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0. Abstract 
A mathematical model comprises input variables, output variables and equations relating these 
quantities. The input variables may vary within some ranges, reflecting either our incomplete 
knowledge about them (epistemic uncertainty) or their intrinsic variability (aleatory uncertainty). 
Moreover when solving numerically the equations of the model, numerical errors are also arising. The 
effects of such errors and variations of the inputs have to be quantified in order to asses the model’s 
range of validity. The goal of uncertainty analysis is to asses the effects of parameter uncertainties on 
the uncertainties in computed results. 
 
The purpose of this report is to give an overview of the most useful probabilistic and statistic 
techniques and methods to characterize uncertainty propagation. Some examples of application of 
these techniques for PA applied to radioactive waste disposal are given. 
 

1. Notation  
In the following, the random variables (or variates) will be denoted by upper-case letters, while their 
realizations will be denoted by the corresponding lowercase letters. The letter X (x) will be associated 
with the input parameters and the letter Y (y) with the output. 
  
rv : random variable 
X, Y :   random variables;  

),...,,( 21 nXXX  : a random sample ;  
),...,,( 21 nxxx :  the corresponding realization of the random sample;  

),,( 1 dXX K=X  : a random vector of size d ; 
Y=Y(X) : the output of the numerical model ;  
F : the cumulative distribution function (CDF): )()( xXPxF ≤= ; 

f : the probability density function (PDF) : ∫ ∞−
=

x

dttfxF )()( ; 
IR: set of real numbers; 

αα qx ,  : the α- quantile of X, defined as αα =)(xF ; 
][x  : the largest integer x≤ ; 

⎡ ⎤x : the smallest integer x≥ ; 

)(kX  : order statistics (of order k) ; 
μ : mean of a random variable; 

2σ : variance of a random variable; 
x : sample mean; 

2
xσ , 2s : sample variance; xσ , s : sample standard deviation 

E(.) : mathematical expectation 
Var(.) : variance 
iid : independent, identically distributed 
 

2. Introduction 
 
A performance assessment (PA) of a repository for radioactive waste is an analysis that identifies the 
processes and events that might affect the disposal system; examines the effects of these processes and 
events on the performance of the disposal system; and, estimates the cumulative releases of 
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radionuclides, considering the associated uncertainties, caused by all significant processes and events. 
These estimates shall be incorporated into an overall probability distribution of cumulative release to 
the extent practicable. 
 
The process to develop a Performance Assessment of a nuclear High Level Waste repository (HLW) 
involves modelling the whole system, which classically is considered to be divided into three parts: i) 
The near field or engineered facilities including the disturbed part of the geosphere, ii) the far field or 
part of the geosphere that hosts the repository, and iii) the biosphere, eventual sink of radioactive 
pollutants. Modelling such a system means modelling the inventory of radionuclides, the processes 
that deteriorate the facility and that produce the release of radionuclides in the long term, their 
transport through the geosphere and their spread over the biosphere, which ultimately will produce 
doses on humans. All those models will be integrated as submodels of the system model. 
  
Moreover, implementers should be able to foresee potential disruptive scenarios that could induce 
‘worse than expected’ behaviour of the system. This involves addressing events and processes that, 
though unlikely, could reasonably happen, and would produce more adverse consequences that the 
expected normal evolution of the system. Two activities are triggered when alternative scenarios are 
identified: Likelihood estimation and adapting the system model to the specific physical and chemical 
conditions produced by the scenario. 
 
Parameters such as coefficients, boundary and initial conditions of the differential equations used in 
the system model are usually affected by uncertainty. Characterising these uncertainties is an 
extremely time consuming task that includes laboratory and field experiments, collection of historical 
records, search in databases and use of expert judgment. Formally, as soon as scenarios are identified 
and their probabilities are estimated, the system model is available and parameter uncertainty is 
assessed, computations could be started to estimate the adverse consequences to humans and the 
environment in the future. 
 
This report focuses on three steps of the PA:  

− the characterisation of input parameter uncertainties and scenario likelihood,  
− the propagation of uncertainties and  
− the characterisation of output uncertainties (see Figure 1).  

 
Regarding the characterisation of input parameter uncertainties and scenario likelihood estimation, 
special attention will be paid to widely used descriptive statistics (chapter 3), which are useful to 
understand the data obtained from field and laboratory experiments, and to inference methods used for 
assigning PDFs to rvs and probabilities to scenarios (chapter 4). Chapter 5 deals with the propagation 
of uncertainties through the system model, and specifically with the most useful, and in fact most used, 
method: Monte Carlo. Further attention is paid within this chapter to techniques designed to make 
Monte Carlo computationally more efficient (variance reduction techniques and input parameter space 
dimension reduction) and to the use of surrogate models. Some pages are also dedicated to the 
selection of the sample size and other uses of Wilk’s theory on tolerance intervals. The last chapter is 
dedicated to specific issues related to the characterisation of output uncertainties.  
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Figure 1: Uncertainty propagation using a single output model 

 

3. Descriptive statistics 
 
Descriptive statistics are used to get information about the data that have to be analysed. The 
techniques described in this chapter are generic statistical techniques that can be used to analyse data 
related to the inputs, but also to the outputs. [Prváková 08] has been used as a source of data to be used 
in some of the examples shown in this report. The realizations of the rv are generically denoted 
by ),...,,( 21 nxxx . 
In the following the word statistic will design “a function of a sample where the function itself is 
independent of the sample's distribution: the term is used both for the function and for the value of the 
function on a given sample” (from http://en.wikipedia.org/wiki/Statistic ). 

3.1. Numerical summaries 

3.1.1.   Central tendency  
 
The purpose of the measures of central tendency, or location, is to compute one single number which 
gives the best possible representation of the value around which the data are located. Four measures 
have been considered: mean, median, geometric mean and mode. 
 
The mean 
 
The most important one is the arithmetic mean of the sample, defined by: 
 

∑ =
=

n

i ixnx
1

1 .                            (3.1) 
 

Other notations: nx (whenever knowing the sample size is needed), μ . 
 
Important characteristics of the arithmetic mean: 
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• It is a linear statistic in the following sense: for two samples x and y of the same size 
ybxabyax +=+  ( IRba ∈, ).  

• It is not a robust statistic; it is very sensitive to extreme values (see the example in next page). 
• It gives a very good measure of location for homogeneous symmetric sets of data. The variance 

(see § 3.1.3) is minimised when mean is the measure of location used as a reference. 
• If the sample is heterogeneous (existence of data obtained under different conditions), the mean 

can become completely useless as a measure of central tendency (this problem affects to all 
measures of central tendency); it could even take a value outside the range of definition of the 
variable under study. For instance a sample made of two subsamples of equal size that do not 
overlap at all, the arithmetic mean would be in between, just where the variable takes no value. 

• When many output variables are used in a PA, the values may spread over several orders of 
magnitude, and the aggregated may become very asymmetric and completely dominated by the 
largest sample values. In such case the arithmetic mean is generally not a good statistic. 

 
The geometric mean 
 
The geometric mean of the sample is defined by: 
 

( ) nn

i ixx
/1

1

~ ∏ =
= .                                                      (3.2)            

 
The geometric mean is only of interest when all sampled values are positive. It may also be computed 
when there are null values, but then it is also null. The geometric mean gives a measure of central 
tendency when a logarithmic scale is used. The geometric mean is often approximated by calculating 
the arithmetic mean of the logarithm of the actual sampled values and transforming the obtained result 
consequently, i.e.: 
 

( )[ ]∑ =

=
=

ni

i ixnx
1

)ln(1exp~   .                                      (3.3) 
 
The geometric mean is always either equal to or smaller than the arithmetic mean. In cases when 
positive and null values are mixed in the same sample, it may be of interest to compute a geometric 
mean restricted to the m sampled positive values (m<n). The geometric mean does also answer the 
question “if all quantities had the same value, what would that value have to be in order to achieve the 
same product”. 
 
As many rv used as outputs in PA studies are spread over several orders of magnitude, the geometric 
mean is useful to estimate the “center of mass” of the data in a logarithmic scale (the arithmetic mean 
estimates the “center of mass” in a linear scale). 
 
The median 
 
Another alternative is the median. The median of a sample is the value which splits the sample in two 
equal parts. Suppose that the sample sorted in ascending order is )()2()1( ,...,, nxxx , then 
 

⎪⎩

⎪
⎨
⎧ +

=
+

+

odd is  if   
even is  if   2)(

)(
2/)1(

1)2/()2/(

nx
nxx

xmed
n

nn .                             (3.4) 

 
It is the value of x for which the CDF 2/1)( =xF . 
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The median is a robust indicator, but it is more difficult to perform algebraic computations using it 
than using the mean. For instance, the linearity property is no longer valid. On the other hand, the 
median is conserved when applying a strictly monotonic increasing transform to the sample, which is 
not the case for the mean. 
 
Example:  
 
The sample data (n=51) represents the release of 94Nb getting out of the fractured zone after 5000 
years computed in a study of the release of radio nuclides from wastes of an ILW disposal cell 
embedded in a porous material for a generic French clay site (see [Prváková 08] for the description of 
the benchmark). In Figure 2 the circled point contains an extreme value. 
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Figure 2: A sample of 94Nb getting out of the fractured zone after 5000 years 

 
The mean of the whole sample is 1018.251 −= ex , while if we exclude the extreme point we obtain 

1113.950 −= ex . The effect on the mean of that single value is huge; excluding it from the sample 
produces a decrease of 58% in the mean. This is not the case with the median. The original median 
(sample of size 51) was 1122.2)(51 −= exmed . After removing the extreme value, the new median is 

1121.2)(50 −= exmed ; the two values are quite similar, which is due to its robustness as a measure for 
the central tendency. 
 
The mode 
 
A mode is the location of a local maximum of the PDF. A PDF can be multimodal, which often means 
that we are dealing with heterogeneous populations. For discrete data, the mode is the most frequently 
observed value. However, the estimation of the mode using a sample depends entirely on the method 
used to estimate the PDF (see section 3.2.3).  
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Figure 3: Example of a multimodal PDF; there are 4 modes: 19000, 30000, 40000 and 50000 years 

 
 

3.1.2. Quantiles 
 
Quantiles generalize the median for a probability α different from ½, i.e. they are values that split the 
data in two parts, such as the proportion of data inferior or equal to this value is equal to α.  The α -
quantile αq  is defined by the equation 
 

αα =)(qF , ]1,0[∈∀α .                             (3.5) 
 

However, when the cumulative distribution is not strictly increasing function this equation might have 
either an infinite number of solutions or no solution at all, as can be seen from Figure 4. The usual 
conventions to overcome this problem are based on the ordered observations )()1( nxx ≤≤K . The 
smallest observation corresponds to a probability of 0 and the largest one to a probability of 1. The ith 
observation corresponds to α -quantile αq  (i.e. )(ixq =α ), where α may be defined as follows: 
 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

+−
+−

+
−

−−

=

.)41()83(
or   )31()31(

or   
or   )1/(

or   /)5.0(
or   

ni
ni

ni
ni

i/n

1)1)/(n(i

α                             (3.6) 

 
In (3.6), the two emphasized expressions are the most used ones:  
 the first one because it has a symmetry with respect to the CDF: the smallest observation 

corresponds to a probability of 0 and the largest one to a probability of 1; it is the one used by 
default by some statistical softwares such as R [http://cran.r-project.org/] and S 
[http://www.insightful.com/]; 

 the fourth one because it corresponds exactly to the empirical cumulative distribution function 
(see formula (3.13)). 

Concerning the other expressions in (3.6): 
 the second one is popular amongst hydrologists, 
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 the third one is used by other statistical softwares such as Minitab [http://www.minitab.com/] 
and SPSS [http://www.spss.com/], 

 using the fifth expression, one obtains a quantile estimate that is approximately median-unbiased 
(i.e. the median of the estimator is approximately unbiased) regardless of the distribution of x, 

 using the last expression, one obtains a quantile estimate that is approximately unbiased for the 
expected order statistics if x is normally distributed. 

More details should be found in [Hyndman 96]. 
 
If α is not of one of the previous forms, a linear interpolation may be used to estimate αq , as for 

example ⇒
−

+
−
−

−=
11

)1()1(
n

ia
n
iaα  )1()()1( ++−= ii axxaqα , 10 << a . 

Example:  
Let us consider the following n=6 sample { }5,4,3,2,1,0 . We assume that the ith observation is the 
estimation of the α -quantile αq , where ))/(n(i 11 −−=α . We want to estimate the 1/4 quantile, 
which is not of the form ))/(n(i 11 −−=α . 

But, as 
5
2

4
1

5
1

<<  there exists a = 0.25, ( 10 << a ), and i = 2, such that 
55

1)1(
4
1 iaia +

−
−= . We 

hence obtain 25.1225.0175.025.075.0 )3()2(4/1 =×+×=+= xxq . 
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Figure 4: Empirical cumulative distribution function and quantile signification 

 
The median is the ½ quantile. Some other particular quantiles frequently used are: 

• percentiles, the 1/100-quantiles 
• deciles, the 1/10-quantiles 
• quartiles, the 1/4-quantiles. 

 
For more details concerning quantile estimation see section 5.4. 
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3.1.3.  Dispersion characteristics 
 
The measures of dispersion are important for describing the spread of the data around a central value. 
Two distinct samples could have similar means or medians but completely different degrees of 
dispersion around them. 
 
The range 
 
The range is defined as the difference between the largest and smallest sample values:   
 

)min()max()1()( xxxxrange n −=−= .                 (3.7) 
 

It is one of the simplest measures of variability to calculate, but it depends only on extreme values (and 
hence it is a non robust indicator) and provides no information on the data distribution.  
 
The interquartile range (interval) 
 
The interquartile range is defined as the difference between the 3rd and the 1st quartiles, i.e. 4/14/3 qq − . 
It is a robust indicator. The meaning of this indicator is that at least 50% of the “central” data are 
contained in this interval. It is also used for drawing the boxplots (see section 3.2.4). 
 
The variance and the standard deviation 
 
This indicator was meant to measure the mean deviation from the mean value of the sample, by taking 
into account positive and negative deviations. This is the reason for introducing the quadratic function 
sample variance as: 
 

∑
=

−=
n

i
i xx

n
x

1

2)(1)var( .                 (3.8) 

 
As the variance does not have the same units as the sample (because of the squares), the standard 
deviation has been introduced: 

∑
=

−==
n

i
ix xx

n
x

1

2)(1)var(σ .                            (3.9) 

 
Alternative definitions of the variance and the associated standard deviation are 
 

∑
=

−
−

=
n

i
i xx

n
s

1

22 )(
1

1 ; ∑
=

−
−

=
n

i
i xx

n
s

1

2)(
1

1                             (3.10) 

 
(see for instance [Saporta 90] for more information about the different definitions of the variance). 
 
If the sample is approximately normal, then 

1. The interval mean ± one standard deviation contains approximately 68% of the 
measurements in the series. 

2. The interval mean ± two standard deviations contains approximately 95% of the 
measurements in the series.  
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3. The interval mean ± three standard deviations contains approximately 99.7% of the 
measurements in the series.  

When the distribution that generates the sample is unknown, similar rules, based on Chebyshev’s 
inequality [Jordaan 05], may be applied. However, the bounds that are computed are rather loose, but 
they are valid irrespective of the distribution that generates the data; knowing mean and standard 
deviation is enough to calculate them. 

The Chebyshev’s inequality states that 211)( kksxxfr i −≤≥− , where k is any real number and fr  stands 
for relative frequency. It provides useful information for k>1 : 

1. The interval mean ± two standard deviations contains at least 75% of the measurements 
in the series.  

2. The interval mean ± three standard deviations contains at least 89% of the 
measurements in the series.  

 

3.1.4. Shape characteristics  

The moments of a rv allow to characterize its probability distribution. Moments may be computed with 
respect to the origin (0) or with respect to a measure of central tendency, usually the mean. The first 
order moment with respect to the origin is the mean of the rv and the second order moment with 
respect to the mean is the variance. The third and the fourth moments define the shape of the 
distribution. 

The skewness coefficient 

The skewness coefficient is the third standardized moment with respect to the mean, i.e.  

3
1

3

1

)(1

x

n

i i xx
n σ

γ ∑ =
−

= ,                                                            (3.11) 

where xσ  is computed as in expression (3.9). A positive coefficient means that the distribution has a 
long right tail, (the distribution is also known as right-skewed) while a negative coefficient means that 
the distribution has a long left tail (the distribution is also known as left-skewed), see for instance 
Figure 5. Any symmetric distribution has a skewness coefficient equal to 0, as for example the normal 
distribution.  It should be noted though that some non-symmetric distributions could also have a null 
skewness coefficient. 

