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ABSTRACT 

Through-the-Wall Radar Imaging (TWRI) is anemerging technology which enables us to detect 

behind the wall targets using electromagnetic signals. TWRI has received considerable attention 

recently due to its diverse applications. This paper presents fundamentals, mathematical 

foundations and emerging applications of TWRI with special emphasis on Compressive Sensing 

(CS) and sparse image reconstruction.Multipath propagation stemming from the surrounding 

walls and nearby targets are among the impinging challenges.Multipath components produce 

replicas of the genuine target, ghosts, during image reconstruction which may significantly 

increase the probability of false alarm. The resulting ghost not only creates confusion with 

genuine targets but may deteriorate the performance of (CS) algorithms as described in this 

article. The results from a practical scenario show a promising future of the technology which can 

be adopted in real-life problems including rescue missions and military purposes. 

 

Key words: Aspect dependence, compressive sensing, multipath ghost, multipath exploitation, 

through-the-wall-radar imaging. 

 

INTRODUCTION 

The ultimate objective of Through-the-Wall 

Radar Imaging (TWRI) is to sense through 

building walls using Electromagnetic (EM) 

signals to reveal targets located behind the 

wall. TWRI has been sought out in rescuing 

missions in case of fire and earthquake 

tragedies, in determining interior structures 

of inaccessible buildings, and in performing 

inspection for law enforcing and military 

applications ( Setlur et al. 2013, Leigsnering 

et al. 2014, Abdalla et al. 2015, Leigsnering 

et al. 2015). This technology has witnessed a 

tremendous growth and attracted the 

attention of many researchers in the last few 

years.  

 

One of the major challenges facing TWRI is 

multipath stemming from multiple 

reflections of EM waves from the walls, 

floors and ceilings (Chakraborty and Li 

2010,Setlur et al. 2013, Leigsnering et al. 

2014). During image reconstruction, 

multipath components of the signal give rise 

to replicas of genuine targets which increase 

the probability of false alarm. The copies of 

the true target, known as ghosts, not only 

populate the scene but also create confusion 

with genuine targets.Consequently,they 

jeopardize the correct target detection 

process leading to improper resources 

allocation. Recently, ghost suppression in 

TWRI applications became topical and has 

attracted the attention of many researchers. 

 

Most of TWRI’s applications entail high 

quality images of the scenes, which dictates 

the use of wide band signals, large radar 

apertures and effective ghost suppression 

method (Abdalla 2016). The high quality 

requirement brings the big data constraint 

which is currently addressed by the 
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application of Compressive Sensing (CS) 

during data acquisition and image 

reconstruction (Yoon and Amin 2008, Amin 

2010). On the latter requirement, different 

multipath ghosts suppression methods have 

been devised including multipath 

exploitation-based methods with and 

without CS (Setlur et al. 2013, Leigsnering 

et al. 2014), and Aspect Dependent (AD) 

based methods with and without CS (Li et 

al. 2013, Tan et al. 2014, Abdalla et al. 

2015, Guo et al 2017, Guo et al. 2018a, Guo 

et al. 2018b). By ghost being AD, means 

their locations in the image change with the 

radar location. Interrogating a given scene 

from different aspect angles results in ghost 

targets residing at different pixels unlike 

genuine targets. This peculiar property is 

exploited to recognize and then suppress 

them as in (Li et al. 2013, Tan et al. 2014, 

Abdalla et al. 2015, Abdalla 2016, Guo et at. 

2018a).  

 

This paper presents a brief background, 

mathematical formulation, and the theory 

behind the TWRI together with its emerging 

applications with a special emphasis on CS 

and sparse image reconstruction. To validate 

the concepts, real experimental data is 

used.In this paper, to combat the effect of 

multipath ghost, the AD technique based on 

subaperture imaging is employed. 

 

The remainder of the paper is organized as 

follows: introduction on  fundamentals of 

TWRI, the concepts of resolutions, 

sensitivity, dynamic range, and the signal 

models are also summarized. The formation 

of multipath ghost and their challenges are 

outlined. Highlights the theory behind the 

CS with emphasis on TWRI applications. A 

TWTI practical scenario is presented. 

Possible future works followed by 

conclusions. 

 

TWRI ESSENTIALS 

TWRI is rapidly growing due to its diverse 

applications. Currently, the research is 

trending on the application of CS in TWRI 

to improve image quality with minimum 

data volume. This section highlights the 

technical background materials needed for 

one to be acquainted with TWRI. 

 

TWRI aims at sensing through building 

walls using RF signals to reveal targets 

located behind the wall. In the TWRI 

literature, the scene of interest is mostly 

interrogated using either pulsed radar or 

Stepped-Frequency Radar (SFR) system. In 

the two scenarios, the transmitted Ultra-

Wide Band (UWB) signal is realized in time 

and frequency domains, respectively. To 

acquire highly resolved images using pulsed 

radar, the transmitted pulses should have 

shorter duration thereby the transmitted 

bandwidth increases. It is known that the 

Signal-to-Noise Ratio (SNR) is a function of 

the transmitted energy in the radar signal 

(Oyanet al. 2012). The energy of the pulse is 

specified by the transmitted peak power in 

the pulse and the pulse width. When 

transmitting shorter pulses to achieve high 

range resolution, it results inlow energy 

being transmitted and hence reduces SNR 

for a given transmitter power (Abdalla 

2016). Thus, the radar engineers suggested 

alternative radar waveforms with longer 

time to acquire high energy with relatively 

good range resolution. One approach is by 

sequentially transmitting a series of 

monochromatic waves of linearly increasing 

frequency, known as stepped frequency 

signal (Abdalla 2016). Throughout this 

article, SFR is assumed unless stated 

otherwise. In the following sub-sections, the 

nuts and bolts of the SFR design are 

delineated.  

 

Step Frequency Radar Design Parameters 

In SFR, a series of 𝑀 monochromatic waves 

whose frequencies are linearly spaced by 

Δ𝑓, as shown in Figure 1, are transmitted 

and received at each radar location with the 

initial frequency value 𝑓0 and the final 𝑓𝑀−1. 

The number of transceivers in a physical 
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array or positions in Synthetic Aperture 

Radar(SAR) defines the aperture length of 

the radar system. 

 

The choice of Δ𝑓 is crucial in the SFR 

design as it dictates the maximum range that 

the radar system can unambiguously image a 

given scene. 

 

 
Figure 1: Step frequency signal 

The maximum unambiguous range, 𝑅𝑚𝑎𝑥 , is 

given by (Raimundo 2015, Abdalla 2016): 

𝑅𝑚𝑎𝑥 =
𝑐

2Δ𝑓
 (1) 

where 𝑐 is the speed of EM wave in free 

space. Other important parameters in SFR 

design include radar resolutions, sensitivity 

and dynamic range.  

