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Abstract This study examines the uncertainties and the representations of anomalies of a set of evapo-
transpiration products over climatologically distinct regions of South America. The products, coming from
land surface models, reanalysis, and remote sensing, are chosen from sources that are readily available to
the community of users. The results show that the spatial patterns of maximum uncertainty differ among
metrics, with dry regions showing maximum relative uncertainties of annual mean evapotranspiration, while
energy-limited regions present maximum uncertainties in the representation of the annual cycle and mon-
soon regions in the representation of anomalous conditions. Furthermore, it is found that land surface mod-
els driven by observed atmospheric fields detect meteorological and agricultural droughts in dry regions
unequivocally. The remote sensing products employed do not distinguish all agricultural droughts and this
could be attributed to the forcing net radiation. The study also highlights important characteristics of indi-
vidual data sets and recommends users to include assessments of sensitivity to evapotranspiration data sets
in their studies, depending on region and nature of study to be conducted.

1. Introduction

Terrestrial evapotranspiration (ET) is a key variable of the climate system that interconnects the water,
energy, and carbon budgets of the land surface (e.g., Jung et al., 2010; Wang & Dickinson, 2012). Improved
estimates of evapotranspiration are crucial both for a large variety of practical applications and for a better
theoretical understanding of current and future water/energy/carbon budgets and their interaction with
the climate on a wide range of temporal and spatial scales. Because of its central role, ET is crucial for the
validation and development of climatic, hydrologic, and vegetation models.

ET can be estimated through various methods, spanning from point scale observations with very fine tem-
poral resolution, to remote sensing products and process modeling with global coverage but coarser spatio-
temporal resolution (Wang & Dickinson, 2012). The FLUXNET network (Baldocchi et al., 2001) recollects and
provides flux measurements around the world, which are frequently used for calibrating and validating
coarser-scale global data sources. However, some regions, like South America, are still very poorly covered
with flux towers. ET products derived from remote sensing data (RS) are based on different approaches,
including the combination of RS data with simple atmosphere-land exchange models (e.g., Mecikalski et al.,
1999), empirical and statistical methods based on RS surface temperature data (e.g., Kalma et al., 2008), and
vegetation index methods (e.g., Glenn et al., 2010). ET can also be estimated using land surface models
(LSMs), which are based on fundamental biophysical and, depending on the complexity of the model, bio-
geochemical processes (e.g., Pitman, 2003). LSMs can be used to obtain estimates of ET of past and present
climate when forced by observed atmospheric data or be coupled to climate models to estimate ET under
future climate change scenarios (Getirana et al., 2014; Ruscica et al., 2016).

Improved knowledge of the performance of existing tools for monitoring and forecasting ET in South Amer-
ica are important for diverse hydrological and agricultural applications such as water consumption for irriga-
tion and livestock, electricity production and human use (Barros et al., 2003). ET is a main driver of drought
in some climates (e.g., Teuling et al., 2013) and regions such as northeastern Brazil and the eastern hillside
of the central and southern Andes suffer water scarcity due to large precipitation interannual and interdeca-
dal variability, high potential evapotranspiration, and glacier and snow pack melting that could be aggra-
vated in future climate (Marengo & Bernasconi, 2015; Masiokas et al., 2006, 2009; Rivera et al., 2013). ET is
also highly relevant for temperature variability and hot extremes (e.g., Mueller & Seneviratne, 2012; Hirschi
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et al., 2011; Seneviratne et al., 2006; Yin et al., 2014). Large areas of South America are suffering rapid land
use transformations with consequences for the water budget through changes in infiltration, runoff, and
transpiration regimes, contributing to flooding and droughts (Germer et al., 2009; Lima et al., 2014; Nosetto
et al., 2015; Silveira & Alonso, 2009).

Evapotranspiration also plays an important role for large-scale climatic features over the continent. The
increment of latent heat flux at the end of the dry season over the Amazon region contributes to the trig-
gering of the South American Monsoon System onset (Li & Fu, 2004). This increase in ET has been linked to
leaf development and demography, suggesting intrinsic interactions between rainforest phenology and cli-
mate (Wu et al., 2016). The evapotranspiration from Amazonia is important not only locally; studies have
estimated that moisture with origin in Amazonia contributes to 25–70% of precipitation in southeastern
South America (Dirmeyer et al., 2009; Martinez & Dominguez, 2014; van der Ent et al., 2010).

A better knowledge of ET is crucial for limiting the uncertainties of future climate projections. Bo�e and Ter-
ray (2008) showed that the responses of ET to climate change differ among climate models due to their dif-
ferent parameterizations that connect soil moisture and surface radiation to ET. This results in uncertainties
in the magnitude of temperature changes through the different partitioning of energy at the surface. In par-
ticular, regions of strong interaction between soil moisture and atmosphere in future climate such as south-
eastern South America and Cerrado in Brazil (Ruscica et al., 2016) could be affected by such feedbacks.