Other statistics may also be used to detect lack of symmetry, such as the difference between the mean 
and the median. The mean is larger than the median in a right-skewed set of data, while it is smaller for 
left-skewed set of data. Positive (all values larger than 0) right-skewed sets of data do also show large 
standard deviations compared to their means.     
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Figure 5: PDFs for distributions with different skewness coefficients: > 0 (right-skewed, left); = 0 (symmetric, 
center); < 0 (left-skewed, right). 

 

The kurtosis  

The kurtosis coefficient is the fourth standardized moment with respect top the mean, i.e. 

 
4

1

4

2

)(1

x

n

i i xx
n σ

γ ∑ =
−

= .                                                               (3.12) 

It represents a measure of the “peakedness” of the distribution, see Figure 6. A kurtosis coefficient 
larger than 3 means that the distribution has sharper “peaks” and flatter “tails” than a normal 
distribution (leptokurtic distribution). A kurtosis equal to 3 means that the distribution is 
approximately normal (mesokurtic distribution). A kurtosis below 3 means that the distribution is 
flatter than the normal distribution (platykurtic distribution).  
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Figure 6: PDFs for distributions with different kurtosis : >3 (left) ;  =3 (center); <3 (right). 
 

The kurtosis coefficient is sometimes defined as 34
4 −σμ , where 4μ  is the numerator in expression 

(3.12), in order to make the kurtosis of the normal distribution equal to zero instead of 3. The kurtosis 
is not an intuitive coefficient; it is quite difficult to say, by looking at a PDF if the distribution has a 
large or small kurtosis. What is important, in terms of shape, for a leptokurtic distribution is that there 
is a sharper “peak” around the mean (which means a higher probability than a normally distributed rv 
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of values close to the mean) and “fat tails” (which means a higher probability than a normally 
distributed rv of extreme value), as it can be seen in Figure 7. 
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Figure 7: Influence of increasing Kurtosis 
 
 

3.2. Graphical tools 

3.2.1.  CDF (CCDF), ECDF (ECCDF) 
 

The cumulative distribution function (CDF) is defined by )()( xXPxF ≤=  and for a continuous rv it 

is also equal to ∫ ∞−
=

x
dttfxF )()( , where f(.) is the probability density function. The most important 

properties of the CDF are: 
• It is non-decreasing monotonic function,  
• 1)(0 ≤≤ xF , 
• )()()( aFbFbXaP −=≤≤ , 
• )()( xfxF =′ . 

 
Alternatively, the complementary cumulative distribution function (CCDF), which is equal to 1-F(x), 
may also be used. The use of the CCDF is widespread in the area of nuclear safety in general and 
specifically in the area of PA since many safety limits and safety criteria are given in terms of 
exceeding probabilities, which is the kind of information included in CCDFs. 
 
In Figure 8 we present the CDFs and the CCDFs of some of the most frequently used distributions, 
without specifying their parameters, in order to give an idea of their aspects. Whenever different sets 
of parameters are used the position and the spread of these curves will be different. 
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Figure 8: Some of the most usual CDFs and the corresponding CCDFs 
 
The empirical cumulative distribution function (ECDF – Fn(x)) of a sample is the available tool to 
estimate the CDF of the corresponding rv, i.e.: 
 

},{#1)(  , xxi
n

xFIRx in ≤=∈  ,                                      (3.13) 

 
where the symbol # denotes the cardinal of a set. The empirical complementary cumulative 
distribution function (ECCDF) is equal to )(1 xFn− .  
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Figure 9: Example of Empirical CDF and the corresponding CCDF 

 
In Figure 9 we represent the ECDF (left) and the ECCDF (right) for some data from the benchmark in 
[Prváková 08]. The sample (of size n=1000) represents the decimal logarithms of the peaks of the 
release of 129I coming out of the disposal cell. It is easy to read directly on this representation that, for 
example, the percentage of the sample such that the log10 (129I) is less than or equal to -6.8 is around 
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20%. The same information can be read on the right panel of Figure 9: the percentage of the sample 
such that the log10 (129I) is greater than or equal to -6.8 is around 80%. 
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Figure 10 : ECDF for the log10 of the 129I release at 50000 years, at the top and bottom of the repository, together 
with its 95% confidence bands.  
 
Moreover, Kolmogorov Smirnov confidence bands may be computed for any ECDF and any ECCDF 
(for details on Kolmogorov Smirnov confidence bands see [Owen 01] and [Conover 80]). In Figure 10 
we present an example of ECDF together with its 95% confidence bands. See section 4.1 for correctly 
interpreting this graphic representation. 
 

3.2.2. Histogram 
 
The histogram graphically summarizes and displays the distribution of a data set. The histogram is 
constructed by regrouping the data into k bins ][,[,[ [,[ 1212101 kk-k , aa C..., aaC, aaC ===  and then defining 

the (relative) frequency of each bin as },{#1
jij Cxi

n
f ∈= . A density is then inferred by a step function 

whose value for the jC bin is the associated frequency per unit length, i.e. )( 1−− jjj aaf . The surface 
below this step function is equal to 1. However, even if it is possible to define variable bin widths, the 
use of constant bin width is most popular. In the case of discrete variate two options are available: 
either using the cardinal of each bin (absolute frequency, see Figure 11) or using the relative 
frequencies. Discrete variates can also be represented as bars. Figure 12 illustrates the importance of 
the choice of the number of bins (or equivalently of the bins widths): the left side picture is very 
“noisy”, too many bins have been displayed; on the contrary, the right hand side picture has not 
enough bins, and much of the information is therefore lost. The only reasonable histogram is the one in 
the middle, where the corresponding PDF (see section 3.2.3) has been added. The number of segments 
should be sufficient to represent the shape of the distribution but not so small so that noise becomes 
dominant.  
 



 17

histogram for a discrete variable using bins cardinals

time [yrs]

10000 20000 30000 40000 50000 60000

0
10

0
20

0
30

0
40

0

 
 

Figure 11: Histograms for a discrete variable using as ordinate the bins cardinals 
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histogram with 20 bins and pdf estimation
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Figure 12: Histograms for the same data, using different number of bins 

 

3.2.3. PDF estimation 
 

Kernel method for the probability density function (PDF) estimation 
 

The PDF represents the probability that the random variable X is in the interval [a,b] in terms of 
integrals, i.e. it is the function f such that  
 

∫=≤≤
b

a

dxxfbXaP )()( .                                                  (3.14) 

 
If we consider a sample of size n ( nixi ,...,1, = ) from an unknown continuous probability distribution 
of density f, the histogram represents an approximation of the PDF f. The main deficiencies of the 
histogram are its discontinuity and the appropriate choice of the number of bins (or bin widths). 
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The kernel estimation of the PDF is a non-parametric method (because it does not assume a certain 
probability distribution) generalizing the histogram. The kernel estimator of f, denoted by f̂ is a sum 
of “bumps” of width h placed at the observations ix : 
 

∑
=

⎟
⎠
⎞

⎜
⎝
⎛ −

=
n

i

i

h
xx

K
nh

xf
1

1)(ˆ                                                      (3.15) 

 
K denotes the kernel. There are several desirable properties: 

• positivity : 0≥K , 
• regularity : K has to be smooth enough,  

• normalization : 1)( =∫
+∞

∞−

dxxK , 

• symmetry :  )()( xKxK −= , 
• fast decreasing at infinity. 

 
The most used kernels (see Figure 13): 

• Gaussian : ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2
exp

2
1)(

2xxK
π

 

• Epanechnikov : 
⎩
⎨
⎧ −∈−

=
otherwise

xifx
xK

0
]1,1[),1(

)(
2

4
3

 

• Rectangular : 
⎩
⎨
⎧ −∈

=
otherwise

xif
xK

0
]1,1[

)( 2
1

 

• others : Triangular, Biweight, Cosine, Optcosine. 
 
It can be seen from Figure 13 that density curves are similar for the different Kernels. Thus the kernel 
is not as important as the choice of bandwidth, h. This scaling parameter (which has the same physical 
dimension as the sample) controls: 

• the width of the probability mass spread around a point 
• the smoothness or roughness of a density estimate. 

If the bandwidth is too small, the estimated density will be under-smoothed; a large value of h, on the 
other hand, would lead to an over-smoothed estimated density (see Figure 14). 
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Figure 13: Influence of the kernel (h=1) 

 
 
An optimal bandwidth may be computed for each kernel. The criterion to be minimized is either the 
Mean Integrated Squared Error (MISE) or the Asymptotic Mean Integrated Squared Error (AMISE). 
For instance, the optimal bandwidth for the Gaussian Kernel and MISE criterion is: 
 

5/1ˆ06.1 −= nhopt σ                                                                 (3.16) 
 

whereσ̂  is the empirical standard deviation of the sample, i.e. ∑
=

−
−

=
n

i
i xx

n 1

2)(
1

1σ̂ . Unfortunately, 

the optimal bandwidth is over-smoothing if f is multimodal or somehow “not normal”. 
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Figure 14: bandwidth influence, from under to over-smoothing (Gaussian kernel) 
 
 
 
Another option is to use the adaptive kernel method, which consists of varying h with xi, in order to 
have a small h where we have a high density of data and a large h where the data is sparse. The 
algorithm is outlined below. 

1. define a pilot estimation )(~ xf (an optimal bandwidth kernel estimation with optimal 
bandwidth denoted by h0), such that 0)(~

>ixf  

2. compute { } α
λ

−
= gxf ii /)(~ , where ( )∑= ))(~log(/1)log( ixfng and 10 ≤≤ α  is a sensitivity 

parameter (a good choice is 2/1=α ) 

3. ∑
=

⎟⎟
⎠

⎞
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⎛ −
=

n

i i

i

i h
xx
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1 00

11)(ˆ
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. 

 
Details concerning density estimation may be found in [Silverman 86]. 
  

3.2.4. Boxplots 
 
A boxplot (also known as a box-and-whisker plot) is a way to picture groups of numerical data using 
five of their summaries (the smallest observation, lower quartile (Q1), median, upper quartile (Q3), and 
largest observation). It also indicates if there are some observations which might be considered 
outliers. The length of the “box” is the interquartile range (IQR = Q3-Q1) and the line inside the box 
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stands for the median. An outlier is any data that lies outside the interval 
[ ]IQRQIQRQ ×+×− 5.1,5.1 31 . The bounds of this interval are indicated by some tic marks and are 
connected to the box by a line. 
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Figure 15: Example of boxplot for data representing the peak of the release of 129I coming out of the disposal cell 
[Prváková 08]. 
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Figure 16: Comparison of the distributions for the peaks of the release of 129I coming out of the waste package and 
of the disposal cell by using boxplots [Prváková 08]. 
 
 
As we can see from Figure 16, the boxplots, even if they show less information than histograms or 
PDFs, are very useful for making comparisons between different distributions; they may even suggest 
the existence of a second subpopulation instead of outliers (as it is the case for the left boxplot in 
Figure 16). 

3.2.5. Qqplot 
 
A qqplot is a quantile-quantile plot of two data sets and is an excellent tool for determining if the two 
data sets have the same parent distribution. It consists in plotting the quantiles of the first data set 
against the quantiles of the second data set. When two random samples have a qqplot which mostly 
falls on a straight line, then the two parent populations have a similar shape.  It is often used to test 
qualitatively the conformity between an empirical and a theoretical distribution, like for instance in the 
linear regression context for checking the normality of the residuals.  

outliers 

Q3+1.5x IQR 
Q3 

median 

Q1 
Q1−1.5x IQR 
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Example:  
 
Building a qqplot to check if a sample is normally distributed has two stages: 

• order the data in ascending order : )()2()1( ... nxxx ≤≤≤  
• associate to every )(ix the ni )5.0( −=α  − the corresponding quantile (denoted here by αq ) of 

a centered-reduced normal distribution )1,0(N  and plot the couples nixq i ,,1),,( )( K=∀α . 
If the sample is normally distributed, then the couples nixq i ,,1),,( )( K=∀α  should be 
approximately on a straight line (with slope the standard deviation of the sample). 
The table below represents the quantiles of the normal distribution N(0,1) and some residuals from 
a regression on 13 observations. A quick glance at the qqplot in Figure 17 tells us that the residuals 
are approximately “normal”, which is one of the main assumptions in a regression model. 
 

i q a x (i)

1 -1.77 -2.16
2 -1.2 -1.51
3 -0.87 -1.11
4 -0.62 -0.76
5 -0.4 -0.74
6 -0.19 -0.62
7 0 -0.44
8 0.19 0.3
9 0.4 0.62

10 0.62 0.64
11 0.87 0.99
12 1.2 1.45
13 1.77 1.46  
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Figure 17 : The “normal” qqplot (corresponding to the data in the left table) 
 

One should expect some variations from the straight line for small data sets. 
 
Some other characteristic shapes for the qqplots are the following: 

• when the sample distribution has a positive skewness coefficient, the normal qqplot will have a 
U shape as seen in Figure 18. The corresponding skewness coefficient is 1.43. 
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Figure 18: Example of a skewed sample distribution; on the left its PDF estimation and on the right the 
corresponding qqplot. The sample data is the maximum release of 129I getting out of the disposal cell computed in a 
study of the release of radionuclides from wastes of an ILW disposal cell embedded in a porous materials for a 
generic French clay site [Prváková 08]. 
 
 

• when the sample distribution has  a negative skewness coefficient, the normal qqplot will have 
an inverse U shape, as seen in Figure 19. The corresponding skewness coefficient is −1.43. 
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Figure 19: Example of a skewed sample distribution; on the left its PDF estimation and on the right the 
corresponding qqplot.  
 

• when the sample distribution is more concentrated to the right and to the left that a normal 
distribution (which is a combination of the 2 previous examples), the normal qqplot will have a 
S shape, see Figure 20 for instance. Examples of such distributions are bi-modal and uniform 
distributions.  
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Figure 20: Example of a bi-modal distribution; to the left its PDF estimation and to the right the corresponding 
qqplot.  

 
 

• when the sample distribution has larger tails than a normal distribution, the normal qqplot will 
have an inverse S shape, see Figure 21 for instance. 
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Figure 21: Example of a long tailed distribution; to the left its PDF estimation and to the right the corresponding 
qqplot. 

 
• Outliers can also be detected with the qqplots: some points quite below or above the line 

indicate this situation. The encircled dot in Figure 22 is a very good candidate to be considered 
outlier. 
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Figure 22: Qqplots for data with outliers 

 
 
This approach extends straightforward for testing the conformity of samples to other distributions, and 
to check if two samples come from the same distribution. 
 

4. Input uncertainty assessment 
 
Input uncertainty assessment is the process of characterising, through probability density functions 
(PDFs) or probability mass functions (pmfs), the uncertainty of continuous and discrete input 
parameters used in PA studies. There are essentially two ways to do it: classical inference methods or 
Bayesian methods. Expert judgment is a third way to do it, which necessarily involves a subjectivist 
interpretation of probability, i.e. probability interpreted as a degree of belief about the occurrence of an 
event or about the truth of a proposition. The method to use depends primarily on the amount and the 
reliability of the data. Classical inference methods are used when a substantial quantity of data are 
available. Bayesian methods are used when only limited amounts of data are available. Expert 
judgment is used under conditions of real scarcity of data, though at least a few data should be 
available, otherwise any attempt of uncertainty characterisation would be pure speculation.  
 

4.1. Classical inference methods 
 
Classical inference methods are based on the assumption of having a random sample. The target is to 
determine the PDF that generated the random sample. This process may be divided in three steps: 
 

1. Model identification 
2. Parameter estimation, which is divided in two parts 

a. Point estimation 
b. Interval estimation 

3. Diagnosis of the model 
 
Model identification consists in finding the most appropriate probability model (uniform, normal, log-
normal, exponential, Weibull, etc.) for the sampled data. This task needs the use of graphic tools such 
as histograms and qqplots, in addition to the experience in the field under study. Furthermore experts 
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in the field will often have an idea of the distributions that could best represent the data. This part of 
the process certainly involves subjective elements. 
 
Once the probability model has been identified, the parameters need to be determined. Most 
probability models are characterised by a set of parameters (parametric models), as for example the 
mean, μ, and the standard deviation, σ, in a normal (Gaussian) probability model. Estimation is done 
via techniques of point estimation. These techniques allow identifying a best choice for those 
parameters. Identifying best choices does not mean that those are the only acceptable ones; other 
similar values could also be acceptable. A measure of error or of likely alternatives is also needed. 
This is provided by interval estimates. 
 
