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This dissertation proposes general methodologies for designing hierarchical 

control schemes for dc microgrids loaded by constant power loads (CPLs). CPLs form a 

major proportion of the system loads in many microgrids. Without proper control, CPLs 

present destabilizing effect at the dc microgrid. In addition to stable operation of 

microgrid, proper current sharing among paralleled sources is essential. The proposed 

hierarchical control strategy consists of two control levels. The lower level consists of 

droop-based primary controllers which enables current-sharing among paralleled sources 

and also damps limit cycle oscillations due to CPLs. The higher level consists of 

secondary controller which compensates for voltage deviations due to primary controller. 

This higher level is implemented either as autonomous controllers or as a centralized 

controller. In the case of autonomous secondary controllers, they operate alongside of 

primary controllers in each of the paralleled converters. In the case of centralized 

secondary controller, a remote secondary controller uses a high speed communication 

link to communicate to local controllers. 

Interfacing sources with different characteristics and voltage ranges necessitates 

the use of complex converter topologies. As an initial step towards implementing 

hierarchical control scheme for such microgrids with CPLs, a linear controller is 

proposed for dc microgrids with standalone SEPIC, Cuk and Zeta converters. During the 
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first stage of the two stage controller, limit cycle oscillations are damped by inserting a 

virtual resistance in series with the converter input inductor. During the second stage, an 

integral controller is added to the first stage to compensate for voltage deviations. For 

microgrids containing different converter topologies, stability of equilibrium points is 

examined and stability conditions are derived and explained. Experiments performed on a 

prototype microgrid are used to verify the proposed control laws.  

Expanding study on stability of microgrids, the maximum real power load in a dc 

microgrid bus is traced geometrically. The generalized circle diagram approach used in a 

conventional power system is modified for this purpose. The different types of buses 

present in a dc microgrid are described and the locus of operating points is obtained. The 

proposed method is verified by simulations on an example dc microgrid. 



 vii 

Table of Contents 

List of Tables ......................................................................................................... ix 

List of Figures ..........................................................................................................x 

Chapter 1 Introduction .............................................................................................1 

Advantages and issues of DC microgrids .......................................................1 

Constant power loads and existing control methods.......................................2 

Hierarchical control method - Existing method and issues ............................4 

Contributions...................................................................................................6 

Chapter organization .....................................................................................12 

Chapter 2  Autonomous Hierarchical Control of Microgrids with Constant-Power 

Loads-Part I DC-DC Buck Converters .........................................................14 

Controller design and analysis ......................................................................14 

Practical stability of equilibrium points ........................................................21 

Simulation and experimental results .............................................................24 

Simulation results.................................................................................24 

Experimental results.............................................................................26 

Summary .......................................................................................................29 

Chapter 3  Autonomous Hierarchical Control of Microgrids with Constant-Power 

Loads-Part II DC-DC Boost Converters .......................................................31 

Controller design and analysis ......................................................................31 

Stability analysis ...........................................................................................38 

Simulation and experimental results .............................................................41 

Simulation results.................................................................................41 

Experimental results.............................................................................42 

Summary .......................................................................................................46 

Chapter 4  A Semi-Autonomous Hierarchical Control Scheme for DC Microgrids 

with Constant Power Loads ..........................................................................47 

Controller design and analysis ......................................................................47 

Stability conditions .......................................................................................59 



 viii 

Simulation and experimental results .............................................................65 

Simulation results.................................................................................65 

Experimental results.............................................................................68 

Summary .......................................................................................................70 

Chapter 5  A Linear Damping Scheme for Higher Order dc-dc Converters Supplying 

Constant-Power Loads in a dc Microgrid .....................................................72 

Controller design and analysis ......................................................................72 

Stability results..............................................................................................78 

Simulation and experimental results .............................................................80 

Simulation results.................................................................................80 

Experimental results.............................................................................85 

Summary .......................................................................................................90 

Chapter 6  Calculation of Loadability in a Droop Controlled DC Microgrid with 

Constant Power Loads ..................................................................................91 

Problem description ......................................................................................91 

Getting the first point on the contour ...................................................94 

Getting the subsequent points on the contour ......................................95 

Adopting Price method to find loadability....................................................96 

Simulation results..........................................................................................98 

Summary .....................................................................................................105 

Chapter 7 Conclusions .........................................................................................106 

Contributions...............................................................................................106 

Future work .................................................................................................109 

References ............................................................................................................110 



 ix 

List of Tables 

Table 1: Primary control results for 3 basic topologies ..................................53 

Table 2: Secondary control results for 3 basic topologies ..............................58 

Table 3: Stability results for 3 basic topologies ..............................................64 

Table 4: Average state equations for system in Fig. 44 ..................................74 

Table 5: Equilibrium point obtained after active damping stage for converters in 

Fig. 44 ...............................................................................................77 

Table 6: Equilibrium point obtained after voltage regulation stage for converters 

in Fig. 44 ...........................................................................................78 

Table 7: Circuit parameters and equilibrium points for simulation and 

experiments .......................................................................................84 

Table 8: Parameters of the 4 Bus Test System [77] ......................................101 

Table 9: First Point on the Contour ...............................................................101 

Table 10: Subsequent Points for Different Step Lengths ................................102 

Table 11: Loadability Point at Bus 2...............................................................102 

 

 



 x 

List of Figures 

Figure 1: Architecture of a microgrid [6]: ..........................................................1 

Figure 2: Autonomous hierarchical control scheme:..........................................7 

Figure 3: Semi-autonomous hierarchical control scheme: .................................7 

Figure 4: A system of 2 parallel buck converters supplying a CPL.: ...............14 

Figure 5: Detailed diagram of a POL converter acting as CPL in Figure. 1. 

[kwasinski_2007a]: ...........................................................................14 

Figure 6: A linear droop scheme: .....................................................................16 

Figure 7: Thevenin equivalent circuit of the dc micro-grid in Figure. 4 in steady 

state [42]: ..........................................................................................18 

Figure 8: Simulated results of x1, x2 and x3 operating in open loop with fixed duty 

ratios ..................................................................................................25 

Figure 9: Simulated results of x1, x2 and x3 showing the transition from open-loop 

to the primary control mode:.............................................................25 

Figure 10: Simulated results of x1, x2 and x3 showing the transition from the primary 

control mode to the secondary control mode: ...................................25 

Figure 11: Experimental results of x1, x2 and x3 in open loop with fixed duty ratios:

...........................................................................................................27 

Figure 12: Experimental results of x1, x2 and x3 after primary droop control: ...27 

Figure 13: Experimental results of x1, x2 and x3 after secondary control: ..........28 

Figure 14: Experimental results of x1, x2 and x3 showing the dynamic response from 

open loop to primary droop control: .................................................28 

Figure 15: Experimental results of x1, x2 and x3 showing the dynamic response from 

primary droop control to secondary control mode:...........................28 



 xi 

Figure 16: Experimental waveforms of x1, x2 and x3 showing the dynamic response 

for the load increase from 100W to 120W: ......................................29 

Figure 17: Experimental waveforms of x1, x2 and x3 showing the dynamic response 

when E1 is decreased from 35V to 30V: ...........................................29 

Figure 18: A system of 2 parallel boost converters supplying a CPL.: ..............31 

Figure 19: Equivalent circuit of parallel connected boost converters used to obtain 

the locus of X3eq: ...............................................................................33 

Figure 20: X1eq and X2eq Vs X3eq for varying P: ..................................................37 

Figure 21: Simulated results of x1, x2 and x3 operating in open loop with fixed duty 

ratios:.................................................................................................40 

Figure 22: Simulated results of x1, x2 and x3 showing the transition from open-loop 

to the primary control mode:.............................................................40 

Figure 23: Simulated results of x1, x2 and x3 showing the transition from the primary 

control mode to the secondary control mode: ...................................41 

Figure 24: Experimental results of x1, x2 and x3 in open loop with fixed duty ratios:

...........................................................................................................41 

Figure 25: Experimental results of x1, x2 and x3 after primary droop control: ...44 

