicates areas that are void of obstacles 
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