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ABSTRACT 
 
Human health condition can be accessed by measurement of vital signs, i.e., 
respiratory rate (RR), heart rate (HR), blood oxygen level, temperature and blood 
pressure. Due to drawbacks of contact sensors in measurement, non-contact 
sensors such as imaging photoplethysmogram (IPPG) and Doppler radar system 
have been proposed for cardiorespiratory rates detection by researchers.  
The UWB pulse Doppler radars provide high resolution range-time-frequency 
information. It is bestowed with advantages of low transmitted power, through-
wall capabilities, and high resolution in localization. However, the poor signal to 
noise ratio (SNR) makes it challenging for UWB radar systems to accurately 
detect the heartbeat of a subject. To solve the problem, phased-methods have 
been proposed to extract the phase variations in the reflected pulses modulated 
by human tiny thorax motions. Advance signal processing method, i.e., state 
space method, can not only be used to enhance SNR of human vital signs 
detection, but also enable the micro-Doppler trajectories extraction of walking 
subject from UWB radar data. 
Stepped Frequency Continuous Wave (SFCW) radar is an alternative technique 
useful to remotely monitor human subject activities. Compared with UWB pulse 
radar, it relieves the stress on requirement of high sampling rate analog-to-digital 
converter (ADC) and possesses higher signal-to-noise-ratio (SNR) in vital signs 
detection. However, conventional SFCW radar suffers from long data acquisition 
time to step over many frequencies. To solve this problem, multi-channel SFCW 
radar has been proposed to step through different frequency bandwidths 
simultaneously. Compressed sensing (CS) can further reduce the data 
acquisition time by randomly stepping through 20% of the original frequency 
steps. 
In this work, SFCW system is implemented with low cost, off-the-shelf surface 
mount components to make the radar sensors portable. Experimental results 
collected from both pulse and SFCW radar systems have been validated with 
commercial contact sensors and satisfactory results are shown. 
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CHAPTER ONE  
INTRODUCTION AND GENERAL INFORMATION 

 
 

Vital signs, i.e. respiratory rate (RR), heart rate (HR) and blood oxygen level, 
provide critical information for human health care, which help to monitor subject 
health conditions, make life-saving decisions, determine treatment protocols to 
follow, identify acute medical problem and so on. 
For RR detection, the most popular way is to use a belt sensor wrapped around 
the check or belly of subject. Due to periodical pressure variations caused by 
human inhale and exhale motions, belt sensors are capable of monitoring the 
movements of respiration. For HR detection, contact Electrocardiography (ECG) 
has been widely used for the real-time monitoring. Bed-type sensor capable of 
HR and RR monitoring has been proposed as well as a sleep monitoring system 
in [1]. Though the noninvasive feature of aforementioned sensors makes them 
attractive for long-term daily monitoring, their drawbacks have greatly limited the 
applications of these contact sensors. For belt sensor, it needs be wrapped 
tightly enough to have accurate readings and this may cause discomfort of 
subject. For ECG, it is difficult to setup and place all the electrodes on the human 
body and direct contact between skin and electrodes limits its applications for 
some cases. For example, it may cause physical skin irritation to subjects like 
babies and patient with burn injury for prolonged use of contact ECG, as shown 
in Figure 1.1. Though showing capability of both HR and RR identification, the 
air-mattress sensor is not portable and may be bulky to relocate for use.  
To solve this problem, non-contact sensors such as laser based system, camera-
based Photo-plethysmographic (PPG) and radar sensors have been developed 
targeting the same applications without compromising the accuracy and reliability 
[2]. Compared with its non-contact counterparts, radar systems have the 
capability of non-line-of-sight (NLOS) monitoring, and can see through fog, 
smoke, and foliage and cement wall in long distances. As a result, we focus on 
radar techniques on vital signs monitoring in this work. 
 

1.1 State-of-the-art 
 
By now, various types of radar systems have been developed by different groups 
for biomedical applications, including continuous wave (CW) radar, frequency 
modulated continuous wave (FMCW) radar, ultra wideband (UWB) radar and 
stepped frequency continuous wave (SFCW) radar [3-14].  
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1.1.1 Current Status of Biomedical Radar 
CW radars are very popular in vital signs monitoring and Doppler information 
extraction due to its low cost and simple architecture. In [15], a dc-coupled CW 
radar sensor has been presented to provide a noncontact and noninvasive 
approach for accurate respiration measurement in motion-adaptive radiotherapy. 
In [16], successful measurements of heart and respiration rates of a human 
subject at long distances, up 69 meters, have been demonstrated using CW 
radar systems. Meanwhile, various algorithms have been proposed for CW radar 
to enhance the accuracy in respiratory and heart rates identification. In [17], the 
complex signal demodulation (CSD) technique is proposed for the elimination of 
unwanted torso motions. In [18], arctangent demodulation (AD) together with dc 
offset calibration greatly improves the accuracy of heart rate detection. Although 
CW radars are simple to implement and low-cost, they do not provide range 
information of subjects and capability of multiple subjects monitoring, leading to 
limited applications. 
 

 
Figure 1.1 (a) setup of ECG. (b) physical discomfort caused by ECG electrodes. 

 
UWB impulse radars, operating in a wideband bandwidth, send narrow pulses in 
a scale of picosecond. By collecting and processing the reflected pulses, we are 
able to identify the distance of objects with high range resolution, localize 
subjects in synthetic aperture radar (SAR) image and monitor tiny motions of 
subjects. These capabilities of UWB radars have led to many applications 
benefiting people such as, through-wall imaging, ground penetrating detection of 
landmines, radar-based driver assistance, and home care of the elderly. In order 
to provide cardio-respiratory estimation with high accuracy, various UWB radar 
systems have been proposed [19-22]. In [22], for example, a UWB impulse radar 
using circularly polarized antennas has enhanced the accuracy for the estimation 
of cardio-respiratory rates. In [23], a correlation receiver is implemented to avoid 
direct sampling of the pulses with picosecond precision. The sensing precision is 
verified by breath-rate measurements. In [24], an integrated UWB transceiver 
has been developed for respiration rate detection. However, the transmitted 
power of UWB radar is limited and accompanied by a relatively high noise over 
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the wide band, which causes its low signal-to-noise ratio (SNR). Moreover, UWB 
impulse radar requires high-speed analog-to-digital converters, which inevitably 
increases its complexity and hardware cost in system design. 
Alternatively, Frequency-Modulated Continuous Wave (FMCW) radar, which 
overcomes the drawbacks of CW and UWB impulse radars simultaneously, has 
been successfully applied to non-contact vital signs detection and subject 
localization. In [4], a hybrid radar system that integrates the FMCW mode and 
interferometry mode has been presented for indoor precise positioning and 
versatile life activity monitoring. In [6], an UWB 80 GHz FMCW radar system with 
bandwidth of 10 GHz is developed for contactless monitoring of HR and RR and 
the results are validated with contact sensors. In [25], a linear FMCW minimizing 
the undesired effects of surrounding clutter has been exploited for noncontact 
range tracking of vital signs. Since it transmits CW signal, high transmitting 
power can be used without need for high-speed ADCs. However, calibration is 
still needed to compensate for non-linarites in frequency sweeping [26, 27]. 
SFCW radar is widely studied for its application for vital signs monitoring, gait 
analysis, and subject localization due to its advantages [28, 29]. Compared with 
CW radar systems, SFCW radar systems have the advantages of localization 
capability and the potential to monitor multiple subjects in real time. SFCW radar 
system can approximate UWB pulses in frequency domain, and therefore should 
have similar capabilities like UWB systems. It requires low-speed ADCs as it has 
narrow instantaneous bandwidth, and frequencies can be skipped or can even be 
randomly selected, which enables compressive sensing for even faster detection 
[30]. It also produces relatively strong received signals as it transmits long-
duration waveforms; hence, it possesses higher SNRs than UWB radar in vital 
signs detection. Furthermore, compared with FMCW radar, it is easier to 
calibrate the signal distortion caused by any imperfection of the SFCW radar 
system hardware. A comparison between different types of radar is presented in 
Table 1.1. 
 

Table 1.1 Comparison between different radar types 

 CW UWB FMCW SFCW 

Localization No Yes Yes Yes 

Multiple Subjects No Yes Yes Yes 

ADC Speed Low Fast Low Low 

Calibration - - Difficult Easy 
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1.1.2 Radar Operating Frequencies 
Table 1.2 summarizes the operating frequencies of various radars proposed by 
researchers for vital signs monitoring. The most common used frequencies and 
frequency bands are 2.4 GHz, 5.8 GHz, 60 GHz, 24 GHz, 3.1 – 10.6 GHz, 2 – 4 
GHz and so on.  
CW radars are widely used for Doppler detections and health monitoring, due to 
its high SNR and low system complexity. UWB radar, FMCW and SFCW radar 
are needed when both localization and μ-D information are needed of the subject. 
It is worth mentioning that configurable radar transceivers with both CW mode 
and UWB/FMCW mode are proposed to accommodate different scenarios. When 
accurate μ-D information is needed, CW mode will be on; while UWB/FMCW 
mode will be switched on when ranging or direction information is desirable of 
subjects. The UWB/FMCW mode can be utilized for more than one subject 
monitoring as well. 

1.1.3 Hardware Implementation 
 Table 1.3 summarizes the techniques of biomedical radar hardware 
implementation. Generally, there are four ways to implement a biomedical radar 
transceiver, i.e., using bench instruments such as signal generator and vector 
network analyzer (VNA), utilizing commercial off-the-shelf components, using 
MMIC components for PCB design, utilizing CMOS design for integrated system. 
It is not recommended to implement biomedical radar with bench instruments 
due to its limitation of portability. This type of radar system can only be used for 
system demonstration. The radar transceivers implemented with off-the-shelf 
components is suitable to system prototyping. Satisfactory performance can be 
achieved using these components with housing, since electromagnetic 
interference (EMI) will be minimized in the system. However, they have bulky 
sizes and cannot be used for portable applications. The radar transceivers 
implemented with MMIC chips have the advantages of low cost and portability. 
With proper design of PCB layout, the EMI problem can be effectively avoided. 
Moreover, this type of radar transceivers is geared towards mass productions 
due to their simple architectures.  
CMOS designs of integrated radar transceiver can minimize the system size 
while optimizing the system performance. Specifications of each component in 
the system can be customized. They have the advantages of low power 
requirement, small system size and so forth. 

1.1.4 Signal Processing 
Table 1.4 summarizes the signal processing methods for vital signs detection 
using biomedical radars. In [7], a new method was proposed to characterize the 
human random motion and detect the RR of subject under large 1-D motion. In 
[18], CSD was proposed for random motion cancellation in vital signs detection, 
with one radar at the front of subject, the other at the back. In [31], random body 
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Table 1.2 Operating frequencies of biomedical radars 

Research Group Radar Type Measurement Frequency/Bandwidth 

Tu et al. [7] CW RR 5.8 GHz 
Li et al. [18] CW HR/RR within 4-7 GHz 
Gu et al. [31] CW HR/RR 2.4 GHz 
Kuo et al. [8] CW HR/RR 60 GHz 
Kao et al. [12] CW HR/RR 60 GHz 
Chuang et al. [32] CW HR/RR 60 GHz 
Huang et al. [9] CW HR/RR within 2.4-2.5 GHz 
Chioukh et al. [10] CW HR/RR 12, 24 GHz 
Wu et al. [11] CW HR/RR 2.4 GHz 
Wang et al. [14] CW HR/RR 2.4 GHz 
Vinci et al. [13] CW HR/RR 24 GHz 
Park et al. [17] CW HR/RR 2.4 GHz 
Baboli et al. [16] CW HR/RR 2.45 GHz 
Wang et al. [33] CW/Pulse RR 1.5-4.5 GHz 
Schleicher et al. [23] Pulse RR 3.1-10.6 GHz 
Lazaro et al. [34] Pulse HR/RR 3.1-10.6 GHz 
Wang et al. [6] FMCW HR/RR 75-85 GHz 
Wang et al. [4] FMCW/CW HR/RR 5.72-5.88 GHz 
Wang et al. [25] FMCW RR 5.72-5.88 GHz 
Ren et al. [35] SFCW HR/RR 3.14-3.46 GHz 
Liu et al. [29] SFCW RR 0.3-1.3 GHz 
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Table 1.3 Hardware implementations of biomedical radars 

Research Group Radar Type Measurement Technique 

Tu et al. [7] CW RR PCB 
Li et al. [18] CW HR/RR PCB 
Gu et al. [31] CW HR/RR PCB 
Kuo et al. [8] CW HR/RR CMOS 
Kao et al. [12] CW HR/RR CMOS 
Chuang et al. [32] CW HR/RR off-the-shelf components 
Huang et al. [9] CW HR/RR PCB 
Chioukh et al. [10] CW HR/RR Bench instruments 
Wu et al. [11] CW HR/RR PCB 
Wang et al. [14] CW HR/RR NA 
Vinci et al. [13] CW HR/RR PCB 
Park et al. [17] CW HR/RR NA 
Baboli et al. [16] CW HR/RR off-the-shelf components 
Wang et al. [33] CW/Pulse RR off-the-shelf components 
Schleicher et al. [23] Pulse RR PCB 
Lazaro et al. [34] Pulse HR/RR bench instruments 
Wang et al. [6] FMCW HR/RR PCB 
Wang et al. [4] FMCW/CW HR/RR off-the-shelf components 
Wang et al. [25] FMCW RR off-the-shelf components 
Ren et al. [35] SFCW HR/RR Bench instruments 
Liu et al. [29] SFCW RR Bench instruments 
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Table 1.4 Signal processing of biomedical radars 

Research Group Radar Type Measurement Signal Processing 

Tu et al. [7] CW RR 1-D body motion characterization 
Li et al. [18] CW HR/RR CSD 
Gu et al. [31] CW HR/RR Random body movement cancellation 
Kuo et al. [8] CW HR/RR CSD 
Kao et al. [12] CW HR/RR Time domain recovery algorithm 
Chuang et al. [32] CW HR/RR FFT 

Huang et al. [9] CW HR/RR upper-bound and linear matrix 
inequality relaxation 

Chioukh et al. [10] CW HR/RR FFT 
Wu et al. [11] CW HR/RR FFT 
Wang et al. [14] CW HR/RR Random body movement cancellation 
Vinci et al. [13] CW HR/RR FFT 
Park et al. [17] CW HR/RR AD 
Baboli et al. [16] CW HR/RR FFT 
Wang et al. [33] CW/Pulse RR FFT 
Schleicher et al. [23] Pulse RR FFT 
Lazaro et al. [34] Pulse HR/RR Moving target indicator canceller 
Wang et al. [6] FMCW HR/RR FFT 
Wang et al. [4] FMCW/CW HR/RR FFT 
Wang et al. [25] FMCW RR phase-based range-tracking algorithm 
Ren et al. [35] SFCW HR/RR State space method 
Liu et al. [29] SFCW RR FFT 
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movement cancellation technique using iPhone to track human motions was 
proposed. This method was based on phase compensation at the RF front or 
baseband. In [8], a CMOS RF sensor with clutter cancellation was designed and 
CSD was utilized to process the radar data. In [12], time domain recovery 
algorithm was presented to detect the vital signs when subject displacement is 
larger or comparable to wavelength of transmitted signal. In [9], signal model 
identification was formulated into a quadratically constrained l1 minimization 
problem and solved using upper-bound and LMI relaxation. In [14], the random 
body movement of the subject between two self-injection-locked radar could be 
effectively cancelled with wireless mutual injection locking of the two radars. In 
[17], AD was proposed together with dc tracking and compensation scheme for 
accurate real-time HR monitoring. In [34], the moving target indicator canceller 
was proposed to suppress the respiration harmonics so that HR was highlighted 
in the spectrum. In [25],  phase-based range-tracking algorithm was developed 
for RR monitoring using linear FMCW radar with robustness against noise and 
clutter. In [35], state space method was proposed for HR/RR detection using 
SFCW radar. It successfully suppressed the unwanted harmonics and 
intermodulation interferences in the spectrum.  

1.1.5 Validation Method 
Table 1.5 summarizes the various methods which have been utilized to validate 
the performance of biomedical radar and effectiveness of algorithms. Generally, 
there are two ways to validate the performance of radar system, i.e., using 
programmable actuator, and commercial contact sensors.  In [7], experiment 
using actuator was conducted for performance validation. RR baseline of subject 
was determined as the reference of respiration signal. In [31], the programmable 
shaker was used to evaluate the system performance. Data collected from belt 
sensor and pulse sensor served as the reference in human subject test. In [9], 
the accuracy of proposed system was tested with an experiment using 
programmable actuator. In [10], a commercial oximeter was used as reference 
for human HR in the 13 experiments. In [17, 36], a finger pulse sensor was 
utilized to record the HR information as reference for radar monitoring. In [6, 13, 
34], ECG was used as the reference for HR detection. In [6], CO2 measurement 
served as the reference of RR detection. In [35], commercial belt sensors and 
pulse sensors were attached to subject as references. 

1.1.6 Detection Accuracy 
Table 1.6 summarizes the accuracies of HR/RR detection using different radar 
systems and signal processing method. In [7], the error rate of 7% was achieved 
for RR detection of human subject under 1-D body motions. In [9], the detection 
accuracy of tiny motion generated by actuator was reported to be less than 1 % 
when motion displacement was set from 0.1 cm to 4 cm, and the motion  
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Table 1.5 Performance validations of biomedical radars 

Research Group Radar Type Measurement Validation Method 

Tu et al. [7] CW RR actuator/RR baseline 
Li et al. [18] CW HR/RR NA 
Gu et al. [31] CW HR/RR shaker/belt sensor/pulse sensor 
Kuo et al. [8] CW HR/RR NA 
Kao et al. [12] CW HR/RR NA 
Chuang et al. [32] CW HR/RR NA 
Huang et al. [9] CW HR/RR actuator 
Chioukh et al. [10] CW HR/RR oximeter 
Wu et al. [11] CW HR/RR NA 
Wang et al. [14] CW HR/RR NA 
Vinci et al. [13] CW HR/RR ECG 
Park et al. [17] CW HR/RR pulse sensor 
Baboli et al. [16] CW HR/RR pulse sensor 
Wang et al. [33] CW/Pulse RR NA 
Schleicher et al. [23] Pulse RR NA 
Lazaro et al. [34] Pulse HR/RR ECG 
Wang et al. [6] FMCW HR/RR ECG/CO2 measurement 
Wang et al. [4] FMCW/CW HR/RR NA 
Wang et al. [25] FMCW RR NA 
Ren et al. [35] SFCW HR/RR Belt sensor/pulse sensor 
Liu et al. [29] SFCW RR NA 
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Table 1.6 Detection accuracies of biomedical radars 

Research Group Radar Type Measurement Detection Accuracy 

Tu et al. [7] CW RR 7% 
Li et al. [18] CW HR/RR NA 
Gu et al. [31] CW HR/RR NA 
Kuo et al. [8] CW HR/RR NA 
Kao et al. [12] CW HR/RR NA 
Chuang et al. [32] CW HR/RR NA 
Huang et al. [9] CW HR/RR <1% 
Chioukh et al. [10] CW HR/RR 2% 
Wu et al. [11] CW HR/RR NA 
Wang et al. [14] CW HR/RR NA 
Vinci et al. [13] CW HR/RR <1% 
Park et al. [17] CW HR/RR <1% 
Baboli et al. [16] CW HR/RR NA 
Wang et al. [33] CW/Pulse RR NA 
Schleicher et al. [23] Pulse RR NA 
Lazaro et al. [34] Pulse HR/RR <1% 
Wang et al. [6] FMCW HR/RR 8% 
Wang et al. [4] FMCW/CW HR/RR NA 
Wang et al. [25] FMCW RR NA 
Ren et al. [35] SFCW HR/RR 5.7% 
Liu et al. [29] SFCW RR NA 

 
  



 

11 
 

frequency set from 0.2 Hz to 2 Hz. In [10], the average error rate of HR detection 
when subject 0.5 m away was around 2%. In [34], the HR detection achieved 
less than 1% error rate when subject was 1 m away from radar transceiver. In 
[13], the proposed six-port radar demonstrated less than 1% error rate in heart 
rate detection when subject was approximately 1 m away. In [17], the HR 
detection error was reported to be less than 1% using CW radar when subject 
was 1 m away. In [6], the best result of HR detection was obtained when subject 
at 1 m distance frontal position with a median error around 8 %. In [35], when 
subject was 0.6 m away from SFCW radar at different orientations, the error rate 
of HR detection was within 6%. 
 

1.2 Contributions 
 
My major contributions include: 

 Improved the UWB pulse radar operating at 1.5-4.5 GHz with phase-
locked transmitting signal and enhanced the phase noise performance of 
the coherent pulse radar system. 

 Proposed the phased-based algorithms, i.e., complex signal demodulation 
and arctangent method, for UWB pulse radar. Extended the UWB pulse 
radar for real time heart rate monitoring. 

 Proposed the state space method for vital signs detection using UWB 
pulse radar and combined the state space method with phase-based 
algorithm for higher signal to noise ratio in heart rate detection. 

 Extended the UWB pulse radar for heart rate detection of more than one 
subject. 

 Extend the UWB pulse radar for micro-Doppler trajectories extraction from 
different body joints of walking human subject with the short time state 
space method. 

 Developed and implemented two-channel stepped-frequency continuous 
wave radar prototype operating at 2-4 GHz, with the first channel covering 
2-3 GHz, and the second channel covering 3-4 GHz.  

 Developed portable SFCW radar with stack-up configuration and validate 
its performance with experiments of human vital signs detection. 

 Proposed compressive sensing based signal processing to reduce the 
data acquiring time of SFCW radar and validated the radar performance 
with experiment of close range localization of a corner reflector. 

 Experimentally and numerically compared the performance of SFCW 
radar and IPPG system in human vital signs detection. 