Figure 26: Experimental results of x1, x2 and x3 after secondary control: ..........44 

Figure 27: Experimental results of x1, x2 and x3 showing the dynamic response from 

open loop to primary droop control: .................................................45 

Figure 28: Experimental results of x1, x2 and x3 showing the dynamic response from 

primary droop control to secondary control mode:...........................45 

Figure 29: Experimental waveforms of x1, x2 and x3 showing the dynamic response 

when E2 is increased from 15V to 20V:............................................45 



 xii 

Figure 30: Experimental waveforms of x1, x2 and x3 showing the dynamic response 

when P is increased from 150W to 200W: .......................................46 

Figure 31: A dc microgrid with m parallel source converters supplying CPLs [68]:

...........................................................................................................48 

Figure 32: A system of 2 parallel buck-boost converters supplying a CPL: ......48 

Figure 33: Equivalent circuit of top buckboost converter in Fig. 32 supplying a 

CPL.[69]: ..........................................................................................48 

Figure 34: X3eq Vs P characteristics for parallel buck-boost converters in Fig. 32:

...........................................................................................................55 

Figure 35: System of paralleled source converters in Fig. 31 broken down into (a)  

m input modules consisting of source voltage, droop resistance and 

inductance (b) one output module consisting of capacitor and equivalent 

circuit of CPL from [dragicevic_14]: ...............................................61 

Figure 36: Simulation results of a parallel buckboost converters- open loop 

operation.: .........................................................................................66 

Figure 37: Simulation results for parallel buckboost converters transitioning from 

open loop to primary control: ...........................................................66 

Figure 38: Simulation results for parallel buckboost converters transitioning from 

primary control to secondary control: ...............................................67 

Figure 39: Experimental results of parallel buckboost converters-open loop: ...67 

Figure 40: Experimental results for parallel buckboost converters transitioning from 

open loop to primary control: ...........................................................67 

Figure 41: Experimental results for parallel buckboost converters transitioning from 

primary control to secondary control: ...............................................68 



 xiii 

Figure 42: Experimental results for line regulation of parallel buckboost converters:

...........................................................................................................70 

Figure 43: Experimental results for load regulation of parallel buckboost 

converters: .........................................................................................70 

Figure 44: Higher-order dc-dc converters supplying a CPL. (a). SEPIC, (b) Cuk, (c) 

Zeta: ..................................................................................................72 

Figure 45: Simulated results for transition of SEPIC converter from open loop to 

active damping stage: ........................................................................81 

Figure 46: Simulated results for transition of SEPIC converter from active damping 

stage to voltage regulation stage: ......................................................82 

Figure 47: Simulated results for transition of Cuk converter from open loop to 

active damping stage: ........................................................................82 

Figure 48: Simulated results for transition of Cuk converter from active damping 

stage to voltage regulation stage: ......................................................82 

Figure 49: Simulated results for transition of Zeta converter from open loop to 

active damping stage: ........................................................................83 

Figure 50: Simulated results for transition of Zeta converter from active damping 

stage to voltage regulation stage: ......................................................83 

Figure 51: Experimental results of transition of SEPIC converter from open loop to 

active damping stage: ........................................................................86 

Figure 52: Experimental results of transition of SEPIC converter from active 

damping stage to voltage regulation: ................................................86 

Figure 53: SEPIC converter experimental waveforms showing line regulation:87 

Figure 54: SEPIC converter experimental waveforms showing load regulation:87 



 xiv 

Figure 55: Experimental results of transition of Cuk converter from open loop to 

active damping stage: ........................................................................87 

Figure 56: Experimental results of transition of Cuk converter from active damping 

stage to voltage regulation stage: ......................................................88 

Figure 57: Cuk converter experimental waveforms showing line regulation: ...88 

Figure 58: Cuk converter experimental waveforms showing load regulation: ..88 

Figure 59: Experimental results of transition of Zeta converter from open loop to 

active damping stage: ........................................................................89 

Figure 60: Experimental results of transition of Zeta converter from active damping 

stage to voltage regulation stage: ......................................................89 

Figure 61: Zeta converter experimental waveforms showing line regulation: ...89 

Figure 62: Zeta converter experimental waveforms showing load regulation: ..90 

Figure 63: A 4 bus DC microgrid [77]: ..............................................................91 

Figure 64: Illustration of the steps in generalized circle diagram approach: .....94 

Figure 65: Illustration of step 2 of generalized circle diagram approach [78]: ..95 

Figure 66: Pld2 Vs Vdc,2 for 4 bus dc microgrid: ................................................104 

Figure 67: Simulation results for Pld2=2846W and Pld2=2847W: ....................105 

 

  



 1 

Chapter 1: Introduction 

Traditional power system architecture mainly consists of three stages namely 

generation, transmission and distribution with clearly demarcated boundaries between 

stages. However, increasing energy concerns have led towards improvement of existing 

power system architectures and research and development of newer power system 

architectures [1]. Some concerns include reliability of power system, depletion of fossil 

fuels, increase in energy consumed and augmentation of existing transmission capacity to 

meet increasing load [1][2][3]. To address these concerns, part of energy that is required 

by the consumers is produced near the loads [4]. With increasing penetration of 

distributed generation (DG), newer power system architectures termed microgrids have 

come to coexist with the traditional power system architectures [5]. 

 
Figure. 1. Architecture of a microgrid [6] 

ADVANTAGES AND ISSUES OF DC MICROGRIDS 

US department of energy, DoE defines microgrids as “Locally confined and 

independently controlled electric power grids in which distribution architecture integrates 
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loads and distributed energy resources which allows the microgrid to operate connected 

or isolated to a main grid” [7]. The architecture of a general microgrid is given in Fig. 1. 

In a microgrid, different power sources and energy storage have different characteristics 

and varying voltage levels. So they are connected in parallel through power electronic 

converters at the microgrid [8] as can be seen from Fig. 1. In addition to microgrids 

interfaced to traditional grids, a number of standalone microgrids like electric ships, 

remote telecom and data centers and electric vehicles are receiving prominence [9]. One 

of the shining examples of this trend is the increasing proportion of hybrid electric 

vehicles (HEV) and plug-in hybrid electric vehicles (PHEV) in the automotive industry 

[10]. Although more development work is done with regard to ac microgrids, recently dc 

microgrids are receiving good attention [11]. DC microgrids do not have frequency or 

reactive power related issues and hence analysis and design of control loops is easier 

[12]. In addition, a number of sources like solar panels, fuel cells, energy storage and 

present day electronic loads are inherently dc [13]. Reliability concerns of microgrids 

have been addressed by proposing a number of standards and improving them 

subsequently [14], [15]. However, dedicated standards for operating dc microgrids are yet 

to be developed [16]. Another challenge with regard to a dc microgrid is that of design of 

a reliable protection and isolation scheme for the same [16]. 

CONSTANT POWER LOADS AND EXISTING CONTROL METHODS 

While analyzing the microgrid loads, the presence of constant power loads (CPL)s 

in the present day microgrids has to be taken into account [17]. It is expected that in most 

dc microgrids, loads would behave as instantaneous constant-power loads (CPLs) to the 

converters located upstream (line regulating converters or LRCs) interfacing the sources 

and the microgrid main bus [17] [18]. Some examples for CPLs in the microgrids are as 
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follows. With regard to automotive microgrids, multiple dc voltage buses may be 

observed in today's vehicular power systems. Typically, the higher voltage dc bus 

supplies the motor drive that propels the vehicle. Lower voltage dc buses supply other 

loads within the vehicle [19]. These loads are connected to the dc buses through dc-dc 

converters with a fast regulating controller making them behave as constant power loads 

(CPLs). Another example of a CPL is when the main motor drive regulates the speed 

keeping the product of torque and speed constant [19]. Energy storage systems (ESS) like 

batteries which are charged in regulated charging mode acts as CPL [20]. It is well 

known that CPLs create a negative impedance instability problem at the dc bus [21]. 

Without proper control, voltage oscillations may be observed at the dc bus in the form of 

limit cycles or lead to a tendency for the bus voltage to collapse. 