 

Downrange and Crossrange Resolution 

Radar resolution measures the capability of 

the radar  to distinguish two close targets in 

downrange and crossrange directions 

(Raimundo2015, Abdalla 2016). The 

downrange resolution, Δ𝑅 , in meters, is the 

ability of the radar to resolve distinct targets 

positioned along the same angular 

displacement but at different downranges. 

Mathematically, Δ𝑅 is given by (Raimundo 

2015, Abdalla 2016): 

Δ𝑅 =
𝑐

2𝐵
=

𝑐

2𝑀Δ𝑓
 (2) 

where 𝐵 refers to the signal bandwidth.  

The downrange resolution improves with 

increasing bandwidth and that explains why 

the modern TWRI systems employ UWB 

signals. 

 

The crossrange resolution, Δ𝑅𝐶 , on the other 

hand, refers to the ability of the radar to 

distinguish adjacent targets laying at the 

same downrange with different angular 

displacements. If the SAR has aperture 

length, 𝐿 with RF signal of wavelength, 𝜆, 

and if the two targets are located at a 

range, Ʀ, then the crossrange resolution is 

given by (Lagunas 2014, Raimundo 2015, 

Abdalla 2016): 

Δ𝑅𝐶 =
𝜆Ʀ

2𝐿
 (3) 

 

The crossrange resolution (3) improves with 

increasing aperture length and this explains 

why the modern TWRI systems use SAR to 

realize large apertures. The crossrange 

resolution is also range dependent as 

inferred in (3).Therefore, the farther are the 

targets, the lower is the crossrange 

resolution that the radar can achieve 

provided the aperture and frequency remain.  

 

The above equation was derived for radars 

with narrow frequency band, monostatic 

configuration, and one-dimensional SAR 

processing. When using UWB signals, the λ 

varies significantly across the frequency 

band and, therefore, the system in such case 

uses upper bound instead (Abdalla 2016).  

 

Sensitivity and Dynamic Range of the 

Radar 

Radar sensitivity is the minimum input RF 

power that the radar can detect (Abdalla 

2016). It provides a measure of the ability of 

the radar system to detect the presence of a 

target (Teng et al. 2007, Raimundo 2015). 

The dynamic range, on the other hand, is the 

ratio of the strongest to the weakest signal 

registered by the radar system and is 

expressed in 𝑑𝐵(Teng et al. 2007, Raimundo 

2015). This number quantifies the maximum 

loss that the radar signal can attain, and yet 

be detectable by the receiver (Abdalla 2016). 

TWRI may experience strong reflections 

from the surrounding clutters including the 

front wall that can limit the dynamic range 
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of the radar, if not properly handled. This 

phenomenon might saturate or even block 

the receiver and affect the detection of the 

low-cross-section targets which are treated 

as noise.  

 

In the past few years, clutter mitigation was 

the area of interest in which the front wall 

clutter is mitigated prior to target detection 

(Yoon and Amin 2009, Tivive et al. 2011, 

Tivive et al. 2015). The dominant challenge 

in TWRI applications is the multipath 

components which adversely affect image 

reconstruction and interpretation. To better 

address multipath challenges and possible 

remedial measures, a realistic signal model 

is needed. 

 

Scene Geometry and Signal Model 

In TWRI, both transmitter and receiver are 

located on one side, a few meters from the 

front wall, “stand-off distance”. EM waves 

traverse two different media: air and wall 

material, in a round trip fashion from the 

transmitter to the receiver. The signal 

undergoes a significant distortion as the 

wave is refracted twice, at the air-wall 

interface and then at the wall-air interface in 

the forward direction. Similar action 

happens as moving from the target back to 

the receiver (Leigsnering et al. 2014, 

Abdalla 2016). 

 

When the signal reaches the target it might 

be reflected at one or multiple secondary 

reflectors leading to multipath phenomenon 

as shown in Figure 2. Multipath returns may 

result from one of the following: interior 

wall; floor/ceiling; wall ringing; and target-

to-target interaction (Leigsnering et al. 2014, 

Abdalla 2016). The multipath due to the 

interior wall can be subdivided into first-

order, second-order or higher-order 

multipath. In first-order multipath, only one 

interior wall is involved, one trip is directly 

from or to the target and the remaining 

interact with the wall to complete the trip. In 

second-order multipath, there are two cases: 

one is similar to the previous except that the 

signal reflect on two interior walls and there 

is also a monostatic scattering scenario 

where transmission and reception occur 

along the same path but involve secondary 

reflectors. Whereas higher-order involves at 

least three secondary reflectors. Higher-

order multipath are normally neglected since 

the received signal becomes very weak due 

to the additional reflections. Also the 

prolonged delay resulting due to multiple 

secondary reflections makes the target to 

reside outside the room during image 

reconstruction. (Leigsnering et al. 2014, 

Abdalla 2016). 

 

In TWRI, the received signal comprises of a 

number of components including the front 

wall returns, direct returns from the targets, 

reflections due to the interior walls, front 

wall reverberations, target-to-target 

interactions, and floor/ceiling returns. 

 

 
Figure 2: TWRI multipath scenario with 

first order returns 

 

Interior Wall Multipath Model 

Figure 3 illustrates a simple TWRI interior 

wall reflection scenario with only one wall 

to elaborate the idea. Consider a 𝑝𝑡ℎ  target 

located at 𝑧𝑝 = [𝑥𝑝 , 𝑦𝑝]𝑇 , and the interior 
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right wall parallel to the 𝑦-axis is located at 

𝑥 = 𝑥𝑤 . Assuming specular reflection, there 

are two propagation paths: from the 𝑛𝑡ℎ  

antenna located at 𝑥𝑛  to the target following 

path-A and back to the antenna via path-B. 

The second is direct path without any wall 

reflection. It is observed that the return 

yields alternative antenna-target geometry 

and thus a virtual radar is realized located 

behind the same wall at [2𝑥𝑤 − 𝑥𝑛 , 0] 
simulating bistatic configuration.The delay 

associated with path-B is the same as that 

from the target to the virtual radar. This 

simplifies the delay calculation from the 

target back to the receiver as indicated 

bypath-B. The same principle can be readily 

applied to the remaining walls. The 

associated delay is obtained by dividing 

Euclidean distance by the speed of the EM 

wave assuming the ray tracing model.  