 
1.3 Organization of the Dissertation 

 
The rest of the dissertation is organized as follows: 
Chapter 2 presents the system block diagram of UWB pulse radar with system 
synchronization and phase-locked transmitting signals. To overcome the 
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drawbacks of amplitude-based signal processing, phase-based methods of 
complex signal demodulation and arctangent demodulation have been extended 
to the signal processing of UWB pulse radar. Moreover, state space method in 
conjunction with phase-based method is proposed to further enhance the signal 
to noise ratio in heart rate detection using UWB pulse radar. To evaluate system 
performance, UWB pulse radar will be used to monitor the chest movement of 
human subject and periodic motion of actuator. The proposed algorithms will be 
employed to extract the cardiorespiratory rates of stationary subject and the 
motion frequency of actuator from reflected and collected pulses. The system 
performance will be numerically evaluated with commercial reference sensors. 
Chapter 3 extends the UWB pulse radar for micro-Doppler signatures extraction 
of walking human subject with short time state space method. The full-wave 
electromagnetic scattering model will be utilized to compare the performance of 
short-time Fourier transform with short time state space method. Based on the 
subject’s height and walking subject, Boulic model will be used as reference of 
micro-Doppler trajectories of different body joints of walking human subject. The 
experiments of subject walking towards UWB radar and in an oblique direction to 
the radar will be conducted. The performance of micro-Doppler trajectories 
extraction using UWB pulse radar will be numerically evaluated with reference of 
Boulic model.  
Chapter 4 presents the block diagrams and implementation details of SFCW 
radar, an alternative to UWB pulse radar. Instead of transmitting a frequencies 
bandwidth simultaneously as pulse radar, SFCW radar steps through the 
operating frequencies in a stepwise manner. However, SFCW radar suffers from 
the long data acquisition time, which limits its application and maximum 
achievable frequency in spectrum. Multi-channel SFCW radar will be proposed to 
reduce the data acquisition time of SFCW radar. To further reduce the data 
acquisition time, CS will be employed so that a random subset of frequencies will 
be transmitted. With a CS based sub-Nyquist sampling algorithm, the target 
space can be reconstructed accurately and target distance can be precisely 
localized. Both full-wave electromagnetic simulation and localization experiment 
of corner reflector will be implemented to evaluate the performance of CS-based 
SFCW radar.  
Chapter 5 presents the implementation of two-channel SFCW radar with stack-up 
PCB configuration for portable applications. Surface mounted chips are utilized to 
build the radar transceiver. The mathematical model of SFCW radar in vital signs 
monitoring has been derived. To evaluate the system performance, the 
experiments of subject holding breath, breathing normally and at different 
orientation in front of radar will be conducted and the data will be processed with 
SSM. All the results will be compared the data collected from commercial contact 
sensors. 
Chapter 6 will briefly review iPPG sensors and radar techniques for non-contact 
physiological parameters detection. Mathematical models for both iPPG sensor 
and SFCW radar in vital signs detection will be derived. The signal to noise ratio 
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of both sensors in cardiorespiratory rates detection will be theoretically estimated. 
To numerically compare the performance of iPPG sensor and SFCW radar, 
experiments of heart rate and respiratory rates detection in the same 
environment will be conducted.  
Chapter 7 makes a conclusion of this dissertation and summarizes the 
contributions of this work, published papers, and future work of the research. 
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CHAPTER TWO 1 
PHASE BASED METHODS FOR HEART RATE DETECTION 

USING UWB IMPULSE DOPPLER RADAR 

 
 
Ultra-wide band (UWB) pulse Doppler radars can be used for non-contact vital 
signs monitoring of more than one subject. However, their detected signals 
typically have low signal to noise ratio (SNR) causing significant heart rate 
detection errors; as the spurious harmonics of respiration signals and mixed 
products of respiration and heartbeat signals (that can be relatively higher than 
heart beat signals) corrupt conventional FFT spectrograms. In this chapter, we 
extend the complex signal demodulation (CSD) and arctangent demodulation 
(AD) techniques previously used for accurately detecting the phase variations of 
reflected signals of continuous wave radars to UWB pulse radars as well. These 
detection techniques reduce the impact of the interfering harmonic signals; thus 
improving the SNR of the detected vital sign signals. To further enhance the 
accuracy of the heart rate estimation, a recently developed state-space method 
(SSM) has been successfully combined with CSD and AD techniques and over 
10 dB improvements in SNR is demonstrated. The implementation of these 
various detection techniques has been experimentally investigated and full error 
and SNR analysis of the heart rate detection is presented. 
 

2.1 Background 
 
Ultra-wide band (UWB) continuous wave (CW) based radars have demonstrated 
very promising results for vital sign detection, human gait analysis, fall detection, 
indoor target localization and so on [4-6, 37]. As an alternative to UWB CW 
based radars, UWB impulse-radio (IR) radar systems have been widely used in 
many non-contact scenarios as well [38]-[39]. Definitely, the performance of 
UWB radars in vital sign detection still needs further improvement, and their 
capability of tracking more than one subject is really unique.  
When a human subject is illuminated by radio waves, reflected waves are 
modulated by the tiny motion of human thorax. Most of the reflected signal is due 
to the large step dielectric constant discontinuity at the skin/air interface. 
Additional reflections could be traced to various scattering of the pentrated 
signals at the inner organs layers,  interfaces [40]. Hence, using 80 GHz radar 
systems can avoid this penetration problem and provide high SNR in cardio-
respiratory motion monitoring, but cannot be used for monitoring objects behind 
                                            
1 I worked on this chapter with Haofei Wang from Beijing Institute of Technology, K. Naishadham 
from Georgia Institute of Technology, and Ozlem Kilic from The Catholic University of America. 
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walls [6]. Additionally, the heartbeat motion causes volume thorax displacement 
rather than linear motion, and average readings by the radar could be function of 
both the orientation of the subject and which part of the body is being tracked; 
hence measured amplitude and phase of these reflected signals could vary 
accordingly. In [40], UWB multiple-input and multiple-output (MIMO) array is 
implemented using multi-path/multi-direction signals for micro-motion detection 
and monitoring real time respiratory and cardiac motions. Multiple receiving 
antennas are utilized in this array to cancel random torso motions during the 
experiment as well.  
But mono-static or bi-static radar systems focusing on the reflected line-of-sight 
signals have experimentally demonstrated satisfactory performance as well. In 
order to provide cardio-respiratory estimation with high accuracy, various UWB 
radar systems have been proposed [19-22]. In [22], for example, a UWB impulse 
radar using circularly polarized antennas has enhanced the accuracy for the 
estimation of cardio-respiratory rates. In [23], a correlation receiver is 
implemented to avoid direct sampling of the pulses with picosecond precision. 
The sensing precision is verified by breath-rate measurements. In [24], an 
integrated UWB transceiver  has been developed for respiration rate detection.  
Various algorithms have been proposed by researchers to detect respiration and 
heart rates for UWB radars [41]-[43]. The Fast Fourier Transform (FFT) is widely 
used for cardio-respiratory rate extraction [33]. In [40], the blind source 
separation (BSS) is presented to decompose the complex UWB signals and 
extract the cardiac component. In [34], a Moving Target Indicator is utilized as a 
filter to suppress harmonics of respiration signals, and in [44] the authors 
demonstrate that singular value decomposition (SVD) can be utilized to separate 
the respiration from the non-stationary clutter and enhance the SNR. In [45], 
higher order cumulant is proposed to reduce the second-order respiration 
harmonic. Various algorithms and demodulation methods for CW radars have 
demonstrated satisfactory performance in vital signs monitoring [18]-[46]. For 
example, the complex signal demodulation (CSD) technique is proposed for the 
elimination of unwanted torso motions [18]. Arctangent demodulation (AD) 
together with dc offset calibration greatly improves the accuracy of heart rate 
detection [17]. In [46] the ensemble empirical mode decomposition is used for 
heart rate variability analysis. 
Focusing on phase information of the reflected radio wave, UWB radars 
demonstrate promising performance in monitoring human activities. The phase 
based motion characterization measurement for fall detection by using stepped-
frequency CW radar is investigated in [47]. In [48], the two widely used phase-
based demodulation schemes for CW radar systems, i.e., CSD and AD,  have 
been extended to UWB pulse radar systems. Similarly, a logarithmic method is 
proposed in [49] to directly monitor phase variations in heart rate detection. 
Hence, phase variations due to thorax displacements can be directly detected 
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with these three techniques using UWB pulse radars.  
In this chapter, we focus on CSD and AD for UWB radar systems [48] and derive 
the analytical framework for these two schemes. Additionally, we experimentally 
show that phase-based methods outperform direct FFT method by avoiding 
harmonics and intermodulation products as expected. However, the detected 
cardiac signal is still very weak due to the small amplitude of heartbeat motion. 
Hence, state space method (SSM), originally developed for radar target 
identification and feature extraction [50], [51], is applied in this work to amplify the 
spectral components of respiration and heartbeat, enabling significant 
improvement in the performance of CSD and AD methods. The preliminary 
results of enhanced phased-based methods have been presented in [52]. State 
space method is a parametric estimation method, which is quite effective in 
suppressing harmonics and intermodulation frequencies, and improving the SNR, 
in vital signs estimation  [53], [35]. The short time SSM has been successfully 
applied to UWB pulse radar data for the extraction of human micro-Doppler (μ-D) 
signatures [54].  
In this chapter we concentrate on accurate heart rate detection using UWB radar 
and arranged as follows. Section 2.2 describes the impulse radar used for 
measurements. The analytical signal model of the UWB radar is shown. In 
Section 2.3, CSD and AD algorithms applicable to UWB data are discussed. 
SSM in conjunction with CSD and AD is briefly introduced as well. In section 2.4, 
respiration and heart rates are extracted by each algorithm based on UWB data 
collected from a sedentary subject, and the results are discussed. State-of-the-
art in cardio-respiratory detection using UWB radar is briefly summarized in 
Section 2.5, followed by conclusions in Section 2.6. 

 
2.2 Mathematical Model 

 
The radar prototype used in this work is basically composed of four blocks, a 
power supply, a transmitter, a receiver and a digital board for data collection [55]. 
The overall radar block diagram and radar prototype are shown in Figure 2.1 
[54], with its components and devices itemized in Table 2.1. The digital board 
generates a clock signal to feed the pulse generator and synchronize the Agilent 
83622B Signal Generator. The output signal of Agilent 83622B serves as the 
local oscillator for both transmitter and receiver. The receiving antenna can be 
either a single horn or a SP8T switch-controlled SAR array antenna for 
monitoring single or multi-objects respectively, depending on the application. The 
received pulses go through I (in-phase) and Q (quadrature-phase) channels 
before being collected by the digital board. Note that all the clock signals in the 
radar system are synchronized. Compared with the radar architecture in [38] and 
[33], this radar architecture demonstrates higher accuracy in detecting tiny 
motion. The specific radar parameters are presented in Table 2.2 [56]. This UWB  
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(a) 
 

 
(b) 

Figure 2.1 (a) Schematic of UWB radar system and (b) prototype. 
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Table 2.1 Specifications of components used in UWB radar 

Block Manufacturer Specifications 

OPAMP Texas 
Instruments 5V output voltage, 500 mA output current 

Atten. Mini Circuits DC-6 GHz, 12 dB 

Mixer Mini Circuits 0.3-12 GHz, 36 dB LO to RF isolation, 6.5 dB 
conversion loss 

Power Divider1 Mini Circuits 2-4 GHz, 2 way phase difference 0o, 0.4 dB 
insertion loss 

Power Divider2 Mini Circuits 2-4 GHz, 2 way phase difference 90o, 0.4 dB 
insertion loss 

PA Mini Circuits 2-8 GHz, 30 dB gain, 30 dBm output at 1 dB 
compression point 

LNA Hittite 1-11 GHz, 1.5 dB NF @ 4 GHz, 16.5 dB gain 
LPF Mini Circuits DC-1.8 GHz, 0.19 dB insertion loss @500 MHz 
Gain Block Mini Circuits 0.01-2 GHz, 33.5 dB gain, maximum input 13 dBm 

ADC National 
Semiconductor 16 Bits resolution, 160 MSPS conversion rate 
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Table 2.2 UWB radar system parameters 

Parameter Value 

Bandwidth 1.5 – 4.5 GHz 
Pulse Duration 700 ps 
PRF 75 Hz 
Transmission Power -28 dBm 
Receiver Sensitivity -65 dBm 
USB 2.0 Data Rate 25 MB/s 

 
impulse radar operates over 1.5-4.5 GHz bandwidth. The duration of the 
transmitted Gaussian pulses is 700 ps and the pulse repetition frequency (PRF) 
is 75 Hz. The peak transmission power is around -28 dBm and the receiver 
sensitivity is -65 dBm. The USB between digital board and computer can reach 
data rate of 25 MB/s. 
To identify the spectrum of vital signs, a mathematical signal model for the UWB 
radar system is developed. This model follows the one proposed in [34] and the 
signals of I/Q channels can be analyzed. Conventionally, fast-time denotes the 
range bin and slow-time denotes the pulse number. In this signal model, t 
indicates slow-time and f is its transformed frequency component;  indicates 
fast-time and ν represents its transformed frequency component. As shown in 
Figure 2.2, the time of arrival (ToA) of collected pulses will be modulated by the 
periodical motions of respiration and heartbeat. The distance between a subject 
and radar receiver can be expressed as [34], 

0 sin 2 sin 2b b h hd t d m f t m f t                                   (2-1) 
where d0 is the distance between receiver and thorax vibration center; mb and mh 
are the amplitudes of respiratory and cardiac motions; fb and fh are the 
respiratory and cardiac rates. The signal received at the receiver front end is [34], 

, i i p d
i

r t A p A p t                              (2-2) 

where p(t) is the collected pulse with a carrier of frequency νc; Ai indicates the 
strength of multipath components and i is the corresponding time delay, Ap 
indicates the amplitude of collected pulse, and τd(t) is the ToA [49], 

02 / sin 2 sin 2d b b h ht d t c f t f t             (2-3) 
where 0 is due to the subject’s distance d0; b and h are delays related to the 
respiratory and cardiac motions, respectively. It is worth mentioning that the 
multipath components from a static background and stationary body parts will 
introduce a dc component in the pulses. This dc component can be readily 
removed with background subtraction or other adaptive filters [43]-[44]. As a 
result, the signal of interest at the receiver is [49] 
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, p dr t A p t                                             (2-4) 
The intermediate signals of the I/Q branches and their collected (complex) pulse 
are given by [49] 

, , cos 2 cI t r t                                     (2-5)  

, , sin 2 cQ t r t                                     (2-6) 

, , ,

, exp 2 c

y t I t jQ t

r t j                            (2-7) 

Specifically, the FFT of y(t, ) in slow time is Y(f, ); the FFT of y(t, ) in fast time 
is Y(t, ν); the 2D FFT of y(t, ) is Y(f, ν). As shown in Figure 2.2, by applying the 
direct FFT method to slow-time samples, we can identify the frequency of 
displacements which modulate the amplitude of collected samples. Suppose (2-
7) is the Fourier transformed at fast-time  = τ0. The acquired spectrum is as 
follows [34], [49]. 

0, p kl b h
k l

Y f A C f kf lf                         (2-8) 

kl k b l hC P J J d                                   (2-9) 

where P(ν) is the FFT of pulse p(t, ) in ; βb=2πmb, and βh=2πmh; Jk(βbν) and 
Jl(βhν) are Bessel functions. Each intermodulation product is identified by a 
frequency f = kfb + lfh and amplitude Ckl. The heartbeat amplitude is very small 
and the respiration harmonics and intermodulation interference may be dominant 
in the spectrogram. As a result, the direct FFT method can be erroneous in heart 
rate detection. 
The waveforms collected by FPGA are stored in a matrix R in a discrete form, 

, ,m s n fR m n r t mT nT                               (2-10) 
where m, n are indices; Ts and Tf are the sampling periods in slow-time and fast-
time respectively. The Echo-Planar Spectroscopic Imaging (EPSI) of matrix R is 
an m×n matrix, which has the fast-time/range displayed vertically and power 
spectrum displayed horizontally. Each row of EPSI is obtained by calculating the 
power spectrum of the corresponding row of R. 
 

2.3 Phase-Based Methods 
 
As presented in Figure 2.3, phase-based methods first implement FFT on each 
pulse along slow time for direct phase variation extraction. The harmonic and 
intermodulation interference of respiration are suppressed using the phase  
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Figure 2.2 Conventional FFT method to detect vital signs 

 

 
Figure 2.3 Proposed phase based methods. 

 
information because of the linear relationship between phase and time delay. 
FFT is performed next on the fast time samples of (2.7) [48], 

, exp 2

exp 2

p d c

p c c d

Y t A P j t

A P j t
                             (2-11) 

where * represents convolution. For the FFT of each pulse, the computation 
complexity is minimal at dc compared with any other frequency. As a result, FFT 
of each pulse at dc is 

,0 , ,

exp 2

k k
k

p c c d

Y t I t jQ t

A P j t
                              (2-12) 

It is worthwhile mentioning that synchronization between FPGA clock and carrier 
frequencies helps in eliminating the jitter in the system for the proposed phase 
based method. Suppose the jitter in the FPGA clock is J(t), then the signal of 
interest at the receiver will be 

, p dr t A p t J t                              (2-13) 
When the FPGA clock and carrier frequencies are synchronized, there will be 
phase coherence between these two frequencies, i.e., the two different 
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frequencies are phase locked. The intermediate signals of I/Q channels and 
collected pulses are, 

, , cos 2 cI t r t J t                                   (2-14) 

, , sin 2 cQ t r t J t                                    (2-15) 

, , ,

, exp 2 c

y t I t jQ t

r t j J t                                (2-16) 

When FFT is applied on the fast time samples of (16), we obtain 
, exp 2 2

exp 2

exp 2
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p d

c c
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Y t A P j t j J t

j J t

A P j t

j J t

                         (2-17) 

When each pulse is Fourier transformed at dc, (2-17) will become (2-12). In this 
manner, the jitter existing in the FPGA clock can be eliminated from the 
demodulated phase information using proposed phase based methods. 

2.3.1 Complex Signal Demodulation  
The block diagram for complex signal demodulation is shown in Figure 2.4 (a). 
When pulse n is Fourier transformed at ν = 0 along fast time, one complex value 
Y(tn, 0) will be acquired accordingly. A sequence of complex values is available 
for spectral analysis. The Fourier series of (2-12) can be represented as 
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where λ = c/νc; ϕ = 2d0νc/c; ωb = 2πfbt; ωr = 2πfrt; Cij = Ji(4πmb/λ)∙Jj(4πmh/λ) are 
the amplitudes of frequency components, Jn is the first kind Bessel function; 
DCRe and DCIm are dc components in the real and imaginary parts; DCB  is the 
desired baseband dc information for the vital sign detection. As shown in (2-18), 
the available complex values are summation of frequency components and a dc 
term. The dc offsets introduced by clutter or unbalance between I/Q channels will 
only affect the dc term of Y(t,0). So the extraction of frequency components of  
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(a) 

 
 

(b) 
Figure 2.4 Block diagram of (a) CSD; (b) AD for UWB radar system, where M(t) = Imag{Y(t,0)}, 

R(t) = Real{Y(t,0)}, F is a multiple of 180°, k is an integer.   
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interest will not be interfered in the signal processing. Mean subtraction has been 
used to remove the baseband DCB as well as any dc offset. However, CSD 
cannot eliminate higher harmonics with even-orders [18].  

2.3.2 Arctangent Demodulation  
The block diagram of arctangent demodulation in frequency domain is shown in 
Figure 2.4 (b). This method is geared towards the calculation of total Doppler 
shift caused by physiological movement [17]. Based on the complex values 
obtained in (2-12), arctangent demodulation calculates the total phase of 
modulated pulse according to 

arctan

4 sin 4 sinb b h h

M t
t F

R t

m t m t                 (2-20) 

where M(t) and R(t) are the imaginary and real components of (2-12) 
respectively, i.e., M(t) = Imag{Y(t,0)}, R(t) = Real{Y(t,0)}; F is a multiple of 180° to 
deal with the wrapping problem when the absolute jumps between consecutive 
phase elements are greater than or equal to the default jump tolerance of . 
Alternatively, differentiate and cross-multiply (DACM) can be used to avoid the 
wrapping problem, as shown in Appendix A.1 [57]. 
Since the directly demodulated ψ(t) is a linear combination of respiration and 
heartbeat signal, harmonics of respiration and intermodulation interference are 
not involved in the spectrum estimation of vital signs. Furthermore, the amplitude 
of thorax displacement can be directly detected as well. However, the imbalance 
introduced by system hardware and dc offset caused by reflection from cluttering 
may deteriorate the accuracy and needs to be accounted for i.e., (calibrated) 
first. The imbalance compensation method proposed for CW radar can be used 
to correct such imbalance and dc offsets in UWB radar data [58] as well. The 
details are shown in Appendix A.2. The signal processing algorithms (e.g., 
DACM, imbalance compensation) proposed for phase-based methods previously 
developed for CW radar system can be applied to UWB radar data too.  

2.3.3 State Space Method in Conjunction with CSD and AD 
State space method is a parameter estimation algorithm with robustness against 
noise and efficiency in computation [50]-[51]. In this chapter, state space method 
is used in conjunction with CSD and AD, so that the heartbeat signal is enhanced 
in spectrum and precise estimates of cardiac frequency components can be 
achieved.  
For state space method in conjunction with CSD (SSM-CSD), the sequence of 
complex values acquired by (2-12) is processed with state space method; for 
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state space method in conjunction with AD (SSM-AD), phase information 
demodulated using arctangent demodulation is processed with state space 
method. Details of the SSM have been given in [50] and [35], but will be 
summarized here for completeness. The steps of SSM-AD are described here 
and the same procedure is applicable to SSM-CSD as well. Suppose that N 
phase values are demodulated with arctangent demodulation, i.e., ψ(n), n = 0, 1, 
2,… (N-1). The state equations are defined in [35] as  

1x n Ax n Bu n                                              (2-21) 

n Cx n u n                                                   (2-22) 
where u(n) and ψ(n) are the input and output respectively. The vector x(k)  P×1 
is the state, A  P×P is the state transition matrix, while B  P×1 and C  1×P are 
constant matrices. By taking the z-transform, the transfer function H(z) is 
obtained according to [35] 

1 1H z C zI A B                                       (2-23) 
where I is an identity matrix. The poles and zeros of H(z) are the eigenvalues of 
A and (A-BC) respectively. As a result, the relation between the impulse 
response of the model and state-space parameters is defined as [35]  

1( ) nn CA B                                               (2-24) 
The steps in applying SSM to ψ(n) can be summarized below: 
(1) First, a Hankel matrix H is formed using ψ(n) as 
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where L is the nearest integer less than or equal to N/2.  
(2) This Hankel matrix H is decomposed via singular value decomposition (SVD) 
into signal and noise subspaces.  
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                                     (2-26) 
where Σsn and Σn are diagonal matrices containing singular values; (Usn Un), (Vsn 
Vn) are left-unitary and right-unitary matrices; Usn, Σsn and Vsn are the signal 
components; Un, Σn and Vn represent the noise components; * denotes the 
Hermitian operator. 
(3) Suppress the noise components in SVD by truncating the matrix H and 
keeping the dominant components, based on an assumed threshold. The newly 
obtained matrix with reduced rank is given by 
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H U Vsn sn snH Usn sUUUU                                           (2-27) 
(4) Factorize the truncated matrix as 

HH                                                    (2-28) 

where 
1

2
sn snU and 

1
2

sn snV  are known as observability and controllability 
matrices, respectively [50]. The state transition (or system) matrix A is obtained 
according to 

1

rf rl rl rfA
                                           (2-29) 

where Ω-rf is computed by deleting the first row of  Ω, and Ω-rl is obtained by 
deleting the last row of Ω. 
(5) The intermediate matrix C (state independent) is acquired from the first row of 
observability matrix as 

(1,:)C                                                             (2-30) 
(6) The state-independent matrix B is computed as 

1 T
N N NB

                                                   (2-31) 
where ψT is the transpose of ψ(n) and matrix ΩN is expressed as 
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CA                                                  (2-32) 
(7) The original data ψ(n) can be approximated in terms of state space 
parameters A, B and C as 

1( ) ,    n 0,1, ( 1)nn CA B N( 1)((                               (2-33) 
Eq. (2-33) is formally the state space model that represents the measured 
sequence ψ(n). Finally, spectral analysis such as Fourier transform can be 
applied to ψ(n) for vital sign detection. State space method is capable of 
parametrically characterizing the spectral peaks of heart and respiratory 
frequencies in the spectrogram, i.e., the amplitude and frequency at each peak in 
the spectrogram are uniquely identified with the eigenvalues of the state matrix. 

