346 research outputs found

    Through-the-wall radar imaging with compressive sensing; theory, practice and future trends-a review

    Get PDF
    Through-the-Wall Radar Imaging (TWRI) is anemerging technology which enables us to detect behind the wall targets using electromagnetic signals. TWRI has received considerable attention recently due to its diverse applications. This paper presents fundamentals, mathematical foundations and emerging applications of TWRI with special emphasis on Compressive Sensing (CS) and sparse image reconstruction.Multipath propagation stemming from the surrounding walls and nearby targets are among the impinging challenges.Multipath components produce replicas of the genuine target, ghosts, during image reconstruction which may significantly increase the probability of false alarm. The resulting ghost not only creates confusion with genuine targets but may deteriorate the performance of (CS) algorithms as described in this article. The results from a practical scenario show a promising future of the technology which can be adopted in real-life problems including rescue missions and military purposes.AKey words: spect dependence, compressive sensing, multipath ghost, multipath exploitation, through-the-wall-radar imaging

    Through Wall Imaging Radar Antenna with a Focus on Opening New Research Avenues

    Get PDF
    This review paper is an effort to develop insight into the development in antennas for through wall imaging radar application. Review on literature on antennas for use in through wall imaging radar, fulfilling one or more requirements/specifications such as ultrawide bandwidth, stable and high gain, stable unidirectional radiation pattern, wide scanning angle, compactness ensuring portability and facilitating real-time efficient and simple imaging is presented. The review covers variants of Vivaldi, Bow tie, Horn, Spiral, Patch and Magneto-electric dipole antennas demonstrated as suitable antennas for the through wall imaging radar application. With an aim to open new research avenues for making better through wall imaging radar antenna, review on relevant compressive reflector antennas, surface integrated waveguide antennas, plasma antennas, metamaterial antennas and single frequency dynamically configurable meta-surface antennas are incorporated. The review paper brings out possibilities of designing an optimum through wall imaging radar antenna and prospects of future research on the antenna to improve radiation pattern and facilitate overall simple and efficient imaging by the through wall imaging radar

    Noncontact Vital Signs Detection

    Get PDF
    Human health condition can be accessed by measurement of vital signs, i.e., respiratory rate (RR), heart rate (HR), blood oxygen level, temperature and blood pressure. Due to drawbacks of contact sensors in measurement, non-contact sensors such as imaging photoplethysmogram (IPPG) and Doppler radar system have been proposed for cardiorespiratory rates detection by researchers.The UWB pulse Doppler radars provide high resolution range-time-frequency information. It is bestowed with advantages of low transmitted power, through-wall capabilities, and high resolution in localization. However, the poor signal to noise ratio (SNR) makes it challenging for UWB radar systems to accurately detect the heartbeat of a subject. To solve the problem, phased-methods have been proposed to extract the phase variations in the reflected pulses modulated by human tiny thorax motions. Advance signal processing method, i.e., state space method, can not only be used to enhance SNR of human vital signs detection, but also enable the micro-Doppler trajectories extraction of walking subject from UWB radar data.Stepped Frequency Continuous Wave (SFCW) radar is an alternative technique useful to remotely monitor human subject activities. Compared with UWB pulse radar, it relieves the stress on requirement of high sampling rate analog-to-digital converter (ADC) and possesses higher signal-to-noise-ratio (SNR) in vital signs detection. However, conventional SFCW radar suffers from long data acquisition time to step over many frequencies. To solve this problem, multi-channel SFCW radar has been proposed to step through different frequency bandwidths simultaneously. Compressed sensing (CS) can further reduce the data acquisition time by randomly stepping through 20% of the original frequency steps.In this work, SFCW system is implemented with low cost, off-the-shelf surface mount components to make the radar sensors portable. Experimental results collected from both pulse and SFCW radar systems have been validated with commercial contact sensors and satisfactory results are shown

    Compressed Sensing Applied to Weather Radar

    Full text link
    We propose an innovative meteorological radar, which uses reduced number of spatiotemporal samples without compromising the accuracy of target information. Our approach extends recent research on compressed sensing (CS) for radar remote sensing of hard point scatterers to volumetric targets. The previously published CS-based radar techniques are not applicable for sampling weather since the precipitation echoes lack sparsity in both range-time and Doppler domains. We propose an alternative approach by adopting the latest advances in matrix completion algorithms to demonstrate the sparse sensing of weather echoes. We use Iowa X-band Polarimetric (XPOL) radar data to test and illustrate our algorithms.Comment: 4 pages, 5 figrue

    Computational polarimetric microwave imaging

    Get PDF
    We propose a polarimetric microwave imaging technique that exploits recent advances in computational imaging. We utilize a frequency-diverse cavity-backed metasurface, allowing us to demonstrate high-resolution polarimetric imaging using a single transceiver and frequency sweep over the operational microwave bandwidth. The frequency-diverse metasurface imager greatly simplifies the system architecture compared with active arrays and other conventional microwave imaging approaches. We further develop the theoretical framework for computational polarimetric imaging and validate the approach experimentally using a multi-modal leaky cavity. The scalar approximation for the interaction between the radiated waves and the target---often applied in microwave computational imaging schemes---is thus extended to retrieve the susceptibility tensors, and hence providing additional information about the targets. Computational polarimetry has relevance for existing systems in the field that extract polarimetric imagery, and particular for ground observation. A growing number of short-range microwave imaging applications can also notably benefit from computational polarimetry, particularly for imaging objects that are difficult to reconstruct when assuming scalar estimations.Comment: 17 pages, 15 figure

    Wall Compensation for Ultra Wideband Applications

    Get PDF
    Due to their low frequency contents, ultra wideband (UWB) signals have the ability to penetrate walls and obstacles. As the signal propagates through these obstacles, it gets attenuated, slows down, and gets dispersed. This paper demonstrates wall compensation for through-wall imaging, localization and communication receiver design purposes by first characterizing wave propagation through various building materials in the UWB frequency range. Knowledge of the walls obtained from the wall characterization is used to estimate and correct the position accuracy of a target object located behind the walls using three proposed methods namely; constant amplitude and delay (CDL), frequency dependent data (FFD), and data fitting methods (FIT). The obtained results indicated relatively acceptable measure of wall compensation for the three methods. Results from such work provide insight on how to develop algorithms for effective target position estimation in imaging and localization applications. They are also useful for channel modelling and link budget analysis
    • …
    corecore