The stability aspects of microgrids are characterized in [22] where lack of system 

damping due to constant power loads (CPLs) is discussed under broader area namely 

small signal instability. In the past, several control methods have been proposed to 

address this issue. They can be broadly divided into linear methods, non-linear methods 

or use of passive components [12]. Among the prominent linear schemes, the method 

studied in [18] uses a proportional and differential controller to stabilize the dc-dc buck 

converter. Another method proposed in [23] uses the converter inductor current feedback 

to damp limit cycle oscillations. The method proposed in [24] deals with converters 

having an LCL output filter. The methodology suggested in [24] proposes control 

techniques to replicate the process of inserting resistances and capacitances in the 

converter circuit to attain stability. An active damping technique for a voltage source 

converter (VSC) based dc microgrid with CPLs is proposed in [25]. Among the 

prominent nonlinear methods is the method proposed in [31] which uses a hysteresis 

controller with a first order switching surface with a negative slope. In the method 



 4 

proposed in [27], a feedback control term is added which modifies the CPL term into a 

constant power source (CPS) and hence adds damping to the system. In [28], the CPL 

non-linear state equation is converted into a linear state equation by considering the 

energy stored in the capacitor as a state variable. A combination of linear and nonlinear 

control schemes for a synchronous buck converter is considered in [29]. In [30], a non-

linear PD controller is derived using passivity based analysis to stabilize non-minimum 

phase converters like boost and buckboost. This non-linear PD controller is replaced with 

a linear PD controller which stabilizes the boost and buckboost converters supplying a 

CPL. Current mode control has been suggested to damp the oscillations due to a CPL fed 

by a boost converter in [32]. But to improve the transient response, [32] employs load 

current feedback which involves a parameter external to the converter and, hence, may be 

argued that lacks autonomy characteristics. Passive damping methods use inefficient 

methods by adding physical resistors to damp oscillations. Passive damping methods 

make assumptions on power distribution circuits or on other parameters so that such limit 

cycle oscillations are considered to be non-existent [33], [34], [35], [36]. In such systems, 

inherent damping is present in the form of renewable energy sources (RES) acting as 

constant power sources (CPSs), transmission lines and filters, other resistive loads and 

ESS directly connected to the dc microgrid. However, such passive components are 

bulky, which is in contrary to the current requirements of many industrial domains like 

automotive and aerospace [37]. A comprehensive list of stability schemes for dc 

microgrids, protection issues and evaluation of the same is presented in [12], [16].  

HIERARCHICAL CONTROL APPROACH - EXISTING METHOD AND ISSUES 

A general framework of a hierarchical control scheme for both grid-connected as 

well as islanded microgrids is introduced in [38]. This control scheme consists of 3 levels 
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namely primary, secondary and tertiary. The primary control level uses the droop 

mechanism to enable current sharing among the sources. The main advantage about the 

droop approach is that it is a low cost, reliable and modular scheme [39], [40]. The 

second stage consists of a secondary controller which has an integral action and 

compensates for voltage deviations due to primary controller. In current literature, 

secondary controller is implemented as a single centralized controller with a high 

bandwidth communication channel [41] to each of the local controllers. Recent work also 

implements secondary control in the form of a distributed controller with low bandwidth 

communication channels between the controllers [42], [43]. The tertiary control level 

manages the flow of power between the microgrid and the main power grid. Other than 

the three control levels mentioned above, there are inner control loops which are 

implemented for each paralleled converter. However, recent work [33] has shown that the 

internal voltage and current loops are much faster than droop controller and hence they 

can be assumed to maintain the respective variables at their reference values. Recent 

work on the control of an islanded microgrid focuses on the coordinated operation of 

renewable energy sources (RES), energy storage systems (ESS) and the loads that may be 

present in the microgrid [44], [20], [45], [46], [47]. The stability of such a microgrid is 

dependent on the control strategy employed by the converters [22]. Existing methods do 

not seem to provide an understanding of how various converter parameters affect 

microgrid stability. There seems to be no analysis or control techniques developed based 

on different converter topologies that may be present in a microgrid. Another issue with 

regard to hierarchical control methodology proposed in the literature is that the microgrid 

loads are assumed to be resistive.  
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CONTRIBUTIONS 

In this dissertation, a general methodology to design hierarchical control scheme 

for dc microgrids with CPLs is developed. The developed methodology is applicable to 

dc microgrids containing a wide array of non-isolated dc-dc converter topologies loaded 

by CPLs. The lower control level namely droop based primary controller performs dual 

function of current sharing as well as damping limit cycle oscillations due to CPL. Thus, 

damping of CPL induced oscillations and current sharing among paralleled converters is 

realized by control action. This is one of the main contributions of the research work. 

Two different architectures of secondary controllers are developed and are shown in Figs. 

(2) and (3). Firstly, an autonomous secondary controller is considered. Here, secondary 

controller is implemented in each of the paralleled converters and exists alongside of 

each of the primary controllers. Each secondary controller senses the microgrid voltage 

independently and sends the secondary control signals to the respective converter 

modules based on the integral control gains. Autonomous controllers are desired in order 

to share the load among LRCs in order to avoid single point of failures in communication 

links or in central controllers. Although a central controller can still be used to optimize 

system operation, local autonomous controllers are used in order to share among sources 

power differences between the optimal operation point and the actual system operating 

point. Such differences may originate in system losses or in a failure in the central 

controller. Hence, local autonomous controllers allow the system to operate—although in 

a sub-optimal state—when the central controller or its communication links fail. This 

control scheme consisting of droop based primary controller and autonomous secondary 

controllers is named as autonomous hierarchical control scheme and is shown in Fig. 2. 

Secondly, a centralized secondary controller with a high speed communication link is 

also implemented. In this scheme, a remote secondary controller senses the microgrid 
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voltage and calculates the secondary control signal. The secondary control signal is 

transmitted to the parallel converters using a high speed controller area network (CAN) 

communication link. This control methodology (primary and a centralized secondary 

controller) is named as a semi-autonomous hierarchical control scheme and is shown in 

Fig. 3. Important relations regarding droop characteristics, maximum load supplied and 

current sharing are compared and established for microgrids containing different 

converter topologies. Stability conditions for the different equilibrium points are derived 

and are related to the converter parameters. Attempts have been made to derive and 

explain the general stability conditions using the equivalent circuit of the converters.  

 
Figure. 2.  Autonomous hierarchical control scheme 

 
Figure. 3. Semi-autonomous hierarchical control scheme 
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In the current literature, dc-dc converters supplying power to the microgrid are 

modeled as a constant voltage sources and a linear droop is realized by an actual or a 

virtual resistor connected in series with the respective voltage sources. This may be true 

in the case of buck converters. But in the case of other converter topologies, the 

equivalent circuit of the converter consists of a transformer with a non-linear turns ratio 

[48]. Hence a linear droop characteristic may not provide a stable equilibrium point for 

such converters. Among the various converter topologies, dc-dc boost converters find 

many applications in vehicular power systems, especially FCVs. Since the output voltage 

of the fuel cells is not high enough to be directly connected to the inverter of the main 

motor drive and they require a relatively continuous current waveforms, boost converters 

are well suited in order to interface fuel cells with the rest of the system [49] [50]. 

Similarly, ultracapacitors have lower terminal voltages. In the case of batteries, a lower 

terminal voltage is desired in order to keep its series resistance at a minimum value [51] 

and reduce cell equalization issues. Hence, boost converters are desired in order to 

interface ultracapacitors and batteries with the rest of the vehicular dc microgrid [51]. An 

inherent advantage of boost converters is that the output voltage is not inverted [52]. In 

addition, boost converters are also used in plug-in hybrid electric vehicle (PHEV) 

charging stations [53]. However, boost converters are non-minimum phase systems and 

when such converters are used to supply CPLs, the control of such a system becomes a 

challenging problem. In chapter 3, autonomous hierarchical control scheme is developed 

for a microgrid containing parallel boost converters and stability conditions are derived. 