 
2.4 Experimental Results 

 
In order to validate the phase-based methods, two experiments on human 
subjects and a third one using an actuator have been carried out. In these 
experiments, horn antennas were used, which were 1.5 m above the ground. 
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These two antennas were located 50 cm away from each other for adequate 
decoupling, and the human target was 0.8 m away. The receiving antenna was 
located closer to the left part of the human subject and it was focused on the 
amplitude variations of the chest movement of the left heart side, while the 
subject is facing the antenna. In the first experiment, subject 1 held his breath 
and sat still in front of the radar system; in the second experiment, subject 2 
breathed normally and kept also stationary in front of the UWB radar. The data 
collected by a reference commercial sensor serves as a reference for heartbeat 
signal. The six algorithms, i.e., direct FFT, CSD, AD, SSM, SSM-CSD and SSM-
AD, are applied to the radar data collected in the experiments and their 
accuracies as well as their SNRs are evaluated. To judge the performance of 
different methods, the reference data (ground truth) should be fully predictable 
and controllable, such as using a periodic object movement enabled by an 
actuator [9]. Hence in the third experiment, a linear actuator served as the 
absolute reference to demonstrate the capability of tiny motion detection of our 
UWB radar. The difference between our readings and the reference rates are 
obtained and will be noted as deviations. The experiment setups with human 
subject and actuator are shown in Figure 2.5. 
 

    
 

(a)                                                                (b) 
Figure 2.5 Experiment setup with (a) human subject, (b) linear actuator. 

 

2.4.1 Subject 1 Withheld Respiration 
When subject 1 held breathing and was stationary, the heartbeat signal was then 
demodulated directly from radar data with arctangent demodulation, as shown in 
Figure 2.6. The detected heartbeat signal shows good alignment with the 
reference in time domain. To clearly show the performance of the six methods for 
vital sign detection, the detected heart rate with each method using the UWB 
radar is shown in the subplots of Figure 2.7. The identified heart rate by the 
reference sensor was 58.0 Beats/Minute. As shown in Figure 2.7 (a), the 
identified heart rate with direct FFT was 56.7 Beats/Minute, presenting a 
deviation of 2.1%; as shown in Figure 2.7 (b), (c), complex signal demodulation  
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Figure 2.6 Reference and demodulated raw data with AD from right heart side. 
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(a)                                                                                            (b) 

 
(c)                                                                                            (d) 

 
(e)                                                                                            (f) 

Figure 2.7 When subject 1 held breathing, detected heart rate using (a) reference FFT, (b) CSD, 
(c) AD, (d) SSM, (e) SSM-CSD and (f) SSM-AD. 

  



 

30 
 

as well as arctangent demodulation sensed similar heart rate of 57.1 
Beats/Minute, presenting a deviation of 1.5%; as shown in Figure 2.7 (d), the 
identified heart rate with SSM was 57.0 Beats/Minute, presenting a deviation of 
1.7%; as shown in Figure 2.7 (e), (f), the heart rate detected with both SSM-CSD 
and SSM-AD is the same (57.7 Beats/Minute) and the corresponding deviation is 
significantly reduced to 0.5%. The detected cardiac rate and deviation with the 
six methods are listed in Table 2.3. Meanwhile, phase-based methods indicate 
heartbeat signal much better with clearly visible peaks. Another metric that can 
indicate the advantages of SSM is SNR, calculated as [45],  
 

 

Heartbeat FundamentalSNR 20*log
SQRT(Sum(SQR(Noise))/N)                        (2-34) 

 
where SQRT indicates square root; SQR indicates square; N indicates number of 
noise samples. The SNR characterizes the ratio of the fundamental frequency 
heartbeat signal level to the noise level. The noise level is estimated by 
averaging all non-fundamental spectral components without the dc component, 
the respiration and heartbeat fundamental frequency and its harmonics. The 
SNR of detected heartbeat signal with each method is calculated and listed in 
Table 2.3 as well. It is observed that, arctangent demodulation and complex 
signal demodulation showed similar performance in SNR in heart rate detection 
(~ 21 dB). As a general conclusion, all six methods show similar performance in 
accuracy; while complex signal demodulation and arctangent demodulation 
outperform the direct FFT method in SNR by at least 10 dB. Meanwhile SSM, 
SSM-CSD and SSM-AD have higher SNR compared to all other methods, which 
is over 25 dB higher than that of arctangent demodulation for example. 
Meanwhile, the use of complex signal demodulation and arctangent 
demodulation algorithms demonstrated similar SNRs. SSM-CSD and SSM-AD 
had similar performance in SNR as well.  

 
Table 2.3 Comparison of each method in heart rate (Beats/Minute), deviation (%) and SNR (dB)  

Method Direct FFT CSD AD SSM SSM-CSD SSM-AD 

HR 56.7 57.1 57.1 57.0 57.7 57.7 
Deviation 2.1 1.5 1.5 1.7 0.5 0.5 

SNR 8.4 21.2 21.8 46.6 49.9 50.2 
 

2.4.2 Subject 2 Breathed Normally 
When subject 2 breathed normally, heart rates detected with these various 
detection methods are shown in Figure 2.8. Direct FFT method as indicated in 
[59] detects respiration rate with a deviation of more than 1% compared with the 
reference sensor. Also all the proposed phase-based methods achieved  
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(a)                                                                        (b) 

 
(c)                                                                       (d) 

 
(e)                                                                          (f) 

Figure 2.8 When subject 2 breathed normally, detected heart rate using (a) reference FFT, (b) 
CSD, (c) AD, (d) SSM, (e) SSM-CSD and (f) SSM-AD. 
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comparable deviations. So we focus here on the heartbeat signal to demonstrate 
advantages of the newly proposed methods, which were also introduced in [49] 
as well. The reference heart rate was 70.8 Beats/Minute. As presented in Figure 
2.8 (a), the highest two peaks in the frequency range of interest (55 – 100 
Beats/Minute) were 60.8 and 82.5 Beats/Minute. The first peak indicates the fifth 
harmonic of the fundamental respiratory frequency, while the second peak, i.e., 
82.5 Beats/Minute, was the intermodulation between respiration and heartbeat 
signals, i.e., fb + fh. As a result, the direct FFT method could not identify the 
heartbeat signal due to the strong harmonic and intermodulation interference. As 
shown in Figure 2.8 (b), (c), both CSD and AD showed the same accuracy in 
heart rate detection. The detected heart rate with these two methods was 69.0 
Beats/Minute and the corresponding deviation was 2.6 %. Note that, even though 
the level of noise interference was relatively high, heartbeat signal was 
successfully extracted. In Figure 2.8 (d), the identified heart rate with SSM was 
68.4 Beats/Minute, presenting a deviation of 3.7%. In Figure 2.8 (e), (f), the heart 
rate detected with SSM-CSD and SSM-AD was 69.6 Beats/Minute, showing a 
deviation of only 1.7%. The noise level was greatly suppressed and heartbeat 
signal was clearly visible in the spectrum.  
The sensed heart rates, deviations and SNRs are listed in Table 2.4. When the 
subject breathed normally the heartbeat signal detected with direct FFT method 
was masked by harmonics and intermodulation products, hence it was not listed 
in Table 2.4. CSD and AD had the same SNR in heartbeat monitoring. SSM 
demonstrated similar performance in SNR to SSM-CSD and SSM-AD. In 
summary, phase based methods and SSM showed same level of accuracy, and 
application of SSM-CSD and SSM-AD led to an improvement of 10 dB at least in 
SNR over the CSD and AD methods. 
 
Table 2.4 Comparison of each method in heart rate (Beats/Minute), deviation (%) and SNR (dB)  

Method CSD AD SSM SSM-CSD SSM-AD 

HR 69.0 69.0 68.4 69.6 69.6 
Deviation 2.6 2.6 3.7 1.7 1.7 

SNR 20.7  20.4   27.9 32.4 32.6  
 

2.4.3 Actuator Experiment 
To imitate the torso motions due to human heartbeat, the actuator was 
programmed to perform sinusoidal movements. A foil plate was mounted on the 
translational stage to reflect incident wave from the UWB radar system. The  
actuator was placed 1 m away in f ront of the radar. The amplitude of 
displacement was 1 mm and the movement frequency was 1 Hz. The actuator 
motion was measured and demodulated from collected pulses with phase based 
algorithms and the extracted spectrums are demonstrated in Figure 2.9. After 
coherent combination of all the energy of range bins traversed by the actuator  
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(a)                                                                        (b) 

 
(c)                                                                         (d) 

 
(e)                                                                          (f) 

Figure 2.9 Detected actuator movement frequency using (a) reference FFT, (b) CSD, (c) AD, (d) 
SSM, (e) SSM-CSD and (f) SSM-AD. 
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and implementation of direct FFT, the acquired spectrum is shown in Figure 2.9 
(a). The second harmonic of the presented frequency is comparable to the 
fundamental frequency. The obtained motion frequencies using phase based 
methods and their enhanced counterparts are presented in Figure 2.9, all 
indicating a deviation of less than 1%. Moreover, SSM, SSM-AD and SSM-CSD 
demonstrate better performance in SNR. These results validate the accuracy of 
our algorithms for detecting vital signs, and are consistent with commercial 
sensors previously used to evaluate measurement errors in these experiments.  

2.4.4 Block Processing SSM 
To evaluate the performance of continuous monitoring, a long data set of 18.5 s 
duration (1386 samples) collected on the human subject is considered. SSM is 
applied sequentially to blocks of 900 samples with each block after the first one 
shifted forward by one sample to generate contiguous blocks until the last block 
of 900 samples is reached. The estimation of the vital signs begins by passing 
the block of first 900 samples that cover a time duration of 12 s to the SSM. As 
time evolves, blocks of 900 samples that share 899 samples with their two 
immediate neighbors are sequentially fed to the SSM with a model order of 10 to 
extract the vital signs until the entire 18.5 s are covered. Figure 2.10 (a) depicts 
block-processed estimates of the heart rate signifying a solid trend of about 1.1 
Hz for all the blocks, lying within 3% accuracy compared to the reference.  
Next, the heart rate error is computed for each estimate with respect to the 
reference of 1.073 Hz to form an error vector hv  containing entries arranged in 
ascending order of the error. A cumulative distribution function (CDF) is then 
formed by computing percentage of the entries in hv  smaller than each one of 
its individual elements. It is gratifying that the errors depicted in the CDF plot in 
Figure 2.10 (b) are indeed very small, reaffirming that about 98% of the heart rate 
estimates show error less than 0.03 Hz (or within 3% of the reference). 
Fig. 2.11 (a) depicts the block-processed estimates of the respiration rate for the 
entire 18.5 s duration, demonstrating reasonably good corroboration between the 
estimates and the reference respiration rate of 0.28 Hz measured on the subject. 
As seen in the CDF plot of Figure 2.11 (b), 92% of the blocks processed produce 
errors lying within 7% of the reference (or within 0.025 Hz). Due to the subject’s 
body movement and the proximity of the respiration rate to DC, a transient-type 
phenomenon induces larger errors in the estimates of respiration rate for time 
intervals that fall below 12.5 s.  

2.4.5 Two Subjects Breathed Normally 
In the fourth experiment, two subjects were sedentary 0.6 m and 0.9 m away 
from the receiver, and breathing normally. The experiment setup is shown in 
Figure 2.12. The back-projection algorithm was utilized to achieve a high 
resolution in subject localization as indicated in Figure 2.12 (b). The phase-based 
method was used to identify the vital signs of the two subjects. As shown in  
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(a) 

 
(b) 

Figure 2.10 (a) Heart rate estimates obtained using block-processing SSM. (b) Cumulative 
distribution function of the heart rate. 
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(a) 

 
(b) 

Figure 2.11 (a) Breathing rates estimated using block-processing SSM. (b) Cumulative 
distribution function of the respiration rate. 
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Figure 2.13, the detected respiration and heart rates for subject 1 using the 
commercial references were 13.45 and 73.66 Beats/Minute respectively. The 
respiration and heart rates obtained using the UWB radar were 13.45 and 75.34 
Beats/Minute, showing an error of 2.28 % for heart rate detection. For subject 2, 
the detected respiration and heart rates from the references were 15.30 and 
77.36 Beats/Minute, as shown in Figure 2.14. The respiration and heart rates 
acquired using the UWB radar were 15.30 and 79.57 Beats/Minute, showing an 
error of 2.85 % for heart rate detection. 
 

 
 

(a)                                                           (b) 
Figure 2.12 (a) Experiment setup. (b) Localization with UWB system. 

 
 

2.5 Discussion 
 
In the above two human subject experiments, we presented the performance of 
direct FFT method, SSM and phase-based methods, focusing on their accuracy 
and SNR in vital sign detection. Note that zero padding is utilized in the spectrum 
estimation so that the frequency resolution is less than 0.01 Hz which is very 
adequate for accurate heart rate estimation.  
1) When the subject held breath, all six methods demonstrated comparable 
accuracy in heart rate detection; when the subject breathed normally, the 
detected heartbeat signal by the direct FFT method was masked by the 
respiration harmonics and mixed intermodulation products.  
2) Both CSD and AD showed a similar SNR performance in our experiments, as 
shown in Figure 2.15. Practically, in applying these phase-based methods it is 
essential to apply a window function, i.e., Hamming window before performing 
their FFTs.  Otherwise, the resulting spectrum would suffer from leakage if the 
signal is not perfectly periodic in FFT’s finite length. Figure 2.16 shows the 
results of vital sign detection for breathing subject using complex signal 
demodulation with and without a Hamming window. It is obvious that energy is 
more dispersed in the spectrum when the complex values of the spectrum are 
not multiplied by a Hamming window. The dispersed result makes it more difficult 
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Figure 2.13 Heart rate detection of subject 1 with arctangent method. 

 

 
Figure 2.14 Heart rate detection of subject 2 with arctangent method. 
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Figure 2.15 In the second experiment, detected heart rate using CSD and AD. 

 

 
Figure 2.16 In the second experiment, detected heart rate using CSD with hamming window and 

CSD without Hamming window. 
 

Table 2.5 Comparison between CSD and AD 

 Pre-processing Advantage Application Enhanced 
Version 

CSD windowing lower computation cost spectrum SSM-CSD 

AD windowing, dc offset 
calibration less harmonics spectrum, 

amplitude SSM-AD 
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to identify the respiration and heart rates. 
CSD and AD are compared in Table 2.5, where windowing functions were 
necessary for both demodulation methods. Arctangent demodulation eliminates 
nonlinear modulation in phase and can demodulate the amplitude of tiny 
displacements, while it requires dc bias calibration. Fortunately, the dc bias 
calibration methods proposed for CW radar can be utilized here, e.g., dc 
estimation method proposed in [18], or dc imbalance correction method proposed 
in [58]. The dc imbalance correction method for UWB radar is shown in Appendix 
A.2 in details. Complex signal demodulation is free of the dc offset problem and 
has lower computation cost, while it is subjected to even-order harmonics as 
indicated in (2-18), and consistent with [18]. Though these two methods are 
robust in suppressing harmonics interferences, they still need to be improved in 
SNR, as shown in the second experiment. State space method is a parametric 
estimation algorithm which works in conjunction with CSD and AD to address the 
issue of SNR. SSM enhanced methods, SSM-CSD and SSM-AD, render low 
deviation in respiration and heart rates estimation as well as high SNR.  
Table 2.6 provides a summary of methods used for vital sign detection utilized by 
various other groups. In [19-24], variety of UWB radar systems types is proposed 
and the direct FFT method is used for vital sign identification. In [40], multiple 
receiving channels are utilized to avoid artifacts due to body motions. By 
calculating the blind source separation of channels with low variation, a heartbeat 
signal is extracted with sharp trailing slopes and good match with high resolution 
ECG. In [41], a hidden Markov model (HMM) is developed for respiration tracking  
using more than one UWB sensor. In [36], the wavelet transform and filter banks 
are proposed for physiological monitoring. The heart movement is detected with 
a Chirp Z-Transform (CZT) computing the spectrum, a deviation of 5% was 
demonstrated. With the help of MTI suppressing harmonics a deviation of 2.4% 
was realized in [34] for heart rate detection when subject breathed normally. 
Higher order cumulant (HOC) proposed in [45] outperforms direct FFT in SNR of 
vital signs detection. For References [42], [43] and [44] algorithms are presented 
for non-line-of-sight (NLOS) vital signs monitoring. In [42], SVD is utilized to de-
noise signal and Hilbert-Huang transform (HHT) is used to extract human vital 
sign frequencies. In [43], a dual-frequency UWB radar is developed to adaptively 
eliminate the non-static clutter for respiration rate detection in through-wall 
scenarios. Respiratory motion detection (RMD) involving SVD, threshold and 
target classification is developed in [44] for detection of trapped victims. To the 
authors’ best knowledge, it is the first time that phase-based methods were 
proposed to demodulate heartbeat signal for UWB radar system in [48]. SSM 
enhanced methods further improve the SNR for heart rate detection by over 10 
dB. The advantage of a UWB radar system to process the phase information in 
the spectral estimation of vital signs is the exclusion of respiration frequency 
harmonics and their intermodulation interference.  Additionally, due to the 
inherent ultra-wide bandwidth, the pulse signal of UWB radar is narrow in the 
time domain, and a high range resolution can be achieved. As a result, UWB  
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Table 2.6 Current methods to detect respiratory rate (RR) and heart rate (HR) for UWB impulse 
Doppler radar 

Research 
Group Method Vital 

Signs 
Reported 
HR Deviation 

Operating 
Range Technique 

This work CSD RR/HR 2.6% 0.8m Assembly 
This work AD RR/HR 2.6% 0.8m Assembly 
This work SSM RR/HR 3.7% 0.8m Assembly 

This work SSM 
-CSD RR/HR 1.5% 0.8m Assembly 

This work SSM 
-AD RR/HR 1.5% 0.8m Assembly 

Bernardi et al. [19] FFT RR NA 0.6m Assembly 
Lai et al. [20] FFT RR NA 2m Assembly 
Wang et al. [21] FFT RR NA 0.5m CMOS 
Chan et al. [22] FFT RR/HR ≤3% 3m Assembly 
Schleicher et al. [23] FFT RR NA 0.25m Assembly 
Zito et al. [24] FFT RR NA 0.4m CMOS 
Hilger et al. [40] BSS RR/HR NA 1m Assembly 
Nijsure et al. [41] HMM RR NA 3m Assembly 
Baboli et al. [36] wavelet RR/HR 5% 1m Assembly 

Lazaro et al. [34] MTI/ 
CZT RR/HR ≤2.4% 1m Assembly 

Xu et al. [45] HOC RR/HR NA 1.8m Assembly 

Li et al. [42] SVD/ 
HHT RR/HR NA NLOS Assembly 

Li et al. [43] ACC RR NA NLOS Assembly 
Nezirovic et al. [44] RMD RR NA NLOS Assembly 
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radar can clearly receive the reflected pulses from human body at specified 
distance range (spatial gating) and totally rejecting clutter from other distances. 
In this manner, the signal to noise ratio for the UWB radar in phase demodulation 
is significantly improved.  
 

2.6 Conclusion 
 
A UWB impulse radar is presented with all clock signals synchronized, which 
guarantees the accuracy of tiny motion detection. Then a signal model for the 
UWB radar system with I/Q channels is introduced and demodulation algorithms 
originally developed for CW radar have been extended to the UWB radar data 
analysis. Experiments using low power UWB radars demonstrated that complex 
signal demodulation and arctangent demodulation are capable of avoiding 
harmonics and mixed frequency products of respiration and heart rates. 
Meanwhile, SNR of heart rate detection has been enhanced using SSM-CSD 
and SSM-AD, where improvement of over 10 dB has been achieved. It is 
important to recognize that UWB radars can be utilized for multi-target detection 
and tracking as well with similar performance when combining either CSD or AD 
algorithms.  
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CHAPTER THREE 2 
SHORT TIME STATE SPACE METHOD FOR MICRO-DOPPLER 

IDENTIFICATION OF WALKING SUBJECT USING UWB IMPULSE 
DOPPLER RADAR 

 
 
In this chapter, ultra-wideband (UWB) Doppler radar signatures from walking 
human subjects are processed with state space method (SSM); and micro-
Doppler (μ-D) features are extracted for gait analysis. To clearly distinguish μ-D 
signatures of different body joints for the subjects, the SSM, originally developed 
for characterization of radar target signatures and sensor fusion, is applied on a 
sliding short-time window to enhance resolution in a dismount feature extraction. 
This application of SSM to sliding short-time data, termed herein as short-time 
SSM (STSSM), is validated with a full-wave electromagnetic (EM) simulation of a 
walking subject using the Boulic model that represents the human kinematics. 
The EM scattering model is then utilized to compare the performance of short-
time Fourier transform (STFT) with STSSM. The experimental results show that 
STSSM can be successfully applied to identify multiple μ-D trajectories in real 
experimental data, thus demonstrating the capability to positively identifying 
human motions even in a low signal-to-noise ratio (SNR) environment. 
 