The last step consists in checking that the hypotheses considered in the whole process were correct. 
Three hypotheses are normally used: the type of probability model, the independence between the 
different observations and the homogeneity of the sample.  
 
In the following pages special attention will be dedicated to both types of parameter estimation (step 2) 
and to checking that the assumed probability model is good enough (first hypothesis tested in step 3). 
 

4.1.1. Point estimation 
 
There are several methods, some of them recently developed, such as Jackknife and Bootstrap methods 
(see [Efron 93]), but the best known and most widely used methods are the Maximum Likelihood 
Method and the Method of Moments. The main shortcoming of all these methods is their requirement 
of sample sizes to get good quality estimates.  In practical situations with real engineering facilities it 
may be quite difficult to get the required sample size.  
 
 
 
Method of moments 
 
Method of Moments is probably the oldest inferential method to estimate the parameters of a PDF. K. 
Pearson developed the method of moments by the end of 19th century. The idea is quite simple. It 
consists in taking as an estimator of a parameter its equivalent sample quantity. So, the sample mean is 
the estimator for the mean, the sample variance is the estimator for the variance and so on. 
 
Maximum Likelihood method  
 
The Maximum Likelihood Method is the most widely used and most powerful estimation method in 
the classical context. Let us assume that we wish to study a random variable X (representing a 
parameter affected by uncertainty) of a known distribution function type f(X|θ, but of unknown 
parameter θ. In order to estimate θ we take a random sample ),...,,( 21 nXXX=X , which is assumed to be a 
random vector, whose components are independent and identically distributed (iid), so that its joint 
probability density function is 
 

∏ =
==

n

i in XfXXff
11 )(),...,()( θθθX .                                                   (4.1) 

 
It is important to notice that, in this expression, under the classical view, before sampling, θ is 
unknown, but has an assigned value that determines what regions of X are more likely and what 
regions are less likely. So, this is a function whose unknowns are X . This is the meaning before 
sampling. As soon as the sample is available, X is known, while θ  remains unknown. The objective is 
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to determine what value, among all the possible values of θ, makes the sample actually obtained the 
most likely one. The problem is hence to find the value of θ for which the function defined in (4.1) 
attains its maximum value. As it is convenient to look at the problem after getting the sample, 
expression (4.1) is usually written as  
 

∏ =
===

n

i in XfXXffL
11 )(),...,()()( θθθθ XX ,                                            (4.2) 

 
which means that, after sampling, the probability density function of the sample vector is changed into 
a function of the unknown parameter θ. ‘L’ stands for ‘Likelihood’. From a practical point of view, the 
function whose maximum is actually computed is not L, but its logarithm )( Xθl . Both functions reach 
a maximum at the same point since the transformation to get one from the other one is a monotonic 
transformation.  
 
As an example, let ),...,,( 21 nXXX=X be a sample of size n of a Gaussian random variable whose 
variance σ2 is known. We wish to estimate the mean μ of the random variable under study.  Under 
these circumstances, the likelihood function is 
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whose logarithm is 
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In order to compute the value of μ for which this expression reaches a maximum, we compute its first 
derivative with respect to μ 
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Table 1: The most useful probability distributions functions, their parameters and their maximum likelihood estimators. 
* The solutions of this system of equations, where ψ stands for the digamma function, are the maximum likelihood 
estimators. 
† c is estimated recursively from the second equation, later on its estimate is substituted in the first one in order to get the 
estimator of α. 
 
The maximum is obtained when this expression equals zero, which happens for the value 
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==

n

i in X
n

X
1

1μ̂ .                                                               (4.6) 

 
The reader may check, by computing the second derivative that, indeed, the likelihood function 
reaches a maximum when μμ ˆ=  (second derivative is less than zero when μμ ˆ= ). The method may 
also be applied when a PDF is defined through a vector of parameters; in that case the usual rules for 
maximizing a multi-parameter function must be applied (to equal first partial derivatives to zero and to 
check conditions imposed on the Hessian matrix evaluated at the point where first partial derivatives 
are zero). The method provides a single value as an estimate. If needed, a confidence interval with the 
desired degree of confidence, may be obtained using interval estimation theory.  
 
The maximum likelihood method has several properties that makes it the most widely used estimation 
method [Mood 74]: 

• The estimators obtained through this method are asymptotically unbiased (the limits of their 
expected values when the sample size tends to infinite are the true values of the parameters). 

• They are asymptotically normal since their distributions become normal when the sample size 
tends to infinite. 

• They are asymptotically efficient; for large sample sizes, they are the most accurate estimators. 
• They are sufficient since they summarise all the relevant information contained in the sample. 
• They are invariant; ifθ̂ is the maximum likelihood estimator of θ, and )(' θθ f= , then )ˆ(θf  is the 

maximum likelihood estimator of θ´. 
 

4.1.2. Interval estimation 
 
The purpose of point estimation is to give some single “best” value of each unknown parameter, based 
on sample data. Nevertheless, any point estimate cannot completely describe the distibution. Due to 
the way the estimation process is conducted, the estimate and the actual value of the parameters are 
close, but they are usually different. Scientists and engineers try to provide, at least, a measure of the 
error made when a point estimate is given. Interval estimation was created to solve this problem. 
 
Confidence intervals are the main tool to estimate intervals for a given parameter in a probability 
model. The theory of confidence intervals is based on the study of the distribution of the sample mean, 
the sample variance and other statistics and on the concept of pivotal quantity. If we take a sample of 
size n from a Gaussian variable and we compute the sample mean we will get a given value, usually 
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close to the mean μ of that variable. If we get a new sample of size n, we can compute a new sample 
mean. We may repeat the same process k times and we will get a sample of size k of the sample mean 
based on n observations. By plotting these k values as a histogram, we will get an idea of the 
distribution with the associated sample mean. Any standard statistics book (see [Mood 74] or [Casella 
90]) shows that, for a Gaussian variable, the sample mean follows a Gaussian distribution with mean μ 
and standard deviation nσ . The sample mean as a random variable has the same mean as the 
variable itself but its standard deviation is smaller. In fact, the larger n, the smaller its standard 
deviation. Additionally, its distribution is also normal. Taking into account the properties of normal 
distributions, this means that the quantity ( ) ( )nX σμ−  follows a standard Gaussian distribution with 
mean=0, standard deviation=1. This quantity is referred to as ‘pivotal quantity’; it is a function of the 
sample values and the parameter studied but whose distribution does not depend on the actual value of 
the parameter. Knowing the distribution of this pivotal quantity, we obtain 
 

( ) ( )[ ] ( )[ ] ασμασμ ααα −=±∈⇔−=≤−≤− 11 222 nzXPznXzP  ,                                   (4.7) 
 

where zα/2 stands for the 100(1-α/2)% percentile of the standard Gaussian distribution. Expression (4.7) 
means that the interval 
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is a 100(1-α)% confidence interval for the mean of that normal distribution whose standard deviation is 
known. Typically α is set to 0.05 and then zα/2=1.96. In this case the interval obtained is a 95% 
confidence interval. 
 
 
Distribution Parameter Pivotal quantity Distribution of 

the pivotal 
quantity 

Confidence interval 

Normal μ 
(σ2: known) 
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Gaussian: 
N(0,1) 
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θσ
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*Standard 
Gaussian: 
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Table 2: Confidence intervals for normal, exponential and generic probability distributions.  
† χ2

α/2 stands for the 100(1-α/2)% percentile of the corresponding χ2 distribution (i.e. with as many degrees of freedom as 
indicated in the fourth column of the table)  
* Stands for asymptotic results, which means that they are valid for large sample sizes; all the others are exact results. 
 
Interpretation of confidence intervals 
 
Suppose that a pivotal quantity is used to estimate a 100(1-α)% confidence interval ],[ 21 θθ  for a given 
parameter θ of a probability model according to the procedure above described. A priori, the 
probability that the interval ],[ 21 θθ contains θ is 100(1-α)%. The values θ1 and θ2 are computed on a 
sample; once they are computed, the true value of the unknown parameter is either in the interval 
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],[ 21 θθ or outside it, hence we cannot speak about probability any more. By repeating the experiment 
(i.e. by taking different samples and by computing the interval ],[ 21 θθ ) a certain number of times, in 
average 100(1-α)% of the cases, the true parameter will be in the confidence interval. But we don’t 
know in which cases this will happen. This is the reason why the well-known expression “with 
confidence 100(1-α)% the parameter lies in the confidence interval” is used. Figure 23 shows the 
results of generating via sampling 48 95% confidence interval. Only three of them do not contain the 
real value of the parameter (dashed line), which is close to what would be expected, between 2 and 3 
intervals should not contain the real value (5% of 48).   

 

θ 

Figure 23: Repeated confidence interval (vertical lines) together with the true value of the parameter (horizontal 
line) 

 
The main problem related to the use of confidence intervals is that exact confidence intervals are 
available only for the parameters of a few distributions such as normal, log-normal and exponential 
distributions. For any other distribution, only approximate confidence intervals are available, which 
are based on the asymptotic normality and lack of bias of maximum likelihood estimators. Table 2 
shows the most frequently used confidence intervals. Exact interval estimates are available for 
quantiles of any distribution, provided that large enough samples are available (see section 5.4.3).  
 

4.1.3. Goodness of fit tests 
 
The last step of the inferential process is to check if the hypotheses under which it has been developed 
are true. The main hypothesis is the selected probability model. After selecting the model, the point 
estimation gives the best choices for the values of the parameters subject to some criteria 
(maximisation of the likelihood function or some other one). Both sets of information define 
completely the law that supposedly generated the data under study. Nevertheless, the best choice could 
be ‘not good enough’. This is what we try to find out using goodness of fit tests. The main tests are the 
χ2 (chi-square) test and Kolmogorov’s test. 
 
χ2 (chi-square) test 
 
The χ2 test is based on the comparison of the histogram of the data with the estimated PDF. It consists 
of the following steps: 

1. group the data in k sets as done when drawing a histogram and count the number of data in 
each set (Oi), 

2. compute the probability of each set (pi) under the assumed probability law. Compute the 
expected number of data in each set under the assumed probability distribution using the 
formula Ei = npi, 

3. compute the discrepancy between what is expected under the assumed model and what has 
been obtained in the sample according to  
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4. compare this value with the 1-α quantile of the 2
1−−rkχ distribution ( 2

αχ ). Typically α is set to 0.05 
or 0.01. 

a. if 22
αχχ > , reject the null hypothesis, which means that the PDF obtained though the 

estimation process and the data differ so much that it is very unlikely (probability < α) 
that the data could have been generated under the estimated distribution. 

b. if 22
αχχ ≤ , accept the null hypothesis. In this case the agreement between the estimated 

PDF and the data is good enough to consider that the PDF could have likely generated 
the data. 

 
Here 1−− rk is the number of degrees of freedom of the χ2 distribution taken as a reference in the test; 
r is the number of parameters of the PDF that were estimated from the data to determine the PDF. So, 
if we consider that a given set of data could follow a normal distribution whose mean is unknown but 
whose variance is known. To define the PDF completely we estimate only the mean from the data. In 
this case r=1. If we estimate both the mean and the variance from the sample, r would be 2. The χ2 test 
is an asymptotic test, it works well with large sample sizes, but it is not recommended to apply it to 
small data sets (in fact many authors discourage its use when the sample size is below 25 or 30).  
 
Kolmogorov’s test 
 
Kolmogorov’s test is based on the comparison of the ECDF obtained from the data and the estimated 
CDF. The steps to perform the test are: 

1. draw the ECDF based on the data, 
2. draw the CDF according to the model selected and the estimated parameters, 
3. compute the maximum vertical distance (Dn) between the ECDF and the CDF, 
4. compare this value with the 1-α quantile (D(n)α) of Kolmogorov’s statistic (D(n)) distribution 

for a sample of size n. As usual, α is set to 0.05 or 0.01. 
a. if Dn > D(n)α, reject the null hypothesis, which means that the CDF obtained though the 

estimation process and the data differ so much as to consider very unlikely (probability 
< α) that the data could have been generated under the estimated distribution. 

b. if Dn ≤ D(n)α, accept the null hypothesis. In this case the agreement between the CDF 
and the data is good enough as to consider that the CDF could have likely generated the 
data. 

 
Kolmogorov’s test is an exact test that can be applied to any random sample, whatever its size is, 
though its capability to detect departures from the null hypothesis is quite limited for small sample 
sizes. 
An alternative test when the population parameters are not specified is Lilliefors test (see [Lilliefors 
67]). 
 
Example: 
 
A random sample of size 100 has been obtained. We assume that it comes from a uniform distribution 
defined in the interval [0,1]. In order to test this hypothesis we perform the χ2 test and the Kolmogorov 
test. In order to perform the former, we plot a histogram of the data set, which is shown in Figure 24, 
and compare it with what would be expectable from the theoretical PDF (see horizontal line at height 
10). Then we compute the quantity χ2 =[(11-10)2/10+(5-10)2/10+(13-10)2/10+…+(10-10)2/10]=5.4. 
Since 2

05.0
2 9.164.5 χχ =≤= (the value of the statistic chi-square does not exceed the 95% percentile of the 

2
9χ  - chi-square distribution with 9 degrees of freedom), the null hypothesis (the data set comes from a 

uniform distribution defined in the range [0,1]) is accepted. 
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Figure 24 : Histogram obtained from random sample of 
size 100 and the corresponding theoretical absolute 
frequency (for uniform distribution). 

Figure 25 : ECDF obtained from a random sample of 
size 100 and the corresponding theoretical CDF. 

 
In order to apply Kolmogorov’s test to the same data set, we draw the ECDF and the CDF, and we 
compute the maximum vertical distance between both curves, see Figure 25. We then compare the 
value D100 obtained with the 95% percentile of Kolmogorov’s statistic for sample size 100. Since 
D100= 0.070≤0.0136=D(100)0.05, we accept the null hypothesis.  
 

4.2. Bayesian inference methods 
 
The Bayesian interpretation of probability makes Bayes’ formula a powerful tool to update degrees of 
belief when new information is available about an event or a proposition. Let H be the knowledge of a 
person (expert), and let { } Iiiz ∈ be a partition of the sample space of events. The Bayesian probability 
attributed by an expert to a given event kz is )( HzP k . The acquisition of a set of new evidence H’ induces 
a change in the probability given by Bayes’ formula 
 

)'(
)(),'(

)',(
HHP

HzPzHHP
HHzP kk

k

⋅
= ,                                                       (4.9) 

 
 
where )',( HHzP k  is the ‘a posteriori’ probability of kz , )( HzP k  is the ‘a priori’ probability of kz and 

),'( kzHHP  is the likelihood of evidence conditional on the knowledge H  and the occurrence of 
event kz . )'( HHP is the probability of new evidence conditional on previous knowledge, which may be 
considered a normalising factor, since the sum of expressions like (4.9) over the whole partition must 
be 1 (equivalently, the sum of the a posteriori probabilities of all the partition elements must be 1). 
That probability is given by 
 

∑ ⋅=
i

ii HzPzHHPHHP )/(),/'()/'( ,                                                        (4.10) 

and may be ignored in any intermediate computation. So, equation (4.10) may be written as 
 

)/(),/'()',/( HzPzHHPHHzP kkk ⋅∝ ,                                                        (4.11) 
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which means that the a posteriori probability is proportional to the a priori probability and to the 
likelihood of evidence. 
 
Two remarkable observations can be inferred from (4.9). If the a priori probability of an event is zero, 
the a posteriori probability will remain zero, even though the evidence against it could be very strong. 
So, much care should be taken when providing a priori probabilities. Null a priori probabilities should 
be avoided, unless total evidence about the impossibility of the events or propositions under study is 
available. In English literature this is called Cromwell’s statement. The second result is related to the 
existence of strong evidence. In that case, likelihood will be completely dominant and the a priori 
probability will be almost irrelevant (a posteriori probability and likelihood will be almost equal). This 
is the case of large sample sizes, for which relative frequencies and Bayesian probabilities will be 
almost equal. 
 
Bayesian inferential methods are most used under conditions of scarcity of data. The main steps of the 
formal process are similar to the steps of a classical inferential process: The selection of the probability 
model, the estimation of parameters and the diagnosis of the model. The main difference is in the 
estimation process, which is subject to the use of Bayes formula, as explained above. The next 
paragraphs gives an example of Bayesian estimation. 
 