ET from different sources has been compared on a global scale (e.g., Jim�enez et al. 2011; Michel et al., 2016;
Miralles et al., 2016; Mueller et al., 2013; Vinukollu et al., 2011) and over the Amazon Basin (e.g., Fisher et al.,
2009; Getirana et al., 2014). However, there is a lack of detailed knowledge on the regional scale which is
fundamental, e.g., impact studies and continental scale phenomena such as the transport of humidity from
the Amazon to the southeastern South America. The aim of this paper is to assess the behavior and uncer-
tainty of ET over South America from some of the most common available gridded products, taking into
account the wide variety of climatic regimes of the continent. We have chosen products from the following
three categories: LSMs, reanalysis, and RS. The following questions are addressed: (1) How well do the prod-
ucts agree on mean climate and anomaly representation? (2) Do the products detect hydrological extremes
such as droughts? (3) How do different products respond to anomalies of precipitation and net surface radi-
ation? Answering these questions reveal strengths and weaknesses of the ET products over the different cli-
matic regions of the continent, knowledge that can be useful for different scientific and practical purposes.

The paper is organized as following: in section 2, the division in climatic regions and the products are pre-
sented. In section 3, the results are displayed: section 3.1 treats multiannual mean behavior and uncertainty,
section 3.2 the representation and uncertainty of anomalies, section 3.3 the detection of droughts, and sec-
tion 3.4 the response of the different ET products to precipitation and net surface radiation anomalies. Sum-
mary and conclusions are given in section 4.

2. Materials and Methods

2.1. Selection of Climatic Regions
The water and energy budget equations can be written:

ET 5 P – R – dw=dt; (1)

kET 5 Rn – H – G; (2)

where P is precipitation, R runoff, dw/dt change of soil water storage, k latent heat of vaporization, kET
latent heat flux, Rn net radiation at the surface, H sensible heat flux, and G is the ground heat flux. ET is
composed of evaporation from surfaces (e.g., soil, water bodies, and vegetation) and plant transpiration, the
latter being the connection to the carbon budget due to its coupling to photosynthesis.

From a climatic viewpoint we will use the concepts of water-limited versus energy-limited ET regimes (e.g.,
Seneviratne et al., 2010). Water-limited regions are arid to semiarid where ET is limited by available soil
moisture which is driven principally by precipitation. Energy-limited regions have abundant precipitation
and soil humidity, and the main limiting factor of ET is atmospheric moisture demand. The two regimes are
not necessarily static over time but can have an annual cycle or change irregularly due to interannual
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variability of the water cycle, in particular over transition zones between dry and wet climates such as
southeastern South America (Ruscica et al., 2015). Furthermore, ET products do not necessarily represent
the two regimes well. In LSMs, this can be due to insufficient water storage or rooting depth that limits tran-
spiration during dry periods (e.g., in southern Amazonia during the dry season JJA; Christoffersen et al.,
2014; Yang et al., 2016), erroneous vegetation cover (interannual variability of vegetation properties and
seasonal cycle of crops are often not included; M€uller et al., 2014), and lack of representation of wetlands
(e.g., Pantanal; Hamilton, 2002) or irrigation (southern Brazil; Barros et al., 2003), among others. Reanalysis
products share these sources of errors and furthermore they suffer large precipitation biases over many
regions. RS products based on vegetation indices have the advantage of capturing variability of vegetation
properties, crops, irrigations, and flooding but have a tendency to underestimate the water limitation on ET
since ET is not restricted by the water balance equation like in LSMs (e.g., Long et al., 2014).

Equations (1) and (2) reveal precipitation (P) and net surface radiation (Rn) as main drivers of ET. To find
regions with similar spatial and temporal characteristics of ET we defined regions based on the annual
cycles of these two drivers applying a K-means clustering analysis to the annual cycles of P and Rn for
1984–2007.

Figure 1 shows the regions together with their mean annual cycles of P and Rn (from GPCP and SRB, see
section 2.2). The Northern South America (NSA, Figure 1a), Equator (EQ, Figure 1b), and southern Amazon
(SAmz, Figure 1c) regions show weak annual cycles of radiation which are clearly influenced by the cloudi-
ness related to high precipitation (see the relative Rn minimum/P maximum of AMJJ in NSA, Rn maximum/
P minimum of ASO in EQ and the relative Rn minimum/P maximum of ND in SAmz). NSA and EQ have large
intergrid point spreads of precipitation, however, the shapes of the annual cycle of precipitation of all grid
points are similar within each region (not shown). The annual cycle of radiation of the other six regions fol-
lows the solar cycle with large differences in amplitude since annual minimum Rn varies between 105 W/
m2 in northeastern Brazil (NeB, Figure 1d) and 5 W/m2 in Patagonia (PAT, Figure 1i). SAmz as well as the
South American Monsoon System region (SAMS, Figure 1e) and Andes (Figure 1g) regions have clear mon-
soon regimes while Central Argentina (CArg, Figure 1h) has a less pronounced dry season. Southeastern
South America (SESA, Figure 1f) has precipitation all year and PAT is characterized by arid conditions with
winter maximum.