 
 

Figure 3: Multipath propagation via 

reflections from interior walls 

 

Front Wall Reverberations Model 

Another big challenge of TWRI is the 

presence of the front wall. As the wave 

propagates through the front wall, it gets 

reflected from the outer and inner surfaces 

of the wall causing a wall ringing or 

reverberation phenomenon (Karousoset al. 

2008, Leigsnering et al. 2014) as depicted in 

Figure 4. As a result, copies of true targets 

are generated in the reconstructed image 

which are equally spaced in the radial 

direction from the array with exponentially 

reducing intensity (Leigsnering et al. 2014). 

These copies are termed as ghosts. The front 

wall returns, however, can be dealt with 

using available wall mitigation techniques 

(Yoon and Amin 2009, Lagunas et al. 2013, 

Tivive et al. 2015).  

 

 
 

Figure 4: Wall reverberation model 

 
Figure 4 shows the effect of wall 

reverberation on the transmitted signal. The 

distance, ∆𝑥, between the target and the 

array in crossrange direction is given by 

(Abdalla and Muqaibel 2016): 
∆𝑥 =  ∆𝑦 − 𝑑 tan 𝜃𝑎𝑖𝑟
+ 𝑑 1 + 2𝑘 tan 𝜃𝑤𝑎𝑙𝑙  

(4) 

where ∆𝑦 defines the distance between 

target and array element in the downrange 

direction, 𝜃𝑎𝑖𝑟  and 𝜃𝑤𝑎𝑙𝑙  are the angles in the 

air and in the wall medium, respectively, 𝑑 

represents the width of the wall and 𝑘 is an 

integer denoting the number of internal 

reflections. In most scenarios, the values of 

𝑘 do not exceed three (Ahmad and Amin 

2008). The two angles are related by the 

famous Snell’s law (Ahmad and Amin 

2008): 
sin𝜃𝑎𝑖𝑟

sin𝜃𝑤𝑎𝑙𝑙

=  휀𝑟  (5) 

where 휀𝑟  is the relative permittivity of the 

wall material. Solving the nonlinear system 

(4) and (5) using numerical methods gives 

the unknown angles. The one-way time 

delay that a given return will undergo due to 

𝑘th wall reverberations will be (Leigsnering 

et al. 2014):  

𝜏 ∆𝑥,∆𝑦, 𝑘 =
(𝛥𝑦 − 𝑑)

𝑐 cos 𝜃𝑎𝑖𝑟

+
𝑑 휀𝑟(1 + 2𝑘)

𝑐 cos 𝜃𝑤𝑎𝑙𝑙
 

(6) 

 

Target-to-Target Interaction  
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In some applications, the interaction 

between the targets is inevitable and 

therefore, the resulting returns need to be 

taken into consideration. As shown in Figure 

2, some signal components reflect at the 

nearby targets as they head to the receiver. 

The targets interaction results in a non-linear 

signal component which pose computational 

complexity particularly when applying CS. 

In (Abdalla 2016), however, the author 

hypothesized that for two nearby and 

interacting targets, the overall reflectivity 

can be transferred to one of the target and 

the other target being considered as perfect 

reflector of a unit reflectivity. Thus, the 

resulting multipath will be interpreted as 

coming from a physical target of reflectivity 

equal to the product of the individuals 

(Abdalla 2016). 

 

Received Signal Model 

Suppose there are 𝑁 radar locations and 𝑀 

equally spaced monochromatic waves are 

transmitted and received at each location to 

realize UWB signal(Gurbuz et al. 2009, 

Leigsnering et al. 2013, Muqaibel et al. 

2017a). The scene is subdivided into 𝑁𝑥  by 

𝑁𝑦  pixels along the crossrange and 

downrange, respectively and the target 

reflectivity of a 𝑝𝑡ℎ  pixel is 𝜎𝑝 , with 𝑝 =

0, 1,… ,𝑁𝑥𝑁𝑦 − 1. If 𝑅 target returns and 𝑅𝑤  

wall returns are recorded, then the received 

signal at the 𝑛𝑡ℎ  radar position when the 

𝑚𝑡ℎ frequency, 𝑓𝑚 , is 𝑦 𝑚,𝑛 , with 𝑛 =
0,1,2,… ,𝑁 − 1 and 𝑚 = 0,1,2,… ,𝑀 − 1 is 

given by (7)(Abdalla et al. 2015).  

 

In (7), 𝑡𝑝𝑛
(𝑟)

 represents the round-trip delay 

between the 𝑝𝑡ℎ  target and the 𝑛𝑡ℎ  receiver 

due to the 𝑟𝑡ℎ  return, 𝑡𝑝𝑛𝑞
(𝑟)

 is the round trip 

delay between 𝑝𝑡ℎ  and 𝑞𝑡ℎ  targets with 𝑛𝑡ℎ  

transceiver and 𝑡𝑤
(𝑟𝑤 )

 is the time delay of the 

𝑟𝑤
𝑡ℎ  front wall return. While 𝜎𝑝

(𝑟)
 and 𝜎𝑤

𝑟𝑤 are 

the target and the wall pixel reflectivities, 

respectively, with respect to the 𝑟𝑡ℎ  and 𝑟𝑤
𝑡ℎ  

returns,𝑣 𝑚,𝑛  signifies the noise sample. 

The received signal comprises of four main 

contributions: reflection from the front wall, 

target-to-side wall reflection, target-to-target 

reflection and ambient noise.  

If multipath are not well modeled, then 

unwanted targets will be created during 

image reconstruction resulting to misleading 

interpretation. These hypothetical, unwanted 

targets are known as ghosts. 

 

GHOST FORMATION AND FRONT 

WALL MITIGATION IN TWRI 

In TWRI applications, ghost targets result 

from interaction of the genuine targets with 

surrounding walls or with targets 

themselves. The front wall may also produce 

ghost when the signal suffersreverberation 

effect (Abdalla 2016). The ghosts due to the 

front wall reverberation appear in 

downrange direction with their spacing as a 

function of wall thickness and relative 

permittivity (Leigsnering et al. 2014, 

Abdalla et al. 2015). When the signal travels 

from the transmitter to the target, only part 

of it propagates straight to the target but 

other components get reflected by the walls, 

floor and ceiling before reaching the target 

or after being reflected back from the target 

to the receiver. The scattered components 

register different delays due to different 

reflecting geometries as shown in Figure 5 

(a)-(c). 

 

In such a case, the receiver interprets each of 

the delayed versions as they come from 

different physical targets which results into 

hypothetical targets as depicted in Figure 5 

(d). The formed ghosts with the true targets 

fall on concentric circles with the transceiver 

location being their common center. The 

scene becomes populated and the number of 

expected ghosts grows proportionally with 

the number of true targets for a given 

reflecting geometry. If there are 𝑃 true 

targets in the scene and 𝑅 signal returns 

were recorded by the transceiver, then the 

number of multipath ghosts is at most 
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𝑃 𝑅 − 1  assuming specular reflection 

(Abdalla 2016). 