 

Although control of parallel connected converters in a microgrid has been 

discussed in the literature [42], [33], [54], [55][56], [57], [58], [20]. But such methods 

consider only simple topologies like buck and boost. Using dc-dc buck or boost 
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topologies constrains the range of source voltages that can be interfaced with the 

microgrid. In order to interface sources with wider voltage ranges to a dc microgrid, 

converters capable of providing output voltages both greater than as well as lesser than 

the respective source voltages may be required [59]. One such topology is the dc–dc 

buckboost converter. Further, in the chapters 2 and 3 of this dissertation, autonomous 

secondary controllers have been assumed. However, in an actual microgrid, the presence 

of transmission lines in between the various buses has to be taken into account. Also if, 

multiple converters are trying to regulate the bus voltage with an integral feedback 

control, bus voltage measurement inaccuracies by individual controllers and sensors have 

to be considered. The effect of such measurement inaccuracies on system stability has to 

be studied. [60]. Further in a microgrid, where there are many power electronic 

converters, the control schemes for the individual converters may interact with each other 

and make the system unstable [61]. To overcome the above mentioned issues, in chapter 

4 a semi-autonomous hierarchical control scheme is developed for a dc microgrid with 

parallel connected buckboost converters. A remote secondary controller senses the 

microgrid voltage and calculates the secondary control information. This information is 

transmitted to paralleled converters using a high speed CAN communication network. 

Interfacing sources with different characteristics and different output voltage 

ranges often requires converters with a more complex topology. For example, a fuel cell 

needs a converter with a current source interface to connect to microgrid [51]. In 

addition, there is a requirement for converters to provide output voltages greater than and 

lesser than their source voltage [51]. Such a requirement makes a Cuk converter a 

possible candidate. In addition, if there is a requirement for a non-inverted output voltage, 

then a Single ended primary inductor converter (SEPIC) is a possible candidate [52]. One 

of the challenges in studying such higher order converters is as follows. A detailed 
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analysis of state variable trajectories similar to that performed in [26], [62] is difficult in 

the case of higher order converters since they contain an additional capacitor and inductor 

[63]. Even though a generalized signal flow graph model has been proposed in [64] for 

modeling and analysis of fourth order dc-dc converters, the converter loads are assumed 

to be resistive. The work in [65] proposes a sliding mode controller for a fifth order 

system which consists of a buck converter with an input filter. However during analysis, 

the system is reduced to a simpler third order system. In chapter 5, a microgrid containing 

higher order dc-dc converters supplying CPLs is considered. A linear active damping 

scheme is developed which is applicable to standalone versions of SEPIC, Cuk and Zeta 

converters. The control scheme is implemented in two steps. The first step acts as an 

active damping stage [23] because it consists of inserting a ‘virtual’ resistance through 

controller action in series with the input inductor of the converter. An outer loop with a 

slow integral controller is added to the active damping stage in order to compensate for 

voltage deviation caused by the aforementioned ‘virtual’ resistance. This second 

controller loop is also referred to as voltage regulation stage [2], [31]. The integral 

controller added in this voltage regulation stage also compensates for supply voltage 

deviation and load changes. The control algorithms derived for various converter 

topologies are verified by simulations. Further, experiments on a prototype microgrid 

also validate the proposed algorithms. 

Availability and stable operation of a power electronic converter based distributed 

generation system is very important especially when they power critical loads like 

hospitals, telecommunications and air-traffic controls [2]. In [3], large step changes in 

loads are discussed under the purview of transient stability. However, it is well known 

that microgrids may typically lack inertia which is an inherent feature of the conventional 

power grid with large synchronous generators [10]. Among the various aspects of 
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microgrid stability, voltage stability is related to loadability [3]. Loadability of a bus is 

the maximum real or reactive power load that can be supplied at that bus. In a 

conventional power system, the continuation power flow approach [13] is used to obtain 

the loadability at a bus. In [14], the maximum power transfer condition of a two bus 

system is generalized to a large system using the Thevenin equivalent circuit of the power 

system. Based on this equivalent circuit, voltage stability at the load buses of the power 

system is assessed. However, this method does not explicitly compute the loadability; 

rather it estimates the proximity of this condition using an index. In the case of a dc 

microgrid with two buses, the loadability at a bus can be obtained algebraically using the 

Middlebrook criterion [15]. However, for a dc microgrid with more than two buses 

connected in the form of a network with line impedances, such an algebraic expression 

cannot be a priori directly obtained. In [16] small-signal analysis is used to obtain the 

loadability of a microgrid with CPLs. However, system operating conditions like bus 

voltages and the power injected by the generator buses cannot be obtained near the 

maximum load point by such methods. A power-flow algorithm for a droop controlled 

DC microgrid is proposed in [17]. However employing the method in [17] to calculate 

loadability would involve repeated load-flow solutions. Further, in the case of a droop-

controlled microgrid, the increased real power load is shared by all the generators 

depending on their droop resistances. Thus, there seems to be no method in the literature 

to address the following problems with regard to a working dc microgrid: 1) whether a 

planned load addition at a particular bus has the capability to cause voltage collapse, and 

2) what is the stability margin after the load addition. The main contribution of this 

chapter is that of geometrically tracing the operating points of a droop-controlled dc 

microgrid with constant power loads (CPLs) when the load at one of the buses is varied. 

In this process, the maximum (real) power load that can be supplied at that bus is 
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obtained. The method proposed in this chapter incorporates the generalized circle 

diagram approach [18] into the power flow equations derived in [17]. Simulation results 

are provided to verify the proposed algorithm. 

CHAPTER ORGANIZATION 

Chapter 2 is organized as follows. In Section II, the passivity-based controller is 

described for a microgrid with parallel buck converters. Asymptotic stability of the 

equilibrium point obtained is verified using the Lyapunov method. To compensate for the 

voltage deviations due to the passivity-based primary or droop controller, a secondary 

controller which has an integral action [1] is considered. The equilibrium point obtained 

using the passivity-based control is shown to be locally asymptotically stable due to 

inherent system non-linearities. Hence, the necessary and the sufficient conditions to 

ensure the local asymptotic stability of the equilibrium points obtained using the primary 

and the overall (primary and secondary) controllers are derived in Section III. In section 

IV, simulation and experimental results are presented to verify the proposed control 

strategies. 

Chapter 3 is organized as follows. In Section II, the passivity based controller is 

proposed for a microgrid with parallel boost converters. The equilibrium points and the 

droop characteristics of the proposed control laws are studied. The conditions to ensure 

the local asymptotic stability of the equilibrium points are derived in Section III. 

Simulation and experimental results are presented in Section IV to verify the proposed 

control strategies. 

Chapter 4 is organized as follows. In Section II, a general methodology to the 

design of primary and secondary controllers for a dc microgrid containing non-isolated 

dc-dc converters is presented. In Section III, small-signal analysis and equivalent circuits 
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of the converters are used to obtain stability conditions for the equilibrium points derived 

in section II. Simulation and experimental results are presented in Section IV to verify the 

proposed control strategies. A microgrid containing paralleled buckboost converters is 

used to explain the proposed methodology and the results obtained for the three basic 

topologies of converters are compared. 

Chapter 5 is organized as follows. In section II, linearization and small-signal 

analysis is used to derive the controller. The controller derived is applicable for a 

microgrid containing standalone versions of SEPIC, Cuk and Zeta converters supplying 

CPLs. In section III, stability conditions for equilibrium points are derived. Simulation 

and experiments on all three higher order converters supplying a CPL are used to verify 

the proposed control laws in section IV. 

Chapter 6 is organized as follows. In section II, a short description of a droop-

controlled DC microgrid with the various buses present and the system equations [17] are 

presented. Further, the generalized circle diagram approach [18] is reviewed briefly for 

easy understanding of the approach. In section III, the generalized circle diagram 

approach is modified to obtain the operating points of a DC microgrid. In section IV, 

simulation results are presented to validate the proposed approach. 
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Chapter 2: Autonomous Hierarchical Control of Microgrids with 

Constant-Power Loads-Part I DC-DC Buck Converters1 

 

 
 

Figure. 4.  A system of 2 parallel buck converters supplying a CPL. 