2.2. Precipitation and Net Surface Radiation Products
To account for observational uncertainty of P and Rn we used four products for P: GPCP, CRU, UDEL, and
CPC for P and two for Rn: SRB and CLARA. See details and references for each product in Table 1. Since
annual cycles of both variables were similar among these products (not shown) the clustering was realized
with GPCP and SRB. For our purpose we found that the precipitation products were similar also with respect
to sign of seasonal anomalies with some differences in magnitude. Therefore, to construct seasonal P anom-
aly time series, the time series of the seasonal means of the four products were averaged and the anomaly
was calculated from the resulting series (PEns). On the contrary, SRB and CLARA show very different tempo-
ral evolution of anomalies, frequently differing in sign (for differences between SRB and CLARA see also
Loew et al., 2016). Therefore, we calculate and analyze the Rn anomalies separately for each product.

2.3. Evapotranspiration Products
The nine ET products used in this study are detailed with references in Table 1. The three LandFlux products
‘‘LSM,’’ ‘‘Reanalysis,’’ and ‘‘Diagnostic’’ (Mueller et al., 2013, hereafter LF) limit the period of this study to 17
years (1989–2005). The LF-Diagnostic product (hereafter LF-RS) consists of data from RS, in situ measure-
ments and a water balance diagnostic estimate; however, here it is considered as a RS product since the in
situ data for South America is practically nonexistent (few stations, each with only a few months available,
Jung et al., 2009) and the water balance estimate does not include South America (Mueller et al., 2011).

All products were interpolated to the grid of GPCP which is the product with the coarsest grid in this study
(2.58 3 2.58).

2.4. The Similarity Index
To quantify how well the ET products coincide on the representation of the temporal evolution of ET, the
‘‘similarity index’’ X is employed (Yamada et al., 2007). X quantifies how similar the members of an ensem-
ble of time series are with respect to their phase, mean value and amplitude.
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X5
mr2

b2r2

m21ð Þr2
; (3)

where m is the number of ensemble members, r2
b is the variance of the time series that results from calcu-

lating the ensemble mean of each time step, and r2 is the total variance of all members concatenated. X
has values between 0 (no similarity among the series at all) and 1 (for identical series).
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Figure 1. (middle) Regions of study based on the areal mean annual cycles of (a–i) (top) net surface radiation (units:
W/m2) and (a–i) (bottom) precipitation (units: mm/d). Error bars reflect intergrid point standard deviation of each
region.
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3. Results and Discussion

3.1. Annual Means and Seasonal Cycle
Figure 2 shows the annual ensemble mean (a), spread (b), spread excluding MERRA-L (c), and the annual
mean ET for each individual product (d–l). The spread is defined as the range between the maximum and
minimum of the ensemble and can be interpreted as the maximum uncertainty that choosing a random
product to represent annual mean ET would introduce in a study. While the products share large-scale spa-
tial patterns such as maximum in Amazonia and local minima in NeB, PAT, and Andes, the uncertainties
are, as seen in Figure 2b, as large as 1.5–2 mm/d in regions with ensemble mean values of 2.5–4 mm/d
(Figure 2a). Maximum uncertainty in Figure 2b does not coincide with the maximum ET values over
Amazonia but shows two maxima, one over the very southwestern Amazonia and the other over central
Brazil. Noting that MERRA-L has very large ET values over these regions (Figure 2i) the spread was re com-
puted excluding this product (Figure 2c), obtaining maximum uncertainty centered on the border between
Bolivia, Brazil, and Paraguay. This region has a strong monsoon regime and sharp spatial gradient of precipi-
tation (Ruscica et al., 2016, their Figure 1) and some of the discrepancy among the products could therefore
come from different simulated precipitation in the reanalysis products (Figures 2e and 2j). Northern NSA
also stands out as a region with large uncertainty, due to low ET of LF-LSM and P-LSH. LF-LSM shows a local
minimum in central Amazonia that is not shared by any other product. The pattern in Figure 2c seems to be
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Figure 2. ET annual fields. (a) Ensemble mean, (b) ensemble spread—defined as the difference between ensemble maxi-
mum and minimum, (c) ensemble spread excluding the product MERRA-L, and (d–l) mean of each ensemble member,
units: mm/d.

Water Resources Research 10.1002/2017WR021682

S€ORENSSON AND RUSCICA 2896



robust since it is similar to Jim�enez et al. (2011, their Figure 3) who compared global latent heat flux from
12 products of which only ERA-Interim participates in our study. The uncertainty estimate of global ET of
Vinukollu et al. (2011, their Figure 8) also shares main characteristics with our results.

Figure 3 links the uncertainty of annual mean ET to the location of each region and product in the Budyko
space (Budyko, 1982). The Budyko space relates the annual ratio ET/P to the aridity index Ep/P, where Ep is
defined as Ep 5 Rn/k and P and Rn are computed as the mean of the observational P and Rn in Table 1. The
circles, stars, and squares correspond to the individual products’ means and the triangles correspond to the
minimum and maximum values of the full LandFlux-EVAL ensemble. ET is restricted to the space below
both the dashed line that represents the ET 5 P and the full line that represents ET 5 Ep. The number in
parenthesis after the name of each region is a measure of the relative uncertainty of ET, defined as the total
spread among the products divided by the mean ET. The highest relative uncertainty occurs in PAT (1.0),
and the lowest in SESA (0.58).