3.1 Background 
 
There has been concentrated effort by many scientists to develop various 
algorithms and models to describe human movements, such as Boulic model [60]. 
Large amount of data has been produced by simulating the mechanics of various 
body-parts, including muscles, bones and joints.  Simulation and measurement of 
various joint movements help to identify abnormalities in individuals with cerebral 
palsy, stroke, osteoarthritis and Parkinson’s disease, for example, they can be 
used to develop a full understanding of normal motion and establish a scientific 
basis for correcting abnormalities; however, it is still a major challenge.  
Several radar technologies have been applied to extract various micro-Doppler 
(μ-D) features of human subjects including the impulse radar [33], the 
continuous-wave (CW) radar [61-64], the frequency-modulated CW (FMCW) 
radar [4, 65], and the pulse compression radar [66]. CW radar system, however, 
does not provide range information of subjects, which limits its application. 
Although, CW radar using dual frequency is capable of direction-of-arrival (DOA) 
                                            
2 I worked on this chapter with Nghia Tran, Ozlem Kilic from The Catholic University of America, 
Haofei Wang from Tsinghua University, Krishna Naishadham from Georgia Institute of 
Technology and Jean E. Piou from Wayland, MA. 
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estimation of targets, it is subject to multipath effects. On the other hand, it is 
quite expensive and complicated to implement wideband FMCW and pulse 
compression radars. Alternatively, UWB impulse Doppler radar has numerous 
advantages, such as relatively low prototype cost, less power consumption, and 
high-resolution range profile (HRRP) using a range-time-frequency 
representation. Hence, UWB radar has been utilized here to extract μ-D features. 
There are various algorithms to extract μ-D signatures from radar signals and 
provide valuable information of human motion dynamics. Most of these methods 
are based on time-frequency analysis of radar echoes. For example, the high-
resolution time-frequency method, e.g. short-time Fourier transform (STFT), is 
widely used in human gait analysis and motion pattern classification [39, 67-71]. 
Many other transforms or methods have been proposed, as well, including 
Hilbert-Huang transform [72], reassigned joint time-frequency transform [73], 
wavelet transform [74], k-nearest neighbor (k-NN) classifier [75], artificial neutral 
network [76], support vector machine (SVM) [77], probabilistic principal 
component analysis (PPCA) [78], and so on.  
To gain elaborate information on human motion, it is necessary to identify the 
motion of specific limbs and body joints and clearly distinguish their 
corresponding μ-D signatures in their spectrogram. Typically, a walking human 
subject can be modeled by sixteen body joints [60], and the backscattered radar 
signal from human body involves multiple μ-D trajectories due to these various 
body joints. Fortunately, many algorithms have been proposed to improve the 
resolution of these trajectories that are usually depicted in time versus frequency 
map or spectrogram and detail the monitored subject’s status. In [79], for 
illustration, a novel short-time iterative adaptive approach (ST-IAA) is used to 
obtain a more accurate spectrogram. In [80], nonlinear least squares (NLS) and 
an expectation-maximization algorithm have been used to decompose human 
signatures into the response of the constituent body parts. In [81], an empirical 
mode decomposition method is used to produce a unique feature vector from 
human μ-D signals and SVM is used to classify the subjects’ motion. An 
application comprising of a modified high-order ambiguity function (MHAF) with 
the CLEAN algorithm is proposed to extract μ-D features based on their 
scattering centers (body joints) in [82]. 
Meanwhile, a state space method (SSM) has been successfully used in 
characterization of radar target, radar sensor fusion, and electromagnetic wave-
based target feature extraction from polarimetric radar measurements with low 
signal-to-noise ratio (SNR) [50, 51].  The SSM has the capability of separating 
backscattered signal components based on system poles; and their amplitudes 
specific to a target scattering feature, or in the case of biomedical radar, specific 
to the Doppler signature of a particular body joint. Hence recently, SSM has been 
used in biomedical radar applications to retrieve accurate estimation of 
respiratory and heartbeat frequencies from Doppler signatures, without producing 
the inter-modulation products that typically plague FFT-based spectrograms [53].  
Other examples of SSM implementation include computation of fundamental gait 
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frequencies using simulated radar data  [83], and image resolution enhancement 
in nuclear magnetic resonance (NMR) spectroscopy [84]. In this chapter, we 
apply SSM to short-time windowed segments of sliding data sequences 
generated by FFT of each pulse along the fast time of the backscattered returns 
from UWB radar, and extract human gait characteristics.  For convenience, this 
modified SSM is referred to in the sequel as short-time state space method 
(STSSM).  
In this chapter, Section 3.2 presents the STSSM algorithm; it is based on the 
combination of the original SSM and a sliding window function that are used to 
identify specific μ-D components of each scattering body joint from UWB data. 
An empirical analytical model of a human walking kinetics is discussed in section 
3.3. A full-wave electromagnetic scattering model for the human body in motion 
is presented in section 3.4. This model is employed in section 3.5 to simulate the 
backscattering of CW radar signals from a walking subject [85]. STFT and 
STSSM methods are compared in processing data of the scattering model. 
Finally, in section 3.6, STSSM is applied to UWB signals reflected from different 
walking subjects in radial and oblique directions. Its performance validates that 
the μ-D signatures generated by different body joints in human motion can be 
successfully distinguished. 

 
3.2 Short time state space method for UWB Impulse Radar 
 

The UWB radar described in [33] is used to collect data from human subjects. 
Data from one channel is saved in a data cube denoted by s(k, n), where k = 1, 
2, …, K represents fast time or range index, and n = 1, 2, …, N denotes the slow 
time or cross-range index. HRRP can be utilized to show the real-time location of 
the subject or detect the walking path of a human target; it is widely used in 
through-barrier detection [39], [86]. HRRP at time n0T can be directly obtained 
from s(k, n0), where T is the pulse repetition time. Meanwhile, range bins 
traversed by a subject are unraveled by HRRP. Upon applying time-frequency 
analysis to these range bins, μ-D signatures of a target can be readily extracted. 
Alternatively, we can first apply FFT to each reflected pulse along fast time and 
acquire its corresponding spectrum. In this manner, data cube s(k, n) is 
transformed into s '(m, n) in frequency domain, where m = 1, 2, …, M represents 
fast-time frequency index. A conventional joint time-frequency transform, i.e. 
STFT, can be applied to the slow-time signal s ' (m0, n), where m0 indicates 
frequency in the fast-time spectrum of each reflected pulse. The spectrum 
illustrating signal variation in both time n and slow-time frequency f domains is 
calculated as 

2

, ' jpf

p

s n f s p g p n e                                   (3-1) 
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where s ' (n) denotes slow-time samples for a selected fast-time spectrum bin, 
and g(n) is the sliding window function.  
Instead of using STFT, a parametric signal analysis method, i.e. STSSM, is 
considered for μ-D feature extraction in low SNR situations. Consider the data 
cube s '(m,n) after FFT of each pulse, where m = 1, 2, …, M represents fast-time 
spectrum, n = 1, 2, …, N denotes slow time index. When a subject is located at 
range bin m0, the data sequence to be processed is  

0( ) ) ( )'( ,y n g n ps m n  , ( , )p                            (3-2) 
where g(n-p) is the sliding window function centered at p. The data sequence 
y(n) could be modeled as, 

  

'4( )

1
( ) ( ),   n 0,1, , ( 1)i i n

Q b j r f
c

i
i

y n a e w n N, ( 1), (, (                 (3-3) 

where y(n) is composed of Q complex sinusoidal signals corrupted by noise w(n) 
and has N time-domain samples which are spaced at pulse repetition frequency 
(PRF). The parameters ai and bi represent amplitude and damping factor related 
to ith scattering body joint, ri’ and c denote the target range-rate and speed of light 
respectively, the nth frequency component is associated with the carrier 
frequency f0 as fn = f0 + (n-1) ∙∆f, and ∆f is PRF. 
The poles in (3-3) contain the information of target motion and are critical for 
signal component separation in μ-D feature extraction. The poles represent the 
roots of the denominator of the transfer function of an autoregressive moving 
average (ARMA) derived from the state space equations [50], [51]. As a result, 
an alternative input-output relationship for (3-1) is given by 

( 1) ( ) ( )
( ) ( )

x n A x n B w n
y n C x n                           (3-4) 

where w(n) is the input and y(n) is the output;  1( ) Qx n  1Q is the state, Q QA Q Q

is the state transition matrix,  1QB  1Q and 1 QC 1 Q are constant matrices. By 
following the steps of SSM from (2-23) to (2-33), we can acquire the estimated 
data sequence after signal component separation, i.e., ˆ( )y n . Then, spectral 
analysis such as Fourier transformation could be applied to ˆ( )y n for identification 
of μ-D trajectory from each body joint. It is worthwhile mentioning that by 
computing the eigenvalues of state transition matrix A, we can acquire the poles 
of the model and thus the corresponding frequency components in the data 
sequence y(n). 
 

3.3 Human Walking Model  
 
To model human motion kinematics, we utilize an analytical model extracted from 
empirical data, namely, the well-known Boulic model [60]. According to this 
model, human walking motion is modeled by cycles with constant translational 
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velocity. There are two inputs to this model  velocity and height of the human. 
From these inputs, the human body phantom can be created using 16 joints 
between its 17 body parts, which are identified as the head and the lines 
between the joints, as depicted in Figure 3.1 (a). Furthermore, the fundamental 
spatial and temporal motion characteristics (i.e. the length of the walking cycle, Lc, 
and the duration of the walking cycle, Tc) are also determined from these inputs. 
The time-dependent translation and rotation of each joint on a human body are 
then calculated using these two parameters, i.e. Lc and Tc.  Figure 3.1 (b) shows 
the radial speeds of different human body parts for one walking cycle, Tc = 2.3 s, 
created by the Boulic model for a human of height 1.72 m, walking at 0.33 m/s 
speed. We can see that the lower parts of the legs such as the feet and the 
ankles achieve the maximum μ-D frequency at around 30 Hz, while the torso and 
hands oscillate slightly around the velocity of the translational movement of the 
human. The motions of the left and right parts of human body are observed to be 
periodic.  
 

3.4 Full Wave Electromagnetic Model for a Human in Motion  
 
In this section, Method of Moments enhanced with Fast-Multipole-Method (MoM-
FMM) is utilized as an efficient way to calculate the scattered fields from a 
walking human. Mutual coupling and ground effects are incorporated. Even 
though the mesh sizes on curved surfaces can be larger than those in finite 
difference time domain (FDTD), we still can maintain high accuracy [87].  
The MoM-FMM technique focuses on the grouping concept (aggregation) of 
mesh elements, wherein N edges in the mesh of a given structure are 
categorized into M localized groups based on their proximity to each other. 
Incorporating this grouping concept of FMM reduces the complexity of MoM from 
O(N3) to O(N3/2), which is significant for large value of N.  There are two 
important interaction types in MoM-FMM, namely, near-field (applies to neighbor 
groups and utilizes conventional MoM approach) and far-field (applies to groups 
spaced apart and utilizes on-the-fly computations without having a need to store 
element-to-element interactions for each mesh element in the group). Recently, 
MoM-FMM has been implemented using parallelization on GPU clusters, 
achieving a good speed-up factor in computation [87]. To simplify modeling of the 
human subject using MoM-FMM, the body parts are approximately modeled here 
by using perfectly conducting ellipsoids between the joints except for the head, 
which is represented by a sphere, as shown in Figure 3.2. A representative mesh 
for the human is shown in Figure 3.2 (c).  
The full wave analysis to model the motion of a human was carried out with the 
same parameters used for the Boulic model, i.e. a height of 1.72 m and walking 
with a velocity of 0.33 m/s. A z-polarized plane wave with a 3 GHz frequency and 
propagating along -x direction is assumed to illuminate the human body, as 
shown in Figure 3.2 (d). The reflected (scattered) fields are similar to what would 
be captured by the radar receiver, and can be used to develop motion  
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(a) 

 
(b) 

Figure 3.1 (a) Human motion model with 17 body parts. (b) μ-D frequencies of different body 
joints in one cycle. 
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(a)                                                 (b)                                         (c) 

 
(d) 

Figure 3.2 (a) Human joint body. (b) Human ellipsoid body. (c) Meshed human body and (d) 
Human scattering scenario. 
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spectrograms. However, antennas utilized in our simulation were assumed 
isotropic; directional antennas like those used in our radar measurement set-up 
can be eventually used for better accuracy.  Subsequently, we use these 
simulated spectrograms to analyze different body motion characteristics as will 
be explained in the next section. 

 
3.5 Simulation results 

 
In this section, the μ-D signatures from a walking human are simulated and 
compared to Boulic model results. Subject is located at the origin point, i.e., (0, 0, 
0) m, walking towards the radar. A 3 GHz CW radar located at (2.5, 0, 1) m is 
assumed to receive the scattered fields from the scene, i.e., radar is 2.5 m away 
from the subject along the x-direction, and mounted at 1 m height. It is important 
to mention that using of wider band signals in our simulation (such as UWB radar) 
will give better resolution- but it is computationally inefficient. In our simulation 
too, a human model is assumed to move along the direct path to the radar, and is 
represented by point scatters  created based on the Boulic model as described 
in the previous section.  
The μ-D signatures from the scene are then estimated by applying STFT and 
STSSM to the center range-gate over short time duration to compute back-
scattered fields received at the radar. This approach appears to be applicable 
even to narrow-band data due to its independence of range resolution. In this 
simulation, the human walking cycle is 2.43 s, and 200 single-frequency samples 
are collected and stored. FFT is applied to each pulse and the center range-gate 
is selected. Next, a sliding window length of 24 pulses is used to formulate the 
state space method and extract movements from many body parts. The model 
order of STSSM, i.e., the number of signals impinging into the data to compute 
the poles that give rise to Doppler frequencies from the human torso and feet, is 
set to 4. The simulated μ-D spectrograms using STFT and STSSM are shown in 
Figure 6.2 (a) and (b). They depict that the highest μ-D frequencies around 30 Hz 
are from the lower parts of the human body, i.e., the feet, Furthermore STFT and 
STSSM show similar trends in the μ-D frequencies monitoring. However, the 
region of the curves from STSSM that lie within 0.4 s to 2.3 s provides better 
performance than STFT. Thus, μ-D trajectories from left foot, right foot and torso 
can be distinguished in the spectrogram processed with STSSM.  
To validate the performance of STSSM, the maximum μ-D frequencies of 
trajectories in Figure 3.3 (b) are compared with the maximum μ-D frequencies of 
body joints estimated with Boulic model in Figure 3.1 (b). The maximum μ-D 
frequency generated from the left foot, right foot and torso are estimated to be 
around 27.1 Hz, 27.1 Hz and 7.9 Hz, respectively. As shown in Figure 3.3 (b), the 
monitored maximum μ-D frequencies with STSSM for left foot, right foot and 
torso are 27.7 Hz, 26.3 Hz and 7.6 Hz respectively. As a result, the difference 
between Boulic model and results obtained from CW radar with STSSM is within 
±3.8%. The comparison details are listed in Table 3.1. 
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(a)                                                                             (b) 

Figure 3.3 (a) Spectrogram using STFT when sliding window length of 24 samples, (b) 
spectrogram using STSSM for a sliding window length of 24 samples. 

 
Table 3.1 μ-D signatures of a walking target with height 1.7 m and speed 0.33 m/s 

 Boulic Model (Hz) Scattering Model (Hz) Difference (%) 

Left foot 27.1 27.7 2.2 
Right foot 27.1 26.3 -3.0 

Torso 7.9 7.6 -3.8 
 
 

3.6 Experimental results 
 
In the simulation example described above, the STSSM algorithm was tested 
and its performance was compared with the Boulic model. In this section, 
simulated EM and experimental data are utilized to validate STSSM capability in 
μ-D frequency extraction from experimental data. To test the practicality of the 
STSSM, five experiments are conducted on three subjects walking at different 
angles in front of the radar receiver. A UWB radar system used in the 
experiments exhibits a pulse repetition frequency of 75 Hz and range resolution 
of 3 mm. The collected data are first processed with STFT followed by STSSM 
from which results are generated and compared with the Boulic model. 

3.6.1 Subject Walking Towards Radar 
In this experiment, the UWB radar was used to monitor the μ-D features of a 
walking dismount. A human subject of 1.72m height walked in front of the radar 
system at 0 ̊ to the radial direction. The radar data was saved into s(k, n), where 
k = 1, 2, …, 2000 represents fast time or range index, and n = 1, 2, …, 600 
denotes the slow time or pulse index. Thus, the radar detected a range up to 6 m 
for 8 s. After removal of the static background, the HRRP clearly indicates the 
walking trace of the human subject, as shown in Figure 3.4 (a). Spikes along the  
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Figure 3.4 (a) HRRP of walking subject with arms swinging, (b) Boulic model of subject at the 
radial direction, (c) spectrogram using STFT when sliding window length of 50 pulses, (d) 

spectrogram using STSSM when sliding window length of 50 pulses. 
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(a) 

 
(b) 

Figure 3.4 continued. 
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(c) 

 
(d) 

Figure 3.4 continued. 
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walking path are depicted. In the HRRP generated from the motions exhibited by 
the human limbs, i.e. arm swings and leg strides, it is observed from the HRRP 
that the subject has traversed the range from 2.9 m to 4.4 m.  The subject first 
walked toward the radar system then turned around and walked away. The 
walking speed is thus estimated to be 0.38 m/s. By using the subject’s height and 
walking speed, the Boulic model of a walking human is calculated and presented 
in Figure 3.4 (b).  
To focus on the motion identification by STFT and STSSM, μ-D frequencies of a 
walking cycle are zoomed in. A sliding window length of 50 pulses is used for 
both STFT and STSSM. FFT is first applied to each reflected pulse along fast 
time to acquire compressed pulses. In this manner, a data cube s(k, n) is 
transformed into a data sequence y(n), where n denotes the pulse index 
selected at the center range-gate. STFT is applied to the slow-time signal y(n) 
over a window length of 50 pulses to acquire the spectrogram, as shown in 
Figure 3.4 (c). The order model of STSSM is set to 6. The spectrogram created 
by STSSM on y(n) is shown in Figure 3.4 (d), and associated μ-D trajectories of 
left foot, right foot and torso are extracted. The identified region of the curves in 
the spectrogram from 0.5 s to 2 s matches well in magnitude with the Boulic 
model, which demonstrates that STSSM outperforms STFT in μ-D frequencies 
identification.  
To validate the performance of STSSM, the maximum μ-D frequencies of 
trajectories in Figure 3.4 (d) are compared with the maximum μ-D frequencies of 
body joints estimated with Boulic model in Figure 3.4 (b). As shown in Figure 3.4 
(b) the maximum μ-D frequency generated from the left foot, right foot and torso 
are estimated to be around 34.4 Hz, 34.4 Hz and 8.8 Hz, respectively. As 
depicted in Figure 3.4 (d) the monitored maximum μ-D frequencies with STSSM 
for left foot, right foot and torso are 31.6 Hz, 35.6 Hz and 8.6 Hz, respectively. As 
a result, the difference between Boulic model and results obtained from UWB 
radar with STSSM is within ±6%. The comparison details are listed in Table 3.2. 
Meanwhile, it is difficult to distinguish various parts/joints movements using STFT 
spectrograms as it is obvious from Figure 3.4(c). 
 

Table 3.2 μ-D signatures of walking target with height 1.72 m and speed 0.38 m/s 

 Boulic Model (Hz) UWB Radar (Hz) Difference (%) 

Left foot 33.6 31.6 -6.0 
Right foot 33.6 35.6 6 

Torso 8.8 8.6 -2.3 
 

3.6.2 Subject Walking in front of radar at oblique directions  
To enhance and emphasize the practicality of STSSM, four more experiments 
have been conducted and data from different subjects walking in various 
directions are collected and processed. Two subjects walked in front of the radar 
at 30 ̊ and 60 ̊ to the radial direction and data were collected and processed with 
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STSSM. Both spectrogram and μ-D trajectories were generated from the 
experiments and results were compared with the Boulic model data to validate 
the performance of STSSM. While the subject is walking directly to the radar 
system, the HRRP records the walking traces of the human subject and his/her 
walking speed can be readily calculated. Suppose a subject who is walking in 
oblique directions at an angle θ to radial direction, the walking speed monitored 
by UWB radar is v; where, the actual velocity of the subject is computed 
according to v/cos(θ).  
In the first experiment, subject 1 of height 1.71 m walked back and forth at 30 ̊ to 
the radial direction of radar system. The radar data was saved in a data cube 
denoted by s(k, n), where k = 1, 2, …, 2000 represents range index, and n = 1, 
2, …, 600 denotes the pulse index. So the radar detected a range up to 6 m for 8 
s. It is observed from HRRP in Figure 3.5 (a) that the subject has traversed the 
range from 2.6 m to 4.2 m and the detected walking velocity from HRRP is 0.4 
m/s. With subject height and walking velocity, the corresponding Boulic model of 
one walking cycle is presented in Figure 3.5 (b). The maximum μ-D frequencies 
generated from the left foot, right foot and torso are estimated to be around 35.9 
Hz, 35.9 Hz and 9.5 Hz, respectively. The sliding window length of 45 pulses is 
used for both STFT and STSSM. FFT is first applied to each reflected pulse 
along fast time at dc to acquire a corresponding complex value. Data cube s(k, n) 
is transformed to a data sequence y(n), where n indicates pulse index. STFT is 
applied then to the slow-time signal y(n) to acquire the spectrogram, as shown in 
Figure 3.5 (c).  
The STSSM is carried out at the center-range gate along the sliding window 
length over 45 pulses with a model order of 8. The extracted μ-D trajectories of 
left foot, right foot and torso are demonstrated in Figure 3.5 (d). The monitored 
maximum μ-D frequencies with STSSM for left foot, right foot and torso are 36.8 
Hz, 34.2 Hz and 9.6 Hz, respectively. As a result, the difference between Boulic 
model and results obtained from UWB radar using STSSM is within ±4.7%. The 
comparison details are listed in Table 3.3. Due to the coarse Doppler resolution, 
i.e, 75 Hz PRF, it is difficult to identify the μ-D frequencies of different body joints 
using STFT reported in Figure 3.5 (c) as well here, while the STSSM provides μ-
D frequencies that clearly unravel the torso and foot motions of the human 
subject as depicted in Figure 3.5 (d). 
In the second experiment, subject 1 walked at 60 ̊ to the radial direction of the 
radar system. As presented in Figure 3.6 (a), the subject traversed the range 
from 2.4 m to 3.5 m and the detected walking velocity from HRRP is 0.37 m/s.  