Let us assume a random variable X  whose PDF is )( θXf . This PDF is completely defined by the 
parameterθ , which is unknown but we want to estimate it. In order to start this estimation process, 
under the Bayesian framework, the parameter θ  is considered as a random variable characterised 
through an a priori distribution )( Hθπ . The a priori distribution provides information about the values 
the person/expert expects θ  would likely take. In order to improve our knowledge aboutθ , we take a 
sample - evidence - ),...,,( 21 nXXX=X , which will have ∏ =

=
n

i iXfHP
1

)(),( θθX  as a likelihood function. 
Applying Bayes’ formula provides the a posteriori distribution to be assigned toθ : 
 

)(),(),( HHPH θπθθπ ⋅∝ XX ,                                                         (4.12) 
 
which is a new PDF.  
 
Let us assume the specific case of a Gaussian random variable X . Let us also assume that we do not 
know its mean, μ, though we know its variance, 2σ . Let us further assume that, given our knowledge 
about it, we think that μ should have a value close to 0μ , let us also assume that μ could be, equally 
likely, larger or smaller than 0μ , and the further away from it the less likely. Under these conditions, a 
Gaussian a priori PDF for μ , with mean 0μ  and variance 2

0σ , could be justified. So that 
)( Hμπ ∼ ),( 2

00 σμN . Given a sample taken from the studied variable, its associated likelihood would be: 
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When putting this expression into (4.10) and after some computations, we obtain as an a posteriori 
distribution for μ 
 

),( HXμπ  ∼ ),( 2
nnN σμ ,                                                                    (4.14) 

where nμ  and 2
nσ  are    
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A priori, μ was considered to take values around 0μ , while after getting the information contained in the 
sample, values considered likely are those around nμ . Additionally, the larger the sample size n, the 
closer nμ  and the sample mean, nX , will be (the larger n  the larger the information contained in the 
sample is, while the a priori information remains constant). 2−

nσ  is the accuracy of the estimation (the 
sum of the accuracy of the a priori distribution, 2

0/1 σ , and the sample accuracy, 2/σn ). The larger the a 
priori knowledge and the larger the sample size are, the larger the accuracy (the smaller the variance) 
of the a posteriori knowledge about μ is. Figure 26 shows the normalised likelihood, and the a priori 
and the a posteriori PDFs assuming the following data: 22 =σ , 140 =μ , 20 =σ  and 

)17 ,13 ,8 ,23 ,15 ,3(−=X . As previously described, the mean of the a posteriori distribution, 43.12=nμ , is 
between the mean of the a priori distribution, 140 =μ , and the point where the likelihood function 
reaches its maximum, 17.12=nX . With the classical Maximum likelihood Method described in section 
4.1, the estimate would be the one provided by (4.6): 17.12ˆ == nXμ .  
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Figure 26 : A priori distribution, a posteriori distribution and likelihood function for the example of estimation of a Normal 
(Gaussian) random variable. 
 
The validity of this estimation method is supported by: 
 

1) its consistency with the way human beings learn from experience,  
2) by its convergence to the results provided by the Maximum Likelihood Method when the sample 

size increases (after analysing the first expression in (4.15), the reader may check that when 
sample size increases, the mean of the a posteriori distribution converges to the sample mean, 
that is the estimator of μ provided by the Maximum Likelihood Method), independent of the 
election of the a priori PDF, except in the aforementioned case of null a priori probabilities. 

 
One important issue that deserves being remarked is the natural and simple way of producing interval 
estimates in the Bayesian framework. Since the parameters used in probability models are random 
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variables themselves, an interval may be immediately generated as soon as the a posteriori PDF is 
generated,. In the example provided above, the a posteriori PDF for the mean was a Gaussian 
distribution with mean 43.12=nμ  and standard deviation 56.0=nσ . This means that μ takes values in 
the interval 56.096.143.12 ×±=nμ  with probability 0.95, or equivalently, the interval [11.33,13.53] is a 
95% interval for μ. It is important to pay attention to the fact that the expression used is 95% interval, 
not 95% confidence interval. It is a 95% interval because, according to the probability model followed 
by μ, it takes values in this interval with that probability. No concept like the ‘pivotal quantity’ or the 
sampling distribution of any statistic has been used to generate such interval. The 95% confidence 
interval obtained for μ using expression (4.8) would be [11.03,13.31], whose interpretation was given 
at the end of section 4.1.2. 
 

4.3. Expert judgment 
 
The use of Expert Judgment (EJ) techniques is unavoidable in the performance assessment of a HLW 
repository due to the lack of data of many of the involved phenomena. In some cases, it is almost 
impossible, from a physical point of view, to get the data we need to feed our computer codes, in other 
cases the cost of getting them is so high that only a very small data set may be obtained. In what 
follows, we will list the steps of a generic EJ protocol based on most widely known protocols available 
in scientific literature (see for example [NUREG-1150]): 
 

1. Selection of team project, 
2. Definition of the questions to be studied, 
3. Selection of experts, 
4. Training, 
5. Tasks definition, 
6. Individual experts’ work, 
7. Elicitation of experts’ opinions, 
8. Analysis and aggregation of results, 
9. Documentation. 

 
Comprehensive information may be obtained in references such as [Mengolini 05] and [Simola 05]. 
 
Project team selection 
 
The project team consists of analysts and generalists. Analysts are in charge of organising the steps of 
the protocol, so, they should have a sound background in Probability and Statistics Theory, in 
Knowledge Psychology and in elicitation techniques. Additionally, they should be skilful at working 
with people, since they will have to extensively interact with experts. The number of analysts needed 
depends on the extent and scope of the EJ application, though usually a couple of analysts is enough, 
even for large applications. Generalists provide help to the analysts in all subjects related to the 
specific area of knowledge of the problem to be solved. They should be able to help experts when 
decomposing a problem and they should be skilful at getting information sources as needed. So, they 
should have a good general knowledge about the problem at hand, though they do not need to be 
leading experts in that field. The organisation interested in the study usually provides the generalists. 
 
Definition of the questions to be studied 
 
Once the project team has been made, analysts and generalists must define the questions to be 
evaluated by the experts. The starting point for any question to be solved is usually vague. It is 
necessary to arrive at a complete definition of the uncertainty parameters we want to characterise. 
Complete definition of a parameter means the full definition of the parameter, the initial conditions for  
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evaluating it and any other implicit hypothesis under the initial conditions. The final definition must be 
unambiguous. 
 
The complete definition of the question includes the way the experts should provide their answers. 
Since most of the uncertainties that come up in a PA study are characterised as Bayesian Probabilities, 
experts should provide their assessments of uncertainty through this kind of probabilities. So experts 
should provide probability distributions, either discrete or continuous. 
 
After the full definition of the question, a list with all relevant sources of information should be done. 
Potential decompositions of the parameters could be done. The list of references to be considered in 
the list must show the actual state of knowledge in that area, but independence and reliability of the 
sources should always be kept in mind. When experts are expected to use computer codes for their 
assessment, the project team should foresee the potential training of experts in uncertainty propagation 
techniques (sampling, response surfaces, estimation, order statistics, etc.).  
 
 
Selection of experts 
 
The only objective of this phase is to select the most qualified experts to perform the assessment. 
Qualified Experts are those that: 
 

1. Have the necessary knowledge and experience to perform the assessment, 
2. are willing to participate in the assessment, and 
3. do not have important motivational biases. 

 
The first step to get the final list of experts is to start with a large list of potential experts. That first list 
could be based on the opinion of the generalist plus a thorough search in the scientific literature in that 
area. A screening should be done checking the three points in the list above. If necessary, interviews 
should be done to check those conditions, mainly the third one. After performing the screening, a 
shorter list should be obtained, from which the final selection of experts will be done. In order to arrive 
at the final list, two criteria should be taken into account: The number of experts to assess each 
question should preferably be between three and five (based on Bayesian combination of opinions’ 
criteria) and the experts should have as much diversity as possible (different background, working at 
different types of organisations, etc.). 
 
Training 
 
The objective of this phase is to let experts know normative aspects of EJ elicitation processes. This 
main objective may be decomposed as the following sub-objectives: 
 

1. motivate experts to provide rigorous assessments, 
2. ensure they have knowledge of basic concepts of Probability and Statistics, 
3. provide them training in the assessment of Bayesian probabilities, and 
4. ensure their awareness of basic issues related to knowledge biases. 

 
During the motivation phase the experts must get information to point out the importance of the work 
they are going to do. Firstly, the project team explains to the experts the framework where their 
opinions will be used, stressing the part of the study where their opinions are relevant. Secondly, the 
necessity of EJ will be explained, letting them be aware of the concept of Lack of Knowledge 
Uncertainty, and how it links to them. Thirdly, the project team will let them know that the key issue is 
not to predict a single value of each parameter under study, but characterising their uncertainty, 
allowing others to know the actual state of knowledge in that area. 
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After remembering basic Probability and Statistics concepts, the experts get some training on assessing 
Bayesian probabilities, which includes: Accurate definition of questions to be assessed (making 
explicit implicit hypotheses, showing well non-well posed questions), decomposition as a way to 
simplify assessments (use of influence diagrams, event trees and uncertainty propagation techniques) 
and adequate evaluation of different evidences in order to assess probabilities (use of Bayes’ theorem 
and concepts of independence and reliability of information sources). 
 
The last part of the training session is dedicated to explain Knowledge biases to the experts in order to 
teach them to provide more reliable opinions, i.e.: representativity, availability and anchor and 
adjustment. Experts should be informed about the hazard of being overconfident. A calibration 
exercise could be appropriate. The whole training session should not take more than one morning. 
 
 
Tasks definition 
 
This step is done through an interactive session of the project team and the experts. The issue at hand 
is to explain them in a detailed way as well as the questions to be assessed, and to make a schedule of 
the activities to be developed by each expert. All the work developed by the project team during the 
Definition of the Problem phase should be used now. The session should start with a presentation 
given by the generalist about the parameters to be assessed, including all relevant sources of 
information previously identified. Experts should provide their own view of the problem and the 
definition of the parameters, pointing out, if needed, further information sources, computations to be 
done, etc. The result of this session would eventually be a refined definition of the parameters under 
study. Common definitions to all the experts should be agreed. 
 
The second step in this meeting is to study the possible ways to decompose each parameter. The 
project team should provide a seminal decomposition that should be discussed with the experts. The 
objective is to help the experts to develop their own decompositions. Decompositions could be quite 
different from one expert to another one. Each expert will have to assess uncertainties of variables at 
the lowest levels. The analysts will usually do the aggregation of all uncertainties. This is the point to 
introduce propagation of uncertainties concepts to the experts and to let them know all the potential 
variety of tools that the analysts could provide them to pre-process and post-process probabilistic runs 
of computer codes, or of the simple decomposition model developed by experts. 
 
Individual experts’ work 
 
Experts develop their analysis during this phase, according to the schedule agreed in the previous step. 
Each expert will write by the end of this period a report summarising the main hypothesis and 
procedures used during his/her work, the conclusions achieved and, if he/she wishes, a preliminary 
assessment of uncertainties. Whenever needed during this period, the team project should be available 
to each expert in order to provide statistical support or to solve any doubt about the parameters to be 
assessed. 
 
At the end of this phase, the team project organises a meeting with all the experts. Each expert presents 
his/her work and the conclusions achieved. This meeting allows each expert to get some hints about 
alternative ways to tackle the problem. 
 
Elicitation of experts’ opinions 
 
The elicitation of each expert opinion’s is individual and should be done in a quiet environment, if 
possible without interruptions. It is convenient to have the presence of an analyst and a generalist, in 
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addition to the expert. In a systematic way, the analyst gets the opinion of the expert for each 
parameter, asking for supporting reasons whenever necessary. The role of the generalist in this session 
is to provide additional information when needed, to provide general support and to audit the session 
in order to avoid irregularities (bias induction, etc.). Whenever needed, the analyst could ask questions 
in a different way to check potential inconsistencies. The session must be recorded as much as possible 
(tape recorders, video or extensive hand annotations). 
 
The techniques used to help the expert when assessing uncertainties are quite standard: quantile 
assessment for continuous variables and probability estimations for discrete variables (direct or 
indirect methods); in the case of experts with some skills in probability other techniques like direct 
parameter assessment or drawings are acceptable.  
 
Analysis and aggregation of results 
 
Assessments provided by experts are studied in this phase. The objective is to check that there is no 
important bias and the logic correctness of their rationale. If biases and logic faults are not present in 
expert’s assessments, next step is to check if individual opinions may be aggregated to get a unique 
distribution for each parameter.  
 
Before aggregating individual distributions the overlap between distributions of different experts should 
be assessed. If the distributions do not overlap the experts disagree. In that case aggregation should be 
avoided. Under these circumstances a reconciliation session could be of help. An analyst should lead the 
session and should organise it according to the following steps: 
 

1. Exposition of different opinions. 
2. Identification of differences. 
3. Discussion about the reasons for each original assessment. 
4. Discussion about the different sources of information used. 
5. Re-elaboration of individual opinions in posterior elicitation sessions or joint assessment 

(through consensus) of a common distribution, if agreed by experts. 
 
In the case that a consensus distribution is obtained, that is the final step (before documentation). If 
further elicitation sessions are needed, the consistency of the opinions is checked again and 
aggregation is done if acceptable overlap is achieved. Otherwise, the project team should choose what 
opinions could be aggregated as main opinion of the group (after aggregation), and what opinions 
should be left as an alternative to perform sensitivity analysis. The main strategies for aggregation are 
the following ones: 
 

1. Linear combination. 
2. Log-linear combination. 
3. Bayesian combination. 

 
Documentation 
 
Documentation of the application must be as complete as possible, including results and description of 
the ways to obtain them. The contents of the documentation should follow the order of application of the 
procedure, recording, in each step, what has been done, why it has been done, how it has been done and 
Who has done it. In order to achieve this degree of documentation, a schedule of standardised 
documentation activities should be made for each phase. It should always be completely clear to the 
reader what a result assessed by an expert is as well as the outcome of an aggregation, sensitivity analysis 
or any other analysis not provided explicitly by an expert. 
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5. Propagation of uncertainties 
 
Whenever the system model is available and the distributions of the input parameters have been 
derived, the next step in the PA study is to propagate uncertainties in order to get information about the 
distribution of the output variables. Analytical uncertainty propagation methods can only be used for 
very simple systems with very few parameters. In more complex cases other methods need to be 
adopted. The most suited method, and in fact the most used one is the Monte Carlo method. 
 

5.1. The Monte Carlo method 
 
The Monte Carlo method consists in sampling at random the vector of input parameters, running the 
system model computer code for each sample of that vector and getting a sample of the vector of 
output variables. Later on, the characteristics of the output variables may be estimated using the output 
samples obtained. One of the advantages of using the Monte Carlo method is that all statistical 
standard methods we need to estimate the output variables distributions and to test any hypothesis may 
be used. This makes it the most straightforward and powerful method available in the scientific 
literature to deal with uncertainty propagation in complex models. This method is valid for models that 
have static and also dynamic outputs. It is adequate for working with discrete and continuous inputs 
and outputs, and the implementation of computational algorithms required has no fundamental 
complexity.  
 

The Monte Carlo maps the input space into the output space point by point. In order to see this, let us 
consider a very simple model: Y=X1+X2. Suppose X1 and X2 follow independent uniform distributions 
both of them defined in the interval [0,1]. For this simple model an analytical propagation of 
uncertainties is feasible and the output Y follows a triangular distribution defined in the interval [0,2] 
and whose mode, mean and median are  1. This propagation may be done via Monte Carlo. First, a 
sample of size 100 is taken in the input space (see Figure 27). For each point shown in Figure 27, the 
value of the output is then computed. An empirical cumulative distribution function is built from the 
100 values obtained (see Figure 28). For the sake of comparison the actual CDF of Y has also been 
drawn.  

 
Figure 27: Simple random sample of size 100 of two 
random variables uniformly distributed in the region 
[0,1]x[0,1].  