For the four water-limited regions several products show annual ET equal to or even considerably higher
than precipitation. For ERAI, this is because of its overestimation of rainfall in the Andes and CArg regions
(Dee et al., 2011). The monthly GPCP based correction of ERAI precipitation used to force ERAI-L (Balsamo
et al., 2015) is probably one of the reasons for a lower ET in ERAI-L than in ERAI in these regions. However,
ERAI-L overestimates ET in PAT probably because GPCP overestimates P with respect to the other databases
in this region (not shown). In the case of RS products, both P-LSH and PT-JPL overestimate ET in Andes and
NeB (PT-JPL also overestimates ET slightly in PAT). For P-LSH, this is consistent with the global evaluation of
this product based on water balance (Zhang et al., 2010) that showed a tendency to overestimate ET in arid
environments and underestimate in wet environments. The PT-JPL model was evaluated against flux tower
data globally by Zhang et al. (2017) who found that the model systematically overestimates ET in arid
regions. LF-RS is high in NeB and is responsible for the maximum of LF-products in Andes and NeB (not
shown). A possible explanation for this could be that some RS products in the LF-ensemble do not include
explicit water limiting restriction (Long et al., 2014; Yang et al., 2015).
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Figure 3. (a) Scatterplots of annual means of ET/P and Rn/kP of each region and ET data set. (b) The zoom of the four
most humid regions in Figure 3a. Numbers in parentheses after the name of each region indicate the ET ensemble spread
relative to the ensemble mean as a measure of uncertainty.
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ERAI is on the higher end of ET estimations also in energy-limited regions. Miralles et al. (2016) confirms this
on a global scale; among 11 different products and methods ERAI has the highest global mean. ERAI-L low-
ers the ERAI estimate also in energy-limited regions, where the change to the hydrology in ERAI-L that
increases surface runoff (Balsamo et al., 2015) could contribute. MERRA-L shows very high ET values over
energy-limited regions. In the global study of Jim�enez et al. (2011), it was found that MERRA estimates large
Rn and kET values over wet regions as compared to RS, reanalysis and LSM products. The fact that radiation
from MERRA used to force MERRA-L is not corrected (Reichle et al., 2011) can contribute to the high values
obtained here. Consistently with Zhang et al. (2010), the P-LSH product is on the low end of the ET esti-
mates in energy-limited regions. The mean of LF-LSM is on the very low end of ET estimates for all regions,
which has also been confirmed on a global scale by Mueller et al. (2013).

The annual cycles of the areal mean ET of each product and region are shown in Figure 4. In NSA, the RS
products show a large spread (Figure 4-3). All products agree however in that the peak of ET occurs after
the wet season, during the second maximum of radiation (September–October, Figure 1a). The first maxi-
mum of radiation (February–March, Figure 1a) occurs after and during the annual precipitation minimum
and since all products show less evapotranspiration than during the second maximum this indicates that ET
could be water-limited during these months. In EQ, the radiation maximum occurs in September–October
and the precipitation maximum in March–April (Figure 1b). The ET products show two types of annual
cycles. ERAI-L, LF-REA, PT-JPL, and LF-RS show a flat curve with a slight maxima during the rainy March–April
(Figures 4-4–4–6), suggesting water limitation which could be the case for southern EQ which is dry during
this period (not shown). On the other hand, MERRA-L, GLDAS2, LF-LSM, ERAI, and P-LSH follow the annual
cycle of radiation, a behavior that coincides more with flux tower observations in the equatorial forest in
eastern Amazonia (Christoffersen et al., 2014).

SAmz is the region where ET estimations generally show the highest discrepancy (Figures 4–7–4–9). The
high annual values of MERRA-L seen in Figures 2 and 3 are caused by very large monthly ET except during
the dry months of July–September. This is probably caused by interactions between the assimilated obser-
vations and cloud/radiation in the forcing data sets (Bosilovich, personal communication, 2015). GLDAS2
has much smaller amplitude but shows the same sharp drop of ET in July–September. LF-REA (Figure 4–8)
and PT-JPL (Figure 4–9) coincide on minimum during July–September but have a smoother cycle. LF-REA
shows a very low minimum ensemble value of (1 mm/d). ERAI-L and LF-RS (Figure 4–9) agree on earlier
ocurrence of the minimum. These six products (MERRA-L, GLDAS2, LF-REA, PT-JPL, ERAI-L, and LF-RS) sug-
gest that SAmz has water-limited behavior during the dry months, while on the contrary one product from
each category: LF-LSM, ERAI, and P-LSH show maximum during or after the precipitation minimum, sugges-
ting an energy-limited behavior the whole year which is more consistent with flux tower observations
(Christoffersen et al., 2014). Mechanisms that regulate water supply and demand in this region during the
dry season are still poorly understood (Christoffersen et al., 2014) and ET estimates of LSM studies diverge
due to different formulations of physical processes (Getirana et al., 2014). The LSM products here do not
include important processes on the water supply side such as groundwater (Miguez-Macho & Fan, 2012)
and deep roots (Yang et al., 2016) and this is probably the reason why four out of six LSM-based products in
this study show a water-limited behavior in the dry season. Christoffersen et al. (2014) showed that various
LSMs eliminate the dry season bias by including either of these two processes. There is also a discussion on
whether climate or vegetation phenology governs the demand side. Using flux tower measurements, Fisher
et al. (2009) showed that radiation was the outstanding strongest determinant of ET regardless of season
while Costa et al. (2010) and Wu et al. (2016) argue that seasonally varying demand of vegetation could
play an important role, especially during the dry season. Phenology however is poorly represented in most
models (e.g., Christoffersen et al., 2014), including those of this study.