 
Table 3.3 μ-D signatures of walking target with height 1.71 m and speed 0.38 m/s 

 Boulic Model (Hz) UWB Radar (Hz) Difference (%) 

Left foot 35.9 36.8 2.5 
Right foot 35.9 34.2 -4.7 

Torso 9.5 9.6 1.0 
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Figure 3.5 (a) HRRP of walking subject 1 (b) Boulic model of subject at 30̊ to the radial direction, 
(c) spectrogram using STFT when sliding window length of 45 pulses, (d) spectrogram using 

STSSM when sliding window length of 45 pulses. 
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(a) 

 
(b) 

Figure 3.5 continued. 
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(c) 

 
(d) 

Figure 3.5 continued. 
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Figure 3.6 (a) HRRP of walking subject 1 (b) Boulic model of subject at 60̊ to the radial direction, 
(c) spectrogram using STFT when sliding window length of 45 pulses, (d) spectrogram using 

STSSM when sliding window length of 45 pulses. 
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(a) 

 
(b) 

Figure 3.6 continued. 
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(c) 

 
(d) 

Figure 3.6 continued. 
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And the corresponding Boulic model is presented in Figure 3.6 (b). The 
maximum μ-D frequency generated from the left foot, right foot and torso are 
estimated to be around 32.1 Hz, 32.1 Hz and 8.7 Hz, respectively. The sliding 
window length of 45 pulses is used for both STFT and STSSM. Similar to the 
previous experiments, FFT is first applied to each reflected pulse along fast time 
at dc to form the slow time signal y(n), and STFT is applied to the slow-time 
signal y(n) to acquire the spectrogram, as shown in Figure 3.6 (c).  A model 
order of 9, for the STSSM, is carried out on y(n) at the center range-gate in the 
time direction over the sliding window of 45 pulses. As demonstrated in Figure 
3.6 (d), the μ-D trajectories of left foot, right foot and torso identified in the 
spectrogram with STSSM. The monitored maximum μ-D frequencies with 
STSSM for left foot, right foot and torso are 33.3 Hz, 32.0 Hz and 8.6 Hz, 
respectively. As a result, the difference between Boulic model and results 
obtained from UWB radar with STSSM is within ±3.7%. The comparison details 
are listed in Table 3.4. As shown in Figure 3.6 (c), STFT provides very coarse μ-
D frequencies in the spectrogram. Due to strong reflection from torso, the 
corresponding μ-D frequencies around 8 Hz demonstrate high intensity in the 
spectrogram, while μ-D frequencies from limps around 30 Hz show relatively low 
intensity and are difficult to be distinguished. Compared with STFT, STSSM 
again demonstrates a better performance in μ-D frequencies identification. 
In the third experiment, subject 2 of height 1.75 m walked at 30̊ (instead of 60 ̊° 
used in the previous example) to the radial direction of radar system. As shown 
in Figure 3.7 (a), the subject traversed the range from 2.7 m to 4.0 m and the 
detected walking velocity from HRRP is 0.40 m/s. The corresponding Boulic 
model is presented in Figure 3.7 (b). The maximum μ-D frequency generated 
from the left foot, right foot and torso are estimated to be around 36.7 Hz, 36.7 
Hz and 9.5 Hz, respectively. The sliding window length of 45 pulses is used for 
both STFT and STSSM. The spectrogram acquired with STFT is shown in Figure 
3.7 (c). Though, STFT highlights the μ-D frequencies due to torso in spectrogram 
of Figure 3.7 (c), it is still challenging to distinguish the μ-D frequencies from 
other body joints. The model of STSSM is now set to 9. As demonstrated in 
Figure 3.7 (d), the μ-D trajectories of left foot, right foot and torso identified in the 
spectrogram with STSSM. The monitored maximum μ-D frequencies with 
STSSM for left foot, right foot and torso are 34.0 Hz, 34.7 Hz and 9.8 Hz, 
respectively. As a result, the difference between Boulic model and results 
obtained from UWB radar with STSSM is within ±7.4%. The comparison details 
are listed in Table 3.5. The deviations are mainly due to the inconsistent walking 
 

Table 3.4 μ-D signatures of walking target with height 1.71 m and speed 0.37 m/s 

 Boulic Model (Hz) UWB Radar (Hz) Difference (%) 

Left foot 32.1 33.3 3.7 
Right foot 32.1 32.0 -0.3 

Torso 8.7 8.6 -1.1 
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Figure 3.7 (a) HRRP of walking subject 2 (b) Boulic model of subject at 30 ̊ to the radial direction, 
(c) spectrogram using STFT when sliding window length of 45 pulses, (d) spectrogram using 

STSSM when sliding window length of 45 pulses. 
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(a) 

 
(b) 

Figure 3.7 continued. 
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(c) 

 
(d) 

Figure 3.7 continued. 
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Table 3.5 μ-D signatures of walking target with height 1.75 m and speed 0.4 m/s 

 Boulic Model (Hz) UWB Radar (Hz) Difference (%) 

Left foot 36.7 34.0 -7.4 
Right foot 36.7 34.7 -5.5 

Torso 9.5 9.8 3.2 
 

velocity of subject during the experiment, which caused the difference of 
maximum μ-D frequencies between Boulic model and experimental results for 
both left and right foot. 
In the fourth and final experiment, subject 2 of height 1.75 m walked at 60 ̊ to the 
radial direction of radar system. As shown in Figure 3.8 (a), the subject traversed 
the range from 2.4 m to 3.5 m and the detected walking velocity from HRRP is 
0.40 m/s. The corresponding Boulic model is presented in Figure 3.8 (b). The 
maximum μ-D frequency generated from the left foot, right foot and torso are 
estimated to be around 36.7 Hz, 36.7 Hz and 9.4 Hz, respectively. The sliding 
window length of 45 pulses is used for both STFT and STSSM. The spectrogram 
acquired with STFT is shown in Figure 3.8 (c). The model of STSSM is similarly 
set to 9. As demonstrated in in Figure 3.8 (d), the μ-D trajectories of left foot, right 
foot and torso identified in the spectrogram with STSSM. The monitored 
maximum μ-D frequencies with STSSM for left foot, right foot and torso are 35.2 
Hz, 36.6 Hz and 10.0 Hz, respectively. As a result, the difference between Boulic 
model and results obtained from UWB radar with STSSM is within ±6.4%. The 
comparison details are listed in Table 3.6. Due to weak reflections from human 
feet, it is difficult to identify μ-D frequencies from left and right foot with STFT, as 
shown in Figure 3.8 (c). Comparatively, STSSM clearly detected the μ-D 
trajectories for both left and right foot of human subject. 
These experimental results, and their correlation with Boulic model that integrate 
motion dynamics, have clearly demonstrated that STSSM has the capability to 
identify the motion of body joints, i.e., left foot, right foot and torso, and extract 
physiological gait characteristics from radar measurements. The curves show 
peak frequency values that match closely the estimates of Boulic model. The 
deviations are due to the variations of human walking velocity during the 
experiment. The identified regions by the detection trajectories are in good 
agreement with Boulic model. The differences of curve shapes between 
monitored trajectories and Boulic model are highly due to the coarse Doppler 
resolution and the strong intensity from the torso that obscures the nearby body 
part motions, the low STSSM model order enables tracking of the stronger 
signals. Though, the reflections from human feet are relatively weaker compared 
with the torso, μ-D frequencies from human feet were successfully identified in 
both simulation and experimental results processed with STSSM. The 
performance of STFT and STSSM were compared in the conducted experiments. 
STSSM outperforms STFT in μ-D frequencies detection especially for left and 
right foot. Subsequently, the capability of μ-D identification using UWB radar and  
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Figure 3.8 (a) HRRP of walking subject 2 (b) Boulic model of subject at 60̊ to the radial direction, 
(c) spectrogram using STFT when sliding window length of 45 pulses, (d) spectrogram using 

STSSM when sliding window length of 45 pulses. 
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(a) 

 
(b) 

Figure 3.8 continued. 
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(c) 

 
(d) 

Figure 3.8 continued. 
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Table 3.6 μ-D signatures of walking target with height 1.75 m and speed 0.40 m/s 

 Boulic Model (Hz) UWB Radar (Hz) Difference (%) 

Left foot 36.7 35.2 -4.1 
Right foot 36.7 36.6 -0.3 

Torso 9.4 10.0 6.4 
 
processing with STSSM has been validated. It appears that a STSSM with model 
order around 8, and a sliding window size around 45 pulses are adequate to 
unravel the torso and foot motions process parameters. The other weaker signals 
from body joints such as knees, ankles, toes, etc could be detected with a larger 
model order. However, due to the low Doppler resolution their detections via 
STSSM are inconsistent and cannot be tracked; thus, they are not considered in 
the work. Thus, it appears that a two-dimensional (2-D) STSSM might be an 
appropriate method to retrieve motions from knees, ankles toes, etc using low 
PRF UWB data which is currently under investigation. 

 
3.7 Conclusion 

 
In this chapter, UWB radar system was applied toward human gait analysis. 
Using the developed UWB radar prototype, we created a library of a wide variety 
of μ-D signatures for human body parts.  State space method was investigated to 
extract motions from several body joints. The μ-D frequencies from each body 
joints that exhibit adequate returns were experimentally extracted with STSSM 
using the UWB radar system. In the human walking experiment, the μ-D 
trajectories from left foot, right foot and torso of different subjects at line of sight 
and at direct and oblique directions were successfully retrieved with a 
discrepancy of less than ±8% compared to results from the Boulic model. The 
differences between simulated and experimental results are revealed: (1) in the 
experiment, target motions did not exactly follow the Boulic model assumed in 
the EM scattering phantom, (2) UWB radar showed a bi-static architecture and 
the incident wave was not perpendicular to the human chest wall as assumed in 
the scattering model, (3) EM analysis are based on CW radar.  Nonetheless, 
these preliminary results are still encouraging and the phantom models can still 
be improved in the future for closer agreement with experimental data. Feasibility 
of detecting other body parts from coarse PRF data is currently under 
investigation using advanced STSSM methods. 
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CHAPTER FOUR 3 
ALTERNATIVE ULTRA-WIDEBAND TRANSCEIVER BASED ON 

STEPPED-FREQUENCY CONTINUOUS WAVE OPERATION AND 
COMPRESSIVE SENSING 

 
 

4.1 Background 
 
Ultra-wideband (UWB) technology has been developed for over 50 years since 
the early work of 1960 [88] to analytically verify the transient behavior of a class 
of TEM-mode microwave networks. UWB has been defined by the Federal 
Communications Commission (FCC) as a system that operates with a minimum 
fractional bandwidth of 20%, or with a minimum -10-dB bandwidth of 500 MHz 
[89]. However, the two fields in which UWB technology has been extensively 
investigated are UWB communications and UWB radar systems. Although the 
topic of this chapter is about UWB radar systems, it is worth mentioning that 
many researchers have been working to combine the radar and communications 
aspects of UWB technology into one system by using the so called orthogonal 
frequency division multiplexing (OFDM) UWB waveforms, which represents a 
new generation of the radar systems [90]. 
For a radar system, it is well known that the range resolution is inversely 
proportional to the bandwidth of the radar signal. The ability to achieve high 
range resolution results in a number of advantages including improved range 
accuracy, reduced clutter within the cell, high resolution range profile (HRRP), 
and aiding in target classification [91]. Therefore UWB radar systems have been 
increasingly attracting attention compared to their narrowband counterparts. In 
the last few years, for example, various UWB radar systems have been 
successfully developed and widely used for many interesting applications. One of 
the very fascinating application areas for UWB radar has been in the area of 
precise indoor localization. UWB localization system introduced in [92] utilizes a 
short pulse of 300-ps width, which is modulated by an 8-GHz local oscillator and 
is transmitted through a monopole antenna. This signal is received by several 
sub-stations and a time difference of arrival (TDoA) algorithm is utilized to 
triangulate the precise location of the transmitter. Besides the high resolution in 
the range dimension, UWB radar systems can also achieve high resolution in the 
azimuth dimension by using an antenna array in a SAR way. The ability to obtain 
a 2-D image of the observed scene makes it possible to apply UWB radar 
systems to ground penetrating detection [93], and through wall imaging [94]. 
                                            
3 I worked on this chapter with Haofei Wang, Quanhua Liu, Lixiang Ren, Erke Mao from Beijing 
Institute of Technology, and Vinh Dang, Ozlem Kilic from The Catholic University of America. 
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More applications have been recently demonstrated like in [95], a UWB radar has 
been mounted on an aerial vehicle to provide navigation information in global 
positioning system (GPS)-denied environment by measuring the range and 
Doppler of the scatterers on the ground. 
Usually, UWB radar systems operate either in time domain or in frequency 
domain. The time domain UWB radar works with a single very short pulse so that 
high range resolution can be acquired. This kind of time domain UWB radar 
features a low power consumption and simple transmitter architecture. However, 
receiving (retrieving) the short-duration UWB signals and preserving their pulse 
waveforms present a considerable challenge, especially when the reflected 
signal (echo) must be analyzed to measure the target characteristics. For 
instance, in the application of precise indoor localization, the duration of the 
transmitted pulse is usually shorter than 1 ns, so that the TDoA between different 
receiving sub-stations can be exactly measured. In order to record the received 
short pulse precisely, Nyquist sampling theorem dictates that we need an ADC 
circuitry that must achieve a capture rate greater than 2 Giga-samples per 
second (GSPS). Take the ADC chips from the TI Corporation as an example. 
Currently, the highest speed ADC chip commercially available from the TI 
Corporation is the ADC12J4000. The specifications of this chip are shown in 
Table 4.1; the specifications of the TI ADC chip ADS7871 used in the frequency 
domain UWB radar (that will be subsequently utilized in this work) are also listed 
as well in Table 4.1 for comparison. Considering the power dissipation, cost and 
resolution bits that the ADC12J4000 chip can achieve, even though it is feasible 
and lots of progress has been achieved along directly sampling the short pulses 
by using a high speed ADC, it is still relatively expensive to use such chips. 
 

Table 4.1 Parameters of two TI ADC chips 

Part Number Sample Rate Power Resolution Cost 

ADC12J4000 4 GSPS 2 W 12 Bits $1944.99  
ADS7871 48 KSPS 8.5 mW 14 Bits $5.25  

 
Many researchers have put forward alternative solutions to circumvent the need 
for fast and expensive ADCs. For example, G.T. Ruck [96] proposed a UWB 
receiver, which first divides the received wideband signal in either frequency 
domain or time domain and then performs signal digitization with low speed low 
cost ADCs. In [97], a UWB pulse signal is sub-sampled upon extending 
(stretching) its time scale while maintaining its pulse shape so that the extended 
pulse signal can be handled by low speed ADC circuits. Additionally, during the 
past few years, extensive effort was devoted to address this problem by using 
equivalent time sampling method to digitize extremely fast repetitive waveforms 
[98]. Equivalent time sampling technique is quite efficient in reconstructing a 
periodic input waveform by taking a specified number of samples with low speed 
ADCs, then progressively shifting the sampling clock timing after each signal 
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cycle and subsequently taking a new set of samples until the original waveform is 
fully sampled. The signal is assumed quasi-static; i.e. it does not change within 
the sampling time. 
Although the solutions mentioned above can alleviate the challenging 
requirements for fast ADCs, all of them concentrate only on modifying the 
architecture of the radar receiver. Such an approach ends up with a very complex 
and bulky receiver; while utilizing a simple transmitter structure. Besides, these 
additional devices do not always work ideally as expected, which in turn 
influences the performance of the receiver in practice.  For example, both clock 
jitter and drift cause significant system noise that would affect the quality of the 
sampled UWB signal. 
In order to simplify the architecture of the UWB radar system and balance the 
complexity of the transmitter and receiver, we propose, as an alternative, to 
operate in the frequency domain rather than time domain and divide the 
spectrum into several bands (channels) by using a stepped-frequency continuous 
wave (SFCW) at the transmit side. Unlike the time domain impulse UWB radar, 
which transmits the whole bandwidth instantaneously, SFCW radar transmits a 
series of discrete tones in a stepwise fashion to attain a large effective 
bandwidth. The waveform for stepped-frequency radar consists of a group of N 
coherent pulses whose frequencies are increased monotonically from one pulse 
to the next by a fixed frequency increment as shown in Figure 4.1. Assuming 
the carrier frequency of the first pulse is , the frequency of the nth pulse is then

. The time interval between adjacent pulses is , and groups of N 
pulses are called a burst. The burst time, i.e., the time corresponding to 
transmission of N pulses, is called the coherent processing interval (CPI) as in 
conventional radars [88]. Compared with impulse UWB radar, the SFCW radar 
has a narrow instantaneous bandwidth so that lower-speed ADCs can be used 
and the hardware requirements for the receiver become less stringent. 
Additionally, the receiver instantaneous bandwidth would be much smaller, 
resulting in a lower noise bandwidth and a higher signal-to-noise ratio (SNR). 
However, it is necessary to receive N pulses before any processing is initiated, 
thus the conventional SFCW radar suffers from a serious drawback that the data 
acquisition time to step over many frequencies is too long for many applications. 
In order to speed up the process, we propose elegant SFCW radar which can 
achieve high data acquisition speed by utilizing two strategies: first is to divide 
the spectrum into bands (channels) and transmit these bands in parallel; second 
is to implement compressive sensing (CS) to enable a significant reduction in the 
number of measurements. CS has been successfully applied to UWB radar to 
acquire short-duration pulses with a sub-Nyquist sampling rate [99]. 
To implement the first strategy, we divide the spectrum into several bands 
(channels) and transmit a set of frequencies simultaneously via one antenna. 
Subsequently on the receive side, after a de-multiplexer, the echo of each pulse 
(in a certain channel) can be easily separated by mixing each received echo with 
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the corresponding local oscillator (LO). To implement the second strategy, 
instead of transmitting the entire set of pulses of a burst, we only transmit a small 
number of random frequencies and then reconstruct the target space by using 
one of the efficient CS based reconstruction algorithms [100]. CS theory renders 
itself more naturally and easily to SFCW radar systems than impulse radar 
systems as no extra devices are needed to construct the measurement matrix 
[101]. The detailed block diagram of this proposed multi-channel SFCW radar 
together with some design considerations is presented in section 4.2. In section 
4.3, a brief review of the CS theory is provided, together with the analysis of the 
applicability of CS to our radar system. Both simulation and actual 
measurements have been carried out and the results are shown in section 4.4. 
Conclusions are drawn in section 4.5. 

 
Figure 4.1 Time-frequency representation of stepped-frequency continuous wave. 

 
 

4.2 Design of Two-Channel SFCW Radar System 
 

The idea of simultaneously transmitting several frequencies originates from [102], 
where an eight-channel SFCW radar, called PANDORA, was constructed for 
applications in anti-personnel landmine detection. The total number of 
frequencies in PANDORA is 128, with a frequency step of 35 MHz, so the 
bandwidth of the radar is around 4 GHz. The PANDORA radar's initial signal is 
generated by one Direct Digital Synthesizer (DDS), and this signal is then mixed 
up by eight different local oscillator frequencies. This would require the DDS to 
operate over a bandwidth of 500 MHz. However, because of the spurious 
components dominating the DDS output spectrum, practical utilization of DDS to 
generate signals has been limited only to narrow frequency bands [103]. 

0f

1f

2f

1Nf

t

f

N

0f

1f

2f

f



 

76 
 

Alternatively, in the implementation of this work, to acquire a waveform with 
better quality, the frequency synthesizer of the radar system is based on a DDS-
driven Phase Locked Loop (PLL) architecture. The utilization of PLL extends the 
bandwidth of the signal generated by DDS L times, where L is the multiplier 
factor of the PLL [104].  

4.2.1 Overview of the SFCW Radar System 
The block diagram of the developed two-channel SFCW radar system is shown 
in Figure 4.2. The two DDS channels are integrated on one board, and work 
simultaneously to achieve the entire ultra-wideband of 2 GHz. These two 
channels are synchronized by using the same 1.2-GHz reference clock. Each 
DDS channel synthesizes an IF signal with a bandwidth of 20 MHz, after which a 
50 times PLL is used to acquire the RF stepped-frequency signal. The center 
frequency of each DDS channel is shifted by 1 GHz, so the total bandwidth of the 
stepped-frequency signal is 2 GHz. The RF stepped-frequency signal on each 
channel is first divided into two halves through a Mini-Circuits ZAPD-4+ power 
splitter. Two-half components, one from each of these two channels, are 
combined using a multiplexer, and then fed into a Mini-Circuits ZVE-8G power 
amplifier before being sent for transmission through a horn antenna. The other 
two-half components, (one from each channel), are split again with a Mini-
Circuits ZAPDQ-4+ power splitter to serve as the in-phase and quadrature-
phase local oscillator. On the receive side, after passing through an Analog 
Device HMC753 wideband low noise amplifier (LNA), the combined signal is split 
into its four constituent components by mixing each with its corresponding local 
oscillator and filtering unwanted components to acquire the baseband signal. 
Each baseband signal is then digitized and converted to a 14 bit digital signal 
and stored in a PC for further processing using a low speed NI USB-6009 data 
acquisition card. 
In the two-channel SFCW implementation, we use one reference clock to drive 
the two DDS chips to avoid any synchronization problem. This 1.2-GHz reference 
clock is divided by 24 in the first DDS chip to work as the control clock for the 
CPLD, which is used to generate the digital signal to control the two DDS chips. 
The synchronization pins on these two DDS chips are utilized to guarantee that 
the stepped-frequency signals are generated simultaneously by these two DDS 
chips. Such a system can be extended to multi-channel operations upon 
increasing the number of DDS circuits as well as the number of multiplexer 
channels.  

4.2.2 Frequency Synthesizer Based on DDS-Driven PLL Architecture 
In the proposed two-channel SFCW radar system (as shown in Figure 4.2), all 
the components are off-the-shelf modules except for the DDS board. In this sub-
section, we present some design details of the developed DDS board. 
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Figure 4.2 Block diagram of the multi-channel SFCW radar system.  

 
The conventional DDS consists of a phase accumulator (PA), a sine waveform 
lookup table (LUT), a digital-to-analog convertor (DAC) and a low pass filter 
(LPF), as shown in Figure 4.3. The output frequency of the DDS is given by 

                                         (4-1) 

where F is the frequency control word with I-bit width, and is the frequency of 
the DDS system clock. Typically, the phase accumulator is truncated to reduce 
power dissipation and the die area. This truncation mechanism introduces a 
series of spurious components and degrades the spectral purity of the DDS 
output spectra. The truncation resultant spur levels could be lowered by 
extending the bit width of F and phase accumulator output. In practical systems, 
there should be a tradeoff between spur levels and device complexity. We 
choose here the Analog Device AD9914, which can achieve 64-bit width fine-
tuning resolution by using a programmable modulus mode to generate the 
stepped-frequency signal. 
Besides the truncation resultant spurs, DAC images may introduce even higher 
spurs on the DDS output frequency spectra (i.e. image frequencies). The worst 
case spurs occur when the images of the DAC harmonics fold back such that 
they are close to the DAC fundamental frequency. The frequency of DAC images 
is 

                                    (4-2) 
where Q and T are integer multiples of and , respectively. In the design, the  
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Figure 4.3 Block diagram of a DDS with the output of each stage illustrated.  

 
DDS output frequency is carefully chosen by using an effective frequency 
planning method [104]. With this method, the worst DAC images are placed well 
off from the DDS output frequency and are attenuated by a band pass filter. The 
developed two-channel DDS board is shown in Figure 4.4. The two AD9914 
chips can be configured with different waveform parameters using an Altera 
Complex Programmable Logic Device (CPLD). 

 
Figure 4.4 Photograph of the two-channel DDS board. 

 
 

4.3 Application of CS Theory to SFCW Radar 
 
It is well known that CS is a signal processing technique which enables a sparse 
signal to be recovered using a far fewer number of measurements than what is 
required by the Nyquist sampling theorem [105-107]. Since its first introduction to 
solve sparse vector recovery problems within mathematical applications, CS has 
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been successfully applied in many fields, such as data compressive sensing 
[108], channel coding [109], and magnetic resonance imaging applications [110, 
111]. Recently, many attempts have been undertaken to apply CS in a variety of 
radar specific tasks [112-121]. In [112-114], CS was applied for the reduction of 
the number of measurements associated with synthetic aperture radar (SAR). 
Similarly, CS was studied in the spatial domain to achieve target localization by 
using a MIMO array, which allows for a dramatic reduction in the number of 
elements needed [115, 116]. The radar system introduced in [117] merged the 
OFDM waveform and CS together and inspected the effects of waveform 
bandwidth and measurement matrix on the reconstruction of the original signal. A 
novel CS data acquisition and imaging approach was proposed for stepped-
frequency ground penetrating radar in [118]. In [119, 120], CS was utilized for 
imaging targets behind walls using wideband signals in SFCW radar, and in [121] 
was applied to joint direction of arrival (DoA)-range-Doppler tracking of moving 
targets. The CS theory can also be utilized for the detection of frequency hopping 
(FH) signals [122]. Based on [122], the FH signals can be identified and the 
hopping frequencies can be estimated with a tiny number of measurements. 