Figure 28: ECDF obtained from a simple random 
sample of size 100 of Y=X1+X2 and the theoretical CDF 
of Y. 
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Monte Carlo may also be seen as a numerical integration method. In the same example, let us consider 
that we are primarily interested in the estimation of the mean of Y. This means that we are trying to 
estimate  

21]1,0[]1,0[ 21 )( dxdxXXY ∫ ×
+=μ .                 (5.1) 

One of the possible approximations to compute this integral is to take the sample considered in Figure 
27 and Figure 28 and to calculate the arithmetic mean 
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It is important to remark that the standard deviation of this estimator is  

nYY
/ˆ σσ μ = ,                                                                      (5.3) 

where σY is the standard deviation of the output Y. Figure 29, which shows the histogram obtained 
from 50 simple random samples of size 100, similar to the one shown on Figure 27 and Figure 28. In 
this plot we can see that the range of Yμ̂  is roughly 0.2, which means it represents one tenth of the 
range of Y (the range of this triangular distribution is 2). Figure 30 shows the corresponding ECDFs. It 
is important to remark that the standard error of Yμ̂  does not depend on the dimension p of the space 
where the integral is computed, and that consequently the Monte Carlo method does not suffer from 
the curse of dimensionality. [Metropolis 49] is the seminal paper about Monte Carlo, where many 
interesting suggestions are made about its applicability.  

 

 
Figure 29:  Histogram of the sample means obtained 
from 50 simple random samples of size 100 obtained via 
Monte Carlo simulation. 

Figure 30: ECDFs obtained from 50 simple random 
samples of size 100 obtained via Monte Carlo 
simulation. 

 

5.2. Variance reduction techniques 
 
The computational time to perform a Monte Carlo analysis depends on the number of simulations and 
cost for each simulation. The computational time for complex problems with a large number of 
simulations often become prohibitive. The cost for each simulation can be reduced by simplifying the 
mathematical description of the problem. A second alternative is to reduce the number of simulations 
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compared to standard random sampling without scarifying the precision and confidence intervals of 
the outputs. Such techniques are referred to as Variance Reduction Techniques. Main techniques are 
Latin Hypercube sampling (LHS), stratified sampling, control variates, importance sampling and 
antithetic variates ([Rubinstein 81], [Fishman 96] and [Robert 04]). In the following pages we discuss 
about most relevant variance reduction techniques.  
 
Stratified sampling 
 
Input parameters may vary considerably. By stratification the population is sub grouped into relatively 
homogenous subgroups. The sampling is then performed for each of the strata. The strata must be 
mutually exclusive and collectively exhaustive.   
Stratified sampling is based on the fact that the variance of any random variable, once it has been 
divided in strata, may be decomposed into two contributions: the variability within each stratum and 
the variability between different strata, which means 
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where the first summand represents the variability within the h considered strata and the second one 
represents the variability between different strata. ωi stands for the probability of stratum i, and μi and 
σi stand for the mean and the standard deviation of the (output) variable Y also in stratum i. If the 
sampling of each observation is restricted to a given stratum, its variability will be the variability of 
that stratum (σi) rather than the whole variability of Y (σ). The estimate for the mean of Y under 
stratified sampling is 
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where iμ̂  is the estimate of the mean of Y in stratum i, which normally is computed as the average of 
the values of Y obtained in that stratum (yij), as shown in (5.5). ni is the sample size in stratum i and the 
whole sample size is n=n1+…+nh. This estimator is an unbiased estimator of Y’s mean. It may be 
easily demonstrated that the variance of this estimator for a given number of samples is reduced with 
respect to the estimator provided by simple random sampling according to  
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which means that the larger the differences between the means of the different strata the larger the 
decrease in the variance of the stratified sampling estimator. 
 
The main problem affecting stratified sampling is that ideally what should be stratified is the output 
space, so that the second term on the right hand side of (5.6) would be large and so it would be 
profitable to stratify. Unfortunately, what can be easily stratified is the input sample space, which 
doesn’t mean that the corresponding stratification in the output space will be so good. Under those 
circumstances, when large overlaps between different strata happen, the benefit from stratifying would 
not be so important, though some benefit will always be obtained according to (5.6). 
 
Once the sample size has been chosen, there are two problems to be solved: 1) how to create the strata 
and 2) the sample size within each stratum. There is no clear rule to partition the input sample space. 
When no additional information is available about the system model, the most common strategy is to 
build a net of hypercubes via Cartesian product of the stratification performed in each input variable. 
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When some information is available, it can be used for creating the stratification. In general, there are 
two ways to get information about the model: Studying the equations of the model and getting a small 
size sample. The study of the equations of the model may provide information on the relation between 
inputs and outputs in the model and on the importance of combinations of specific sets of inputs, see 
section 5.3. A small size sample could be obtained via simple random sampling and it could be used to 
perform Sensitivity Analysis (SA). The use of SA techniques could help identifying the most relevant 
input variables; stratification could be performed only on these relevant input variables 
 
Regarding the sample size per stratum, there are several options. The first option is to take proportional 
sampling, which means that the sample size in each stratum is proportional to the probability of the 
stratum: ni=nωi. Further improvement may always be achieved ([McKay 79], [Fishman 96]) if the 
sample space is further stratified to getting as many strata as samples (one observation per stratum). In 
that case the reduction in the variance of the estimator with respect to simple random sampling is 
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Not only the mean of the output is more accurately estimated when stratified sampling is applied, but 
its distribution is better estimated due to the evenness in the sampling all over the sampling space, no 
region is either over-sampled or under-sampled. Figure 31 provides an idea about the way to get a 
stratified sample of size 9 with one observation per stratum (each stratum has probability 1/9) in a 2-D 
input sample space. Figure 32 provides the same information when the stratification is done on only 
one of the input variables (X). 
 
 

  
Figure 31: Stratified sample with nine observations for 
two variables; one observation per stratum, probability 
of each stratum 1/9. 

Figure 32: Stratified sample with nine observations for 
two variables; one observation per stratum, probability 
of each stratum 1/9. 

 
 
Latin Hypercube Sampling (LHS) 
 
Latin Hypercube Sampling (LHS) is a cost-effective and reliable extension of stratified sampling, 
designed to generate collections of parameter values from multivariate distributions. In order to get a 
sample of size n, the procedure is the following one:  
 

1. a stratified sample is obtained for each input variable (n strata with probability 1/n each one 
and a sample of size 1 per stratum), 

2. get a permutation of each one of the samples of each input variable  
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3. combine the first observations of all the variables (after permutation) to get the first observation 
of the input vector, combine the second observations of all the variables (after permutation) to 
get the second observation of the input vector and so on.  

 
The procedure above is generally complemented by techniques to fill the input space in an optimal 
way, for instance by maximizing the minimum distance between the samples points. [McKay 79] 
shows LHS produces unbiased estimators for the mean and the CDF of the output. They also 
demonstrate that a sufficient condition to get an estimation error for the sample mean and the CDF 
smaller that in the case of random sample is that the model has to be monotonic in all its input 
variables. [Stein 87] proved some asymptotic properties of LHS under general conditions: the variance 
of the estimators provided for the mean and the CDF are smaller (asymptotically) than the ones 
obtained under simple random sampling, with the degree of variance reduction depending on the 
additivity of the model. The estimates do also follow, asymptotically, a normal distribution. [Iman 82] 
developed a method to induce rank correlation between input variables sampled under this scheme and 
[Stein 87] introduced a method to induce correlations between input variables. Figure 33 shows the 
way to generate a sample of size 5 through this method for a bivariate random vector. 

 

 
Figure 33: LHS sample of size 5 for two variables. Each stratum has the same probability 

  
 
Importance sampling 
 
Importance sampling was designed to estimate more accurately the mean of a random output variable 
rather than its entire distribution. This method is based on substituting the variable under study by 
another one that has the same mean but a smaller variance. In order to get this, let us observe that the 
mean of the output variable in the system model (Y) may be written in this way 
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so that the variable whose mean is actually studied is Y’=Y´(x)=Y(x)·f(x)/g(x), where the only 
requirement on the function g(x) is that it must be a PDF. Under these conditions, the variance of Y’ is 
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The more constant (stable over the values of X) the function Y(x)·f(x)/g(x) is, the smaller is the 
variance (in (5.9)). In order to reduce the estimation error we need to sample more with increasing   
probability of a region of the input space and also if the values of the output variable in that region are 
large. It is important to notice that, since by construction the means of Y and Y’ are the same, we will 
estimate the mean of Y’ because we are able to do it in a more accurate way, and this estimation will 
also be valid for Y. Figure 34 shows the idea behind importance sampling. 
 

 
Figure 34: Intuitive idea behind importance sampling 

 
Control variates 
 
This technique is based on decomposing the output random variable Y as a sum of two ancillary 
random variables Y’ and Y’’ in such a way that Y’ should have a mean analytically and easily 
computable, or at least with a well known dependence on the vector of input parameters X (so that its 
mean could be computed with the needed accuracy at a low cost), and Y’’ should have a small 
variance. Under these conditions, the mean may be split up as  
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where y´´(x)= y(x) − y´(x)  (Figure 35). Again, as in the case of importance sampling and stratified 
sampling, we need additional information to find Y’. If no such theoretical information is available, the 
most straightforward way to get it is using a previous small size sample. That sample may be used, for 
instance, to build a response surface (see [Myers 02]) that captures the main characteristics of the 
functional dependence of Y over X. The response surface obtained would be Y’ (also represented as 
y´(x) in this text). On one side Y’ will usually be a polynomial that may be used to propagate 
uncertainty analytically or computationally using huge sample sizes, estimating the first integral on the 
right hand side of (5.10) with no or negligible error. On the other side, if the quality of this response 
surface is good, y(x) − y´(x) would have small values for all values of input vector x, so that the last 
integral in (5.10) would be the only one introducing relevant error in the estimation of the mean, but 
much smaller that the one introduced by normal random sampling.  
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Figure 35 : Intuitive idea behind control variates sampling technique. 

5.3. Dimension reduction 
 
Let us consider a system of functional equations where Y = (Y1, … , Yn) are the dependent or output 
variables and X = (X1, … , Xm) are the independent variables (e.g., space coordinates and time). Let θ= 
(θ1, … , θP) be the parameters of the system, that is, coefficients of the differential equations and of the 
initial and boundary conditions. The solutions of the system are Yj = Ij (X; θ). 
 
In physics, one speaks of similarity between two problems when one can transform one problem into 
the other by a change of scale in the variables. It is shown that this is possible when a set of 
dimensionless numbers (in mathematical terms, we shall speak instead of invariant functions), which 
are functions of the parameters θ; coincide in both problems. A classical example is the Reynolds 
number in fluid mechanics. The dimension of the parameter space, originally p, can thus be reduced to 
the number of dimensionless quantities that define the system of functional equations. This problem is 
referred to in the literature as dimensional analysis, and though in many physics and engineering works 
it is formulated in terms of physical magnitudes and dimensions ([Buckingham 14]; [Langhaar 51]; 
[Palacios 64]; [Szirtes 98]). A more abstract, mathematical, and hence physics independent language, 
is preferable when dealing with propagation of uncertainties, such as in [Moran 71]. 
 
[Moran 72] generalized dimensional analysis consists of finding a set of linear transformations: 
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of the Y, X,  θ, where the Kj, j = 1, … , n + m + p are constants, such that the system of functional 
equations is invariant under the transformations, that is, Yj = Ij (X; θ) transforms to  Y'j= I'j (X'; θ'); 
where X'=X1',...,X'm and θ'=(θ'1,...,θ'p). We note that the prime symbol stands for variable 
transformation and not for array transposition. A more general class of transformations could have 
been used, but we are restricted here to linear transformations (scale changes) because they have 
proved useful in many physical problems, while maintaining mathematical simplicity and a clear 
physical interpretation. 
 
After introducing the transformations or scale changes into the system equations and boundary and 
initial conditions, and imposing the condition of invariance (the system equations maintain the same 
form before and after the transformation; Yj = Ij (X; θ) ⇔  Y'j= I'j (X'; θ')), there appear restrictions 
linking the values of the Ki, i =1, ... , n + m + p.  In most cases, the restrictions will reduce their 
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degrees of freedom. So if initially there are n+m+p transformation constants Ki and q restrictions, there 
will finally be r = n+m +p-q degrees of freedom for the Ki. Then, the transformations can be defined in 
terms of a reduced set of constants, which are called Aj, j=1,…,r, and the set of transformations may 
me rewritten as 
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where the aji, bkl and cet are exponents. In fact each restriction defines an invariant function or 
dimensionless number 
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where the αi, βj, γk are also exponents, in such a way that (see [Moran 72]) the system of functional 
equations can be expressed in terms of these invariant functions, instead of in terms of the original and 
larger set formed by Y, X, θ. The calculation of the invariants and of the expression of the system 
model in terms of the invariants is formalized in the theorems of [Moran 72]; see also appendix A of 
[Mira 04] for details. 
 
Usually, the reduction of dimension is in the space of input parameters and input variables (X, θ), only 
very infrequently is the reduction performed in the space of output variables. Even when a reduction of 
dimension is obtained in the space of input parameters, it does not necessarily mean that this produces 
a benefit in the propagation of uncertainties. It is possible that the reduction of dimension happens in 
the part of the space of input parameters that is not affected by uncertainty (known constants); in that 
case no improvement is obtained. Moreover, in order to get some benefit, variance reduction 
techniques have to be applied in combination with dimension reduction. If an effective dimension 
reduction is obtained, using simple random sampling on this space doesn’t lead to a net decrease in the 
variance of the estimators of the outputs; a simple random sample of the input space produce a simple 
random sample of the output space independently of the dimension of the equivalent input sampled 
space.  
 
[Mira 04] describe an application of dimension reduction obtained via dimensional analysis for the 
propagation of uncertainties of a simplified HLW repository. In this application, the original space of 
input parameters and input variables has dimension 7 and the transformed one 4. Nevertheless, the real 
reduction obtained is from 3 to 2 since only two input parameters and one input variable are affected 
by uncertainty and these inputs are concentrated in only 2 invariants in the transformed input space. 
Mira and his colleagues compare in their work four sampling techniques: simple random sampling, 
LHS and stratified sampling in the original 3-D input space and stratified sampling in the 2-D 
transformed input space. For this comparison 60 samples of size 64 were used. Figure 36 shows the 
means of the means for the flow of 129I getting into the biosphere at different times. All techniques 
produce unbiased results. Figure 37 show the standard deviations of the means for the same case and 
illustrates the improvement that is obtained when combining dimension reduction and stratified 
sampling with respect to the other techniques applied on the original input space. The results for LHS 
in the 2-D space shouldn’t be taken into account since it shouldn’t be called LHS the way this 
sampling scheme was actually applied in this test case. 
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Figure 36: Evolution over time of the mean of the means for different sampling schemes with (dimensions reduction 
(2-D) curves) and without (no dimension reductions (3-D) or simple random curves) input space dimension 
reduction obtained via Dimensional Analysis.  

 
 

 
 

Figure 37: Evolution over time of the standard deviation of the means for different sampling schemes (2-D curves) 
and without (3-D or simple random curves) input space dimension reduction obtained via Dimensional Analysis. 
 
Dimension reduction in the input space may also be obtained in a more immediate, less sophisticated 
way, referred to as trivial reductions of dimension. It frequently occurs that in the differential 
equations which describe the behavior of the system, some coefficients appear as elementary functions 
of a number of, let us say, original coefficients, such that, either due to physical reasons or because of 
reasons related the way experts address the problem, the uncertainty has been expressed in terms of 
probability distributions for the original coefficients. [Bolado 04] showed that, as in the case of 
dimension reduction obtained via dimensional analysis, smaller errors are made in the estimation of 
the outputs when trivial reductions of dimension are combined with variance reduction techniques 
such as stratified sampling. 
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5.4. Choice of the number of samples (Wilks) 
 
The larger the sample size, the more information the sample contains. Nevertheless, increasing the 
sample size means increasing the computational cost. So there is balance between the information we 
can obtain and its cost.  In order to set sample sizes we will consider two concepts: conservative 
estimates of quantiles and tolerance intervals.  
 
Quantile estimation is a very important issue when dealing with outputs of PA codes since, in many 
occasions, safety limits are based on quantile estimation. This is the case, for example, when a safety 
limit is set in the following terms: In order to be acceptable, the repository should not produce, at any 
time in the future, an annual individual dose higher than DL mSv·y-1 with a probability higher than 
0.05. This means that the percentile 95% of the output variable ‘annual individual dose’ should be 
lower than DL. 
 
In the case of a real-valued rv Y, quantile estimation means determining the level y such that the 
likelihood that Y takes a value lower than y is some prescribed value. Using the CDF of Y, F(y) = P(Y 
≤ y), we seek an estimation of the α-quantile ya defined by F(ya)= α.  
 
In the following we will describe how to set minimum sample sizes to achieve given quantities of 
information. Most of the ideas used come from the theory of order statistics. The references for this 
section are : [Cannamela 07], [David 03], [Guba 03], [Makai 06], [Nutt 04], [Nutt 05], [Orechwa 05], 
[Wallis 03], [Wallis 06], [Wilks 41]. 
 