In water-limited NeB, radiation is abundant all-year-round and all products agree on that ET follows the pre-
cipitation annual cycle (Figures 4–10–4–12). In the monsoon dominated regions SAMS (Figures 4–13–4–15)
and Andes (Figures 4–19–4–21), precipitation, radiation, and ET follow the same annual behavior. In SESA
(Figures 4–16–4–18) and CArg (Figures 4–22–4–24), ET follows the solar cycle. In PAT (Figures 4–25–4–27),
rainfall peaks in winter, but due to very limited energy input during winter, ET peaks in spring and summer.

In summary, although the products show very large differences in mean annual ET, products agree well on
simulating the amplitude and timing of the annual cycle both in the southern regions that have well
defined annual cycles of radiation, and in NeB that is not limited by radiation but by precipitation
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throughout the year. However, in EQ and SAmz, both with small annual amplitude of radiation and abun-
dant rainfall, the products show different shapes of the annual cycle and there is no clear relation between
product category and shape. Here the representation of the annual cycles maintains a challenge.

3.2. Timing of Monthly Anomalies
A key application of ET products is the detection of hydrological variability, a more complex task than the
simulation of the annual cycle. Here focus will be on the representation of ET monthly and seasonal anoma-
lies and the associated uncertainties and relations to the drivers P and Rn.
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Figure 4. (rows) ET annual cycles for each region and category of the product: (first column) land surface models, (second
column) reanalysis, and (third column) remote sensing derived products. Grey shading represents the uncertainty through
the maximum and the minimum of the LF-data set. Units: mm/d.
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The monthly (or seasonal) anomalies are calculated subtracting the monthly mean of the period of study
(1989–2005) from each monthly value. The relative monthly anomalies are then obtained by dividing the
monthly anomaly with the monthly mean.

A synthesized picture of how well the ET products coincide on the representation of the temporal evolution
of ET is defined by the similarity index X (section 2.4), displayed in Figure 5. The similarity of the time series of
monthly means (Xm, Figure 5a) shows a very clear general pattern with values above 0.7 to the southeast
and low values to the northwest. Over parts of SAmz and EQ, the time series show no similarity at all and
therefore, the choice of ET product for assessing any particular issue could be crucial for the outcome. For
modeling studies over these regions that use ET as an input, it is essential to assess the sensitivity of the
results to the ET product, and when evaluating a model that simulates ET, several ET products should be used.
On the other hand, from NeB and southeastward until CArg, Xm is as high as 0.7–0.9, indicating a low overall
uncertainty and consequently the selection of a product for a particular study is less important. Patagonia also
stands out with relatively low Xm, probably due to the high uncertainty of the mean annual value of ET. As a
complementary analysis, the Spearman correlations between each pair of products was calculated (not
shown), but no clear relation between correlation and category of products was found. For example, while
ERAI-L correlates well with ERAI, it also correlates well with LF-RS, but worse with the other three LSM prod-
ucts. The P-LSH RS product correlates better with LF-LSM, GLDAS2, and LF-REA than with LF-RS.

The similarity of the ET monthly anomalies (Xa, Figure 5b) shows minimum the monsoon maximum; from
the northern coasts of Brazil, westward over Amazonia and southeastward over the SESA region. It can be
useful to look at Xa before designing a study where the interannual variations of ET are particularly impor-
tant for the outcome. For example, SESA stands out as a region with high Xm but low Xa. This means that
the products agree well on the long term annual mean and on the amplitude and timing of the annual
cycle, but not on monthly anomalies. In SESA the seasonal precipitation is dominated by internal variability
and global climate models/reanalysis have poor skill in representing seasonal variability of precipitation
(Nobre et al., 2006), consistent with low Xa. On the contrary, some areas, like the eastern SAmz and south-
ern CArg and PAT show higher Xa than Xm, meaning that the uncertainty of anomalies actually is lower
than of the mean climate. The water-limited regions NeB, CArg, and PAT have the highest agreement in rep-
resenting anomalies.