 

For a monostatic configuration, the possible 

ghost location with respect to the transceiver 

is estimated from the average time delay.  

 

 

 

𝑦 𝑚,𝑛 =   𝜎𝑝
(𝑟)

exp – 𝑗2𝜋𝑓𝑚 𝑡𝑝𝑛
(𝑟)

 

𝑁𝑥𝑁𝑦−1

𝑝=0

𝑅−1

𝑟=0

+  𝜎𝑤
𝑟𝑤 exp – 𝑗2𝜋𝑓𝑚 𝑡𝑤

(𝑟𝑤 )
 

𝑅𝑤−1

𝑟𝑤=0

+   𝜎𝑝𝑞
(𝑟)

exp – 𝑗2𝜋𝑓𝑚𝑡𝑝𝑞𝑛
(𝑟)

 

𝑁𝑥𝑁𝑦−1

𝑝 ,𝑞=0
𝑝≠𝑞

𝑅−1

𝑟=0

+ 𝑣 𝑚,𝑛  

(7) 

The delay from the transmitter to the target 

(path-A), 𝜏𝐴 , and the delay from the target 

back to the transceiver (path-B) , 𝜏𝐵 , as 

shown in Figure 5 (a)-(c), define the average 

delay. The possible location of the true 

target is described by the circle with the 

radius 𝑐𝜏𝐴 . The locus of the ghost location 

due to a single bounce (first-order reflection) 

on the right-side wall is a circle with radius 

𝑐  
𝜏𝐴+𝜏𝐵

2
  as shown in Figure 5 (d).If the 

signal undergoes reflection twice at the wall 

(second-order reflection), the resulting ghost 

will reside 𝑐𝜏𝐵  away from the radar as 

depicted in Figure 5 (d) with 𝜏𝐵 >

 
𝜏𝐴+𝜏𝐵

2
 > 𝜏𝐴 .The left and back walls 

generate ghosts in a similar fashion. During 

SAR image reconstruction and 

interpretation, the formed ghost targets pose 

some technical challenges. However, their 

peculiar properties can be exploited to 

identify and then suppress them(Leigsnering 

et al. 2014, Abdalla 2016). The properties of 

multipath ghosts include lower crossrange 

resolution, non-ideal focusing and AD. 

 

The AD property has been utilized to aid in 

suppressing the effect of multipath ghosts as 

in (Wang and Huang 2006, Tan 2010, Tan et 

al. 2014, Abdalla et al. 2015, Abdalla 

2016).In TWRI, changing the transceiver 

location, alters the signal reflecting pattern 

and therefore, registers different values of 

the round-trip delays. If the scene is 

interrogated using different locations, their 

corresponding ghosts reside in different 

pixels while the true targets locations remain 

unchanged irrespective of the array shift 

making identification of ghost from genuine 

target possible. This property of the ghost is 

referred to as Aspect Dependence (AD).  

 

The application of CS requires the scene to 

be sparse which might be challenged if the 

front wall is not mitigated before the image 

reconstruction process. 

 

Front Wall Mitigation 

Without an effective wall clutter mitigation 

method, the targets may not be detected in 

the presence of strong wall reflections as the 

strong EM reflections obscure the targets, 

rendering target detection and classification 

difficult, if not impossible (Lagunas et al. 

2013, Tivive et al. 2015, Muqaibel et al. 

2017a, Tang et al. 2018). In the case of 

moving targets, the wall effect can be 

alleviated using change detection 

(Leigsnering et al. 2014, AlBeladi 2015). 

This is not possible for stationary scene, in 

which case the front wall reflections should 

be effectively attenuated before image 

reconstruction. In recent literatures, the 

common front wall mitigation techniques 

applied under CS framework include spatial 

filtering and Singular Value Decomposition 
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(SVD) based approaches (Lagunas et al. 

2013, Tivive et al. 2015).  

 
Spatial Filtering Based Approach 

The fact that the delays of the front wall 

returns do not vary with the radar locations, 

the contribution is said to have zero spatial- 

 

 

 
Figure 5: Some indoor multipath scenes (a) direct propagation (b) first-order interior bounce (c) 

second-order interior bounce (d) corresponding target and ghost locations(Abdalla 

2016). 

 

frequency. Therefore, the front wall return 

can be distinguished from the target returns 

under spatial domain. The received signal, 

𝑦[𝑚,𝑛], has, therefore, two components 

with regards to spatial variations. Separating 

front-wall contribution from target 

contribution amounts to basically separating 

a zero-frequency signal from non-zero 

frequency signals across antennas, which 

can be achieved using an appropriate spatial 

filter (Yoon and Amin 2009, Lagunas et al. 

2013). 

The spatial filter which notches out the 

constant component can be realized as the 

subtraction of the average value of the return 

across the array from the total return. The 

filtered signal, 𝑦  𝑚,𝑛  is given by (Lagunas 

et al. 2013): 

𝑦  𝑚,𝑛 = 𝑦 𝑚,𝑛 −
1

𝑁
 𝑦[𝑚,𝑛]

𝑁−1

𝑛=0

 (8) 

 

Singular Value DecompositionBased 

Approach 

Alternatively, front wall mitigation under 

CS framework can be achieved using SVD. 

Suppose that the received signals are 

arranged into an 𝑀 × 𝑁 matrix, 𝐁(Lagunas 

et al. 2013,Muqaibel et al. 2017a, Tivive et 

al. 2015):  

𝐁 = [𝐛0𝐛1 …𝐛𝑛 …𝐛𝑁−1] (9) 

where 𝐛𝑛  is the 𝑀 × 1 column vector 

containing the stepped frequency signal 

received by the 𝑛𝑡ℎ  radar given by:  

𝐛𝑛 =  𝑦 0,𝑛  …𝑦 𝑚,𝑛  …𝑦 𝑀
− 1,𝑛  𝑇  

(10) 

Performing SVD of 𝐁, gives:  

𝐁 = 𝐔𝐃𝐕H  (11) 

where 𝐕H  denotes the conjugate transpose of 

𝐕, 𝐔 and 𝐕 are unitary matrices containing 

the left and right singular vectors, 

respectively, and 𝐃 is a diagonal matrix 

containing the singular values 𝜆1 , 𝜆2,…𝜆𝑁 in 

descending order. It is assumed that the front 

wall and target reflections lie in different 

subspaces. Therefore, the first 𝐾 dominant 

singular vectors of the 𝐁 matrix are used to 

construct the wall subspace 𝐒𝑤𝑎𝑙𝑙 (Lagunas et 

al. 2013): 

𝐒wall =  𝒖𝑘𝒗𝑘
𝐻

𝐾

𝑘=1

 (12) 

where 𝑺𝑤𝑎𝑙𝑙
⊥ is the subspace orthogonal to the 

wall subspace, given by: 
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𝐒wall
⊥ = 𝐈 − 𝐒wall 𝐒wall

H  (13) 

where 𝐈 denotes the identity matrix. Now, 

projecting the B-scan matrix on the 

orthogonal subspace, the wall returns will be 

mitigated, given by: 

 

𝐁 = 𝐒wall
⊥ 𝐁 (14) 

It is shown in (Lagunas et al. 2013) that both 

spatial filtering and subspace methods give 

better results when applied under CS 

framework.  