4.3.1 Brief Overview of Compressive Sensing 
Generally, let x denote a desired signal of N samples, which can be represented 
in an orthonormal basis  (N × N) in terms of x= s where s is the N × 1 column 
vector of weighting coefficients. The signal x is K-sparse; that is, all but K of its 
entries are zero. In the spirit of CS, instead of recording the N entries in x directly, 
we record a smaller number M (K < M << N) of linear measurements of x. Since 
these measurements are linear, we can represent the measurement vector y as 

       y = x = s = s,                         (4-3) 
where the measurement vector y is an M × 1 vector,  is an M × N measurement 
matrix. We define the sampling matrix (or projection matrix, mapping matrix, or 
dictionary)  =  with a size of M × N. The measurement matrix  must allow 
the reconstruction of the length-N signal x from M<<N measurements, since this 
problem generally appears ill-conditioned with M < N. However, if the 
measurement matrix  and the orthonormal basis  are mutually incoherent, this 
problem becomes well-conditioned [123]. Typically,  is designed in the form of 
randomized characteristics. In many cases, it is common to select  as a binary 
matrix containing a single randomly positioned 1 in each row, while  is chosen 
as a discrete Fourier transform (DFT) matrix. It is worth noting that the 
measurement process is not adaptive, meaning it is fixed and does not depend 
on the signal x. CS allows the recovery of a K-sparse signal x from M ( ) 
measurements with high probability. The CS reconstruction problem is formulated 
as an optimization problem as follows: 

, such that y = s  = s .                         (4-4) 
The readers can refer to [123] for further details of the fundamental principles of 
CS theory. 
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4.3.2 CS-based Stepped-Frequency Signal Processing 
Let P be the number of channels of a multi-channel SFCW radar system. Assume 
that the entire bandwidth of the system is sampled by N frequencies, ranging 
from f0 to fN-1, with a center frequency fc. The frequency bins fn are uniformly 
distributed with a step size f. The target space is divided into multiple range bins 
rl from 0 to rN-1, where rN-1 is the maximum unambiguous range. The relationship 
between the received baseband signal y(fn) from all the channels and the range 
profile x(rl) can be expressed as a Fourier transform as follows: 

                          (4-5) 

Equation (4-5) can be rewritten in a matrix form as y = x = x, where y and x 
are the column vectors obtained by stacking y(fn) and x(rl), respectively.  ( ) 
is the Fourier basis function where each element is defined as and 
the measurement matrix  is chosen as the  identity matrix. 
In the CS-based approach, due to the sparseness of the target space, the 
baseband signals, yCS, are measured at a random subset NCS (< N/P) 
frequencies for each channel. We see a comparison in Figure 4.5, where Figure 
4.5 (a) shows the conventional measurement scheme using full data samples 
and Figure 4.5 (b) illustrates the measurement pattern in the CS-based 
approach. By employing CS, it is observed that the data acquisition time 
decreases by a factor of (N/P)/NCS. Accordingly, the reduced measurement 
matrix CS is constructed with a single randomly positioned 1 in each row, in 
which the positions of 1s correspond to the selected frequencies. In other words, 

CS contains a random set of PNCS rows of the N × N discrete Fourier transform 
(DFT) matrix. The reconstruction of the range profile is formulated as the convex 
optimization problem: such that yCS = CSx, which can be solved by the 
basis pursuit algorithm [100]. In this article, the min-l1 with equality constraint 
solver in the sparse constraint optimization package l1-MAGIC [124] is employed 
to solve the above equation. 
 

4.4 Simulation and Experimental Results 
 
For demonstration, we utilize the previously described two-channel DDS board, 
and preliminary simulation and experimental results of this two-channel SFCW 
radar are presented in this section. The radar parameters for the setup are 
shown in Table 4.2. Given the bandwidth and frequency step, targets can be 
resolved with a range resolution of 7.5 cm and a maximum unambiguous range 
of 7.5 m. 

4.4.1 Simulation Results 
In the simulations, two horn antennas are utilized as the transmitter and receiver, 
respectively. The scene consists of a perfect electric conductor (PEC) trihedral  
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(a) 

 
(b) 

Figure 4.5 Data measurement schemes: (a) conventional scheme where all the frequencies are 
measured on each channel and (b) CS scheme where only randomly selected frequencies are 

measured on each channel. The filled rectangles indicate the selected frequencies. The 
frequencies are indexed by (pq) pairs where p denotes the channel index and q denotes the 

frequency index on that channel. 
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Table 4.2 Parameters of the two-channel SFCW radar system 

Specification Values 

Number of Channel 2 
Center Frequency 3 GHz 
Bandwidth 2 GHz 
Frequency Step Size 20 MHz 
Number of Frequencies 100 

 
corner reflector positioned at a distance of 1.36 m away from the antennas. A 
sketch of the system considered is shown in Figure 4.6, including an image of the 
real trihedral corner reflector shown in the upper left of Figure 4.6 for illustration. 
The length of each side of the corner reflector is 65 cm. The S21 parameter is 
measured for each frequency. For validation purpose, the full frequency domain 
S21 data is measured once and the results of the CS based method are created 
by using a few randomly selected measurements according to the measurement 
scheme in Figure 4.5 (b). 
In order to evaluate the accuracy, the simulation results of the CS-based method 
are compared to the results of the conventional inverse discrete Fourier 
transform (IDFT) method. The robustness of the CS-based approach is validated 
through two parametric experiments: (i) varying the compressive sensing ratio 
(CSR), i.e. the ratio between the reduced measurement set and the full data set, 
and (ii) varying the SNR. For quantitative evaluation, a relative error is defined 
using a vector norm as follows: 

                                 (4-6) 

where xIDFT is the range profile synthesized using IDFT and xCS is the range 
profile reconstructed using CS. 
 

 
Figure 4.6 Simulation geometry. 

CS IDFT 2

IDFT 2

% 100,e
x x
x

Tx

Rx



 

83 
 

(i) Effect of Compressive Sensing Ratio 
The simulation is performed for NCS = 40, 30, 20, and 10 frequencies on each 
channel, which correspond to the CSRs of 80%, 60%, 40%, and 20%, 
respectively. The synthesized HRRPs of the target by using CS method with 
varied CSRs are shown in Figure 4.7. For comparison, the IDFT result by using 
all the frequency points is also shown with a dashed line in Figure 4.7. The first 
small peak corresponds to the coupling between the transmitting antenna and 
the receiving antenna. Besides, with a high range resolution of 7.5 cm of the 
developed radar system, the echoes reflected by the edge and vertex of the 
corner reflector can be easily resolved. It can be observed that the quality of CS 
reconstruction suffers some degradation (i.e. the relative error increases from 
1.90% to 17.62%) when the CSR is reduced from 80% to 20%, but the 
differences between the CS results and the IDFT results are almost indiscernible 
for as low as 40% CSR. 
(ii) Effect of SNR 
To evaluate the robustness of the CS based method in the presence of noise, the 
measured baseband signals are corrupted by adding additive white Gaussian 
noise (AWGN). The simulation is performed for SNR levels of 20dB, 15dB, 10dB, 
and 5dB, at a fixed CSR of 40%. The SNR here refers to the ratio between the 
power of the baseband signal and that of the noise in the output of the receiver. 
The reconstructed HRRPs of the target are shown in Figure 4.8. It can be 
observed that the quality of the range profiles deteriorates rather quickly (i.e. the 
relative error sharply increases from 12.62% to 42.87%) when the SNR is 
reduced from 20 dB to 5 dB. The degradation of the SNR leads to lowering of the 
sparsity of the target space, which can be obviously seen from the IDFT results. 
Nevertheless, the target can still be located at the correct position. 
Based on the simulation, it is clear that the CS based algorithm can successfully 
reconstruct the HRRP of a target using only a small number of random 
measurements in a high SNR environment. However, poor SNR can result in 
apparent differences (errors) between the reconstructed signal using CS method 
and that using IDFT method. Figure 4.8 indicates that even with SNR of 5 dB, the 
position of the target can still be correctly located, which is luckily more relevant 
in many radar applications like precise indoor location [99]. 

4.4.2 Experimental Results 
In this section, the CS based signal recovery algorithm is extended to real 
experimental data. Actual measurements are carried out by using the developed 
two-channel SFCW radar system. Typically in the experiment, the full frequency 
domain data is measured and the results of the CS based method are created by 
using a few randomly selected measurements. 
To duplicate the simulation, a similar setup is utilized in the experiment as shown 
in Figure 4.9, where two horn antennas are used as the transmitter and receiver, 
respectively. A trihedral corner reflector is placed at a distance of 1.36 m away 
from the antennas similar to the simulation. The dashed line in Figure 4.10 is the  
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Figure 4.7 Synthesized HRRPs of the target at various CSRs. 
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Figure 4.8 Synthesized HRRPs of the target for various SNR levels at CSR of 40%. 
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Figure 4.9 Experimental setup. 
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Figure 4.10 Synthesized HRRPs of the corner reflector at various CSRs. 
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result of IDFT method using all the 101 frequency measurements. As seen from 
the IDFT result, not only the peak corresponding to the corner reflector but also 
some lower-energy peaks caused by the Tx-Rx coupling effect and clutter can be 
clearly observed. Compared with the simulation results of varying CSRs, 
however, the CS method for the actual measurements degrades quicker for low 
CSRs. The reason is the presence of the interferences, i.e. clutter in the scene 
and system noises, resulting in a target space which is not as sparse as 
assumed in the simulations. However, the corner reflector can still be readily 
detected even when only 20% of the total frequency points are used in the CS 
method. 
 

4.5 Conclusion and Future Direction 
 
In this chapter, we provided an alternative design of a multi-channel SFCW radar 
system in detail, which can transmit a set of frequencies simultaneously via one 
UWB antenna over multiple channels operating in parallel. Instead of collecting 
data for all frequencies, only a random subset of frequencies is transmitted and 
the target space is reconstructed by using a CS based algorithm with sub-
Nyquist sampling. These two strategies can reduce the data acquisition time by 
an order of magnitude. Both simulation results and actual measurements indicate 
that the CS based signal processing method allows for a reduction in the number 
of transmitted frequency points while still attaining performance comparable to 
that of the traditional IDFT method which need to process the full set data. 
At present, the simulation and experimental results are based on a two-channel 
SFCW radar system. However, four-channel SFCW radar is currently being 
constructed to achieve higher resolution. This SFCW radar system has great 
potential in practical applications, including through-wall imaging, human gait 
analysis and vital sign detection. These preliminary results are very encouraging 
given that they are based on utilizing CS to use only sub-Nyquist sampling, and 
avoid the need for fast ADC chips. 
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CHAPTER FIVE 4 
NON-INVASIVE DETECTION OF CARDIAC AND RESPIRATORY 

RATES FROM STEPPED FREQUENCY CONTINUOUS WAVE 
RADAR MEASUREMENTS USING THE STATE SPACE METHOD 

 
 
In this chapter, we discuss the design of stepped frequency continuous wave 
(SFCW) radar, which transmits long duration pulses with higher average power 
and much narrower instantaneous bandwidth than UWB waveforms, to facilitate 
comparable signal resolution. FFT spectrograms, typically used in the extraction 
of vital signs from radar measurements, produce several spurious peaks at 
harmonics and inter-modulation frequencies of respiration and heart rates, 
thereby increasing the uncertainty of these estimates, especially the heart rate. 
We apply a signal processing algorithm based on the state-space method for the 
extraction of cardiac and respiration rates from the data measured on a human 
subject using SFCW radar. Results show that accurate estimates of vital signs 
can be obtained without producing inter-modulation products that plague signal 
resolution in FFT spectrograms. 
 

5.1 Background 
 
A major challenge for non-invasive biomedical radar systems is to detect the 
heartbeat of a subject with high accuracy. Continuous wave (CW) radar, although 
bestowed with relatively simple hardware architecture, is typically narrow-band 
and suffers from limitation in spatial resolution [17, 18]. In order to provide both 
range information of target and accurate vital signs estimation, UWB radar has 
been studied extensively (cf. [38]). However, UWB radar systems require fast 
ADCs, and due to the low transmitted power, the radar needs long integration 
times to extract the signals of interest. Stepped Frequency Continuous Wave 
(SFCW) radar is an alternative technique useful to remotely monitor human 
subjects. Compared with continuous wave (CW) radar systems, SFCW radar 
systems have the advantages of localization capability and the potential to 
monitor multiple subjects in real time. SFCW radar can detect moving or 
stationary targets inside or outside buildings, and render both down-range and 
cross-range data [125, 126].  SFCW radar system can approximate UWB pulses 
in frequency domain, and therefore should have similar capabilities as UWB 
systems.  SFCW radar is easier to build than UWB radar, requires low-speed 
                                            
4 I worked on this chapter with Haofei Wang, Quanhua Liu from Beijing Institute of Technology, 
Krishna Naishadham from Georgia Institute of Technology, and Yun Seo Koo, Yazhou Wang 
from Qorvo. 
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ADCs as it has narrow instantaneous bandwidth, and interestingly, frequencies 
can be skipped, which is great for jamming.  It also produces relatively strong 
received signals as it transmits long-duration waveforms; hence it possesses 
higher signal-to-noise-ratio (SNR) than UWB radar in vital signs detection. It is 
easier to calibrate the signal distortion caused by any imperfection of the SFCW 
radar system hardware, and it is more flexible to design the antennas since both 
dispersive and non-dispersive characteristics are acceptable. However, its 
computational complexity in retrieving data increases in comparison to UWB, 
because for one scan, we have to step over many frequencies, measure returned 
signal and then evaluate its inverse FFT.  
To ensure the accuracy of detecting demodulated respiration and heartbeat 
signals, various phase-based detection algorithms have been proposed [3]. 
Typically, range is sampled at the ADC rate and cross-range is sampled at the 
frame repetition frequency, which are referred to as fast-time and slow-time, 
respectively. Conventionally, SFCW radar monitors vital signs of a person in a 
non-contact manner by applying FFT to the phase of the compressed pulse on 
slow-time samples along traversed range bins. While the torso displacement 
caused by respiration can be directly extracted from the phase variation, it is still 
challenging to detect the heart rate and its amplitude in a similar manner with 
high accuracy. The difficulty is that harmonics of respiration and the 
intermodulation between respiration and heartbeat signals may become 
dominant and cause errors in heart rate detection. In [34], a filter based on 
moving target indicator (MTI) is utilized to cancel the harmonics of respiration 
signal. However, intermodulation frequencies stay unsuppressed and the desired 
heartbeat signal could be masked when it is in the neighborhood of these 
frequencies. State space method (SSM) is robust and cost-effective in signal 
parameter estimation, and it has been used successfully in target identification 
[50] and electromagnetic wave-based target feature extraction [51] from 
polarimetric radar measurements in low SNR environment. 
In this chapter, an SFCW radar system will be described in detail, including block 
diagrams and the novel signal model for vital signs detection based on SSM. 
SSM will be applied to extract respiration and cardiac rates from subjects in 
different scenarios and its performance will be compared with that of 
conventional FFT method to demonstrate its advantage in suppressing 
harmonics and intermodulation frequencies. All the measured results from SFCW 
radar will be validated with data from commercial wearable sensors. 
 

5.2 SFCW Radar 
 
The block diagram of a homodyne SFCW radar system is shown in Figure 5.1. A 
frame of stepped frequency continuous waveform consists of N pulses, whose 
frequencies are linearly increased from pulse to pulse with a fixed frequency step 
∆f.  The transmitted signal is composed of a series of frames. The mathematical 



 

91 
 

expression for a frame of the transmitted stepped-frequency signal can be 
formulated as 

1

0
0

1( ) exp 2
N

n

t nTs t rect j f n f t
TT                          (5-1) 

where rect(∙) denotes rectangular function, T is the pulse repetition time, and  f0 is 
carrier frequency of the first pulse. 
Considering the range between the static part of the target and radar as R0, the 
instantaneous range detected with the mth frame can be expressed as 

0( ) ( )v NR m R R mT                                               (5-2) 
where Rv(mTN)  is the time-varying distance between the target and radar caused 
by torso displacement, and TN = NT is the total time of a frame. We assume that 
the instantaneous range does not change during the period of a frame, which is 
reasonable given that the time duration of a frame is much shorter than the 
period of the vital signs of a human subject. Then, the received signal for the mth 
frame can be expressed as 

( ) ( ) 2 ( )rs t a s t t R m c                                              (5-3) 
 

where a is the amplitude of the back-scattered signal and c is the speed of light. 
The received signal is down-converted with its corresponding carrier frequency 
and then sampled in the baseband. The normalized sample of the baseband 
signal is 

0( , ) exp 4 ( ) exp - 4 ( )bs m n j f R m c j n f R m c                (5-4) 
The pulse compression can be readily realized by performing IFFT on each 
frame, after which we can acquire the mth high range resolution profile (HRRP), 
expressed as 

0( , ) exp 4 ( ) exp - ( 1)( )
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b m

m

m

S m k j f R m c j N k k N
k k

k k N
              (5-5) 

where k = 0, 1, ... N-1 denote samples along fast-time range, 2 ,mk RN f c and
. is a ceiling function. According to (5-5), the vital signs can be acquired by 

extracting the phase information of the km-th sample for each compressed pulse 
along slow-time range bin. It is worth mentioning that with the increased 
bandwidth in a wideband radar system, amplitude and phase distortion will be 
significant, which may cause dispersion of HRRP and elevation of the side-lobe 
level. Assuming the distorted amplitude and phase for each frequency point are 
an and ϕn, respectively, then (5-4) can be modified as 

04 ( ) 4 ( )( , ) exp exp -b n n
f R m n fR ms m n a j j
c c          (5-6) 
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an and ϕn can be measured with a closed-loop configuration of the SFCW radar 
system, or by placing an ideal point target along the line of sight of the radar. In 
this manner, the amplitude and phase distortions can be compensated for in the 
signal processing, i.e. calibrated. 

Suppose that N pulses are collected by SFCW radar and the sequence of 
phases extracted from these pulses is given by y(n), n = 0, 1, 2,… (N-1).  The 
steps in applying SSM to y(n) are summarized in Chapter 2 from (2-23) to (2-33). 
Moreover, SSM can be used in combination with phase compensation methods 
to detect vital signs of targets with random motions [31]. 
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Figure 5.1 Block diagram of SFCW radar system. 

 
 

5.3 Two-Channel SFCW Radar System Integration 
 
The first generation of two-channel SFCW was built from off-the-shelf discrete 
components. However, this radar prototype is not suitable for portable application 
and scenarios requiring hand-held devices, e.g., battle field triage and behind-
wall detection. The second generation of SFCW radar is integrated on FR4 
boards and Rogers 4350 laminate and separate boards can be stacked up. The 
components used for the integrated boards are listed in Table 5.1. 
The SFCW radar with PCB stack-up configuration is shown in Figure 5.2. It has 
five layers, transceiver board, diplexer board, PLL, dc supply and DDS board. 
Figure 5.3 shows the layout of the transceiver board and fabricated transceiver 
board. To avoid the EMI problem, the RF components on the transceiver board 
are sparsely populated on the Rogers 4350 laminate. The diplexer board with 
LNA and PA is presented in Figure 5.4. Since this radar system is geared 
towards wide bandwidth, two branches of the diplexer are designed to cover 
pass-bands of 2-3 GHz and 3-4 GHz. For wideband filter design, strong coupling 
between microstrip parallels line is needed, which requires small gap size 
between parallel lines. Considering the fabrication capability of manufacturer, we 
design the diplexer on FR4 board with 63 mil thickness. 
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Table 5.1 Components used for SFCW radar 

Component Model Vendor Specifications 
Gain block HMC589A Analog Devices dc-4 GHz, gain 21 dB, P1dB output 

21 dBm 
Gain block MGA-30789-

BLKG 
Broadcom 2-6 GHz, gain 8.8 dB, P1dB output 

power 25 dBm 
Power amplifier TGA2597-SM Qorvo 2-6 GHz, 24 dB gain, P1dB output 

power 32 dBm 
Low noise amplifier HMC639 Analog Devices 0.2-4 GHz, noise figure 2.3 dB, P1dB 

output power 22 dBm 
Mixer HMC213 Analog Devices double-balanced mixer, 1.5-4.5 GHz, 

conversion loss 9 dB 
Quadrature splitter QCS-332+ Mini Circuits 2 Way-90° 50Ω 2500 to 4500 MHz 

Splitter GP2Y1 Mini Circuits 2 Way-0° 1550 to 4400 MHz 
 

 
Figure 5.2 Stack-up implementation of two-channel SFCW radar system. 

 

 
Figure 5.3 (a) Layout of transceiver board; (b) fabricated transceiver board. 
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Figure 5.4 Layout of diplexer board with LNA and PA. 

 
Table 5.2 Dynamic range analysis of the transceiver 

Parameters Values 
Transmitter Total Power (dBm) 30 

Rx 1dB Compression Point (dBm) 12 
Rx Thermal Noise Floor (dBm/MHz) -114 

Receiver Bandwidth 2 
Receiver Thermal Noise Floor (dBm) -81 

Receiver Noise Figure (dB) 4 
Receiver Noise Floor (dBm) -77 

Required SNR (dB) 6 (for acceptable image quality) 
Receiver Sensitivity (dBm) -71 

Receiver Dynamic Range (dB) 83 
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The dynamic range analysis of the radar transceiver is shown in Table 5.2. The 
thermal noise floor of the receiver is -114 dBm/MHz. The radar receiver has a 
bandwidth of 2 GHz and therefore, the noise floor of the radar receiver is -81 
dBm. The receiver has a noise figure of approximately 4dB, which is mainly due 
to the cable loss, connector and the noise figure of low noise figure. This radar 
system is designed for 2-D imaging and localization purpose as well. The 
minimum SNR required to reconstruct an acceptable imaging quality is 6dB. 
Subsequently, we can acquire the radar receiver sensitivity to be -71 dBm. Since 
the receiver 1dB input compression point is 12 dBm, the receiver has a dynamic 
range of as large as 83 dB. 
  

5.4 Experimental Results 
 
A frequency synthesizer, based on direct digital synthesizer-driven wideband PLL 
architecture has been designed, which can achieve fast frequency hopping. 
Commercially available belt sensor and pulse sensor have been used as 
references for respiration and cardiac rates, respectively. The experimental setup 
is shown in Figure 5.5. 

5.4.1 Subject holds breath 
In this experiment, the subject is holding breath and sitting 1 m away from the 
radar. The directly demodulated heartbeat signal of this subject is shown in 
Figure 5.6, which matches reasonably well with the reference measurement in 
peak location.  Figure 5.7 shows the detected heart rates estimated using FFT 
and SSM, and both methods show good performance since there is no thorax 
motion caused by respiration. However, SSM is observed to have a cleaner 
spectrum with no spurious peaks. Furthermore, SSM clearly filters the heart rate 
of the subject even in the presence of random body motion noticed in the FFT 
spectrogram in Figure 5.7 (a). 
 