3.3. Can the ET Products Detect Droughts?
One of the most important applications of evapotranspiration monitoring is to estimate the severity of
droughts (e.g., AghaKouchak et al., 2015; Crow et al., 2012). Here we will look at how the ET products
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Figure 5. Maps of similarity index X, obtained from (a) monthly ET time series and (b) monthly anomaly ET time series.
See section 2.4 for definition of X. Regions are drawn for a better interpretation of the results.
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respond to meteorological drought (precipitation deficit) over three regions prone to suffer droughts that
cause large socioeconomic damages: NeB, CArg, and PAT. We define meteorological drought by the sea-
sonal anomaly of the mean time series of the four P products (see section 2.2). ET anomalies are actually
more indicative of agricultural drought (negative anomalies of soil moisture, Van Loon 2015), which often is
delayed with respect to meteorological drought (Van Loon, 2015; Van Loon & Van Lanen, 2012; Yang et al.,
2014, 2017).While the P anomalies in Figure 6 only reveal meteorological and not agricultural drought,
some severe agricultural droughts have been registered in literature and will be referred to in the following
analysis. NeB (Figure 6a) suffered a precipitation deficit between 1990 and 1993 that lead to an agricultural
drought in 1993 with mayor economic problems and human suffering (Rao et al., 1995) and the meteoro-
logical drought of 1997–1998 lead to an agricultural drought with 57% loss of the production (Marengo
et al., 2017). The uncertainty of ET response is very large; the four LSM products respond strongly to both
droughts with 20–50% of ET reduction while reanalysis and RS products respond with remarkably smaller
reductions of 0–20%. Since no reference data set of ‘‘true’’ ET exists, we cannot say which product performs
best, but for a product to be useful in a certain area, it should probably detect long and severe droughts
reported in literature. Concerning the performance of LSMs, some recent studies have noticed that they
overestimate the frequency or severity of drought events (De Kauwe et al., 2015; Tallaksen & Stahl, 2014;
Ukkola et al., 2016). The reasons have to be examined for each individual LSM, but Ukkola et al. (2016) sug-
gest two mechanisms that can cause this underestimation: (a) the soil hydrology (e.g., use of free drainage
as lower soil moisture boundary condition, lack of groundwater and recharge zones) and (b) the representa-
tion of plant water stress (influence of vertical variations of soil moisture on plant uptake, failure to repre-
sent stress effects on both photosynthetic capacity and stomatal conductance). Reanalysis products use
LSMs to calculate ET, so, given the same climatic situations it could be expected that they give similar
response. However, here they show a weaker response, which could be a consequence of problems in the
simulation of rainfall anomalies. In the case of LF-REA, the five last years of the series show a strong reduc-
tion in ET which is not evident in the GPCP precipitation or in the other ET products. It is out of the scope of
this paper to analyze the causes, but it is an important example on how the use of only one ET product
could give the erroneous result that this 5 year period was dryer than the droughts of 1993 and 1998. Weak
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Figure 6. Time series of (top line) seasonal relative anomalies of P, (bottom line) all ET products and for SRB Rn for the
supply-limited regions: (a) NeB, (b) CArg, and (c) PAT. (units: %). Positive (negative) P and ET anomalies are shown in blue
(red) and positive (negative) Rn anomalies are shown in red (blue).
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response of RS products to precipitation anomalies has also been found over Texas by Long et al. (2014) who
used MODIS and AVHRR ET, both being Penman-Monteith approaches similar to the P-LSH product used
here. Since these products rely heavily on vegetation features that do not respond immediately to increased
water stress the response to soil moisture deficit can also be lagged (Rundquist & Harrington, 2000). In NeB,
this effect can be seen in the P-LSH product for various strong dry/wet seasons, e.g., after the strong 1993 agri-
cultural drought, P-LSH maintained a dry ET anomaly during the entire 1994 while LSMs immediately
responded to increased precipitation in MAM 1994. In the case of the agricultural drought of 1998, the
response of P-LSH is probably too weak and too delayed to be able to have generated the large losses of agri-
cultural production reported in literature (Marengo et al., 2017). The PT-JPL product scales down the potential
ET given by Priestly-Taylor equation to actual ET by using plant temperature and moisture constraint factors
(Fisher et al., 2008). Since the PT-JPL product takes LST and total surface heat fluxes into account as net radia-
tion, it could be expected that it would respond faster to meteorological drought than the P-LSH product.
However, while the agricultural drought of 1993 is present in the PT-JPL product with a similar magnitude as
LF-RS and P-LSH, the agricultural drought of 1998 is not detected at all. To understand if the failure to detect
the agricultural drought of 1998 is due to the algorithm or to the forcing radiation, SRB seasonal anomalies
are shown in the last line of Figure 6a (less Rn in blue and more Rn in red). It is clear that PT-JPL relies heavily
on net radiation and that during 1997–1998 SRB registered a positive Rn anomaly which is the cause of the
positive ET anomaly of the PT-JPL product. P-LSH also uses SRB as an input, but the algorithm relies more on
NDVI than on Rn and it is therefore less evident to attribute the failure of P-LSH to represent the magnitude of
the 1998 agricultural drought, but it could be a contributing cause.

