9,493 research outputs found

    SPARC Data Initiative: climatology uncertainty assessment

    Get PDF
    The SPARC Data Initiative aims to produce trace gas climatologies for a number of species from a number of instruments. In order to properly compare these climatologies, and interpret differences between them, it is necessary to know the uncertainty in each calculated climatological mean field. The inhomogeneous and finite temporal-spatial sampling pattern of each instrument can lead to biases and uncertainties in the mean climatologies. Sampling which is unevenly weighted in time and space leads to biases between a data set's climatology and the truth. Furthermore, the systematic sampling patterns of some instruments may mean that uncertainties in mean fields calculated through traditional methods that assume random sampling may be inappropriate. We aim to address these issues through an exercise wherein high resolution chemical fields from a coupled Chemistry Climate Model are sub-sampled based on the sampling pattern of each instrument. Climatologies based on the sub-sampled data can be compared to those calculated with the full data set, in order to assess sampling biases. Furthermore, investigating the ensemble variability of climatologies based on subsampled fields will allow us to assess the proper methodology for estimating the uncertainty in climatological mean fields

    General Defocusing Particle Tracking: fundamentals and uncertainty assessment

    Full text link
    General Defocusing Particle Tracking (GDPT) is a single-camera, three-dimensional particle tracking method that determines the particle depth positions from the defocusing patterns of the corresponding particle images. GDPT relies on a reference set of experimental particle images which is used to predict the depth position of measured particle images of similar shape. While several implementations of the method are possible, its accuracy is ultimately limited by some intrinsic properties of the acquired data, such as the signal-to-noise ratio, the particle concentration, as well as the characteristics of the defocusing patterns. GDPT has been applied in different fields by different research groups, however, a deeper description and analysis of the method fundamentals has hitherto not been available. In this work, we first identity the fundamental elements that characterize a GDPT measurement. Afterwards, we present a standardized framework based on synthetic images to assess the performance of GDPT implementations in terms of measurement uncertainty and relative number of measured particles. Finally, we provide guidelines to assess the uncertainty of experimental GDPT measurements, where true values are not accessible and additional image aberrations can lead to bias errors. The data were processed using DefocusTracker, an open-source GDPT software. The datasets were created using the synthetic image generator MicroSIG and have been shared in a freely-accessible repository

    Intercomparison and Uncertainty Assessment of Nine Evapotranspiration Estimates Over South America

    Get PDF
    This study examines the uncertainties and the representations of anomalies of a set of evapotranspiration products over climatologically distinct regions of South America. The products, coming from land surface models, reanalysis, and remote sensing, are chosen from sources that are readily available to the community of users. The results show that the spatial patterns of maximum uncertainty differ among metrics, with dry regions showing maximum relative uncertainties of annual mean evapotranspiration, while energy-limited regions present maximum uncertainties in the representation of the annual cycle and monsoon regions in the representation of anomalous conditions. Furthermore, it is found that land surface models driven by observed atmospheric fields detect meteorological and agricultural droughts in dry regions unequivocally. The remote sensing products employed do not distinguish all agricultural droughts and this could be attributed to the forcing net radiation. The study also highlights important characteristics of individual data sets and recommends users to include assessments of sensitivity to evapotranspiration data sets in their studies, depending on region and nature of study to be conducted.Fil: Sörensson, Anna. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Ruscica, Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentin

    Uncertainty Assessment for PA Models

    Get PDF
    A mathematical model comprises input variables, output variables and equations relating these quantities. The input variables may vary within some ranges, reflecting either our incomplete knowledge about them (epistemic uncertainty) or their intrinsic variability (aleatory uncertainty). Moreover when solving numerically the equations of the model, numerical errors are also arising. The effects of such errors and variations of the inputs have to be quantified in order to asses the model¿s range of validity. The goal of uncertainty analysis is to asses the effects of parameter uncertainties on the uncertainties in computed results. The purpose of this report is to give an overview of the most useful probabilistic and statistic techniques and methods to characterize uncertainty propagation. Some examples of application of these techniques for PA applied to radioactive waste disposal are given.JRC.F.4-Safety of future nuclear reactor

    MODIS On-orbit Calibration Uncertainty Assessment

    Get PDF
    MODIS has 20 reflective solar bands (RSB) and 16 thermal emissive bands (TEB). Compared to its heritage sensors, MODIS was developed with very stringent calibration uncertainty requirements. As a result, MODIS was designed and built with a set of on-board calibrators (OBC), which allow key sensor performance parameters and on-orbit calibration coefficients to be monitored and updated. In terms of its calibration traceability, MODIS RSB calibration is reflectance based using an on-board solar diffuser (SD) and the TEB calibration is radiance based using an on-board blackbody (BB). In addition to on-orbit calibration coefficients derived from its OBC, calibration parameters determined from sensor pre-launch calibration and characterization are used in both the RSB and TEB calibration and retrieval algorithms. This paper provides a brief description of MODIS calibration methodologies and an in-depth analysis of its on-orbit calibration uncertainties. Also discussed in this paper are uncertainty contributions from individual components and differences due to Terra and Aqua MODIS instrument characteristics and on-orbit performance
    • …
    corecore