348 research outputs found

    MPPT Solar Charge Contoller For Portable

    Get PDF
    The purpose of our senior project was to design and prototype an MPPT charge controller for small capacity PV panels under varying temperature and irradiance conditions to charge portable devices. In this paper we discuss our research, simulation, design, and testing to develop an MPPT solar charge controller. Furthermore, we presented our results and findings from testing our design. An MPPT solar charge controller is feasible and affordable if implemented on a PCB board. Due to MPPT’s affordability and increased efficiency under dynamic conditions, an MPPT solar charge controller for portable devices would be more effective than solar chargers currently sold without MPPT

    Single-switch bipolar output DC-DC converter for photovoltaic application

    Get PDF
    Bipolar DC grids have become an adequate solution for high-power microgrids. This is mainly due to the fact that this configuration has a greater power transmission capacity. In bipolar DC grids, any distributed generation system can be connected through DC-DC converters, which must have a monopolar input and a bipolar output. In this paper, a DC-DC converter based on the combination of single-ended primary-inductor converter (SEPIC) and C´ uk converters is proposed, to connect a photovoltaic (PV) system to a bipolar DC grid. This topology has, as main advantages, a reduced number of components and a high e ciency. Furthermore, it can contribute to regulate/balance voltage in bipolar DC grids. To control the proposed converter, any of the techniques described in the literature and applied to converters of a single input and single output can be used. An experimental prototype of a DC-DC converter with bipolar output based on the combination of SEPIC and C´ uk converters was developed. On the other hand, a perturb and observe method (P and O) has been applied to control the converter and has allowed maximum power point tracking (MPPT). The combined converter was connected in island mode and in parallel with a bipolar DC microgrid. The obtained results have allowed to verify the behavior of the combined converter with the applied strategy.info:eu-repo/semantics/publishedVersio

    Analysis of suitable converter for the implementation of drive system in solar photovoltaic panels

    Get PDF
    Introduction. Photovoltaic (PV) systems gained immense attraction in the recent years since it produces electricity without causing environmental pollution through direct conversion of solar irradiance into electricity. Solar PV panels produce DC power. The magnitude of this DC power varies with temperature and irradiance of the sun rays. The DC supply from solar panels can be regulated using DC-DC converter and then can further be converted into the desired AC voltage by means of a voltage source inverter before being fed to an induction motor (IM). The speed and torque of an IM, fed from PV arrays, can vary due to the variation in the output power of the panels. Goal of this work is to improve the dynamic performance and reduce the torque ripple of Cuk converter-inverter fed IM drive system. The novelty of the current work proposes interleaved Cuk converter between solar PV DC source and the inverter. Purpose. To provide continuous current using an interleaved Cuk converter to the IM drive and in turn to reduce the torque ripple in IM. Methodology. Introduced an interleaved Cuk converter which is a blend of Cuk converters connected in parallel with each other between solar PV arrays and IM drive system. Originality. Simulation results are obtained for Cuk converter and interleaved Cuk converter fed IM drive by means of MATLAB. The hardware setup for the same IM systems is developed. Practical value. Simulation and hardware results are coincided with each other and it is subject from the simulation and hardware results that the interleaved Cuk converter-inverter fed IM system produced results superior than the Cuk converter inverter fed IM drive system.Вступ. Фотоелектричні (ФЕ) системи набули величезної привабливості в останні роки, оскільки вони виробляють електроенергію, не викликаючи забруднення навколишнього середовища, за рахунок прямого перетворення сонячного випромінювання на електрику. Сонячні ФЕ панелі виробляють енергію постійного струму. Значення цієї потужності постійного струму залежить від температури та освітленості сонячних променів. Подача постійного струму від сонячних панелей може регулюватися за допомогою DC-DC перетворювача, а потім може бути перетворена в бажану змінну напругу за допомогою інвертора джерела напруги перед подачею на асинхронний двигун. Швидкість та обертаючий момент асинхронного двигуна, що живиться від ФЕ батарей, можуть змінюватися через зміну вихідної потужності панелей. Метою даної роботи є покращення динамічних характеристик та зменшення пульсацій обертаючого моменту системи приводу асинхронного двигуна з живленням від Cuk перетворювача-інвертора. Новизна цієї роботи пропонує Cuk перетворювач, що чергується, між сонячним ФЕ джерелом постійного струму та інвертором. Мета. Забезпечення безперервності струму за допомогою Cuk перетворювача, що чергується, для приводу асинхронного двигуна і, у свою чергу, зменшення пульсації обертаючого моменту в асинхронному двигуні. Методологія. Представлений Cuk перетворювач, що чергується, який являє собою суміш Cuk перетворювачів, підключених паралельно один до одного між сонячними ФЕ батареями і системою приводу асинхронного двигуна. Оригінальність. Результати моделювання отримані для Cuk перетворювача і приводу асинхронного двигуна з живленням Cuk перетворювача, що чергується, за допомогою MATLAB. Розроблено апаратну частину цих же асинхронних двигунів. Практична цінність. Результати моделювання та апаратного забезпечення збігаються один з одним, і з результатів моделювання та апаратного забезпечення випливає, що система асинхронного двигуна з живленням від Cuk перетворювача-інвертора, що чергується, дає результати, які перевищують результати, ніж система приводу асинхронного двигуна з живленням від Cuk перетворювача