CArg includes most of the areas exploited for agriculture and livestock in Argentina, a country whose
economy relies heavily on grain exportation. Both flooding and droughts are recurrent and have devastat-
ing socioeconomic effects in the whole country. In 1995–1996, the worst drought since 1962 occurred
(Llano & Penalba, 2011) which caused severe losses to agriculture and cattle during austral winter 1995
(Alessandro & Lichtenstein, 1996). In Figure 7b, the period SON 1994–SON 1996 is detected as anoma-
lously dry by all the LSM and reanalysis products and also agrees on that the worst drought season
occurred during austral winter 1995, coincident with the strongest precipitation anomaly. It should be
noticed that the LSMs and reanalysis achieve this although they do not include processes potentially
important for the variability of the surface climate of this region such as groundwater (Chen et al., 2010;
Kuppel et al., 2015; Martinez et al., 2016) and vegetation dynamics (M€uller et al., 2014). However, the anal-
ysis here is only qualitative and it is possible that these mechanisms are necessary for the products to rep-
resent the quantities of ET reduction correctly. For example, Chen et al. (2010) showed the importance of
groundwater deficit for the severe drought in CArg of 2008–2009, a period which is not covered by our
products. Their results indicate that the inclusion of groundwater in a LSM could be important since
GLDAS, a LSM without groundwater, detects but underestimates the severity of the drought. To assess
these issues there are urgent needs for both ground based measurements and model development. RS
products show less coherence with the precipitation anomalies and with literature documenting the agri-
cultural drought of 1995 (Alessandro & Lichtenstein, 1996; Llano & Penalba, 2011). In particular, after one
and a half years of robust dry precipitation anomalies starting in SON 1994, in MAM 1996 all RS products
cease to show dry anomalies. In the case of PT-JPL, this is related to the positive anomaly of SRB radiation
(last line of Figure 6b). Only using RS products it would not be possible to distinguish 1995 as an extreme
agricultural drought year. However, the agricultural drought of 2003, which was less severe than the one
in 1995 but generated large losses in the agroindustry (Alessandro, 2008) is detected by all products,
including RS products.

Droughts in PAT provoke losses of sheep which is the main livestock, fires, and eolic erosion. Agricultural
droughts in PAT have not been reported in literature for the period of study, however it could be reason-
able to assume soil moisture deficit after one or more years of precipitation deficit. The severest meteo-
rological droughts during the analyzed period occurred in 1989–1991 and in 1996 and are detected with
similar magnitudes by LSMs and Reanalysis (Figure 7c). LF-RS and P-LSH in general do detect these
droughts (except for the zero response of P-LSH in 1996).The anomalies are weaker in RS products,
which in itself does not mean erroneous, but the responses are similar to less extreme periods such as
1994–1995, not making it possible to distinguish between severe and weak droughts. PT-JPL show the
lowest coherence with P anomalies, for example, 1990 and 1996, following long dry sequences have
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weak wet anomalies which are coherent with SRB forcing radiation with positive anomalies. On the con-
trary 1992, which is a wet year in the P products is dry in PT-JPL due to negative SRB anomalies.

Some studies have reported a poor performance of the PM and PT algorithms in arid areas (Michel et al.,
2016; Zhang et al., 2017). However here, at least in the case of PT-JPL, the SRB net radiation anomalies play
an important role. In the next section the general relation between P, Rn, and ET anomalies are studied and
a limited assessment of Rn uncertainty is realized.

3.4. ET Response to Precipitation and Radiation Anomalies
In section 3.3, we saw that LSM-based ET products respond stronger to precipitation anomalies than RS
products in water-limited regions. Here we will look at the ET response to P and Rn seasonal anomalies for
all regions, products and seasons. Since P-LSH and PT-JPL are forced with SRB, we also analyze an indepen-
dent net radiation product, CLARA. Figure 7 displays portrait diagrams of the Spearman correlations (r)
between seasonal anomalies of PEns and ET (a–d, first column) and between PEns of the preceding season
and ET (e–h, second column), Rn of SRB (i–l, third column), and Rn of CLARA and ET (m–p, fourth column).

In the first column of Figure 7, we see that almost all products agree on the strong positive r(PEns,ET) in the
water-limited regions NeB, Andes, CArg, and PAT all year around and also for SAmz and SAMS during JJA
(dry season) and SON (monsoon onset season). However, during seasons of abundant rainfall with related
cloudiness, most products agree on a negative r(PEns,ET), pointing out energy-limited regimes. This occurs
in SAmz and SAMS (and to less extent in EQ) during the mature monsoon season DJF (Figure 7a), in EQ and
SAmz during the declining monsoon season MAM (Figure 7b), for which rainfall still are abundant (see Fig-
ures 1b and 1c) as well as in NSA and EQ during JJA (Figure 7c), the rainy season in the northern part of the
continent (Figure 1a). P-LSH and PT-JPL stands out by indicating a negative relation in most regions/
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Figure 7. Correlations between seasonal anomalies of (first column, a–d) PEns and ET, (second column, e-h) PEns of the previ-
ous season, and (third column, i–l) ET and net surface radiation from SRB (RnSRB) and ET, and from (third column, m–p) CLARA
(RnCLARA) and ET, for the four seasons (rows), are displayed in portrait diagrams of regions (rows in each portrait diagram) and
ET data sets (columns in each portrait diagram). Vertical lines separate the categories of the products. White refers to nonsig-
nificant correlation values at 95%.
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seasons, also for very dry cases such as NeB and CArg in MAM (P-LSH, Figure 7b) and CArg in JJA (PT-JPL,
Figure 7c).