 

COMPRESSIVE SENSING 

Compressive Sensing (CS) states that a 

sparse or compressible signal can be 

reconstructed using fewer measurements 

compared to the signal dimension contrary 

to conventional linear algebra theory 

(Candès 2006, Lagunas 2014, Masood 

2015). A sparse signal refers to a signal with 

only few non-zero entries. While 

compressible signal means a signal with 

fewer significant entries, the remaining are 

not necessarily zeros (Abdalla 2016).  

 

Many applications today with TWRI as an 

example, face the big data challenge. To 

acquire, process, and store huge amount of 

data using traditional techniques becomes a 

nightmare. In many applications though, 

most of the collected data is insignificant 

and can be dropped without compromising 

the quality of the expected signal (Abdalla 

2016). For the past years, all this data was 

captured and then compressed off-line by 

dropping all insignificant ones. But CS 

provides a way to simultaneously acquire 

and compress the signal. This capability 

drastically reduces the cost and time for data 

acquisition and processing (Candès 2006, 

Donoho 2006). CS theory suggests that a 

signal which is not sparse or compressible in 

its original domain may have sparse 

representation in other domains (Candès 

2006, Donoho 2006). Taking sinusoid signal 

as an example, although it is not sparse in 

time domain but it is in the frequency 

domain. Since most of the real life scenarios 

including radar imaging exhibit sparsity in 

certain domains, CS finds itself attractive in 

TWRI applications as it enables significant 

reduction in data volumes. CS theory asserts 

that one can recover certain signals from far 

fewer samples below the Nyquist rate. To 

make this possible, CS relies on two 

principles: sparsity, which pertains to the 

signals of interest; and incoherence, which 

pertains to the sensing modality (Candès 

2006). 

 

To comprehend the idea, consider a sparse 

signal 𝒔 ∈ ℂ𝑁𝑥𝑁𝑦×𝟏that denotes a 2D image 

signal of length 𝑁𝑥𝑁𝑦  as presented in the 

previous sections. The secret behind CS 

reconstruction is that we acquire the 

measurements as linear combinations of its 

elements. Let 𝐀 ∈ ℂ𝐽×𝑁𝑥𝑁𝑦  with 𝐽 ≪ 𝑁𝑥𝑁𝑦  

be a sensing matrix which defines the linear 

combinations of the elements of 𝒔 and 

𝒚 ∈ ℂ𝐽×1 being the compressed 

measurement vector which is a linear 

projection of 𝒔. In the presence of Gaussian 

noise, 𝒗, 𝒚  can be written as (Abdalla 2016):  

𝒚  =  𝐀𝒔 +  𝒗 (15) 

A crucial stage in CS is the design of 𝐀 to 

ensure that the signal information is 

preserved otherwise it will lead to erroneous 

reconstruction. If the vector of interest is not 

sparse in the original domain, then it can be 

transformed using arbitrary basis resulting 

ina sparse vector. Suppose, 𝜽 is the sparse 

representation of 𝒔 using transformation 𝝓 

such that 𝒔 = 𝝓𝜽, the design of 𝐀 depends 

very much on 𝝓. The CS theory asserts that 

the columns of 𝐀𝝓 should be as incoherent 

as possible to ensure correct recovery. In the 

literature, the performance criteria used to 

measure the recoverability of the given 

sensing matrix include but are not limited to 

Restricted Isometry Property (RIP), mutual 

coherence, spark and Null Space Property 

(NSP)(Leigsnering 2015). Unlike RIP, 

Spark and NSP are applicable only in 
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noiseless scenarios and, therefore, they are 

not suitable for TWRI applications.  

 

Restricted Isometry Property (RIP) 

A sensing matrix, 𝐀 is said to satisfy RIP of 

order 𝑃 if there exists a 𝛿𝑃 ∈  0,1  such that 

(Candès 2006): 

 1 − 𝛿𝑃  𝒔 2
2 ≤  𝐀𝐬 2

2

≤  1 + 𝛿𝑃  𝒔 2
2 

(16) 

 

for all 𝐬 ∈  =𝑃  𝒔:  𝒔 0 ≤ 𝑃  
If equation (16) is satisfied, then this is 

sufficient condition for a variety of 

algorithms to recover a sparse signal from 

noisy measurements. 

 

In TWRI applications however, RIP is quite 

involving even if the sparsity of the scene is 

known. In such cases, mutual coherence of 

the sensing matrix provides relatively easy 

alternative (Leigsnering 2015). 

 

Mutual Coherence 

In classical array literature, the array design 

focusses on the Point Spread Function 

(PSF). The normalized PSF is equivalent to 

the mutual coherence between columns of 

the sensing matrix in CS framework. The 

mutual coherence of a matrix 𝐀, 𝜇 𝐀 , is the 

maximum absolute value of the inner 

product among all pairs of columns in the 

matrix and is given by (Donoho et al. 2012, 

Li et al. 2014): 

𝜇 𝐀 = max
𝑖≠𝑗

 𝒂𝑖
𝐻𝒂𝑗  

 𝒂𝑖  𝒂𝑗 
 (17) 

where 𝒂𝑖  is the 𝑖𝑡ℎ  column vector of 𝐀. In 

classical algorithms, it may also provide 

useful information on the performance of the 

given array including resolution, robustness 

to noise and other interferences, and 

ambiguity information. When 𝜇 𝐀  is a 

small, it is a sufficient condition to ensure 

unique signal reconstruction. 

 

Signal Reconstruction Algorithms 

The traditional mathematics suggests that 

equation (15) has infinitely many solutions 

as it forms an underdetermined system. If, 

however, the signal is sparse, then naturally 

one can think of 𝑙0-norm minimization to 

acquire a unique solution which is given by:  

𝒔 = argmin𝐬 𝐬 0 s.t.  𝒚 − 𝐀𝐬 2 < ε (18) 

where 휀 is a function of noise power (Huang 

et al. 2010). Basically (18) counts the 

number of non-zero entries in a vector signal 

and returns the sparsest solution. This 

approach, though, requires exhaustive search 

over all possible supports of 𝒔, which is not 

feasible and it is therefore, labeled as NP-

hard problem (Masood 2015).  