5.4.1. Empirical estimator 
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(one for Yi ≤ y and zero for Yi > y).  This leads to the following estimator of the α- quantile  
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The properties of this estimator are given in Annex 1, 8.1. The variance of this estimator is large. 
Moreover, from the asymptotical law, we obtain ˆ ) 0.5α,n αP(Y y≥ ≈ , which comes from the fact that 
this is an asymptotically unbiased estimator of the α- quantile. So, for sufficiently large sample sizes 
(we never know if the sample size actually used is large enough), roughly 50% of the times our 
estimate will be larger and 50% of the times it will be smaller than the actual α- quantile. When 
working in the area of safety, we are usually interested in estimating extreme (high) quantiles, such as 
the 95%, the 99%, etc. In those cases, it could be advisable to be more confident that our estimate is 
above the actual quantile. Then we would be interested in a conservative estimator of the α- quantile 
like Wilks’ introduced below. 
 

5.4.2. Wilks estimator  

In order to set a conservative estimator for the quantile of interest (yα), we should decide how confident 
we want to be that our estimator exceeds the real quantile. The confidence level β would typically be 
either 0.95 or 0.99. The estimator considered is the one that fulfils 
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where s ≥ 1. This estimator, based on order statistics, is referred to as Wilks estimator, and is based on 
the probabilistic distribution of the number of times a sample of the rv exceeds a certain threshold. Let 
us rename it as ( 1)n rY − + . For each couple (n,r) we will get a given value )( )1( αyYP rn >+− , which is (see 
Annex 1, 8.2 for more details) 
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For a fixed r, we may (numerically) compute the smallest value of n needed to make this expression 
(5.16) larger than or equal to β (for fixed values of β and α). 
 
Interpretation: n is the number of simulations required for the rth largest value of the ordered 
sequence of outputs to exceed the α- quantile with a prescribed confidence level β. 
 
Example: For α = β = 95%, we have the following couples : 
(r = 1, n = 59) ; (r = 2 , n = 93) ; (r = 3, n = 124) … (r = 39 , n = 991). 
 
For r=1, the previous formula becomes 

nαβ −= 1 .                                                     (5.17) 

Remark: The variance of this estimator is even larger than the one of the empirical estimator (see 
Figure 38). 

 
Figure 38: Comparison between distributions of the empirical and the Wilks estimators, for samples from a normal 
distribution (the real 95% quantile for the normal distribution is 1.6449). For this example, the variance of the 
empirical estimator is 0.0045, while for the Wilks estimator is 0.0053. 
 
In conclusion, the problem of quantile estimation can be solved by Monte Carlo or LHS techniques, 
but the the estimates are imprecise (i.e. with large variance) if the number of runs is often considered 
“reasonable” (100 – 1000 runs). 

5.4.3. Tolerance interval 
 
An alternative solution to set a sample size is to estimate a tolerance interval rather than a percentile 
([Guba 03], [David 03]). A tolerance interval has random bounds, denoted by L (lower) and U (upper) 
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and the requirement for this interval is that it should contain at least a proportion γ of the population, 
with probability β (with prescribed γ  and β ). Hence we seek L and U such that 

βγ =⎥
⎦

⎤
⎢
⎣

⎡
≥∫

U

L

dyyfP )(                             (5.18)  

where f is the (unknown) underlying PDF. 
 
It has been shown (see for instance [David 03]) that the left hand side of equation (5.18)is  independent 
of f if and only if the bounds L and U are order statistics (i.e. )()2()1( nYYY ≤≤≤ K ). To see the 
necessary condition, let )(rYL = and )(sYU = , r < s  (where −∞=)0(Y and +∞=+ )1(nY ), and then the 
equation (5.18) may be written as βγ =≥− ])()([ )()( rs YFYFP . The quantities )(),( )()( rs YFYF are order 
statistics for a uniform distribution in [0,1]. The distribution of the range (here the range is 

)()( )()( rs YFYF − ) of order statistics is known for uniform distributions and is given by [David 03]: 

βγ γ =++−−−=≥− )1,(1])()([ )()( rsnrsIYFYFP rs ,                (5.19) 

 
where ),( kjIγ is the incomplete beta function1. Equation (5.18) and (5.19) are not satisfied exactly, but 
some values of r and s may be chosen such that  

βγ ≥⎥
⎦

⎤
⎢
⎣

⎡
≥∫

U

L

dyyfP )( .                             (5.20) 

Application 1: When a minimum sample size is sought, we are focusing our attention on what 
happens when the sample maximum and minimum are selected to estimate a tolerance interval 
(standard bilateral tolerance interval: )1(YL = , )(nYU = ), we obtain from (5.19) the following value for 
β: 

 1)1)(1(1 −−−−−= nn n γγγβ ,                  (5.21) 

which may be solved numerically for n and the result rounded to the next highest integer. 
 
The following numerical example is given in [Guba 03]. For γ=0.953 and β=0.95 we obtain n=100, 
and we should select the lowest value as L and the largest one as U.  
 

                                                 
1 Which is defined by 

)!2(
)!1()!1(),(  ,

),(
)1(),(

0

11

−+
−−

=
−

= ∫
−−

kj
kjkjBdu

kjB
uukjI

kjγ

γ
. 
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n

β=0.90 β=0.95 β=0.99
10 0.66315 0.60584 0.49565
20 0.81904 0.78389 0.71127
30 0.87643 0.85141 0.79845
40 0.9062 0.88682 0.84528
50 0.92443 0.9086 0.87448
60 0.93671 0.92336 0.89442
70 0.94557 0.93402 0.9089
80 0.95225 0.94207 0.91989
90 0.95747 0.94837 0.92851
100 0.96166 0.95344 0.93554
125 0.96924 0.96262 0.94813
150 0.97432 0.96877 0.95658
175 0.97796 0.97318 0.96268
200 0.98069 0.9765 0.96736
225 0.98282 0.97909 0.97087
250 0.98453 0.98118 0.97375
275 0.98593 0.98287 0.97618
300 0.9871 0.98429 0.97809

γ values 

 
Table 3: Values of γ for the standard tolerance interval for diferent values of n and of β (from [Guba 03]). 
 
Application 2: For the standard unilateral tolerance interval case, when )0(YL = , )(nYU = , we 
obtain the following value for β:  

nγβ −= 1 , which is exactly the same result obtained in the case of the Wilks quantile estimator (and 
again we get n=59, for 95%, 95%β γ= = ). 
 

5.5. Metamodels 
 
The numerical codes used in safety demonstration for NPP or in PA studies are very time-consuming, 
and this makes them difficult to use for probabilistic studies, where thousands of simulations are 
needed to produce an accurate result. An alternative is to simplify the numerical code by 
approximating it. The approximation of the numerical code is called metamodel (or response surface 
or surrogate model). The metamodel is hence used instead of the numerical code for the probabilistic 
studies such as uncertainty propagation and sensitivity analysis. Different techniques, developed 
initially for modelling the real laboratory experiments (see [Box 87] and [Myers 02] for example) have 
been adapted to numerical experiments (where a numerical experiment is a run of the numerical code), 
see for instance [Sacks 89a], [Sacks 89b], [Welch 92], [Santner 03]. 
 
The response surface methodology consists in approximating the numerical code by an appropriate 
empirical (and simple) model of the form ε+= ),,()( 1 dxxfy Kx  (where y  is the output (or the 
response variable), ),,( 1 dxx K x =  are the inputs (or the predictor variables, or the design variables) 
andε  is the error (or the residual)). This simple model has to be identified and fitted from 
experimental data (i.e. results of numerical simulations performed with the original numerical code). 
To obtain the final metamodel three steps have to be performed: 

• select a design of experiments (i.e. the points for which the numerical experiments have to be 
performed) 

• use some modeling techniques (such as linear models (LM) [Myers 02], generalized additive 
models (GAM) [Hastie 90],  multivariate additive regression spline (MARS) [Friedman 91] 
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and polychotomous regression based on MARS (PolyMARS) [Kooperberg 97], kriging 
[Santner 03], neural networks,…) 

• use optimization techniques to fit the parameters of these models. 
  
The final purpose is to obtain a cost-effective model with good predictive capacities. 
 

5.5.1. Design of experiments 
 
The design of experiments is a discipline which selects the experiments to be performed by 
simultaneously varying the input variables, in order to extract as much information as possible, with a 
low cost (low CPU time). Moreover the number of experiments to be performed has to be large enough 
to estimate the metamodel’s parameters. 
 
Numerical experiments are quite different from physical experiments in that repeated observations 
with the same set of inputs yield the same response (unless if the numerical code is changed). 
Uncertainty comes either from our lack of knowledge of the inputs or from the fact that the 
relationship between inputs and outputs is not perfectly known (or cannot be modelled exactly). 
In this context, the selection of a design should take into account that replications (i.e. repeated 
observation at the same point) are not necessary and that the design should fit a large variety of models 
and provide information about all portions of the experimental design (i.e. no holes). 
To do so the most useful designs are the ones satisfying the following two properties: 

• to fill the space in order to be able to capture the nonlinearities of the numerical code (space 
filling designs – SFD)  

• to conserve the filling property when projecting on sub-spaces, because often the numerical 
code depends only on few input variables (or on few linear combinations of the inputs). 

The quality of the spatial repartition is measured either by deterministic criteria (minimax or maximin 
distances, see for instance [Johnson 90]) or by statistical criteria (such as discrepancy, see [Hickernell 
98], [Niederreider 87]). 

  
A non exhaustive list of designs of experiments is: 
 

• Standard designs (see [Myers 02]) – even if they have good space filling properties, their main 
inconvenient is that they are time consuming for large number of inputs and they may lead to a 
loss of information in the context of numerical experiments 

o Full factorial designs (This is the simplest example of design, which consists in 
choosing the points on a regular grid with k levels for the d inputs. This leads to 

dk simulations to be performed, which is inconceivable in the case of a large number of 
inputs, even for k = 2 or 3) 

o Fractional factorial design (see [Myers 02] 
o Doehlert design (see [Doehlert 70]) 

• Designs generated by latin hypercube sampling 
o Latin hypercubes, latin hypercubes satisfying some optimality criteria (such as maximin 

distance [Park 94] or correlation [Tang 98]) 
o Orthogonal arrays [Owen 92] 
o Latin hypercubes based on orthogonal arrays [Tang 93] 

• Designs based on low discrepancy sequences (see [Thiemard 00] for a unified construction of 
these sequences): Halton, Hammersley, Sobol, Faure.  
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Some examples of designs of experiments are given in Figure 39; they were generated by different R 
packages2.  
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2 R-packages can be downloaded at http://cran.r-project.org/ 
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(f)  

Figure 39: Some examples of designs of experiments in 2 dimensions : (a) full factorial design with 5 levels, i.e. 25 
points, (b) latin hypercube with 10 levels (not space filling), (c) latin hypercube with maximin criteria (i.e. 
maximizing the minium distance between design points), (d) Halton sequence based design (low discrepancy) with 
11 points, (e) Sobol sequence based design (low discrepancy) with 11 points, (f) Pseudo random design with 11 
points.  
 

5.5.2. The metamodels 
 
We give here a very brief overview of some of the metamodels that can be used. As we previously 
mentioned the notation used here for a metamodel is  

 
ε+= ),,()( 1 dxxfy Kx  .          (5.22)

  
However, some more precise notation will be used in the following: 

),,( 1 dxx K x =  an experiments or a point of the design of experiments 
),,( 1 nxx K  : a sample of n experiments; each point ix having d coordinates.  

X : the matrix n x d of the design of experiments 
 
Linear models (LM)  
 
Linear models are written in the form 
 

εβββ ++++= )()()( 110 xxx MM ffy K          (5.23) 
 
where ),0(~ 2σε N  is a white noise independent of xi. 
The model is linear because it is linear in its parameters ),,,( 10 Mββββ K= . The number of 
parameters to be estimated from the n experiments is equal to M+2: there are (M+1) β  parameters (for 
the trend) and one 2σ parameter (for the dispersion). 
The functions Mff ,,1 K are predefined. They can be the input variables, some transforms of those 
variables (such as logarithms, powers, square roots…), functions of several variables. Their choice is 
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made before performing the estimation, leading to a more or less complex model. The simplest models 
are for instance 

εβ += 0)(xy  ,          (5.24) 
and  

εβββ ++++= dd xxy K110)(x .             (5.25) 
The estimators for the parameters β  and 2σ are computed by maximum likelihood: 

yTT FFF 1)(ˆ −=β                     (5.26) 
and  

))1(()ˆ()ˆ(ˆ 2 +−−−= MnFF T ββσ  y  y                    (5.27) 
where F denotes the model’s matrix3. Moreover their probabilistic distributions are known: β̂  is a 
non-biased (i.e. it’s expectation is β ) Gaussian vector of variance 12 )( −FF Tσ  and 

22ˆ))1(( σσ+− Mn is following a 2
)1( +− Mnχ  distribution.  

 
Statistical tests about the model parameters are performed to measure the usefulness of the model.  
 
The test for significance of regression is a test to determine whether a linear relationship between the 
response y and the regressors Mff ,,1 K  exists .The appropriate hypotheses are that all the regressors 
are not contributing to the model (i.e. 021 ==== dβββ K ) (H0) against the fact that there exists at 
least one regressor contributing significantly to the model (at least one of the βj is different of 0) (H1). 
The test procedure is called analysis of variance (ANOVA) because it is based on the decomposition of 
the total variability of the response y and it uses the F-statistic (Fisher statistic). 
 
Tests on individual regression coefficients are used to determine if the model is more effective with the 
inclusion of additional regressors or with the deletion of some variables already in the model. The 
appropriate hypotheses are that an individual regressor is not significant (βj=0) (H0) against the fact 
that it is significant (βj≠0) (H1). The test procedure uses the t-statistic (Student statistic). 
For more details on linear models see [Myers 02]. 
 
After estimating the model’s parameters, the model can be used for prediction purposes. Moreover, the 
variance of the prediction at a given point can also be computed analytically.  
 
However there are situations in which a simpler model (with fewer terms) may be superior to the full 
model (i.e. the one with all the terms). Variable selection techniques have been developed to identify 
the best subset of regressors in a model.  One procedure is to perform all the possible regressions, to 
evaluate them according to some criterion and to select the best regression model. Its main 
inconvenient is the fact that it is very time consuming. Hence some stepwise procedures have been 
developed for evaluating only a small number of subset regression models by adding or by deleting 
regressors one at a time. The stepwise procedures are either forward selection (regressors are added 
one at a time and the tests based on some F-statistic are performed), or backward elimination (starting 
from a model with all regressors, it removes the regressors one by one, based on the F-statistic), or a 
combination of those two methods working both ways. The stepwise procedures may also be based on 
AIC (Akaike’s Information Criterion) and BIC (Bayesian Information Criterion) [Hastie 02]. 
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Additive (AM) and generalized additive (GAM) models 
 
These models rely on the assumption of additivity: 

εβ ++++= )()()( 110 dd xfxfy Kx          (5.28) 
where ),0(~ 2σε N is a white noise independent on xi (some additional condition on fi has to be 
considered in order to insure the uniqueness of the decomposition).   The AM models have been 
introduced by Hastie and Tibshirani in [Hastie 90]. 
The form of the functions to be estimated is one of the parameters of the procedure, however 
polynomials or splines are most widely used.  
The fitted model is formed by d one dimensional functions, describing the part of every predictor in 
the model. The main advantage of this type of decomposition is that it allows to fit non parametric 
models which are easy to interpret. Each component of the model represents an individual effect and 
shows how the expectation of the output y evolves as a function of one variable (predictor), all the 
other variables being fixed.  
If the interactions are important, this type of model leads to wrong models. However, the model may 
be generalized (leading to GAM), by taking into account functions of several variables instead of 
functions of one single variable (such as functions of two variables as in [Hastie 90]). 
In practice, the additive models are also a useful tool to visualise the variation of the output in the 
direction of each input. It allows obtaining some sort of a priori information which can be used to fit 
another type of model (such as the trend in a kriging model).  
The stepwise procedures are also applicable and allow simplifying the model.  
 