 

Figure. 5.  Detailed diagram of a POL converter acting as CPL in Fig. 4. [18] 

CONTROLLER DESIGN AND ANALYSIS 

A system of 2 parallel connected buck converters supplying power to a CPL is 

shown in Fig. 4. Fig 5 represents a detailed diagram of the CPL in Fig. 4. Both the 

                                                 
1 Contents of this chapter are published in "Autonomous Hierarchical Control of dc microgrids with 

Constant Power Loads” Proc. Applied Power Electronics Conference and Exposition (APEC) 2015, pp 

2808-2815, where Mahesh Srinivasan is the first author 



 15 

converters are assumed to be operating in continuous conduction mode (CCM). The 

average state space equation for the system is 
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where d1 and d2 refer to the instantaneous duty cycles of the top and bottom converters, 

respectively. Equation (1) can also be written as  

 Mx + J + R(x) x = dE      (2) 

where 
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  (3) 

Under open loop conditions, the system in Fig. 4 represents two ideal voltage 

sources connected to the dc microgrid.  From (1), when the dc-dc converters operate in 

open loop with duty cycles DOL1 and DOL2 it is not possible to determine X1eq and X2eq 

which are the equilibrium values of x1 and x2, respectively. However, when sources are 

not considered to be ideal, X1eq, X2eq are decided by the internal impedance of the sources 

E1 and E2. Also, since the converters in Fig. 4 feed a CPL, the equilibrium point in open 

loop is unstable [17]. To overcome instabilities due to CPL and to enable current sharing 

among the different converters, the droop method is used. A simple current sharing 

scheme using a linear droop is represented in Fig. 6. 
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Figure. 6.  A linear droop scheme 

Consider that two voltage sources with voltage Vnl are connected in parallel 

feeding a load with current demand iL. The current drawn from each source and the 

voltage at the common bus can be controlled by inserting resistances in series with the 

two voltage sources. In Fig. 6, for a total load demand of iL, the common bus voltage 

reaches the point A drawing the currents iL1 and iL2 respectively from each source. 

However, the addition of resistances in series with the outputs of the converters in Fig. 4 

would increase system losses. One way to introduce droop and to avoid system losses is 

to add virtual resistances through the control inputs d1 and d2 [38]. While the droop 

characteristic need not necessarily be linear as shown in Fig. 6, in the case of two buck 

converters connected in parallel, a linear droop is preferred for reasons that are explained 

at the end of this section. Consider again the system in Fig. 4 with virtual resistors Rd1 

and Rd2 realized by controller action as if they were connected at the output of the buck 

converters. The buck converters are assumed to be replaced by ideal voltage sources of 

Vnl [42]. Thus, the system in Fig. 4 consists of 2 ideal voltage sources of Vnl connected in 

parallel through the resistances Rd1 and Rd2 to the dc microgrid. A constant power load P 

is connected at the dc microgrid. It must be noted that Vnl refers to the no-load voltage at 
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the dc microgrid. Now the equilibrium point with coordinates X1eq, X2eq and X3eq is 

given by  
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where 2

124nl dV PR and Rd12=Rd1||Rd2. From (4), it can be observed that the load voltage is 

drooped linearly from Vnl to (Vnl/2) with a slope of Rd1 and Rd2 for the converters 1 and 2, 

respectively. When the system origin is moved to Xeq by writing 

eq
x = x - X       (5) 

the system equation (2) becomes  

    eq
Mx + J + R(x) x = dE- J + R(x) X                (6) 

A virtual damping matrix 
i

R (x)  is considered and a term 
i

R (x)x is added on both the sides 

of (6) resulting in 

   t eq i
Mx + J + R (x) x = dE- J + R(x) X + R (x)x     (7) 

where 
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2 2

2
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i t iR (x) R R + R
     (8) 

If the force free response of the system (7) is assumed [18] then the modified system can 

be defined from (7) as 

  
t

Mx + J + R (x) x 0                      (9) 
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If a candidate Lyapunov function ( )V x  of the form 

1
( )

2

TV x x Mx                                  (10) 

is chosen, then its time derivative is 

2 2

1 1 2 2( ) d dV R x R x  x                                  (11) 

From (11), it can be observed that 

1 2

( ) 0 

( ) 0 if 0 and 0

V

V x x

 


   

x

x

                     (12) 

 

Figure. 7.  Thevenin equivalent circuit of the dc micro-grid in Fig. 1 in steady state [42] 

In addition, expanding (9) it can be observed that the largest invariant subset of the set 

where ( ) 0V x  is the origin. Thus, by LaSalle invariance [66], the origin is an 

asymptotically stable equilibrium point for the system (9). Thus, the origin is 

asymptotically stable if the system (7) is assumed to be unforced. Hence, the control 

inputs are selected such that the right hand side of (7) becomes zero [18]. Then, the 

control inputs can be calculated from  

   eq i
dE- J + R(x) X + R (x)x = 0                  (13) 

Thus,  
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In (14), writing 1x and 2x in terms of x1, x2, X1eq and X2eq (5) and substituting for Xeq from 

(4) yields 

1 1
1

1

2 2
2

2

nl d

nl d

V R x
d

E

V R x
d

E







                                     (15) 

The control inputs given by (15) are conveniently referred to as the primary control 

inputs d1p, d2p respectively. The Thevenin equivalent for the circuit in the Fig. 4 in the 

steady state with the control inputs (15) is given in Fig. 7. The reasons for considering a 

linear droop with respect to the parallel connected buck converters inductor current are  

1. In a buck converter, the average current through the inductor is equal to the load 

current supplied by the converter. Thus, a linear droop in the inductor current is 

equivalent to a linear droop in the load current. 

2. Placing virtual resistances in series with the inductors allows damping-out the 

oscillations caused by the CPL. 

In steady state, the instantaneous duty ratios d1(t), d2(t) in (15)—obtained through a 

passivity based method in which virtual resistances are added at the output of the buck 

converters—represent the static droop lines. This can be observed by replacing (15) with 

their steady state values. 

1 1 2 2 3,  g nl d eq nl d eq g eqV V R X V R X V X        (16) 

In (16), Vµg is the microgrid main bus voltage. The above observation can also be verified 

from Fig. 7. 

3. The load is connected at the converters common point. Hence, the proportion of 

power shared by the converters is equal to the current sharing ratio. 

Thus, this study demonstrates in an analytical way that the virtual droop resistance in 

series with the inductors serves two goals.  
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1. It enables current sharing between the converters. 

2. It also damps the oscillations at the dc microgrid caused by the CPL and ensures that 

the equilibrium point given by (4) is asymptotically stable. 

The method described above can be used to derive control inputs for n buck converters 

operating in parallel supplying a CPL. 

The primary control inputs (15) enable current sharing at the cost of poor voltage 

regulation at the dc microgrid. This poor voltage regulation is a result of the voltage drop 

in the virtual droop resistances which can be remedied by adding the secondary control 

inputs (17) [38]. 
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The overall control inputs are given by 
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The equilibrium point obtained with the control inputs (18) is given by 
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From (19), it is evident that the secondary control inputs d1s, d2s ensure voltage regulation 

without affecting the current sharing ratio. The range of acceptable values of ki to ensure 

the asymptotic stability of the equilibrium point (19) is derived in Section III. 
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PRACTICAL STABILITY OF THE EQUILIBRIUM POINTS 

It should be noted that although the previous analysis seems to show that the equilibrium 

points indicated in (4) or (19) are globally asymptotically stable when using the proposed 

control inputs (15) and (18) respectively, these equilibrium points are in practice locally 

asymptotically stable. This observation is made because of the following non-linearities 

that exist in the system in the Fig. 4 [18]. 

1. The duty ratios d1 and d2 can only take values in the range 0≤d1≤1 and 0≤d2≤1. 

2. In reality, the constant power behavior of an actual CPL is restricted above a threshold 

voltage, Vlim.Thus, 

3 lim

3 lim
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x t V
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x t V

x
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where xld is the instantaneous load current. 