 

It is reported in CS literature that such 

problem in (18) can be relaxed and 𝒔 can be 

reconstructed with high probability using 

𝐽 ≥ 𝐶𝑃 log  
𝑁𝑥𝑁𝑦

𝑃
  measurements by 

minimizing 𝑙1-norm (Masood, 2015):   

𝒔 = argmin𝐬 𝐬 1 s.t.  𝒚 − 𝐀𝐬 2 < ε (19) 

 

This convex optimization problem can be 

casted as linear program known as Basis 

Pursuit (BP) and number of algorithms to 

solve such problem are available in the 

literature (Abdalla 2016). BP however, are 

computationally inefficient particularly for 

large signals. To overcome this challenge, 

greedy algorithms, like Matching 

Pursuit(MP) were devised which find the 

support of the unknown vector iteratively 

(Tropp and Gilbert 2007, Needell and 

Vershynin 2009,Donoho et al. 2012). MP 

algorithm is faster but it lacksstability and 

also requires computation of inner products 

which adds complexity especially for large 

and less sparse vectors (Masood 2015). As a 

remedy, derivatives of MP have been 

presented that include but are not limited to 

Compressive Sampling Matching Pursuit 

(CoSAMP), Stage-wise Orthogonal 

Matching Pursuit (StOMP), Subspace 

Pursuit (SP) and Regularized Orthogonal 

Matching Pursuit (ROMP) as narrated in 

(Masood 2015).  

 



Abdalla - Through-the-wall radar imaging with compressive sensing … 

 

22 
 

In convex relation and greedy algorithms, 

the only prior information utilized is the 

signal sparsity. In some applications, noise 

statistics are available and may be used to 

improve signal recovery and which is the 

main feature of the so called Bayesian 

algorithms (Abdalla 2016). 

 

Bayesian approaches attracted the attention 

of many researchers lately due to it 

superiority over conventional algorithms. Its 

theory had been dwelt on in (Masood 2015). 

In Bayesian algorithms, the unknown signal 

is modeled as Bernoulli-Gaussian or 

Bernoulli-Laplacian. If the prior statistics is 

assumed to follow Gaussian distribution as 

in many contributions, then it allows a 

tractable math but its feasibility is limited. 

The support agnostic (Masood and Al-

Naffouri 2013) on the other hand, is 

applicable when the support distribution is 

not Gaussian or even unknown in priori. In 

TWRI applications especially when dealing 

with extended targets, the targets 

distributions are not necessarily known, 

which promotes the use of Bayesian 

algorithms.  

 

When exploiting AD feature using multiple 

subapertures, the combination of subimages 

may be achieved using a Weighted Sum 

Additive–Multiplicative (WSAM) image 

fusion which is a two-step process. First, an 

intermediate image is obtained as the 

weighted sum of the individual subimages, 

𝑠𝑊  then the intermediate image is masked 

with subimage. This WSAM perform better 

than the conventional masking (Muqaibel et 

al. 2017a). 

 

The summation preserves the magnitude of 

the genuine targets while attenuate those of 

clutters. This helps reduce the effect of the 

ghost and other clutters and hence increase 

target relative clutter peak (TRCP) at target 

locations.  

If  s 1
 0 

and s 2
 0 

represent subimages from 

respective subapertures, then their weighted 

sum is given by (Abdalla 2016): 

𝑠𝑊 𝑝 = 𝛼1𝑠 1
(0) 𝑝 + 𝛼2𝑠 2

(0) 𝑝  (20) 

where 𝛼𝑙 ∈ ℝ: 0 ≤ 𝛼𝑙 ≤ 1, and 𝑙 = 1,2. The 

values of 𝛼𝑙  which result in a minimum 

norm are obtained by solving the following 

optimization problem: 

min α1s 1
 0 + α2s 2

 0    subject to 𝛼1

+ 𝛼2 = 1 
(21) 

 

The WSAM approach is relatively immune 

in cases when a target of interest is not well 

visible from one subaperture, unlike 

conventional masking. 

 

Formulation of Compressive Sensing in 

TWRI 

The emergence of TWRI technology was an 

incredible milestone in the radar imaging 

society which enabled to capture images of 

the targets located behind walls. The 

demand of high resolution image in TWRI 

entails wide signal bandwidth and large 

aperture which consequently brings big data 

challenge. (Amin 2010, Leigsnering et al. 

2014, Wu et al. 2014, Abdalla et al. 2015). 

To overcome this problem, an efficient data 

acqsuisition approach based on CS was first 

introduced in TWRI by Yoon and Amin 

(Yoon and Amin 2008). Their finding was a 

breakthrough in the research of attaining 

clear image while paying relatively less cost.  

In order to apply CS, (7) is rewritten as a 

linear system. The target-to-target 

contribution in (7) is non-linear but(Abdalla 

2016) suggests that the overall signal 

reflectivity due to the target interactions, 

𝜎𝑝𝑞
(𝑟)

 can be assumed to be dictated by the 

second target assuming the first target has a 

unity reflectivity. Then the corresponding 

matrix representation will be given by 

(Abdalla 2016).  

Notationally, (23) can be written as:  
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𝐲

=  𝚽(r)𝐬(r)

𝑅−1

𝑟=0

+  𝚽𝑤
(𝑟𝑤 )

𝐬𝑤
(𝑟𝑤 )

𝑅𝑤−1

𝑟𝑤 =0

+   𝚿𝑞
(r)
𝐬𝑞

(r)

𝑁𝑥𝑁𝑦−1

𝑝 ,𝑞=0
𝑝≠𝑞

𝑅−1

𝑟=0

+ 𝐯 

(22) 

 

where 𝒔(𝒓), 𝒔𝑞
(𝒓)

, and 𝒔𝑤
(𝒓𝒘)

∈ ℂ𝑵𝒙𝑵𝒚×𝟏, with 

𝑟 =  0, 1,…𝑅 − 1 and 𝑟𝑤 =  0, 1,…𝑅𝑤 − 1 

represent the vectors of reflectivities, 𝜎𝑝
(𝑟)

, 

𝛽𝑝
(𝑟)

 and 𝜎𝑤
𝑟𝑤 , respectively, whereas 𝜎𝑝  

assumes a value of one if there is target at 

𝑝𝑡ℎ  pixel, otherwise zero.  