Kriging  
 
Kriging was developed initially by geostatisticians in the 60’s. It’s use in the context of computer 
experiments started with the work of Sacks et al [Sacks 89a]. A detailed description of kriging may be 
found in [Santner 03]. Kriging is an interpolating method. The kriging model can be written in the 
form  

)()()( xxx Zfy += β ,              (5.29) 
 

where β)(xf  is the deterministic part (called the trend) and )(xZ is the random part (a centered, 
stationary Gaussian process).  
The trend takes into account the large scale variations of the output, while the random part takes into 
account its small scale variations.  
The Gaussian process is entirely characterized by its covariance function. The covariance function 
determines the smoothness of the response surface and it depends on d+1 parameters (d being the 
number of inputs); its form has to be chosen a priori (out of a list of possible covariance functions, see 
[Santner 03]).  
 
The parameters which have to be estimated from the data are the coefficients β of the trend and the 
d+1 parameters of the covariance function. The estimation is done by the maximum likelihood method. 
 
As an example, the Gaussian covariance function is defined by: 
 

( ) dd

i iiZ IRhhhC ∈−= ∑ =
any for       )(exp)(

1
22 θσ        (5.30) 

 
where 2

Zσ  and iθ , i=1,…,d  represent the variance and the scale parameters of the Gaussian process, 
have to be estimated from the experiments by maximum likelihood. 
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One of the main advantages of kriging is the fact the predictor is an interpolator whose smoothness 
depends on the data (via the covariance function) and yet not imposed a priori as in a regression 
method.  The prediction variance may also be computed.  
 

5.5.3. Model validation 
 
When we are estimating a model (response surface), no matter what kind of model we are using, we 
need first to select a model and then to validate it. To select a model means to estimate the 
performances of different models in order to choose the best one. Once a model has been selected, 
validating it means to estimate its prediction error on independent data (i.e. data which have not been 
used to fit the model). Normally, on a set of data, one should use 2/3 of them to fit the model (these 
data are sometimes called calibration or training set) and keep 1/3 of them to validate it (these data are 
sometimes called validation set). If there is not enough data to do so, then one should use cross 
validation or bootstrap to validate (or select) the model (see [Hastie 02]). Other analytical criteria such 
as AIC (Akaike’s Information Criterion) and BIC (Bayesian Information Criterion) [Hastie 02] can 
also be used.  
One has also to be aware of the bias – variance tradeoff. This means that within a given family of 
models, a model with a low bias (i.e. a very complex model, depending on a large number of 
parameters) has a large variance and a model with low variance (i.e. a model depending on few 
parameters) has large bias. The best model (i.e. with the lowest Mean Squared Error) will have neither 
a very low bias nor a very low variance; the user will have to find the right tradeoff between biais and 
variance, meaning the right number of parameters to be used. 
The more the complexity of the model increases, the more the prediction error decreases on the 
training set; unfortunately, this only applies to a certain degree, after a certain degree of complexity, 
the prediction error increases on the validation set. Just think at the extreme case of a polynomial 
of degree n passing through every point of the training set and providing an error equal to 0: this model 
is too sensitive to the sample (training set) itself. On the validation set, the error will be positive. This 
means that the predictive qualities of the model are bad. The typical description of this tradeoff is 
summarized in Figure 40. More details on this issue can be found in [Hastie 02]. 

 
Figure 40: The tradeoff biais – variance (from [Hastie 02]) 
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5.5.4. Example 
 
In the following we present an example where the three types of metamodels from the previous section 
are applied. The example deals with the transport of one nuclide (129I) in a nuclear waste repository 
and the results have been obtained in [Badea 07]. The computation is restricted to a 2D section of the 
disposal site, which has three different geological layers; the nuclear waste being disposed in the first 
one (the deepest one).  
The original numerical code used is CAST3M (http://www-cast3m.cea.fr/) and the computation 
concerning the design of experiments and the metamodels have been performed using R (http://cran.r-
project.org/). 
The input of the numerical code consists of six environmental parameters: 

 Kh1 : horizontal permeability of the first layer  
 Kv1 : vertical permeability of the first layer  
 K2 : permeability of the second layer  
 K3 : permeability of the third layer  
 poro : effective porosity 
 de : effective diffusion coefficient 

The output is the maximal release (concentration) of 129I (denoted cI129) between 0 and 106 years at a 
predefined point located on the top of the third layer (and called exutory). 
 
For each linear and GAM metamodel some statistical indicators such as the R2 and R2

adj coefficients 
have been computed (see for instance [Myers 02] for a detailed explanation of the significance of these 
coefficients). R2, called the coefficient of multiple determination, represents the proportion of the total 
variation in the output explained by the model. One has to be aware of the fact that a large value of R2 
(close to 1), does not necessarily means that the model is good. Adding a new term to the model 
always increases the R2, even if the added term is not statistically significant. It is hence possible for 
models with large values of R2 to yield poor predictions of new observations. R2

adj also takes into 
account the number of terms in the model; if unnecessary terms are added, the value of this coefficient 
will often decrease.  
When the two R2 and R2

adj coefficients are very different, there is a good chance that nonsignificant 
terms have been included in the model. 
 
Another computed quantity is the root mean square error (RMSE).  
 
The R2 and R2

adj coefficients and the RMSE are not computed for interpolation models (in this case 
kriging models) for the set that have been used to estimate the model.  
 
 
The design of experiments 
 
A space filling design (latin hypercube with maximin distance) with 60 points have been used for this 
example. The distributions for the input parameters are known : log-normal for the permeabilities and 
the effective diffusion coefficient and uniform for the effective porosity. In Figure 41 we represent the 
design of experiments as a matrix of scatterplots.  
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Figure 41 : The design of experiments for the 6 inputs example 

 
 
The data have been standardized using the sample mean and the sample standard deviation (i.e. for 
each variable the sample mean have been subtracted and the difference have been divided by the 
sample standard deviation).   
 
The linear models 
 
As we have indicated in the paragraph Linear models (LM) statistical tests for the significance of 
regression and on individual regression coefficients are performed for each linear model under study. 
Usually, the results of regression are presented as a table with 5 columns indicating respectively: the 
name of the variable (first column), the estimate of the corresponding βj coefficient (second column), 
the standard error associated to the estimate of the coefficient (third column), the value of the t-statistic 
for H0 (i.e. βj=0) of the test on individual regression coefficients (fourth column) and the 
corresponding p-value (fifth column). Sometimes (as it is the case here) an additional column 
containing qualitative information (such as “*” and “.”) on the significance of the individual 
coefficients (going from “***” for the most significant to nothing for the least significant) appears in 
the table. 
 
We present here for each of the two models the tables for the estimated coefficients classified by 
increasing p-value: the smaller the p-value, the more significant is the corresponding term in the 
model.  
 
Model 1 
 
This model contains the first degree terms and the interactions (i.e. the products between two different 
inputs). The estimated values of the coefficients β associated with each term are given in Table 4. The 
significance of “Intercept” is β0. The symbol “:” means that a product between two terms is taken into 
account in the model. 
 
Alternatively, the model may be written in the form:  
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deporo
deKporoK

deKporoKKK
deKvporoKvKKvKKv

deKhporoKhKKhKKhKvKh
deporoKKKvKhcI

×−
×−×+

×+×−×−
×−×−×+×+

×+×+×+×−×−
−−−++−−=

0509.0      
30514.030286.0      

2028.020192.0320456.0      
13189.013569.0310381.0210095.0      

10442.010132.0310325.0210417.011119.0      
066.01558.030287.020167.012294.010478.00802.0129

 (5.31) 

Estimate Std.Error t-value
p-value 
(Pr(>|t|))

Kv1:poro -0.3569 0.0447 -7.984 1.20E-09 ***
Kv1:de -0.3189 0.0542 -5.886 8.15E-07 ***
poro -0.1558 0.0346 -4.503 6.18E-05 ***
Kv1 0.2294 0.0519 4.42 7.96E-05 ***
(Intercept) -0.0802 0.0334 -2.4 0.0214 *
Kh1:Kv1 -0.1190 0.0615 -1.936 0.0604 .
de -0.0660 0.0389 -1.696 0.098 .
K3:de -0.0514 0.0354 -1.452 0.1547
Kh1 -0.0478 0.0387 -1.234 0.2249
K2:K3 -0.0456 0.0455 -1.003 0.3223
poro:de -0.0509 0.0517 -0.985 0.331
Kh1:de 0.0442 0.0511 0.865 0.3923
K3 -0.0287 0.0339 -0.846 0.403
Kh1:K3 0.0325 0.0386 0.841 0.4059
K3:poro 0.0286 0.0356 0.802 0.4277
Kh1:K2 -0.0417 0.0562 -0.742 0.4625
Kv1:K3 0.0381 0.0574 0.664 0.5109
K2:de 0.0280 0.0437 0.641 0.5257
K2:poro -0.0192 0.0345 -0.555 0.5818
K2 0.0167 0.0397 0.421 0.6759
Kh1:poro 0.0132 0.0517 0.256 0.7992
Kv1:K2 0.0095 0.0816 0.117 0.9078  

Table 4 : Coefficients of the linear model with first degree polynomial and interactions; classified by increasing p-
value 

 
The statistical indicators for this model are: 
 
R2 = 0.9675  
R2

adj = 0.9495  
RMSE = 0.1788 
 
One should be aware that such a model (5.31) has far too many terms (22), most of which are not 
statistically significant and should not be used for prediction. Instead, a stepwise procedure should be 
used to eliminate the terms that are not significant. 
 
Usually a detailed study of the residuals (difference between real and predicted values) should also be 
performed. Hereafter we only present a qqplot picture of the residuals. 
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Figure 42 : qqplot for the residuals in Model 1 

 
 
Model 2 
 
Starting from Model 1, a stepwise procedure (backward elimination) has been applied to obtain a new 
model and only 10 term have been kept out of the initial 22 terms.  
 
The model may be written in the form:  
 

deKdeKvporoKvKvKh
deporoKKvKhcI

×−×−×−×−
−−−+−−=
304793.0 133212.0133933.01108453.0      

07168.014555.030298.0124954.0101938.007297.0129
         (5.32) 

 
 

Estimate Std.Error t-value Pr(>|t|)
Kv1:poro -0.33933 0.03471 -9.776 3.42E-13 ***
Kv1:de -0.33212 0.04234 -7.845 2.89E-10 ***
Kv1 0.24954 0.04353 5.733 5.67E-07 ***
poro -0.14555 0.02807 -5.184 3.92E-06 ***
(Intercept) -0.07297 0.02799 -2.607 0.012 *
de -0.07168 0.03274 -2.189 0.0333 *
Kh1:Kv1 -0.08453 0.04388 -1.926 0.0598 .
K3:de -0.04793 0.02525 -1.898 0.0634 .
K3 -0.0298 0.02774 -1.074 0.2879
Kh1 -0.01938 0.02794 -0.694 0.4912  

Table 5 : Coefficients of the linear model obtained from the previous linear model using a stepwise procedure 
 
The statistical indicators for this model are: 
 
R2 = 0.9635  
R2

adj = 0.9569  
RMSE = 0.1894 
 
This model has only 10 terms and has larger R2

adj than Model 1. For these reasons Model 2 should be 
preferred to Model 1.  
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The GAM models 
 
Model 3 
 
For this example, the fi functions are splines. The table below only shows the degree of significance of 
each spline.  

Pr(F)
s(Kv1) 2.20E-16 ***
s(poro) 1.46E-05 ***
s(K3) 0.1309
s(Kh1) 0.3418
s(K2) 0.6553
s(de) 0.7049  

Table 6 : Degree of significance of each spline, ordered in increasing order of the p-value 
 
The statistical indicators for this model are: 
 
R2 = 0.9974  
R2

adj = 0.9965  
RMSE = 0.051 
 
One should be aware of the fact that the number of degrees of freedom of this model is 24 (while for 
Models 1 and 2 these numbers were 21 and 9 respectively).  
 
Each component of the model (representing an individual effect) shows how the expectation of the 
output evolves as a function of one variable. This can be seen in Figure 43. 
 

 
  

   
Figure 43 : The output as a function of each input: Kh1, Kv1, K2, K3, poro and de (from left to right and from top 

to bottom) 
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One may remark that most of the effects are linear, except for the parameters Kv1 and poro, which 
were also the most significant parameters of this model. 
 
Model 4 
 
By applying a stepwise procedure, a new model with only three functions is obtained. 
 

Pr(F)
(Intercept)
s(Kv1) 2.20E-16 ***
s(poro) 8.59E-07 ***
s(K3) 0.07049 .  

Table 7: Degree of significance of each spline for the stepwise model 
 
The statistical indicators for this model are: 
 
R2 = 0.9969  
R2

adj = 0.9961  
RMSE = 0.0555 
The number of degrees of freedom of this model is 12. 
 
The kriging models 
 
Model 5 
 
An ordinary kriging model has been estimated, which means that the deterministic part consists only of 
a constant β which has to be estimated. The covariance function associated with the random part is 
Gaussian (as defined in (5.30)); its d+1=7 parameters have also to be estimated.  
 

θ σZ β
  1.8 1.2
Kh1 40   
Kv1 3.59   
K2 25.75   
K3 11.42   
poro 2.11   
de 40   

Table 8: Estimated parameters for the ordinary kriging model 
 
The number of degrees of freedom of this model is 8. 
The main remark here is that some of the scale parameters of the covariance function (i.e. the ones 
denoted by θ) are quite large, taking into account that the data have been standardized. The meaning is 
that the response surface is not varying (or is slightly varying) in the corresponding direction, the 
effect of the corresponding parameter being included in the deterministic part of the model. In this 
example only the parameters Kv1 and poro (the ones with low scale parameters) could be considered 
responsible for the variations in the random part. It should be emphasised that those parameters are the 
ones that appear as important in the other models too. 
 
As previously mentioned, the statistical indicators R2, R2

adj and RMSE are meaningless for a kriging 
model. A leave-one-out cross validation may be performed; some results are shown in Figure 44, 
where the fitted values (i.e. predicted values) are plotted against the real ones. It can be seen that 
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nearly all the points are aligned on the line y = x with one exception. This exception is due to the point 
number 44 of the design. The user should decide whether this point is an outlier or not and whether it 
should be kept in the design or not. Of course, all the models can be re estimated using only the 
remaining 59 points of the design. 
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Figure 44 : Predicted against exact values for a kriging model 

 
 
The comparison 
 
A design with 737 points (on a regular grid) has been used as a validation set. 
  
 Model 1 Model 2 Model 3 Model 4 Model 5 
RMSE 0.2495 0.2452 0.0631 0.0631 0.2614  
df 21 9 24 12 8 
Table 9: Comparison of the 5 models in terms of RMSE on the validation test and in terms of degrees of freedom 
 
Some other statistical indicators may be computed (see [Myers 02]) in order to decide which model to 
select. We only present here the RMSE and the degrees of freedom of each model. One should choose 
a model with not too many degrees of freedom, with reasonable RMSE. In this case either Model 2 or 
Model 5 should be preferred, also because we have seen that interactions between parameters cannot 
be neglected (and the GAM models do not take it into account). 
 

6. Uncertainty of the output  
 
The outputs of numerical codes may be either scalars or functions of other variables (most often time 
dependent functions).  
 

6.1. Case of a scalar output 
 

In this case the standard procedures for descriptive statistics apply, and we compute the standard 
indicators: mean, variance, median, different quantiles, as well as the PDF estimation and the empirical 
(complementary) cumulative distribution function for the output of interest. In section 6.2.2 we will 
address, via an example most of those standard indicators.  
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6.2. Case of a functional output 
 

The case of a functional output will be handled by means of an example.  
Let us consider the example we have already started to present throughout this report. It is a study of 
the release of radionuclides from wastes of an ILW disposal cell (represented in Figure 45) embedded 
in a porous material for a generic French clay site, in the case of a simplified 2D representation of the 
disposal cell. This study has been performed in [Prváková 08]. There are 24 uncertain input 
parameters. The output consists of 18 dynamic variables (time dependent functions) and 36 non-
dynamic variables (scalar variables). 
 
 

 
Figure 45: Disposal cell scheme 

 
The 18 dynamic variables are the molar flows (for each radionuclide (129I, 94Nb, 79Se) released through 
the external surface of each of the 6 engineered and geological barriers4 considered in the repository 
design) as time functions (time being considered from 0 to 106 years). 
 
The 36 non-dynamic variables are the peaks of the previous molar flows (18 variables) and the time to 
the peak (18 variables). 
 
The number of simulations by Monte Carlo is 1000; for each one, the results for 209 time steps have 
been stored. The numerical code used to perform the simulations is Goldsim 
(http://www.goldsim.com/). 
 
More non-dynamic variables may be considered, as for instance the molar flow for one radio nuclide 
for a given time.  
  