 
Figure 5.5 Experimental setup. 
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Figure 5.6 Demodulated heartbeat signal of the subject. 

 
Figure 5.7 Detected heart rate of Subject 1 (a) with FFT, (b) with SSM. 
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5.4.2 Subject breathes normally 
In this scenario, the subject is sitting 1 m away from the radar and breathes 
normally during the experiment. It is shown in Figure 5.8 (a) that due to low SNR 
and harmonics of respiration, the heart rate cannot be detected with conventional 
FFT method. However, as shown in Figure 5.8 (b), using SSM the heart rate can 
be clearly detected without introducing unwanted intermodulation products, and 
the error of detected heart rate in comparison with the pulse sensor is 1.2%. 

 

 
Figure 5.8 Subject breathes normally. Detected vital signs of subject (a) with FFT and (b) with 

SSM. 

5.4.3 Subject facing radar at different angles 
The heart rates of the subject facing radar from different angles (shown in Figure 
5.9) are detected using SSM. The subject breathes normally and stays 0.6 m 
away from the radar. As summarized in Table 5.3, using SSM we observe low 
error when the subject is facing the radar with his back (1.5%) or front (1.6%), 
and greater error (5.7%) in Position (d) for side-on illumination, where the subject 
has lower radar cross section (RCS). At right 45° (Position (a)), the lowest error 
is obtained, since the subject’s heart is closest to the radar at this position, while 
at left 90° (Position (d)), the highest error results since the subject’s heart is 
farthest from the radar. In general, we corroborated that the SSM is capable of 
accurately identifying the cardiac rates of subjects at different sedentary positions 
without introducing spurious intermodulation. 

 
5.5 Discussion and Summary 

 
An SFCW radar system samples the frequency domain, while UWB radar 
samples the time domain, to retrieve the backscattered signal. The difficulty in 
building UWB radar is in the receiver design, as it requires fast ADCs, while in 
SFCW radar; it is in the transmitter design as it requires a stable, accurate 
stepped frequency generator. Both radars should have similar capabilities.  
In extracting vital signs from radar measurements, typical FFT transform 
methods are not accurate enough for heart rate extraction. In this chapter, the 
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state space method, originally developed for radar signal processing and target 
identification, has been successfully applied to extract respiration and heart rates. 
Experimental results have successfully verified advantages of SSM over 
conventional FFT method in the avoidance of unwanted harmonics and 
intermodulation products. The validity of SSM has been established by the 
relatively small error (< 1.2%) observed in the heart rate estimates for a 
sedentary breathing subject, and even in the presence of controlled body motion 
with the breathing subject facing the radar at different angles. 
 

 
(a)                   (b)                   (c)                    (d)                    (e)                    (f) 

Figure 5.9 Subject at different positions. (a) right 45°; (b) right 90°; (c) left 45°; (d) left 90°;  (e) 
back and (f) front. 

 
Table 5.3 SSM error in heart rate for subject (Right means the body turned right relative to the 

zero position (front)) 

Angles Error (%) 
a) Right 45° 0.4 
b) Right 90° 3.2 

e) Back 1.5 
c) Left 45° 3.4 
d) Left 90° 5.7 

f) Front 1.6 
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CHAPTER SIX 5 
COMPARISON STUDY OF NON-CONTACT VITAL SIGNS 
DETECTION USING A DOPPLER STEPPED-FREQUENCY 

CONTINUOUS WAVE RADAR AND CAMERA-BASED IMAGING 
PHOTOPLETHYSMOGRAPHY 

 
 
In this chapter, we compare the performance of radar and optical (camera-
based) techniques in detecting vital signs such as respiratory rate, heart rate, 
and blood oxygen saturation (SpO2).  Specifically, we investigate the application 
of ultra-wide band (UWB) stepped-frequency continuous wave (SFCW) radar and 
imaging photoplethysmography (iPPG) techniques to measure vital signs. The 
radar performance can be enhanced by using phase information of 
backscattered signals instead of its amplitude. On the other hand, the iPPG 
system can be enhanced by using more than one camera and utilizing very 
selective narrow-band filters coupled with good illumination.  In either system, 
use of advanced signal processing is required to improve accuracy.  Generally, 
heart and respiratory rates can be accurately read by either microwave radar or 
optical techniques with 500 lx illumination level to have < ±2% error up to 2 m 
distance between the subject and the system, but optical technique errors 
increase significantly to < ±15% for < 200 lx. However, each system has its own 
unique advantages as the radar can be used for seeing-through walls and optical 
technique is uniquely capable of measuring SpO2 at this time. 
 

6.1 Background 
 
The respiratory rate (RR), heart rate (HR), and blood oxygen saturation (SpO2) 
are critical physiological parameters for human health monitoring. The 
conventional contact techniques, including electrocardiography (ECG), and 
photoplethysmography (PPG) may cause discomfort and epidermal stripping, as 
may be the case in the application of baby apnea monitors or in patients with 
significant burn wounds. There is a need, then, to develop accurate and efficient 
non-contact vital sign detection methods that can be used in a diverse number of 
scenarios, including infant sleep apnea monitoring, daily elderly care, and even 
round-the-clock monitoring of patients with suicidal ideation.  
For Radars, several accurate non-contact methods using various types of 

                                            
5 I worked on this chapter with Lingqin Kong from Beijing Institute of Technology, Haofei Wang 
from Tsinghua University, Paul Theilmann from MaXentric Technologies Inc., and Farnaz 
Foroughian from University of Tennessee, Knoxville. 
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Doppler radar have been proposed recently for the remote triage monitoring of 
HR and RR [3, 4, 6-14, 16-18, 23, 25, 28-35, 44, 127]. For example, Continuous 
Wave (CW) radars have been successfully implemented for vital sign monitoring 
[7-14, 17, 18, 31, 32] and can be extended to long distances, up to 69 meters 
[16].  
However, despite its relatively simple hardware, CW radar transmitting single-
tone frequency has a narrow bandwidth; hence its spatial resolution is limited. 
Additionally, these CW radars necessitate the calibration of the dc offset and 
require balancing in-phase (I) and quadrature-phase (Q) channels for satisfactory 
performance [128, 129]. 
Meanwhile, UWB radars are widely used in many non-contact scenarios such as 
locating subjects under physical barriers including debris and behind walls. They 
have also been used to monitor athletes’ vital signs remotely [23, 33, 34, 44]. 
UWB impulse radar transmits a wide-band signal, such as a narrow pulse in the 
time domain, providing both range and accurate Doppler information of the 
target. For achieving even higher accuracy, tracking of phase variations of the 
reflected signals, instead of only their amplitudes, can be used. In [48], for 
example, a complex signal demodulation and an arctangent method were 
extended to UWB radar signal processing based on the phase variations of 
backscattered pulses caused by cardiac motion. However, the transmitted power 
of UWB radar is limited and is accompanied by relatively high noise accumulated 
over its wide band causing a low signal-to-noise ratio (SNR), making it difficult to 
detect. Additionally, UWB impulse radar requires high-speed analog-to-digital 
converters, which inevitably increases its complexity in system design and 
hardware cost. 
Alternatively, Frequency-Modulated Continuous Wave (FMCW) radar, which 
overcomes both the drawbacks of CW and UWB impulse radars, has also been 
successfully applied to non-contact vital sign detection and subject localization 
[4, 25]. Since it transmits a CW signal, a relatively high power can be transmitted 
with high SNR and without a need for high-speed analog to digital converters 
(ADCs). However, it still requires calibration to compensate for the non-linearities 
in frequency sweeping [26, 27]. 
On the other hand, stepped-frequency continuous wave (SFCW) radar has been 
utilized for short-range vital signs monitoring [28-30, 35, 127]. Compared with a 
CW radar system, SFCW radar is capable of localization, thereby allowing for 
multiple subjects monitoring in real time. Generally, SFCW can be designed to 
have similar performance as it provides UWB pulses in the frequency domain; 
hence should provide comparable capabilities as UWB systems. However, it 
utilizes low-speed ADCs because of its narrow instantaneous bandwidth. 
Furthermore, some of its frequencies can be skipped or even randomly selected, 
which enables compressive sensing implementation for even faster detection 
[30]. SFCW transmits relatively long duration signals, hence their received 
signals are significantly stronger than UWB radar and should have higher SNRs 
in vital signs detection. Furthermore, compared with FMCW radar, it is easier to 
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calibrate signal distortion caused by any imperfection of the SFCW radar system 
hardware. 
Alternatively, HR and RR can be measured using imaging PPG (iPPG).  IPPG is 
an optical method that measures the small changes in skin color that are the 
result of changes in blood volume in arteries and capillaries caused by the 
cardiac cycle. IPPG utilizes imaging devices such as cameras to measure these 
changes and provide information on cardiovascular status.  IPPG is based on the 
principle that blood absorbs more light than its surrounding tissues. Therefore, by 
measuring variations in reflected light, as caused by variations in blood volume, 
we may be able to ascertain HR and RR. Hence, variations in blood volume 
affect light transmission/reflection [130] and are related to HR and RR. In [131], 
the feasibility of HR and RR detection using a simple webcam was 
demonstrated.  Both HR and RR have been successfully identified using a color 
camera in a well-lit room [132]. This method was also shown to be effective in the 
detection of multiple subjects’ HR and RR [133]. 
Moreover, a method has been developed to measure SpO2 at optical frequencies 
using two cameras under regular lighting conditions [130]. The two cameras 
capture two PPG signals simultaneously at two different wavelengths and these 
signals are successfully utilized to measure SpO2 and even HR and RR. The HR 
and RR measurements demonstrated a high level of confidence [134]. Similarly, 
SpO2 results were compared to the traditional method, known as the finger blood 
volume pulse (BVP), as it was found to have consistent and comparable 
measurements [130].  
The accuracy of radar techniques may suffer from the orientation or motion of 
either the subject or the radar, which could be rectified by utilizing motion 
cancellation techniques that are based on optical techniques. In [135], for 
example, an experiment was conducted to monitor the vital signs of a human 
subject lying on the ground using CW radar. The HR an RR were clearly 
identified in the supine and side positions. Meanwhile, in [136] and [137], the 
performance of a Doppler radar was validated by detecting the vital signs of 
subjects with different orientations, whereas the work of Li et al. indicated that the 
best accuracy in heart rate monitoring was observed when measuring from the 
back of the subject. It is an objective to develop a position-free vital signs 
monitoring process. In [138], the 8th-level decomposition of Bior2.4 for position-
free vital signs detection shows high performance in providing the heartbeat 
signal in time domain where high accuracy is obtained in terms of heartbeat rate. 
In order to improve the quality of detecting the respiration signals, the self-
correlation and adaptive line enhancer (ALE) methods were proposed in [139] to 
minimize the interferences of any moving objects around the human subject and 
it could be extended for alignment problems as well. 
Many researchers compared their measurements to that using a reference 
sensor. In the work of Kuutti et al. [137], for example, the mean ratios of the 
pulse rates detected from the radar system, respiration reference sensor and 
ECG were 110% (i.e., +10% error for respiration) and 99% (i.e., -1% error for 
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heart beat). The error could be related to motion, and a motion cancellation 
system needs to be used for real time measurements. To address the random 
body motion cancelation, a hybrid radar-camera system has been developed for 
accurate human vital signs monitoring [31], where a camera is used to measure 
the scene’s phase information and an adaptive phase compensation algorithm is 
used to cancel subject’s motion with respect to the radar. 
Recently, we have been focusing on developing non-contact vital signs detection 
using UWB radar systems [49, 52, 53, 140-142]. Additionally, in search for a 
viable method to remotely detect SpO2, we have investigated iPPG technique 
[130]. Both methods were briefly compared as well [143]. Here, we extend this 
work to provide a detailed comparison between these two techniques, shed 
some light on their capabilities and limitations, additionally, results were 
compared to contact measurment methods to validate measurements and 
present comprehensive error analysis. 
This chapter is organized as follows: in Chapter 6.2, we describe in detail the 
basic principles of vital signs detection and focus on major challenges to 
extracting vital signs. In Chapter 6.3, we describe our experimental set-up, which 
is composed of SFCW radar and the iPPG system in order to compare their 
performance. In Chapter 6.4, we present our experimental evaluation with a 
single sedentary subject utilizing both systems, while all results are validated with 
corresponding contact reference sensors. Finally, we discuss the advantages 
and limitations of Doppler radars and iPPG in remote vital sign detection and 
conclude. 

 
6.2 Operating Principle of SFCW Radar and IPPG System 

 
Generally, SFCW radars monitor the variations of torso displacement caused by 
heartbeat and respiration motions. Meanwhile, iPPG detects blood volume 
changes in the micro-vascular bed of tissues, which can provide valuable 
information about the cardiovascular system. The operating principles of both 
SFCW radar and iPPG system for vital signs monitoring are briefly described 
here. 

6.2.1 SFCW radar 
The SFCW radar transmits a series of frames, where each frame is comprised of 
N pulses. The radar linearly steps up the frequencies of these pulses by a fixed 
frequency step Δf. The transmitted signal in one frame can be represented by 

1

Tx 0
0

1 exp 2
N

n

t nTs t rect j f n f t
TT                   (6-1) 

where T represents the repetition time of the pulse, rect(∙) is the symbol for 
rectangular function, t is the fast time sampled by ADC while the carrier 
frequency of the first pulse is f0, and n represents the frequency step. 
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If we assume the distance between the subject and radar transceiver is noted by 
R( ), where R( ) is function of slow time , i.e., the frame number, the received 
signal sRx(t) for the subject at R( ) can be expressed as 

Rx
2R

s t a s t
c                                                    (6-2) 

where a is the amplitude of reflected signal, c is the speed of light and R( ) is the 
instantaneous range of the subject. Note that R( ) is composed of both the static 
distance between subject and radar and a time-varying distance due to torso 
displacements.   
Subsequently, the received signal is mixed with its corresponding carrier 
frequency and down converted. Then the down-converted signal is given by 
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                                (6-3) 

where ()* indicates complex conjugate. The signal is down-converted to 
baseband, which alleviates the sampling rate requirement for ADC. The term 
4πf0 R( )/c represents the slow-time migration phase history of the subject. To 
acquire the high range resolution profile (HRRP), inverse fast Fourier transform 
(IFFT) is applied on each frame of the baseband signal to realize pulse 
compression. HRRP can then be expressed as 
 

04 2 1
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sin 2 /

b
j f R j NaS f f N f R c

NT c N

f N f R c

f N f R c
N

             (6-4) 

The range information of the subject can be acquired with proper scaling of 
frequency. When HRRP reaches its peak value at fp = NΔf 2R( )/c, (6-4) 
becomes 

04
expb p

j f RaS f
T c                                           (6-5) 

According to (6-5), upon extracting the phase information at fp for each 
compressed pulse along slow-time range bin, vital signs can be detected. An 
algorithm to extract the range information and vital signs is briefly described here. 
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Suppose that the SFCW pulse within each frame is sampled and saved in rows, 
which constitutes the raw-data matrix M(g,h), where g = 1, 2, …, G denotes index 
of transmitted frames along slow-time dimension, h = 1, 2, …, H denotes the 
index of ADC samples along fast-time dimension. The signal processing to 
extract range information of the subject is summarized in the following steps: 
Step i) Perform IFFT over each row of the raw-data matrix M(g,h). Denote this 
resulting HRRP matrix as J(g,h). 
Step ii) Determine the range bin which the subject traverses for each row of 
J(g,h) by finding its corresponding peak values. Save these complex numbers as 
signal L(g). 
Step iii) Extract and unwrap the phase information of the signal L(g). Denote this 
result as ψ(g). 
Step iv) Estimate the range history of subject as R(g) = cψ(g) /4π f0. 
Step v) Apply Fast Fourier Transform (FFT) spectral analysis to ψ(g) for the 
respiratory and heart rates. 

6.2.2 iPPG system 
The iPPG waveform is related to the pattern of visible light absorption by blood 
and is comprised of dc and ac components [130]. The reflected optical signal 
from the tissue has a dc component that slowly varies due to respiration. 
Meanwhile, its ac component, which shows pronounced change, is related to the 
blood volume change during the systolic and diastolic phases of the cardiac cycle. 
The heart rate is associated with the fundamental frequency of the ac component. 
Figure 6.1 shows the process of evaluating vital signals (HR and RR) based on 
the iPPG system and the process of acquiring PPG signal. To extract HR and 
RR, we recorded a video zooming on the human face. The video recorded by a 
camera is converted to an image sequence frame-by-frame. In each frame, a 
region of interest (ROI) is defined to study blood perfusion underneath the skin. 
The ROI is tracked in successive frames using averaging to provide the average 
pixel intensity values. Suppose yk(t) is the intensity of the kth pixel within the ROI 
at time t, where k = 1, 2, …, K. Then the PPG signal p(t) is estimated as 

1

1 K

k
k

p t y t
K                                                   (6-6) 

Upon using FFT of PPG signal, the respiratory and heart rates can be identified. 
Conversely, for the measurement of SpO2, we record the cardiovascular pulse 
wave signals (PPG signals) at two different wavelengths, λ1 and λ2. We use two 
different cameras, each attached to very narrow-band filters, with one at λ1 and  
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Figure 6.1 Process of extracting vital signs from video recorded by camera; Step I: take average 
from all pixels of each video frame and plot it in time; Step II: filter the signal with a band-pass 

filter; Step III: acquire the PPG signals after band-pass filtering. 
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the second at λ2. Blood oxygen saturation SpO2 is defined as the ratio of the 
intensity of oxygenated hemoglobin in blood (HbO2), to the sum of the 
oxygenated hemoglobin HbO2 and the deoxygenated hemoglobin Hb, i.e.,  

  
2

2
2

100%
HbO

SpO
HbO Hb                                     (6-7) 

In our case,  blood oxygen saturation can be measured using the maximum 
reflections at the two wavelengths, i.e.,  and , and the maximum variables 
of reflections’ intensity caused by pulsation, i.e.,  and  , (namely λ1= 660 nm 
and λ2=520 nm) [130], where 
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The two wavelengths are selected so that the absorption coefficients of HbO2 
and Hb at one of these wavelengths differ greatly, but are approximately equal at 
the other wavelength (here we selected 520 nm and 660 nm). SpO2 values are 
estimated by calculating the ratio of ratios, R, at 660 nm and 520 nm 
wavelengths according to (6-8) where the constants A and B are empirically 
determined by calibration. The peak-to-peak values of the PPG signals over a 
certain period of time after de-noising and filtering are used to determine the ac 
signal, IAC, while the dc component, IDC, is computed by averaging values of the 
PPG signals over the same period of time. However, the peak-to-peak value 
extracted from the PPG signal in each cycle also varies due to noise even when 
the blood saturation remains unchanged. Subsequently, a moving average 
window of 10 s is applied to the ac and dc components; to calculate IAC, rather 
than utilizing a peak-to-peak value of each cardiac cycle. 
 

6.3 Experimental Setup 
 
The block diagram of the utilized experimental setup and its picture are shown in 
Figure 6.2 and its components are summarized in Table 6.1. In this setup, a 
camera can monitor different areas of the face. By focusing on a region of 
interest of a subject’s face (ROI) in the captured video, the iPPG system has the 
capability of extracting respiratory rate, heart rate, and SpO2. 

6.3.1 SFCW Radar Implementation 
SFCW records a signal replica of chest tiny motion. To obtain accurate phase 
information of this recorded signal, it is mandatory to make the SFCW radar 
coherent and have phase control in the waveform generation and in data  
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(a) 

 

 
(b) 

Figure 6.2 (a) Block diagram of the experimental setup. (b) Experimental setup in lab. 
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Table 6.1 Components used in experimental setup 

Block Manufacturer & Model Features 

PLL Analog Device HMC833 fractional-N PLL with integrated VCO 25-
6000 MHz 

Oscillator Keysight E4421B output at 1.2 GHz, output level 3 dBm 

Gain Block Mini Circuits ZX60-V63+ 0.05-6 GHz, 20 dB gain, 18 dBm output at 1 
dB compression point 

Splitter Mini Circuits ZAPD-4-S+ 2-4 GHz, 2 way phase difference 
0o, 0.4 dB insertion loss 

Quad Splitter Mini Circuits ZAPDQ-4-S+ 2-4 GHz, 2 way phase difference 90o, 0.4 
dB insertion loss  

LNA Analog Device HMC753 1-11 GHz, 1.5 dB NF @ 4 GHz, 
16.5 dB gain 

Mixer Mini Circuits ZX05-C60+ 1.6-6 GHz, 32 dB LO to RF 
isolation, 6.3 dB conversion loss 

DAQ National Instrument NI 6009 Input resolution 14 bits, max sampling rate 
48 kbit/s 

Camera The Imaging Source 
DMK23U 618 sensitivity 0.015 lux, max frame rate 120 fps 

Lens Thorlabs MVL8M23 Diameter 28.2 mm 
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acquisition of the baseband signal. To achieve this, a customized digital signal 
synthesizer (DDS) controlled by a complex programmable logic device (CPLD) 
and phase-lock loop (PLL) are used together to ensure the full control of the 
initial phase of the generated waveform [30]. Moreover, a trigger signal is 
generated by the CPLD to synchronize the data acquisition device (DAQ), as 
shown in Figure 6.3, where a sampling rate of 5 kb/s is used.  The data collected 
from SFCW radar can be processed in real-time using LabVIEW. 
The operating pass-band of one channel of the SFCW is 2 GHz – 3 GHz, a 
second channel can be added and will be from 3 GHz to 4 GHz. The transmitted 
power is -16 dBm and is transmitted through a horn antenna. According to radar 
equation, the received signal power can be calculated by 

224

t t e r
r

P G A G
P

d
                                                     (6-10) 

where Pt is the transmitted power, Gr and Gt are the transmitting and receiving 
antenna gains, which are around 9.6 dB; σ indicates radar cross section (RCS) of 
human subject, which is estimated to be 0.3×0.5 m2; Ae represents receiving 
antenna aperture, which is 0.14×0.24 m2; d indicates the distance between 
subject torso and radar receiver. The thermal noise floor of the receiver is -174 
dBm/Hz, or -114 dBm/MHz. Since the radar receiver has a bandwidth of 1 GHz, 
the noise floor of the radar receiver is -84 dBm. The receiver has a noise figure of 
approximately 2 dB, which is mainly due to the cable loss and the noise figure of 
the low noise amplifier (LNA). Subsequently, we can assume the radar receiver 
sensitivity to be -82 dBm. The SNR of the SFCW radar receiver (SNRr) is 
calculated as 

10

82 dB

40 40log dB
r rSNR P

d                                               (6-11) 

6.3.2 IPPG System Implementation 
In the iPPG system, two cameras mounted with different optical filters and 
controlled by LabVIEW capture two PPG signals from the subject simultaneously 
and are used to extract SpO2 information. To ensure high system accuracy, the 
bandwidth of these optical filters should be as narrow as possible. Mounted filters 
have a full width at half maximum (FWHM) of 10 nm centered at 660 ± 5 nm and 
520 ± 5 nm, respectively. The use of highly selective dual cameras can efficiently 
suppresses the disturbance of ambient light in other bands. The empirical values 
of A and B in (6-8) have been experimentally derived by [130] and utilized here. 
In our setup, the cameras utilized are DMK23U618 from The Imaging Source 
with a sensitivity of 0.015 lx. The lenses used are MVL8M23 from Thorlabs with a 
diameter of 28.2 mm. The cameras record a video of human facial areas and the 
luminance level received by cameras can be estimated as 
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where I represents the illumination level; Af represents the estimated facial area, 
which is around 0.1×0.2 m2; d indicates the distance between the subject and 
camera; r indicates the radius of lens, which is 14.1 mm. The SNR of cameras 
(SNRc) in recoding the videos can be calculated as 
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where Np represents the number of pixels, which is 640 × 480; s indicates pixel 
size, which is 5.6 × 5.6 μm2. 
Based on (6-11) and (6-13), the SNRs of SFCW radar and iPPG system were 
calculated and they vary as function of subject’s distance d, and illumination 
conditions as demonstrated in Figure 6.3. SFCW radar mostly demonstrates 
higher SNR than iPPG system in a close range, which means higher accuracy in 
vital signs monitoring, while SNR of iPPG system degrades significantly under 
poor illumination conditions. 
 