 

 

 

 
 
 
 
 
 
 
 
 
 

𝑦[0,0]
𝑦[1,0]
𝑦[2,0]

⋮
𝑦[𝑀− 1,0]

𝑦[0,1]

𝑦[1,1]
⋮

𝑦[𝑀− 1,𝑁 − 1] 
 
 
 
 
 
 
 
 
 

=

 
 
 
 
 
 
 
 
 
 
 
 exp  – 𝑗2𝜋𝑓0𝜏0,0

 0 
 exp – 𝑗2𝜋𝑓0𝜏1,0

 0 
 ⋯ exp – 𝑗2𝜋𝑓0𝜏𝑁𝑥𝑁𝑦−1,0

(0)
 

exp – 𝑗2𝜋𝑓1𝜏0,0
 0 

 

⋮

exp – 𝑗2𝜋𝑓1𝜏1,0
 0 

 

⋮
⋱ exp – 𝑗2𝜋𝑓1𝜏1,0

(0)
 

⋮

exp – 𝑗2𝜋𝑓𝑀−1𝜏0,0
(0)

 

exp – 𝑗2𝜋𝑓0𝜏0,1
(0)

 

exp – 𝑗2𝜋𝑓𝑀−1𝜏1,0
(0)

 

exp – 𝑗2𝜋𝑓0𝜏1,1
(0)

 

exp – 𝑗2𝜋𝑓1𝜏0,1
 0 

 exp – 𝑗2𝜋𝑓1𝜏1,1
 0 

 

⋮

exp – 𝑗2𝜋𝑓𝑀−1𝜏0,𝑁−1
(0)

 exp – 𝑗2𝜋𝑓𝑀−1𝜏1,𝑁−1
(0)

 

⋯

exp – 𝑗2𝜋𝑓𝑀−1𝜏𝑁𝑥𝑁𝑦−1,0
(0)

 

exp – 𝑗2𝜋𝑓0𝜏𝑁𝑥𝑁𝑦−1,1
(0)

 

exp – 𝑗2𝜋𝑓1𝜏𝑁𝑥𝑁𝑦−1,1
(0)

 

⋮

exp – 𝑗2𝜋𝑓𝑀−1𝜏𝑁𝑥𝑁𝑦−1,0,𝑁−1
(0)

  
 
 
 
 
 
 
 
 
 
 
 

×

 
 
 
 
 
 
 𝜎0

 0 

𝜎1
 0 

𝜎2
 0 

⋮

𝜎𝑁𝑥𝑁𝑦−1
 0 

 
 
 
 
 
 
 

+ 

(23) 

 

The entries of the matrices 

𝚽(r),𝚽𝑤
(𝑟)

and  𝚿𝑞
(r)

∈ ℂ𝑀𝑁×𝑁𝑥𝑁𝑦  are defined 

as (Muqaibel et al. 2017a): 

 𝚽(𝑟) 
𝑖𝑝

= exp – 𝑗2𝜋𝑓𝑚𝑡𝑝𝑛
(𝑟)

  (24) 

 𝚿𝑞
(𝑟)

 
𝑖𝑝

= exp – 𝑗2𝜋𝑓𝑚 𝑡𝑝𝑛𝑞
(𝑟)

  (25) 

 𝚽𝑤
(𝑟)

 
𝑖𝑝

= exp – 𝑗2𝜋𝑓𝑚𝑡𝑤
(𝑟)

  (26) 

𝑚 = 𝑖 𝑚𝑜𝑑 𝑀, 𝑛 =  
𝑖

𝑀
 , 

  𝑖 = 0, 1, 2⋯𝑀𝑁 − 1 

From (22) the compressed measurement 

vector, 𝒚 , is obtained using down-sampling 

matrix, 𝐃, and given by:  

y = Dy (27) 

 

The sensing matrix in TWRI can be viewed 

as the product of two matrices, a predefined 

matrix which describes the signal 

propagation model (23) which depends on 

the radar parameters and the reflecting 

geometry. The second matrix is 𝐃 which 

compresses the given measurements 

(Leigsnering 2015). Therefore, designing the 

sensing matrix in TWRI is basically 

designing𝐃. In practice, CS is applied 

directly during data collection. The image 

vector 𝒔 is then reconstructed by solving 

optimization problem (19) using available 

algorithm, given𝒚 . In this paper, Yall1 

algorithm (Yang and Zhang 2011) is used 

for image reconstructions as recommended 

by(AlBeladi 2015). To evaluate the 

effectiveness of the CS in the image 

reconstruction, it is normally compared with 

the conventional DSBF algorithm. 

 

Delay and Sum Beamforming Algorithm 

For performance comparison, DSBF is used 

to measure the level of accuracy of the 

reconstructed images using CS approaches. 

Given a set of measurements collected from 
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𝑁 different transceiver locations using 𝑀 

monochromatic frequencies of carefully 

chosen band taking into account the 

allowable signal attenuation and practical 

antenna length. The complex image 

𝐼 𝑥𝑝 , 𝑦𝑝  of the 𝑝𝑡ℎ  grid point  𝑥𝑝 , 𝑦𝑝  is 

obtained by summing phase shifted copies 

of the received signals (Ahmad et al. 2005): 

 

𝐼 𝑥𝑝 , 𝑦𝑝 

=
1

𝑀𝑁
  𝑦 𝑚,𝑛 exp 𝑗2𝜋𝑓𝑚𝜏𝑝𝑛  

𝑀−1

𝑚=0

𝑁−1

𝑛=0

 
(28) 

 

where 𝜏𝑝𝑛  is the focusing delay associated 

by the 𝑛𝑡ℎ  transceiver and the 𝑝𝑡ℎ  grid point. 

 

Performance Metrics 

To quantify the performance of the 

reconstructed images, three performance 

metrics are frequently used: Target Signal-

to-Clutter Ratio (TSCR), Target Relative 

Clutter Peak (TRCP) and precision.  

 

Target Signal-to-Clutter Ratio 

The TSCR is defined as the ratio of the 

maximum target amplitude to the average 

amplitude in the clutter region. 

Mathematically, TSCR is given in 

logarithmic notation as (Leigsnering et al. 

2014, Abdalla et al. 2015): 

TSCR = 20 log10

max𝑝∈𝐴𝑡
 𝑠(𝑝) 

1

𝑁𝑐
  𝑠(𝑝) 𝑝∈𝐴𝑐

 (29) 

where 𝐴𝑡  and 𝐴𝑐  respectively denote the 

target and clutter areas, 𝑠(𝑝) is the signal 

value at corresponding the 𝑝𝑡ℎ  pixel and 𝑁𝑐  

is the number of clutter pixels. The clutter 

region refers to area of the room excluding 

the target area. 

