299 research outputs found

    Embedded system for motion control of an omnidirectional mobile robot

    Get PDF
    In this paper, an embedded system for motion control of omnidirectional mobile robots is presented. An omnidirectional mobile robot is a type of holonomic robots. It can move simultaneously and independently in translation and rotation. The RoboCup small-size league, a robotic soccer competition, is chosen as the research platform in this paper. The first part of this research is to design and implement an embedded system that can communicate with a remote server using a wireless link, and execute received commands. Second, a fuzzy-Tuned proportional-integral (PI) path planner and a related low-level controller are proposed to attain optimal input for driving a linear discrete dynamic model of the omnidirectional mobile robot. To fit the planning requirements and avoid slippage, velocity, and acceleration filters are also employed. In particular, low-level optimal controllers, such as a linear quadratic regulator (LQR) for multiple-input-multiple-output acceleration and deceleration of velocity are investigated, where an LQR controller is running on the robot with feedback from motor encoders or sensors. Simultaneously, a fuzzy adaptive PI is used as a high-level controller for position monitoring, where an appropriate vision system is used as a source of position feedback. A key contribution presented in this research is an improvement in the combined fuzzy-PI LQR controller over a traditional PI controller. Moreover, the efficiency of the proposed approach and PI controller are also discussed. Simulation and experimental evaluations are conducted with and without external disturbance. An optimal result to decrease the variances between the target trajectory and the actual output is delivered by the onboard regulator controller in this paper. The modeling and experimental results confirm the claim that utilizing the new approach in trajectory-planning controllers results in more precise motion of four-wheeled omnidirectional mobile robots. 2018 IEEE.Scopu

    Advances in Optimization and Nonlinear Analysis

    Get PDF
    The present book focuses on that part of calculus of variations, optimization, nonlinear analysis and related applications which combines tools and methods from partial differential equations with geometrical techniques. More precisely, this work is devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The book is a valuable guide for researchers, engineers and students in the field of mathematics, operations research, optimal control science, artificial intelligence, management science and economics

    New developments in mathematical control and information for fuzzy systems

    Get PDF
    Hamid Reza Karimi, Mohammed Chadli and Peng Sh

    A Coevolutionary Particle Swarm Algorithm for Bi-Level Variational Inequalities: Applications to Competition in Highway Transportation Networks

    Get PDF
    A climate of increasing deregulation in traditional highway transportation, where the private sector has an expanded role in the provision of traditional transportation services, provides a background for practical policy issues to be investigated. One of the key issues of interest, and the focus of this chapter, would be the equilibrium decision variables offered by participants in this market. By assuming that the private sector participants play a Nash game, the above problem can be described as a Bi-Level Variational Inequality (BLVI). Our problem differs from the classical Cournot-Nash game because each and every player’s actions is constrained by another variational inequality describing the equilibrium route choice of users on the network. In this chapter, we discuss this BLVI and suggest a heuristic coevolutionary particle swarm algorithm for its resolution. Our proposed algorithm is subsequently tested on example problems drawn from the literature. The numerical experiments suggest that the proposed algorithm is a viable solution method for this problem
    • …
    corecore