    Small-scale hybrid alternative energy maximizer for wind turbines and photovoltaic panels

    Get PDF
    This thesis describes the creation of a small-scale Hybrid Power System (HPS) that maximizes energy from a wind turbine and photovoltaic array. Small-scale HPS are becoming an increasingly viable energy solution as fossil fuel prices rise and more electricity is needed in remote areas. Modern HPS typically employ wind speed sensors and three power stages to extract maximum power. Modern systems also use passive rectifiers to convert AC from the wind turbine to DC that is usable by power electronics. This passive system inefficiently wastes power and introduces damaging harmonic noise to the wind turbine. The HPS described in this thesis does not require external wind speed sensors, and has independent wind and solar Maximum Power Point Tracking (MPPT). It converts AC from the wind turbine to DC with a Vienna rectifier that can be controlled to improve efficiency, allow MPPT, and allow Power Factor Correction (PFC). PFC all but eliminates the harmonic noise that can damage the wind turbine. A prototype HPS was built and evaluated that combines the two renewable sources in such a way that only two power stages are necessary, the Vienna rectifier and a step-down converter. This thesis describes the prototype and reports the results obtained

    A common ground switched-quasi-Z-source bidirectional DC-DC converter with wide-voltage-gain range for EVs with hybrid energy sources

    Get PDF
    A common ground switched-quasi-Z-source bidirectional DC-DC converter is proposed for electric vehicles (EVs) with hybrid energy sources. The proposed converter is based on the traditional two-level quasi-Z-source bidirectional DC-DC converter, changing the position of the main power switch. It has the advantages of a wide voltage gain range, a lower voltage stress across the power switches, and an absolute common ground. The operating principle, the voltage and current stresses on the power switches, the comparisons with the other converters, the small signal analysis and the controller design are presented in this paper. Finally, a 300W prototype with Uhigh=240V and Ulow=40~120V is developed, and the experimental results validate the performance and the feasibility of the proposed converter

    Multiple-output DC–DC converters: applications and solutions

    Get PDF
    Multiple-output DC–DC converters are essential in a multitude of applications where different DC output voltages are required. The interest and importance of this type of multiport configuration is also reflected in that many electronics manufacturers currently develop integrated solutions. Traditionally, the different output voltages required are obtained by means of a transformer with several windings, which are in addition to providing electrical isolation. However, the current trend in the development of multiple-output DC–DC converters follows general aspects, such as low losses, high-power density, and high efficiency, as well as the development of new architectures and control strategies. Certainly, simple structures with a reduced number of components and power switches will be one of the new trends, especially to reduce the size. In this sense, the incorporation of devices with a Wide Band Gap (WBG), particularly Gallium Nitride (GaN) and Silicon Carbide (SiC), will establish future trends, advantages, and disadvantages in the development and applications of multiple-output DC–DC converters. In this paper, we present a review of the most important topics related to multiple-output DC–DC converters based on their main topologies and configurations, applications, solutions, and trends. A wide variety of configurations and topologies of multiple-output DC–DC converters are shown (more than 30), isolated and non-isolated, single and multiple switches, and based on soft and hard switching techniques, which are used in many different applications and solutions.info:eu-repo/semantics/publishedVersio

    High Accuracy Electric Water Heater using Adaptive Neuro-Fuzzy Inference System (ANFIS)

    Get PDF
    Nowadays, water heater is a common household appliance. Water heater can be divided into three types, based on fuel sources: gas, diesel, and electric. Electric water heater is the most common due to its ease of use. The problems that often occur on electric water heater are over-temperature due to user error in setting up the thermostat and inaccurate readings caused by a conventional system control. These problems will cause a surge in power consumption. Over-temperature and conventional control inaccuracies can be overcome using the Artificial Intelligence (AI) control algorithm in the form of an adaptive neuro-fuzzy inference system (ANFIS). The proposed algorithm acts as a control by maintaining the stability of the temperature to obtain more accurate results. An accurate temperature reading can lower power consumption in electric water heater. This study tries to simulate Electric Water Heater temperature control using the ANFIS algorithm until stable readings can be achieved in all temperature settings. Results from disturbance tests in the form of external condition that causes sudden temperature change show that the system can maintain stability with an average error margin of 0.045% and the rate of accuracy of 99.955%

    Sliding-mode controller for a step up-down battery charger with a single current sensor

    Get PDF
    This paper proposes a battery charger solution based on the Zeta DC/DC converter to provide a general interface between batteries and microgrid direct current (DC) buses. This solution enables to interface batteries and DC buses with voltage conversion ratios lower, equal, and higher than one using the same components and without redesigning the control system, thus ensuring global stability. The converter controller is designed to require only the measurement of a single inductor current, instead of both inductors currents, without reducing the system flexibility and stability. The controller stability is demonstrated using the sliding-mode theory, and a design procedure for the parameters is developed to ensure a desired bus performance. Finally, simulations and experiments validate the performance of the proposed solution under realistic operation conditions
    corecore