 

Target Relative Clutter Peak 

The TRCP is the ratio of the maximum 

target amplitude to that of maximum clutter. 

It can be deduced from (29)as: 

 

TRCP = 20 log10

max𝑝∈𝐴𝑡
 𝑠(𝑝) 

max𝑝∈𝐴𝑐
 𝑠(𝑝) 

 (30) 

 

The TRCP is more crucial as it tells how 

easy the target can be distinguished from the 

surrounding clutters and it ,therefore, has 

direct consequences on the target detection 

than TSCR. If the TRCP is relatively small, 

then the probability of false alarms 

increases.  

 

Precision 

Similar to TRCP but more informative 

performance metric is the precision. Denote 

𝑇𝑃 as the number of true positives and 𝐹𝑃 

as false positives. The precision on the 

reconstructed image is given by (AlBeladi 

2015):  

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (31) 

 

This metric is more suitable in evaluating 

the quality of the image in the presence of 

multipath ghosts (Abdalla 2016). In this 

context, when ghosts are treated as false 

positives or false alarms and the genuine 

targets as true positives, the precision gives 

information on the probability of correct 

target detection. When the precision returns 

the value of one, means the number of 

expected target was correctly reconstructed 

or else, the scene is contaminated with 

ghosts and other clutters. 

 

Experimental validation of the technology as 

presented in recent literature, the above 

performance measures suggest that TWRI 

technology is capable to discern the 

obstructed scenes. 

 

PRACTICAL APPLICATION OF TWRI 
Using the setup presented by Figure 6 (a) 

and the corresponding schematic sketch of 

the room shown in Figure 6 (b). The images 

reconstructed by wideband SAR system 

covering 67 equally spaced locations with an 

inter-element spacing of 2.5cm along the x-

axisare depicted in Figure 7. A stepped 
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frequency signal occupying a spectrum 

between 1 and 3GHz with 201 frequency 

points was used for scene interrogation 

which permits a range resolution of 7.5cm 

and maximum unambiguous range of 15𝑚. 

The background information was first 

captured for clutter and front wall 

mitigation. Two metallic cylinders used as 

targets were placed at (−0.75, 2) 𝑚 and 

(0.5, 3) 𝑚 as shown in Figure 6 (b). The 

center of the aperture was taken to be the 

system origin and the imaged region was 

taken to be 4 ×  5𝑚2as in (Muqaibel et al. 

2017a).Figure 7 shows the images generated 

using DSBF with full data volume and CS 

using 12.5% of the data volume in Figure 7 

(a) and (b), respectively. 

 

The effect of multipath ghosts is suppressed 

using AD based on subaperture imaging 

under CS framework as presented in 

(Muqaibel et al. 2017a). From the 

measurement, only one-fourth of the 

frequency and one-half of the radar locations 

were randomly selected to sparsely 

reconstruct subimages as depicted in Figure 

8 (a) and (b). The two subimages were then 

combined using WSAM fusion which shows 

significant ghost suppression with TSCR 

and TRCP of 88.0dB and 20.2dB, 

respectively. despite the directivity 

challenge of the horn antenna as depicted in 

Figure 8 (a) and (b)(Muqaibel et al. 2017a). 

This observation tells that when dealing with 

directional antennas, the subapertures must 

be carefully chosen otherwise some genuine 

targets might be invisible by the radar 

system. 

 

The target detectability using precision was 

also analyzed. Precision gives a good 

indication of how well is the reconstruction 

method by comparing the expected number 

of targets and the number of reconstructed 

targets as defined in Section 3. The unit 

precision means the number of targets in the 

final image is exactly the same as the 

expected. The variation of the precision 

value with the possible threshold is given in 

the precision curves in Figure 8 (d). 

 

POSSIBLE FUTURE DIRECTIONS 

Multipath ghosts not only cause confusion 

with the genuine targets but also populate 

the scene rendering it less sparse which 

deteriorates the performance of CS. The 

current methods used to suppress the ghosts 

in TWRI literature are mostly based on post 

image processing. The image is 

firstreconstructed and then the ghosts are 

identified and suppressed. From CS view 

point, to enhance the performance of the 

algorithms, the effect of multipath should be 

suppressed prior to the image 

reconstruction.Further, considering the time 

history and moving targets are possible 

directions to explore.  

 

In (Abdalla and Muqaibel 2016), the authors 

proposed the use of sparse arrays in TWRI 

applications based on primitive Pythagorean 

triples coprime numbers as method to 

suppress multipath ghost.The proposal of 

using Pythagorean triples in TWRI is fresh 

and further theoretical analysis is needed. 

Further research can be conducted to study 

the optimal configuration in 2D and propose 

the best arrangement for TWRI applications.   
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(a) (b) 

 

Figure 6: The scene (a) room layout (b) experimental setup (Abdalla 2016) 

 

 
 (a) 

  
(b) 

Figure 7: Images (a) DSBF with full data volume (b) CS reconstruction with 12.5% data volume 
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(c) 

 
(d) 

Figure 8: Images (a) subaperture1 (b) subaperture2 (c) final with WSAM (d) precision 

 
The issue of extended targets reconstruction 

using Block sparsity has been also pointed 

out in (Abdalla 2016). As the current block 

sparsity based methods including Block 

SABMP (Masood 2015) extend the block of 

pixels in 1D, however, based on the nature 

of TWRI applications, a more general 

algorithm which extends in 2D is required to 

enhance the performance. 

 

As the concept of multipath exploitation 

became reality in target localization 

(Muqaibel et al. 2014; Muqaibel et al. 

2017b), a research is also needed inTWRI to 

exploit multipath returns to aid in imaging in 

which case virtual radar locations may be 

used and hence the size of the physical 

aperture can be reduced 

significantly.Therefore, data acquisition time 

and memory demandwill be reduced 

dramatically.  

 

Moreover, considering more realistic 

channel models that account for path-loss, 

antenna directivity, and target angular 

reflectivity are among the possible future 

directions. 

 

CONCLUSIONS 

TWRI particularly under CS framework, is 

trending and becoming more popular due to 

its diverse applications in social, military 

and medical fields. With TWRI, it is now 

possible to discern the obstructed scenes 

which may assist in security related issues in 

case of law enforcement or rescue missions 

in unexpected tragedies such as fire and 

earthquakes. This paper summarized the 

theory behind TWRI, major challenges 

facing the field and the sparse image 

reconstruction methods based on CS theory. 

The practical demonstrations show 

promising future of the field. Further, 

recommendations for possible research 

directions were also articulated. 
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