3. The system equations (1) are valid only if  

1 2

3

0, 0x x
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where, ε is a small positive value . If the condition (21) is not met, then the system 

equations (1) have to be replaced by  
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 if 0 and (0)

x x x

t x x x

x x x 

  


   
   

f x,          (22) 

The conditions (22) are equivalent to the need for the inductor currents to be positive and 

the need for the capacitor voltages to be greater than ε. 

4. The system of equations (1) are valid only in the continuous conduction mode. In 

discontinuous conduction mode (DCM), an additional term needs to be added to the 

inductor current equation [62]. However, it has also been mentioned in [18] that with 

practical circuit parameter values the DCM operation does not have a significant impact 

on the system trajectories. 
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To derive the necessary and sufficient conditions for the local asymptotic stability of the 

equilibrium points (4) and (19), the system of equations (1) is linearized and the jacobian 

of the linearized system, A is evaluated at each of the equilibrium points. Thus the matrix 

A is given by  





eqx=X

f
A

x
      (23) 

All the eigenvalues of the A matrix evaluated at each of the equilibrium points (4) and 

(19) need to lie on the left-half of the s-plane for the respective equilibrium points to be 

locally asymptotically stable. 

Consider the system (1) with only the primary control inputs (15) applied. The 

characteristic polynomial for the A matrix is  

  3 2

2 1 0det s s a s a s a    I A     (24) 

Applying the necessary and sufficient conditions from the Routh stability criterion [67] 

for the local asymptotic stability of the equilibrium point indicated in (4) 
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The condition (27) is identical to the condition identified in [17] in which it has been 

shown that stability can be achieved in a dc micro-grid if the power dissipated by 

resistive loads is greater than that dissipated by the CPLs. However, in the presented 

controller, such resistive loads are virtual, so no real losses are introduced in the 
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operation of the microgrid. The conditions (25) and (26) imply that a stable equilibrium 

point can be ensured by inserting higher values of C and lower values of L in the 

converters [17]. 

The conditions for the local asymptotic stability of the equilibrium point given in (19) 

obtained by considering the overall control inputs (18) is derived. The characteristic 

polynomial for the A matrix is given by 

  4 3 2

3 2 1 0det s s a s a s a s a     I A     (29) 

The increase in the system order by 1 in (29) is due to the presence of the integral term in 

the control inputs (18). From (29), the necessary conditions for the local asymptotic 

stability of the equilibrium point (19) can be derived using the Routh stability criterion 

[67] 
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The conditions (33) and (32) are satisfied because Rd1, Rd2, and ki are positive and the 

condition (27) is satisfied. The condition (30) implies that a stable equilibrium point can 

be ensured by inserting higher values of C and lower values of L in the converters [17]. 
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SIMULATION AND EXPERIMENTAL RESULTS 

Simulation results 

To show the validity of the analysis, the circuit shown in Fig. 4 was simulated 

with the following parameters: E1=35V, E2=30V, C1=C2=1000μF, L1=640 μH, 

L2=630μH, Vnl=25.7V, P=100W, Rd1=2.075Ω, Rd2=1.709Ω. The open loop operation of 

the circuit with DOL1=0.734, DOL2=0.857 is shown in Fig. 8 from which it can be 

observed that x1, x2 and x3 exhibit limit cycle oscillations at a frequency of 200Hz. The 

currents x1 and x2 exhibit limit cycle oscillations about the same average value of 1.946A 

since the sources E1 and E2 are assumed to be ideal. The primary controllers (15) are 

placed into operation at t=0.3s and the results are given in Fig. 9. It can be observed from 

Fig. 9 that x1, x2 and x3 settle down at their equilibrium values of 2.12A, 2.58A and 21.3V 

respectively. 

To show the validity of the analysis, the circuit shown in Fig. 4 was simulated 

with the following parameters: E1=35V, E2=30V, C1=C2=1000μF, L1=640 μH, 

L2=630μH, Vnl=25.7V, P=100W, Rd1=2.075Ω, Rd2=1.709Ω. The open loop operation of 

the circuit with DOL1=0.734, DOL2=0.857 is shown in Fig. 8 from which it can be 

observed that x1, x2 and x3 exhibit limit cycle oscillations at a frequency of 200Hz. The 

currents x1 and x2 exhibit limit cycle oscillations about the same average value of 1.946A 

since the sources E1 and E2 are assumed to be ideal. The primary controllers (15) are 

placed into operation at t=0.3s and the results are given in Fig. 9. It can be observed from 

Fig. 9 that x1, x2 and x3 settle down at their equilibrium values of 2.12A, 2.58A and 21.3V 

respectively. The output current sharing of the paralleled converters is ensured by the 

primary controller action. But this action also cause a voltage drop in the dc 

microgrid(25.7V to 21.3V). A secondary controller (17) with ki=4.5 is added to the 

primary controller at t=0.5s to compensate for the voltage deviation. Fig. 10 shows the 
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waveforms of x1, x2 and x3 when the secondary controller is inserted. It can be observed 

that x3 rises to the no-load voltage level of 25.7V. The currents x1 and x2 decrease and 

settle down to equilibrium values of 1.76A and 2.13A respectively. Thus, the proposed 

secondary control not only increases the dc microgrid voltage to Vnl but also retains the 

same current sharing ratio as in the primary droop stage. 

 
Figure. 8.  Simulated results of x1, x2 and x3 operating in open loop with fixed duty ratios 

 
Figure. 9.  Simulated results of x1, x2 and x3 showing the transition from open-loop to the 

primary control mode 

 
Figure. 10.  Simulated results of x1, x2 and x3 showing the transition from the primary 

control mode to the secondary control mode 
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Experimental results 

The circuit parameters used in the experimental dc microgrid are the same as the 

simulation parameters. The parameters of the realized CPL are as follows. LL=300µH, 

CL=1680µF, VL=16V, RL=2.5Ω. Thus, the POL buck converter presents a CPL of about 

100W to the dc microgrid. For sensing and feedback of the inductor currents, current 

sensing shunt resistors of 0.05Ω are placed in series with the inductors. The open loop 

behavior of the parallel connected converters is shown in the Fig. 11. As explained 

previously, the state variables exhibit limit cycle oscillations at around 200Hz. The steady 

state waveforms of x1, x2 and x3 after adding the primary controller are shown in the Fig. 

12 from which it can be observed that the dc microgrid voltage is reduced to 21.3V and 

the inductor currents x1 and x2 increase to 2.12A and 2.58A, respectively. The load 

currents are shared in the ratio X2eq:X1eq=1.22. The waveforms of x1, x2 and x3 after 

adding the secondary controller with ki=4.5 is shown in Fig. 13. It can be observed from 

Fig. 13 that the secondary control action has restored the voltage of the dc microgrid to 

25.7V and the two load currents are reduce to X1eq=1.81A and X2eq=2.20A. The current-

sharing ratio is maintained constant at X2eq:X1eq=1.22. 

The dynamic behavior when the system transitions from open loop to primary 

droop control is shown in Fig. 14. As soon as the controller is switched on, the 

oscillations in the x1, x2 and x3 are damped in 20ms and the voltage of the dc microgrid 

main bus is drooped, causing the load currents to increase. The dynamic behavior when 

the system changes from primary control only to added secondary control mode is shown 

in Fig. 15. As seen in the Fig. 15, the voltage increases to Vnl while the currents decrease 

and settle in about 20ms to their equilibrium values given by (19). Line and load 

regulation are ensured by the secondary control action. Fig. 16 verifies the load 

regulation. If the load at the experimental dc microgrid is increased from 100W to 120W 
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the state variable waveforms change as shown in Fig. 16. It can be observed that the dc 

microgrid voltage is maintained constant at 25.7V while both x1 and x2 increase to 2.11A 

and 2.56A respectively while still maintaining the same current sharing ratio than that in 

Figs. 12 and 13. To verify line regulation, E1 is reduced from 35V to 30 V and the 

dynamic response is shown in the Fig.17. From Fig. 17, it can be observed that x3 is 

maintained constant at Vnl while x1 decreases to 1.1A and x2 increases to 2.8A 

maintaining x1+x2 constant. It can be observed from Fig. 17 that x1 and x2 settle down to 

their new equilibrium values in about 120ms. Hence, the dynamics of the integral term 

are slower compared to those of the other terms in the controller. The experimental 

results are almost identical to the results obtained from the simulations. 