The lagged correlations r(PEns(t-1),ET) of the second column of Figure 7 are predominantly positive for all
regions/seasons/products. In particular, the RS products show negative r(PEns(t-1),ET) only on few occasions
in comparison to r(PEns,ET). Comparing columns 1 and 2, it seems like the LSM-based products respond to P
anomalies during the same season while RS products respond during the next season. ET anomalies can be
lagged in comparison to P anomalies, as in the example of agricultural drought that lags meteorological
drought (Van Loon, 2015). How long this lag is must differ from case to case, depending of land cover, tem-
perature and strength of the anomaly. Without ground based evidence we cannot determine the correct
response, except for in the cases of strong agricultural drought discussed in the previous section. With
respect to the energy-limited regions with negative r(PEns,ET), these mostly show positive lagged correla-
tions, except for SAmz in DJF (Figure 7i) and EQ and SAmz in MAM (Figure 7j), which is partly due to positive
autocorrelation of PEns (not shown).

Uncertainty of ET has multiple sources and one of them is the forcing Rn. Columns 3 and 4 of Figure 7 indi-
cate that the representation of anomalies is very different between SRB and CLARA since they show differ-
ent correlations with ET. P-LSH and PT-JPL correlate very well with SRB but not with CLARA, because the
forcings of both products use SRB. Another outstanding difference is that SRB seems to correlate better
with ET in energy-limited regions than in water-limited regions (which is what would be expected), while in
CLARA we cannot make this generalization. An individual ET product with a distinctive behavior is MERRA-L
with negative or nonsignificative r(RnSRB,ET) for all regions except NeB which could be attributed to the dif-
ferent signs of the tendency of these time series.

4. Summary and Conclusions

The main objective of this paper was to give guidance to users of
evapotranspiration (ET) products over South America by assessing
their uncertainty and by highlighting strengths and weaknesses of
some of the most common gridded products. To this end, an ensem-
ble of nine products from land surface models (LSMs), reanalysis, and
remote sensing data (RS) was analyzed with respect to their climatol-
ogy, representation of anomalies and response to climatic forcing for
the 1989–2005 reference period.

The spatial distribution of uncertainty depends on what metrics we
are concerned with (Figure 8). The annual mean ET has a relative
interproduct spread not smaller than 60% for any of the regions.
This implies that studies that are concerned with annual mean ET,
for example, climatological continental transport of moisture (such
as van der Ent et al., 2010; Zemp et al., 2014) should run their models
with different ET products to test the sensitivity to the input. Uncer-
tainty of relative annual mean ET is even larger (close to 100%) in
very dry, and which have large uncertainties in precipitation (Figure
8, grey color, regions NeB, PAT, and Andes). Uncertainties of the
annual cycle are larger over energy-limited regions with an annual
cycle of net surface radiation that is dominated by the precipitation
annual cycle and not by the solar angle (Figure 8, cyan color, regions
EQ and SAmz). Over these regions, in particular SAmz, the mecha-
nisms that drive ET during the dry season are still poorly understood,
and therefore it is not a surprise that products that rely on different
theoretical considerations give different results. Finally, if our pur-
pose is to represent strength and timing of monthly to seasonal
hydrological anomalies, we should care about the largest uncer-
tainty in the pink areas of Figure 8 (approximately regions EQ, SAmz,
Andes, and SESA).

Relative annual mean

Annual cycle

Monthly anomalies

Large ET uncertainties with respect to

Figure 8. Schematic summary of the regions with largest uncertainty with
respect to annual mean of ET (grey), annual cycle of ET (cyan), and representa-
tion of anomalies (pink).
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We also looked at the detection of droughts over three water-limited regions that are particularly affected
on a socioeconomical level (NeB, CArg, and PAT). The LSM-based products, which are driven by
observation-based corrected precipitation, detect all agricultural droughts reported in literature. However,
although we cannot confirm this in our study, it is possible that the magnitude of ET reduction is overesti-
mated (Ukkola et al., 2016). The possibility of overestimation of droughts by LSMs is quite a serious issue
since ET is intrinsically related to surface temperature extremes through the coupling between latent and
sensible heat fluxes. An underestimation of ET for periods of precipitation deficit would imply an overesti-
mation of temperature which should be considered both in studies on heat extremes and in studies on cli-
mate change. This issue calls for efforts in comparing LSM results with observational in situ data over South
America and to eventually use this information for development of model parameterizations.

When studying hydrological anomalies, not only the choice of individual ET product but also the category
of product is crucial, since LSM-based products react immediately and strongly to precipitation anomalies,
while the RS products used here show lagged responses with of less magnitude. While we suppose that
agricultural drought lags meteorological drought in general, the real length of this lag is unknown and
surely differ from case to case, making it impossible to generalize about if LSM-based or RS-based products
perform better. The same is true regarding the magnitude of the anomalies. However, among four severe
agricultural droughts reported in literature, the RS products only detect two. In the case of the PT-JPL prod-
uct, we are confident that this is caused by the SRB forcing net radiation, which highlights the importance
of uncertainties of radiation anomalies for the correct representation of ET anomalies.

The most important characteristics of the ET products are summarized in Table 2. Although the true ET is
unknown hence making difficult the recommendation of individual products, clear outliers are marked. This
is important knowledge when testing the sensitivity of a model to different products. In three cases, we feel
confident in recommending not using a product, namely MERRA-L in the northern energy-limited regions
and P-LSH and PT-JPL forced with SRB Rn in studies on agricultural droughts in the water-limited regions of
South America.
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