6.2.1. Example of study of dynamic variables 
 
For each dynamic output we extend the standard procedure for the scalar output to the functional 
output by considering the evolution in time of the statistical indicators (mean, variance, median, 
different quantiles), see for instance Figure 46. 
 

                                                 
4 The 6 barriers are: waste package, disposal cell, fractured zone, micro fissured zone, undisturbed argillites (15m from top 
and bottom) and undisturbed argillites. 
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Figure 46: Evolution in time of the main statistical indicators for different radionuclides coming out of different 
surfaces 
 
In this example, in addition to the simple knowledge of the values of the statistical indicators 
represented in Figure 46 at different moments, one can see a sudden increase in the molar flow, 
producing peaks at 104 years. This is due to the change, at that precise moment, of the distribution of 
one of the input parameters. In other studies, other features may appear on the evolution in time of 
different statistical indicators curves. 
 
At each moment, for every statistical indicator a confidence interval may be computed (with a given 
confidence level). This yields an evolution in time of the confidence interval for the specified 
indicator, as can be seen in Figure 47. One should be aware of the fact that the confidence interval is 
computed for each fixed instant (with the significance given in 4.1.2). 

101 102 103 104 105 106
10-12

10-11

10-10

10-9

10-8

10-7

10-6

95% quantile of the molar flow of  79Se out of the disposal cell
and the corresponding 95% confidence interval

Time [yr]

M
ol

ar
 fl

ow
 [m

ol
 / 

yr
]

 
Figure 47 : Evolution in time of the 95% confidence interval for the 95% quantile of the molar flow of 79Se getting 
out of the disposal cell 
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6.2.2. Example of study of non-dynamic variables 
 
 
Non-dynamic variables (fixed instant) 
 
For each dynamic output, we also consider their values at some predefined times (in this case we 
considered 5x103 years, 104 years, 5x104 years, 105 years, 5x105 years, 106 years). Then the scalar 
analysis mentioned in paragraph 6.1 may be applied to each one of these times. We present in  
Table 10 the statistical indicators for the molar flow of 129I at 105 years and in Figure 48 the ECDFs for 
the log of the molar flow of 129I at 106 years coming out of each of the 6 barriers (left) and similarly the 
PDFs for the log of the molar flow of  79Se at 105 years (right). 
 
 

min
1% 

quantile
5% 

quantile
25% 

quantile median
75% 

quantile
95% 

quantile
99% 

quantile max mean std.dev
skewn

ess
kurtos

is
waste 
package 2.E-09 3.E-09 4.E-09 1.E-08 2.E-08 3.E-08 4.E-08 5.E-08 5.E-08 2.E-08 1.E-08 0.13 1.93

disposal cell 9.E-09 1.E-08 2.E-08 6.E-08 1.E-07 2.E-07 2.E-07 3.E-07 3.E-07 1.E-07 7.E-08 0.26 1.94
fractured 
zone 2.E-08 4.E-08 7.E-08 1.E-07 2.E-07 2.E-07 3.E-07 3.E-07 4.E-07 2.E-07 7.E-08 0.21 2.47
micro 
fissured 
zone 3.E-11 7.E-09 3.E-08 2.E-07 3.E-07 3.E-07 4.E-07 4.E-07 4.E-07 2.E-07 1.E-07 -0.69 2.60
undisturbed 
argilites (15 
m) 2.E-14 2.E-11 6.E-10 3.E-08 2.E-07 4.E-07 4.E-07 4.E-07 4.E-07 2.E-07 2.E-07 -0.08 1.37
undisturbed 
argilites 0.E+00 0.E+00 0.E+00 4.E-23 8.E-15 2.E-10 3.E-08 9.E-08 2.E-07 5.E-09 2.E-08 5.68 42.52
 

Table 10: Uncertainty analysis (numerical indicators) for the molar flow of 129I at 100000 years 
 

 
Figure 48 : Uncertainty analysis (graphics) : ECDF for the log of the molar flow of 129I at 1000000 years (left) and 
PDF for the log of the molar flow of  79Se at 100000 years (right). 
 
 
We may also retrieve directly from the curves in Figure 46, the values of some statistical indicators at 
some fixed moment; each one of those values will characterize a non-dynamic variable. For instance, 
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at 105 years, the molar flow of 129I getting out of the waste packages has a mean value and a median 
which are the same (around 2x10-8mol/yr) and a standard deviation of 10-8mol/yr (Figure 46, left). The 
same quantitative information can be obtained directly from the second line of Table 10. Some 
additional information concerning the shape characteristics for this variable may be retrieved from this 
table: the skewness coefficient 0.13 tells us that that the distribution is rather symmetric, while the 
kurtosis equal to 1.93 leads to the conclusion that the distribution is quite flat.  
 
On the contrary, at 105 years, the molar flow of 79Se getting out of the disposal cell has a mean value 
(8.6x10-9mol/yr), quite different from the median (4x10-10mol/yr); the standard deviation is 2.4x10-8 

mol/yr (see Figure 46, right). The statistical indicators for this output are given in  
Table 11. 
 
 

min
1% 

quantile
5% 

quantile
25% 

quantile median
75% 

quantile
95% 

quantile
99% 

quantile max mean std.dev
skewn

ess
kurtos

is
1.76E-11 2.82E-11 4.72E-11 1.32E-10 4.08E-10 4.71E-09 4.63E-08 1.20E-07 2.86E-07 8.64E-09 2.38E-08 5.48 43.47  

 
Table 11 : Statistical indicators for the molar flow of 79Se getting out of the disposal cell at 105 years 
 
 From this table we can also derive the range, 2.85655 x 10-7 mol/yr, and the interquartile interval, 
equal to 4.582 x 10-9 mol/yr. 
It should be observed that the skewness coefficient of 5.48 gives a strong indication of non-symmetric 
distribution, whereas the very large kurtosis (equal to 43.47) tells us that there is a strong proportion of 
the distribution located at the tails.   
 
The ECDF and the PDF curves for the considered outputs are plotted in Figure 49. 
 

-11 -10 -9 -8 -7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ECDF of the molar flow of Se79 out of the disposal cell at 100000 yrs

log (molar flow)

E
C

D
F

log(median) log(mean)

-11 -10 -9 -8 -7 -6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

PDF of the molar flow of Se79 out of the disposal cell at 100000 yrs

 log(molar flow)

D
en

si
ty

 
Figure 49: ECDF and PDF curves for the log of the molar flow of 79Se out of the disposal cell at 105 years 
 
From the s-shaped qqplot of log of the molar flow of 79Se out of the disposal cell at 105 years, we can 
conclude, that its distribution is bi-modal (Figure 50). 
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Figure 50: qqplot of log of the molar flow of 79Se out of the disposal cell at 105 years 

 
 
 
Non-dynamic variables (peak or time of occurrence of the peak) 
 
For each dynamic output, we may also consider the peak (maximum) and the time of occurrence of the 
peak, which are, in the safety context the most important scalar outputs to be considered. 
 
Examples of statistical indicators for the peak are given in Table 12 and Figure 51.  
Examples of statistical indicators for the time of occurrence of the peaks are given in Table 13 and 
Figure 52.  
 
Some comments should be done concerning the way to obtain the peaks. For each simulation with the 
numerical code results at 209 predefined time steps have been stored. The peak, for each simulation, 
has been chosen among the 209 values, without any interpolation, inducing hence a small biais. As for 
the time to the peak, only 209 values were possible, out of which much fewer were really taken. For 
this reason the time to the peak has the aspect of a discrete variable (see the stair-like shape of the 
ECDF in Figure 52, left, and the multi-modal PDF in Figure 52, right). 
 
The main conclusions concerning these outputs are the following: 
 for the distributions of peaks for 79Se 

• the distributions shift towards smaller values as moving to outer layers (i.e. from the waste 
package towards the undisturbed argillite) 

• the median is smaller than the mean for all the layers 
• the standard deviation is also decreasing as moving to outer layers 
• the ratio between the range and the standard deviation is however increasing as moving to 

outer layers (from 11 in the waste package layer to 20 in the undisturbed argillite layer) 
• the distributions are not symmetric (large skewness coefficient) and have long tails (large 

kurtosis) 
 for the distributions of time to the peaks  

• the distributions shift to larger values when moving to outer layers 
• the median is smaller than the mean for nearly all the layers 
• the standard deviation increases when moving to outer layers 
• for 94Nb we can see from Figure 52 that in the undisturbed argillite layer the true peak of the 

molar flow has not been reached before the simulations stopped (there is no curve for this 
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layer); the same information can be obtained by checking the numerical values of the 
statistical indicators (the table is not presented in this report).  

 
Of course, all the previous computed indicators (range, interquartile interval …) can also be calculated 
here. 

min
1% 

quantile
5% 

quantile
25% 

quantile median
75% 

quantile
95% 

quantile
99% 

quantile max mean std.dev
skewn

ess
kurtosi

s
waste 
package 7.E-07 7.E-07 9.E-07 1.E-06 2.E-06 5.E-06 2.E-05 4.E-05 1.E-04 5.E-06 9.E-06 5.40 43.82

disposal cell 2.E-11 3.E-11 5.E-11 1.E-10 5.E-10 5.E-09 5.E-08 1.E-07 5.E-07 1.E-08 3.E-08 7.82 88.13
fractured 
zone 3.E-14 6.E-14 1.E-13 6.E-11 2.E-10 5.E-10 2.E-09 9.E-09 1.E-07 7.E-10 5.E-09 22.56 600.07
micro 
fissured 
zone 6.E-15 1.E-14 4.E-14 4.E-11 1.E-10 2.E-10 5.E-10 2.E-09 3.E-08 2.E-10 9.E-10 22.32 596.90
undisturbed 
argilites (15 
m) 2.E-16 5.E-15 2.E-14 2.E-11 5.E-11 1.E-10 3.E-10 1.E-09 1.E-08 1.E-10 4.E-10 20.16 508.49
undisturbed 
argilites 0.E+00 2.E-29 1.E-24 4.E-17 3.E-13 1.E-11 7.E-11 1.E-10 1.E-09 2.E-11 5.E-11 11.97 195.01
Table 12 : Uncertainty analysis (numerical indicators) for the peak of the molar flow of 79 Se  
 

  
Figure 51: Uncertainty analysis (graphics) : ECDF (left) and PDF (right) for the log of the peak (max) of molar flow 
of 79Se  
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min
1% 

quantile
5% 

quantile
25% 

quantile median
75% 

quantile
95% 

quantile
99% 

quantile max mean 
std. 
dev

skew
ness

kurtos
is

waste 
package 300 300 300 700 900 1500 7540 10200 10200 1659 2236 2.97 11.14

disposal cell 900 900 1100 1500 1900 2900 10200 10200 10200 2974 2617 2.14 6.22
fractured 
zone 1700 2100 2500 3300 4500 6200 10800 11402 13400 5525 2868 0.96 2.48
micro  
fissured 
zone 5800 6998 8790 13600 19800 70000 150000 230100 930000 49821 60448 4.36 49.22
undisturbed 
argilites (15 
m) 13200 17400 20000 40000 95000 220000 800500 1E+06 1000000 191915 238244 2.05 6.59
undisturbed 
argilites 10 210000 280000 650000 1E+06 1E+06 1E+06 1E+06 1000000 826350 261962 -1.17 2.84

 
Table 13: Uncertainty analysis (numerical indicators) for the time to the peak of the molar flow of 129I  

 

 
 
 

  
Figure 52: Uncertainty analysis (graphics) : ECDF (left) and PDF (right) for the time to the peak (max) of molar 
flow of  94Nb. 
 

6.2.3. Conclusion 
 
To summarize, in the case of functional outputs for a PA code, one should analyze: 
 

• concentrations of different radionuclides at a fixed point as functions of time 
• molar flows of different radionuclides coming out of different specified surfaces (disposal cell 

for instance) as functions of time. 
 
For each of these outputs the standard procedure for the scalar output can be extended to the functional 
output by building the evolution in time of the statistical indicators (mean, variance, median, different 
quantiles). 
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For each of these outputs, their values at some predefined moments (such as 104 years, 105 years, 106 

years or others) should be considered. Then the scalar analysis may be applied to each one of these 
values. 
The scalar analysis may be applied to the peak (maximum) of each time dependent output and also to 
the time of occurrence of the peaks. 
 

7. Conclusion  
Dealing with uncertainties for Performance Assessment of a nuclear High Level Waste repository 
(HLW) involves  
 Assessment of the input uncertainty (which may be epistemic uncertainty due to the lack of 

knowledge and aleatory uncertainty) and assessment of the uncertainties due to the modeling of 
the whole system (which is rather complex) 

 Uncertainty propagation using Monte Carlo method (which consists in repeating n times the two 
following steps : first generating a set of realizations of the uncertain inputs and secondly, for this 
set of realizations compute and store the model outputs)  

 For each output (such as the maximum releases of radionuclides), assessment of its uncertainty 
from the n values of the model output. 

 
The input uncertainty is expressed through a probability distribution characterized by its shape 
(uniform, normal, log-normal, exponential,...) and its parameters. The process of appropriately 
characterizing the uncertainty in the inputs may be time-consuming, especially when dealing with 
models involving tens (or even thousands) of inputs. In these situations it is helpful to perform a first 
uncertainty and sensitivity analysis with coarse uncertainty characterizations in order to identify the 
most important input variables and then concentrate on refining their distributions. 
Correctly characterizing the uncertainty of the inputs is essential for any meaningful uncertainty 
analysis. 
 
The accuracy of Monte Carlo method increases with the number of runs n (it is inversely proportional 
to the square root of n). It is therefore an expensive method and alternative methods (called variance 
reduction methods), such as Latin Hypercube sampling, may be used instead of MC. 
 
In this document we summarised the main techniques available in scientific literature to perform 
uncertainty analysis. Some examples are also given. 
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8. Annex 1  

8.1. Properties of the empirical estimator 
The estimator of the α- quantile , ( )

ˆ ˆinf{ , ( ) }n EE nY y F y Yα αα ⎡ ⎤⎢ ⎥
= > =  is biased with the following first two 

moments  

3 2

1 1ˆE
2 2
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α,n α

α

α α p'(y )(Y ) y Ο
(n )p (y ) n
( − ) ⎛ ⎞= − + ⎜ ⎟+ ⎝ ⎠

, 2 2

1 1ˆVar
2α,n

α

α α(Y ) Ο
(n )p (y ) n

( − ) ⎛ ⎞= + ⎜ ⎟+ ⎝ ⎠
 and asymptotically normal 

2

1ˆ( ) 0,n
α,n α

α

α αn Y y N
p (y )

→∞ ⎛ ⎞( − )
− ⎯⎯⎯→ ⎜ ⎟

⎝ ⎠
. The variance of this estimator is large, and it increases for 

extreme quantiles, for which the value of the PDF  f(ya) is small. Moreover, from the asymptotical law, 
one can see that ˆ ) 0.5α,n αP(Y y≥ ≈ . 
 

8.2. Properties of the Wilks estimator 
 
The Wilks estimator is the order statistic ( 1)n rY − + . 
The following proposition helps establishing the Wilks formula, which connects n (the size of the 
sample) and r, ,α β  from ( 1)( )n rP Y yα β− + > ≥ . 
 

Proposition :  
The number of times n iid rv (Y1, …, Yn ) exceed a certain threshold y follows a Binomial 
distribution B(n,F(y)), where F is the CDF of the rv Yi. 

 
This proposition is used as follows: let (1) ( )( ,..., )nY Y  be the ordered sample, (1) ( )... nY Y≤ ≤ . The 
probability of  the event {  of the  are },  ij Y y j> ∀  is computed using the binomial distribution : 

(  of the  are ) (1 ( )) ( )j n j
i

n
P j Y y F y F y

j
−⎛ ⎞

> = −⎜ ⎟
⎝ ⎠

. 

 

For y yα= , we get (  of the  are ) (1 ) j n j
i

n
P j Y y

jα α α −⎛ ⎞
> = −⎜ ⎟

⎝ ⎠
. On the other hand, the event 

( 1){ }n rY yα− + >  occurs if and only if at least r of the Yi are > yα . This leads to  
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As we want  ( 1)n rY − +  to be sure to the level β, i.e. ( 1)( )n rP Y yα β− + > ≥ , we obtain the « Wilks formula »  

1 0
1 (1 ) (1 )

n n r
j n j j n j

n r j

n n
j j

β α α α α
−

− −

− + =

⎛ ⎞ ⎛ ⎞
= − − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  

It is then possible to compute, for ,α β  fixed (for instance 95%, 95%), the couples r, n.  
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