 

 
Figure. 11.  Experimental results of x1, x2 and x3 in open loop with fixed duty ratios 

 

 

Figure. 12.  Experimental results of x1, x2 and x3 after primary droop control 
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Figure. 13.  Experimental results of x1, x2 and x3 after secondary control 
 

 

Figure. 14.  Experimental results of x1, x2 and x3 showing the dynamic response from 

open loop to primary droop control 

 

 

Figure. 15.  Experimental results of x1, x2 and x3 showing the dynamic response from 

primary droop control to secondary control mode 
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Figure. 16.  Experimental waveforms of x1, x2 and x3 showing the dynamic response for 

the load increase from 100W to 120W 
 

 

Figure. 17.  Experimental waveforms of x1, x2 and x3 showing the dynamic response 

when E1 is decreased from 35V to 30V 

 

SUMMARY 

A passivity based approach is used to derive a distributed and autonomous control law for 

buck converters operating in parallel supplying a CPL. This approach yields a controller 

that adds virtual resistors as if they were in series with the buck converter inductors. The 

virtual resistances realized by control action enable current sharing among the paralleled 

converters as well as the stable operation of dc microgrid in the presence of CPL. In 

addition, the passivity based controller yields control laws that also represents the static 

droop characteristics in the steady state. Secondary controllers, consisting of integral 

terms are added to compensate for the voltage deviations due to the droop controller. Due 
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to inherent system non-linearities, the equilibrium points obtained are only locally 

asymptotically stable. The range of acceptable droop resistances and integral controller 

gains are derived using the Routh stability criteria. The analysis and the results are 

supported by simulations and experimental results. 
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Chapter 3: Autonomous Hierarchical Control of Microgrids with 

Constant-Power Loads-Part II DC-DC Boost Converters2 

 

Figure. 18.  A system of 2 parallel boost converters supplying a CPL. 

CONTROLLER DESIGN AND ANALYSIS 

A system of two parallel boost converters supplying a CPL is given in Fig. 18. 

The CPL in Fig. 18 is a buck converter whose output voltage is maintained at a constant 

value by a fast regulating PI controller. Since this buck converter regulates the voltage at 

the load, it is called point of load (POL) converter. Both the converters in Fig. 18 are 

assumed to be operating in continuous conduction mode (CCM). The average state 

equations for the system are given by 
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2Contents of this chapter are published in “Decentralized Control of a Vehicular Microgrid with Constant 

Power Loads”, Proc. IEEE Electric Vehicle Conference (IEVC), 2014, pp.1-8., where Mahesh Srinivasan is 

the first author 
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where d1 and d2 refer to the instantaneous duty cycles of the top and bottom converters, 

respectively. Equation (35) can also be written as  

 Mx + J + R(x) x = E
                                              (36) 

where 
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Under ideal conditions, the circuit in the Fig. 18 represents 2 ideal transformers whose 

primary voltages are E1 and E2 respectively and their secondary terminals are connected 

in parallel at the vehicular dc microgrid [48]. It is desired that the sources E1 and E2 share 

their output currents in proportion to their respective power ratings. To achieve the 

objective of current sharing, the droop method is used because it does not require 

communication between converter modules and, thus, increases reliability by avoiding 

single points of failures. To obtain the locus of the microgrid voltage at equilibrium, X3eq 

consider the equivalent circuit of the boost converter with the resistances connected at the 

secondary outputs as shown in Fig. 19. The values of the variable resistances connected 

at the output are given by 
2

3

1 2

1 1

1

(1 )

eq

x d

X
R R
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eq

y d
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R R

E k


       (39) 

In (38) and (39), Rd1 and Rd2 are the droop resistances of the 2 converters respectively and 

k1 and k2 are the open loop duty ratios of the 2 converters such that  
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       (40) 

Examining (38) and (39) closely, it can be observed that Rx and Ry represent Rd1 and Rd2 

referred from the primary to the secondary of the transformers shown in Fig. 19. To 

obtain X3eq, Kirchhoff current law is applied for the vehicular dc microgrid in Fig. 19. 

Once X3eq is obtained, the loci of X1eq and X2eq can be obtained from 
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The reason for using (41) and (42) to obtain X1eq and X2eq instead of solving the circuit in 

Fig. 19 is that even though Rx and Ry represent actual resistances in the circuit, they are 

actually loss-free since voltage droop is realized using control action [38]. The 

equilibrium point with the coordinates X1eq, X2eq and X3eq thus obtained is given by 
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Figure. 19.  Equivalent circuit of parallel connected boost converters used to obtain the 

locus of X3eq 

A change of coordinates from x to 

eq
x = x - X

      (44) 

applied to (36) yields  

    eq
Mx + J + R(x) x = E- J + R(x) X

    (45)  

Consider now that a virtual damping matrix Ri( x ) is defined by 
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Next, a term  i
R x x  is added on both the sides of (45), yielding  

   t eq i
Mx + J + R (x) x = E- J + R(x) X + R (x)x

   (47) 
where 
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d
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t i
R R + R      (48)  

This step is equivalent to adding virtual damping resistors Rd1 and Rd2 in series with the 

inductors L1 and L2 in order to damp the oscillations due to the CPL and also cancel the 
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non-linearity in the state equation (36) [30]. Now, it is assumed that the system of 

equations (47) evolves unforced. Thus, the modified system can be defined from (47) as 

  
t

Mx + J + R (x) x 0
      (49) 

If a candidate Lyapunov function ( )V x  of the form 

1
( )

2

TV x x Mx
     (50) 

is chosen, then its time derivative is 
2 2

1 1 2 2( ) d dV R x R x  x
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From (51), it can be observed that 
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Additionally, expanding (49) it can be observed that the largest invariant subset of the set 

where ( ) 0V x  is given by 
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The condition d1≠1, d2≠1 is enforced for boost converters. Thus, (53) is satisfied if and 

only if 
3 0x  . Therefore, by LaSalle invariance [66], the origin is an asymptotically 

stable equilibrium point for the system (49). To obtain a stable controller design, the 

controller inputs are designed such that the right hand side of (47) becomes zero [30]. 

Then, equation (47) implies that 

 
  eq i
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From the first equation of (55), 
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Hence, from (43), 
2

1
3

1 1 1 1(1 )
eq

d eq

E
X

k E R X


 
     (57) 

Substituting (57) in (56) and simplifying 
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Consider 
2 2 2 2
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 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11d eq d d dR X k E R x k E R x E R x k E       (60) 

At a sufficiently closer point to the equilibrium, the terms containing perturbation of x1 in 

the RHS of (59) and (60) can be neglected because they have opposite signs. Substituting 

(59) and (60) in (58) after neglecting the perturbation terms and simplifying, it yields d1 

in (61) which is the primary control input for the top converter in Fig. 18. Following 

similar steps, the primary control input for the bottom converter in Fig. 18 which is d2 is 

obtained (61). Thus, the control inputs to the first or the primary stage are 
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    (61) 

Even though the passivity based approach suggests global asymptotic stability of 

the equilibrium point (43) obtained using the control inputs (61), the equilibrium point 

(43) is only locally asymptotically stable. This is due to the approximation made by 

neglecting the perturbation terms in (59) and (60) and also because of the limitations in 

the duty cycle inputs (61). Since from (43)  
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2
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      (62) 

the following observations can be made regarding the primary control inputs: 

1. The primary control inputs enable current sharing among the converters as it is 

evident from (62). 

2. The primary control inputs also enable damping out the oscillations due to the 

CPL and ensures local asymptotic stability of the equilibrium point indicated in 

(43). 