6.4 Experimental Results 
 

6.4.1 Comparison between SFCW radar and IPPG System 
In this experiment, data of one subject at 1 m, 1.5 m and 2 m away from the 
experimental system with four orientations specified in Figure 6.4 have been 
collected simultaneously by the SFCW radar and the iPPG system. Antennas of 
SFCW radar and cameras of iPPG system were mounted 110 cm above the 
ground. The transmitting and receiving antennas were 50 cm apart and the 
cameras were mounted in the middle between the transmitting and receiving 
antennas of the SFCW radar. Note that for the iPPG system, when the subject is 
at the "back" position, the ROI of the captured video is the neck not the face; 
while when the subject turns right or left, ROI will be the left side of the face and 
right side of the face of the subject, respectively. The subject (age 31, weight 82 
kg and 1.8 m tall) was sedentary at the same distance from the radar receiver 
and iPPG system. For evaluation, one belt sensor (NeuLog, Carolina Biological 
Supply Company, Burlington, NC) and one blood volume pulse (BVP) sensor 
(PulseSensor, World Famous Electronics LLC, New York, NY) were used as 
references of respiration and heartbeat, respectively. The frame rate of SFCW 
radar is 20 Hz and the sampling rate of camera is 20 fps. Both SFCW radar and 
iPPG system collect data for 30 s in the experiment, while the controlled 
environment illumination is measured by a lux meter (Extech LT300, FLIR  
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Figure 6.3 SNRs of SFCW radar and iPPG system with regard to different levels of light 

illumination. 
 

 
(a)                           (b)                          (c)                               (d) 

Figure 6.4 Four orientations of subject (a) front, (b) back, (c) right, (d) left. 
 
Commercial Systems Inc., Nashua, NH). The ratio of measurement to reference 
sensor is calculated as follow, 

100%M

R

VRatio
V                                          (6-14) 

where VM indicates measurement result; VR indicates reading from the reference 
sensor. 
When a subject is 1 m away from the experimental setup at the position “front” 
and the illumination level is 500 lx, the demodulated signals spectrums from both 
radar and optical sensor are compared with the results of the corresponding 
reference sensor, as shown in Figure 6.5. The respiratory and heart reference 
rates of a subject were 0.23 Hz and 1.35 Hz respectively during the experiment. 
Both radar and camera demonstrate high accuracies in respiratory and heart 
rates monitoring. For radar, the corresponding ratios to respiratory and heart 
reference rates are 100.17% and 99.63% respectively; meanwhile for camera, 
the ratios to respiratory and heart reference rates are 99.30% and 100%. These 
differences are less than 1% using either technique in vital signs detection. 
The performance of radar and camera in vital signs detection for a subject seen 
at different orientations and at different distances with 500 lx illumination have 
been compared and results are shown in Figure 6.6 and 6.7. As shown, both 
radar and camera have ratios for both respiratory and heart rates detection within 
100% ± 2% for all orientations up to 2 m. Vital signs of a subject at these different 
orientations can be clearly extracted using radar, especially when subject is in  
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(a) 

 
(b) 

Figure 6.5 Spectra of demodulated signals from (a) SFCW radar, (b) camera with 520 nm filter 
when illumination level is 500 lx. 
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(a)                                                                    (b)                      

 
(c)                                                                      (d) 

Figure 6.6 When illumination is 500 lx, comparison of ratio to reference using SFCW radar and 
camera in respiratory rate detection when subject is at orientation of (a) front, (b) left, (c) right, 

and (d) back. 
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(a)                                                                   (b)         

 
  (c)                                                                   (d) 

Figure 6.7 When illumination is 500 lx, comparison of ratio to reference using SFCW radar and 
camera in heart rate detection when subject is at orientation of (a) front, (b) left, (c) right, and (d) 

back. 
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close range. It is also observed that camera is capable of accurate vital signs 
monitoring as long as videos of exposed human skins are captured. This is 
consistent with our prediction that both radar and camera sensors possess a 
SNR in the range of 27 dB when the subject is 2 m away under 500 lx 
illumination, which ensures the accuracy of vital signs detection for both systems. 
To investigate the influence of illumination level on performance of camera in 
vital signs detection, another experiment is conducted where the subject is 2 m 
away for the four indicated orientations (front, right, left, and back) but under 
different illumination conditions. The results are summarized in Figure 6.8 and 
6.9. When the illumination level drops from 500 lx to 200 lx, the accuracy of 
camera in respiratory rate monitoring degrades by 10% as indicated by the ratio 
parameter when the subject is at left or right positions, while the accuracy of 
heart rate detection is not greatly affected. When the illumination level is 100 lx, 
ratios of respiratory rates extracted by camera degrades to 70%, i.e., -30% 
difference to reference readings, while the ratio of heart rate is overestimated by 
40% when the subject is at the “right” position. Vital signs detected by camera in 
low illumination level are not reliable. It is worthwhile mentioning that radar is not 
influenced by illumination conditions as demonstrated in Figure 6.8 and 6.9. 
The above experiment was then repeated to study the effect of subject distance 
from the setup, with the subject in “front” position. As shown in Figure 6.10 and 
6.11, when the subject is at front position, respiratory and heart rates are readily 
monitored by camera when lighting level is above 200 lx; when lighting level 
drops to 100 lx, accuracies for respiratory rates significantly degrade with the 
increase of subject distance. As shown in Figure 6.11 (c), the ratio of respiratory 
rate measurement to reference degrades from 97% at 1 m, to 89.93% at 1.5 m 
and 115.81% at 2 m. This is consistent with the aforementioned predictions in 
Figure 6.3. 

6.4.2 SpO2 Measurements 
As previously indicated, IPPG system is capable of SpO2 detection as well. The 
empirical values of A and B in (6-8) were experimentally derived and readings 
from a BVP sensor (OnyxII, Nonin Medical Inc., Plymouth, Minnesota) serve as a 
reference. In SpO2 detection experiments, the subjects were sedentary and 
stationary at a 1.5 m position away from both cameras. In this experiment, thirty 
subjects within 18 to 58 years old had participated. The subjects were asked to 
hold breath. The subjects' SpO2 generally would fall linearly with time after 22s. 
Hence, we focused on this linear region and estimated the coefficients A and B 
with the reading of SpO2 from a BVP sensor and measured R in (6-9) for the 
iPPG system.  To obtain the empirical coefficients A and B, least square method 
was utilized to linearly fit these data. Based on [130], substituting A and B in (6-8) 
leads to, 

2 125 26SpO R                                                       (6-15) 
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(a)                                                                      (b)          

 
(c) 

Figure 6.8 When subject is 2 m away, comparison of ratio to reference using SFCW radar and 
camera in respiratory rate detection when illumination level is (a) 500 lx, (b) 200 lx, and (c) 100 lx.   
  



 

117 
 

 
        (a)                                                                   (b)          

 
(c) 

Figure 6.9 When subject is 2 m away, comparison of ratio to reference using SFCW radar and 
camera in heart rate detection when illumination level is (a) 500 lx, (b) 200 lx, and (c) 100 lx. 
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(a)                                                                  (b)          

 
(c) 

Figure 6.10 When subject is at orientation of front, comparison of ratio to reference using SFCW 
radar and camera in respiratory rate detection when illumination level is (a) 500 lx, (b) 200 lx, and 

(d) 100 lx. 
  



 

119 
 

 
(a)                                                                  (b)          

 
(c) 

Figure 6.11 When subject is at orientation of front, comparison of ratio to reference using SFCW 
radar and camera in heart rate detection when illumination level is (a) 500 lx, (b) 200 lx, and (d) 

100 lx. 
  



 

120 
 

Table 6.2 summarizes the descriptive statistics, i.e., mean bias, standard 
deviation of bias, upper limit and lower limit, for empirical evaluation of SpO2 
using iPPG compared to the finger BVP at different ambient light intensities 
[130]. It demonstrates the performance of SpO2 detection with relatively stable 
ambient light intensity.   
 
Table 6.2 Mean, standard deviation, upper and lower limits statistics for the ambient light intensity 

effects on SpO2 

 Ambient light intensity (lx) 

600 460 320 
Mean bias %) 0.31 0.32 0.35 
Sd of bias (%) 1.02 1.05 1.05 

Upper limit (%) 2.3 2.02 2.2 
Lower limit (%) -3.1 -3.01 -3.3 

 
6.5 Discussion 

 
Experimental results of vital signs detection using an iPPG system and SFCW 
radar in close range have been presented. Both the iPPG system and SFCW 
radar are capable of HR and RR monitoring. However, at this time only the iPPG 
system has the capability of SpO2 detection. In some scenarios, optical 
techniques can be used when a subject's chest is covered and only his/her face 
is exposed.  Conversely, SFCW radar systems have the capability of non-line-of-
sight (NLOS) monitoring and, as a result, can see through fog, smoke, foliage 
and cement walls. 
However, for long distances both optical techniques and SFCW radar fail and/or 
have unacceptable errors.  Transmitted SFCW power is relatively low, which 
would significantly hinder proper detection beyond a few meters for poor SNR. 
Similarly, optical systems would not be effective as they require extra bright 
illumination on a subject's face for meaningful detection. Alternatively, CW radar 
can be used for HR and RR to accurately extract vital signs of a subject for long 
distances exceeding 50 m [16]. 
It is worthwhile mentioning here that random motions of subjects may degrade 
the detection accuracy of vital signs for either radar systems or iPPG system. A 
camera can be used to cancel random motion, and in the iPPG system a 
stabilized camera can be used. 

 
6.6 Conclusion 

 
In recent years, researchers have presented a number of new and interesting 
methods for non-contact physiological parameters detection using iPPG and 
radar techniques. In our study, SFCW radar and iPPG technologies are briefly 
reviewed, discussed, and compared. The two methods were utilized for the  
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Table 6.3 Summary of different radar types for remote detection 

Reference Radar 
Type 

Frequency 
/Bandwidth Measurement Results 

[7] CW 5.8 GHz RR RR is measured with 7.15% error when subject is 
under large 1-D body motion. 

[18] CW within 4-7 
GHz HR/RR Random motion is cancelled and heartbeat is 

recovered in spectrum. 

[31] CW 2.4 GHz HR/RR Random body motion is effectively reduced with 
phase compensation. 

[8] CW 60 GHz HR/RR HR and RR are clearly observed when subject is 
0.75 m away. 

[12] CW 60 GHz HR/RR Vital signs are detected up to 0.3 m. 

[32] CW 60 GHz HR/RR At 1 m, RR is detected at four orientations; at 2 m, 
HR/RR are detected when subject faces front.  

[9] CW within 2.4-
2.5 GHz HR/RR HR and RR of 15 subjects at varied distance are 

accurately extracted. 

[10] CW 12, 24 GHz HR/RR When subject is 0.5 m away, HR is detected with 
error less than 4.4%. 

[11] CW 2.4 GHz HR/RR HR and RR can be detected up to 4m. 

[14] CW 2.4 GHz HR/RR HR is detected of a subject jogging on a treadmill 
with random body motion. 

[13] CW 24 GHz HR/RR At 1 m, HR and RR of subject can be accurately 
detected. 

[17] CW 2.4 GHz HR/RR Improved HR  measurement accuracy with a 
standard deviation of  < 1 beat/min. 

[16] CW 2.45 GHz HR/RR Successful measurement of HR and RR of at 
distances of 21 and 69 meters is made. 

[33] CW 
/Pulse 1.5-4.5 GHz RR Localization and RR of multiple subjects are 

simultaneously monitored within 3.3 m. 

[23] Pulse 3.1-10.6 
GHz RR RR of person at 0.25 m and infant at 0.2 m can be 

successfully detected. 

[34] Pulse 3.1-10.6 
GHz HR/RR HR and RR of subject at 1 m and behind wall are 

detected. 

[44] Pulse dc-2 GHz victim search RR of subject under a pile of bricks and a concrete 
pipe is detected. 

[6] FMCW 75-85 GHz HR/RR 
At 2 m, a median of the relative error of 5.52 % and 
14.58% for RR and HR detection respectively on 10 
subjects are obtained. 

[4] FMCW 
/CW 

5.72-5.88 
GHz HR/RR Azimuth information of subjects together with their 

vital signs can be monitored. 

[25] FMCW 5.72-5.88 
GHz RR Precisely localize metal plate up to 3.5 m; effect of 

clutters to extracted respiration signal is studied. 

[127], [28] SFCW 6-7 GHz fall detection It demonstrates target localization and a success 
rate of 94.3% in fall detection.  

[35] SFCW 3.14-3.46 
GHz HR/RR When subject is at 1.2 m, HR error < 1.2%; when 

subject is at 0.6 m in orientation, HR error < 5.7%. 

[29] SFCW 0.3-1.3 GHz RR When subject lying on ground with orientations, RR 
can be detected through bricks 1.2 m away.  

[30] SFCW 2-4 GHz localization Corner reflector is accurately detected using only 
20% of the total frequency points. 
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extraction of HR and RR at similar conditions to simplify the comparison. Results 
from the experiments of the SFCW radar system, indicated that the detection of 
HR was within an error rate of 2% irrespective of the subject's four described 
orientations up to 2 m. The experimental results also show that SFCW radar has 
demonstrated slightly better accuracy in the extraction of HR in front and back 
positions. Conversely, IPPG technique is uniquely capable of remotely detecting 
oxygen saturation levels and has similar performance to radar for HR and RR 
under ambient light conditions. However, it is not effective for remote triage or 
through-wall detection, and it significantly degrades or even fails under poor 
lighting conditions. 
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CHAPTER SEVEN  
CONCLUSION AND FUTURE WORK 

 
 
This research demonstrates the mathematical model, hardware implementation, 
and advanced signal processing algorithms of wideband Doppler radar systems 
in vital signs detection. This work primary focuses on two radar types, UWB 
pulse radar and SFCW radar.  
 

7.1 Accomplishments and Contributions 
 
Initially, UWB impulse radar was used. To overcome the difficulties in heart rate 
monitoring using UWB impulse radar, phase-based methods have been 
proposed to extract the phases of pulses modulated by heartbeat signals. With 
the phase information extracted from pulses, both heart rate and heart motion 
amplitude can be accurately estimated. UWB pulse radar has been successfully 
extended for more-than-one subject heart rates detection. The results have been 
validated with contact wired sensor. Advanced signal processing algorithm, 
specifically state space method, has been proposed to enhance the SNR of heart 
rate detection using the impulse UWB radar. Moreover, pulse radar has been 
extended to the micro-Doppler information extraction using state space method 
to enable the use of the micro-Doppler trajectories to distinguish different body 
joints of a walking human subject. 
Alternatively, SFCW radar has been built utilizing direct digital synthesizer (DDS) 
and phase-lock loop (PLL), which covers a bandwidth from 2 GHz to 4 GHz. To 
make the radar system portable, compact SFCW radar composed of different 
layers of stacked boards using chip components has been designed as well. In-
lab, experiments have been conducted to demonstrate the satisfactory 
performance of the SFCW radar system. Moreover, compressive sensing (CS) 
has been utilized to randomly step through the wide bandwidth and significantly 
reducing the number of measurements to speed up the data acquisition process. 
When compression rate is around 20%, SFCW radar still can precisely localize 
close-range objects. SFCW radar has been successfully utilized to detect 
respiratory and heart rates of stationary subjects in a close range. 
Currently, radar systems are capable of respiration and heart rates monitoring, 
while it is still very challenging for radar systems to detect blood oxygen level. 
IPPG has been successfully used by researchers to identify SpO2 of human 
subjects. In this work, iPPG sensor has been investigated for the HR and RR 
detection as well as for oxygen level monitoring. The performances of SFCW 
radar and iPPG system in cardiorespiratory rates detection have been compared 
experimentally. The accuracy of iPPG in vital signs detection is subject to the 
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illumination level of environment. Generally, SFCW radar and iPPG has 
demonstrated comparable performance in respiratory and heart rates monitoring 
in close distance and with good illumination.  
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Other Conferences 
 
[19] L. Ren, A.E. Fathy, K. Naishadham, J.E. Piou, V. Dang, and O. Kilic, 
“Overview of vital sign detection-simulation and measurements,” IEEE/ACES 
International Conference on Wireless Information Technology and Systems 
(ICWITS) and Applied Computational Electromagnetics (ACES), Honolulu, 
Hawaii, March 13-17, 2016. 
 

7.3 Conclusion 
 

This work mainly focuses on the vital signs monitoring of human subjects using 
UWB pulse radar and SFCW radar. The topics of human micro-Doppler 
signatures extraction using UWB radar and iPPG techniques for vital signs 
detection are covered as well. This dissertation can be concluded as below. 
(1) Compared with UWB pulse radar using free-running LO, the UWB radar with 
system synchronization and phased-locked transmitting signal possesses lower 
system phase noise and provides higher accuracy in vital signs detection. 
(2) UWB pulse radar has been extended for human heart rate detection. Due to 
the small amplitude of heartbeat, the conventional amplitude-based signal 
processing suffers from harmonics of respiration and intermodulation 
interferences in heart rate monitoring. Phase-based methods overcome these 
aforementioned drawbacks and provide accurate estimation of both heartbeat 
amplitude in time domain and heart rate in spectrum. 
(3) UWB impulse radar can localize multiple subjects and detect the heart rates. 
Advanced signal processing such as SSM will further improve the SNR in the 
heart rate detection using UWB pulse radar. 
(4) STSSM has been developed to identify the m-D signatures of different human 
body joints. Boulic model serves as reference to the extracted m-D trajectories 
with STSSM using UWB pulse radar. 
(5) Compact integrated SFCW radar using chips instead of connectorized 
components were designed and fabricated. Its performance in human vital signs 
detection is comparable with connectorized counterpart and heart rate detection 
error is <2% for 0.6m radar-subject distance. 
(6) Time domain (impulse) UWB radar: equivalent time sampling is used to 
circumvent the need for fast and expensive ADCs. Frequency domain (SFCW) 
UWB radar: several channels work simultaneously to reduce the data acquisition 
time. CS based SFCW signal processing: uses measurements at only a small 
number of random frequencies to further reduce the data acquisition time with 
adequate errors. 
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(7) The performance of SFCW radar and iPPG sensoe in vital signs detection 
has been experimentally compared. Both techniques showed comparable 
accuracy in the respiratory and heart rates extraction under ambient light 
conditions, while iPPG sensor has the unique capability of non-contact oxygen 
saturation level detection. However, iPPG sensor cannot be utilized for through-
wall detection, and its performance deteriorates under poor lighting conditions. 

 
7.4 Direction of Future Work 

 
By now, equivalent time sampling scheme is still being used to collect reflected 
narrow pulses in impulse radar. The next step of research is to implement direct 
sampling instead using ultra-high-speed ADC like the ones currently developed 
by TI. The distortion of the reconstructed pulses introduced by the equivalent 
time sampling will be eliminated when using the direct sampling method. 
Both phase-based methods and SSM have been proposed for the signal 
processing of collected radar data. A clear guideline of which method to be used 
will be developed for different scenarios of vital signs detection. SSM needs to be 
implemented for real time monitoring with LabVIEW. 
In the future work, the SFCW radar will be fully integrated with CMOS or GaAs 
technology so the system size will be greatly reduced. A hybrid system consisting 
of SFCW radar and IPPG sensor with different working mode will be thoroughly 
studied as well. The hybrid system can monitor respiratory, heart rates and SpO2 
level of human.  
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A.1 Differentiate and cross-multiply (DACM)  
 
The DACM is introduced in Chapter 3.2 to avoid the wrapping problem 
 
The derivative to the arctangent demodulation is computed as 

2 2arctan
M t R t M t R t M td

dt R t R t M t                         (2-35) 
where M t  and R t  represent the slow time derivative of M(t) and R(t) 
respectively. Then integration is applied to (2-20) to retrieve results of the 
arctangent operation. In digital domain, the total phase information ψ(t) can be 
calculated practically as [57], 

2 2
2

1 1n

k

R k M k M k M k R k R k
n

R k M k           (2-36) 

where differentiation is characterized as a forward difference and integration is 
approximated by an accumulation.  
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A.2 Imbalance compensation method 
 
The imbalance compensation method is introduced in Chapter 3.2. It is proposed 
to correct such imbalance and dc offsets in UWB radar data 
 
In presence of imbalance, the complex value obtained from Fourier transform of 
fast time samples will be Y′(t, 0) = R′+j∙M′. 
 

cos 2R c d R RR A j t B                                    (2-37a) 

sin 2M c d M MM A j t B                              (2-37b) 
 
where BR and BM denotes dc offsets; the amplitude imbalance between real and 
imaginary parts is Ae = AM/AR; the phase imbalance is ϕe = ϕM – ϕI. The standard 
equation of ellipse using R′ as horizontal axis and M′ as vertical axis is [58], 

2 2 0R A M B R M C R D M E              (2-38) 
then the amplitude imbalance and phase imbalance can be calculated as, 

1
eA

A  and 
1sin

2e
B

A                                             (2-39) 

It is obvious that all these five ellipse parameters can be acquired with five or 
more than five pairs of data samples (R′, M′). The solution for A′, B′, C′, D′, and E′ 
can be obtained as [58],  

1T T

A
B
C G G G b
D
E

                                   (2-40) 

where K×5 matrix G and K×1 matrix b are (K ≥ 5), 
 

2
1 1 1 1 1

2

1

11111K K KK

M R M R M
G

R M RM
  and 

2
1

2
K

R
b

R
                               (2-41) 

The dc offsets BR and BM can be estimated as well when ellipse parameters are 
available. As a result, the imbalance and dc offsets in the real and imaginary 
components of complex values obtained from Fourier transform can be 
effectively calibrated in real-time.  
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