3. A plot of X1eq and X2eq vs X3eq for varying values of P is given in Fig. 20. As 

observed in this figure, the droop characteristics are nonlinear. However the 

slopes of the characteristics are dependent on Rd1 and Rd2. The range of the 

voltage droop equals the difference between Vnl and Eg where Eg is the greater 

value among E1 and E2. For an arbitrary load power, P1, the voltage at the dc 

vehicular microgrid reaches V1 (point A in Fig. 20). The lengths of the 

segments AB and AC represent IL2 and IL1, respectively, where IL2 and IL1 

represent X2eq and X1eq at the load power P1 

 

Figure. 20. X1eq and X2eq Vs X3eq for varying P 

The primary control inputs (61) ensure acceptable current sharing among the paralleled 

boost converters. But, this leads to unacceptable voltage regulation at the dc main bus. To 
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ensure that this voltage stays within acceptable limits, secondary control inputs in the 

form of integral control terms are added to the primary control inputs. Thus, the overall 

control inputs are given by 
2
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where ki is the integral controller gain. The equilibrium point associated with the overall 

control inputs (63) is given by 
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                  (64) 

Thus, the secondary control input in (63) ensures that the input currents from the 

sources E1 and E2 are maintained at the same value as in the primary control stage (43) 

whereas from (64) the dc microgrid voltage is raised to Vnl. The overall control inputs 

(63) contain integral control terms. For the equilibrium point (64) obtained after inserting 

the control inputs (63) to be locally asymptotically stable, the integral controller gain ki 

has to be chosen sufficiently small. Under such conditions, the dynamics at the integral 

controller do not interfere with the dynamics due to the primary controllers (61). Thus, 

local asymptotic stability of the equilibrium point (64) is practically maintained [30]. 
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STABILITY ANALYSIS 

To arrive at the necessary conditions for local asymptotic stability of the 

equilibrium points (43) and (64), the proposed control inputs (61) and (63) are applied to 

the system represented by (35). The Jacobian of the system (35), A, given by  





eqx=X

f
A

x
      (65) 

is evaluated at each of the equilibrium point given in (43) and (64) in order to determine 

whether all the eigenvalues of A lie on the left-half of the s-plane. Consider the system 

(35) with only the primary control inputs (61) applied. The characteristic polynomial for 

the A matrix is  

  3 2

2 1 0det s s a s a s a    I A
    (66) 

Applying the necessary conditions from the Routh stability criterion [67] for the local 

asymptotic stability of the equilibrium point indicated in (43) yields 
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(69) 

The condition (67) can be satisfied qualitatively by choosing higher values for the 

capacitances and lower values for the inductances [17]. Next, the conditions for the local 

asymptotic stability of the equilibrium point given in (64) obtained by considering both 
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the primary and the secondary control inputs (63) are derived. The characteristic 

polynomial for the A matrix is given by 

  4 3 2

3 2 1 0det s s a s a s a s a     I A
    (70) 

From (70), the necessary conditions for the local asymptotic stability of the equilibrium 

point (64) can be derived using the Routh stability criterion [67] 

 
3 1 2

3

1 1 2 2 1 2

0 d d
nl

R R P
a V

L E L E C C

 
    

      (71) 
2 2

2 2 2 1 1 12 1

1 2 2 1 1 2 2 2 1 1

2
2

1 2 1 2

1 2 1 2 1 2 1 2 1 1 2 2

(1 ) (1 )(1 ) (1 )1 1

( ) ( )
0

( ) ( )

eq d eq d

nl d d i d d

nl

X R k X R kk k

C C L L C C L E L E
a

V R R k P R RP

L L E E C C V C C L E L E

      
      

     
  

 
        

(72) 

2 2
2 2 2 2 1 1 1 11 2 2 1

1 2 1 2 2 1

1

1 2 1 2 1 2
2 2 1 1

1 2 1 2 1 1 2 2 1 2 1 2

(1 ) (1 )(1 ) (1 )

0

(1 ) (1 )

eq d eq dnl d d
i nl

nl d d d d d d
eq eq i nl

k E X R k E X RV R k R k
kV

L L E E L L
a

V R R R R R R P
X k X k k PV

L L E E L E L E L L E E

        
      

    
  

           
 

(73) 

1 2 2 1 2 2 2 1 1 1 2 1 1 2
0

1 2 1 2

(1 ) (1 )
0

d d d eq d d d eq d d
R k E R R X R k E R R X R R P

a
E E E E

   
   



(74) 

The condition (71) is satisfied because Vnl≥X3eq Hence, (67) is satisfied. The condition 

(71) suggests that by inserting larger values of capacitances and smaller values of 

inductances, a stable operating point can be achieved with the overall control inputs (63). 

 

Figure. 21.  Simulated results of x1, x2 and x3 operating in open loop with fixed duty ratios 
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Figure. 22. Simulated results of x1, x2 and x3 showing the transition from open-loop to the 

primary control mode 

 

Figure. 23.  Simulated results of x1, x2 and x3 showing the transition from the primary 

control mode to the secondary control mode  

 

Figure. 24.  Experimental results of x1, x2 and x3 in open loop with fixed duty ratios 
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SIMULATION AND EXPERIMENTAL RESULTS 

Simulation results 

To show the validity of the analysis, the circuit shown in Fig. 18 was simulated with the 

following parameters. E1=20V, E2=15V, C1=C2=940µF, L1=730µH, L2=780µH, Vnl=36V, 

P=150W, k1=0.444, k2=0.583, Rd1=0.929Ω and Rd2=0.541Ω. It is desired that the input 

currents supplied by the sources E1 and E2 are shared in the ratio given by (62). Initially, 

the circuit is operated in open loop with the open loop duty ratios D1=0.444 and 

D2=0.583 respectively. The results are shown in the Fig. 21. From Fig. 21, it can be 

observed that the waveforms of x1, x2 and x3 exhibit limit cycle oscillations at a frequency 

of 90Hz. To damp the oscillations due to the CPL and to enable current sharing among 

the converters, virtual resistances Rd1 and Rd2 are inserted in the form of the control inputs 

(61) at t=0.3s. It can be observed from the Fig. 22 that x1, x2 and x3 settle down at their 

equilibrium values of 4.29A, 4.14A and 26.5V respectively. 

It should be noted that even though the primary controllers enable current sharing among 

the parallel connected converters, the voltage regulation at vehicular dc microgrid main 

bus (36V to 26.5V) could be considered unacceptable for many applications. To raise the 

voltage of the vehicular microgrid to the nominal value of Vnl, a secondary controller with 

ki=0.01 is added to the primary control inputs at t=0.5s. The overall control inputs are 

given by (63). Fig. 23 shows the waveforms of x1, x2 and x3 when the secondary 

controller is added. It can be observed that the voltage at the vehicular microgrid is raised 

to Vnl whereas the currents x1 and x2 are maintained at the same value as in the primary 

control stage. 
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Experimental results 

The circuit parameters used during the experiment representing a vehicular dc 

microgrid are the same as the simulation parameters. The parameters of the realized CPL 

are: LL=450µH, CL=1680µF, VL=21.3V and RL=3Ω where LL, CL, VL and RL refer to the 

inductor, capacitor, output voltage and the load resistor values of the POL buck converter 

respectively. For sensing and feedback of the inductor currents, current sensing shunt 

resistors of 0.05Ω are placed in series with the inductors. Initially, the circuit is operated 

in open loop with the open loop duty ratios D1=0.444 and D2=0.583. From the results 

shown in the Fig. 24, it can be observed that the waveforms of x1, x2 and x3 exhibit limit 

cycle oscillations with a frequency of about 90Hz. The currents x1 and x2 exhibit limit 

cycle oscillations about the average values of 4.58A and 3.40A respectively which is 

dependent on the internal impedance of the sources E1 and E2. 

 After adding the primary controller, the waveforms of x1, x2 and x3 are shown in 

Fig. 25. From this figure, it can be observed that the voltage of the vehicular dc microgrid 

is reduced to 26.5 V and the inductor currents settle down at 4.25A and 4.12A 

respectively. The current sharing and the voltage reduction at the dc microgrid described 

above represents the addition of virtual droop resistances of Rd1=0.929Ω and 

Rd2=0.541Ω. The input currents are shared in the ratio given by (62). To restore the 

voltage back to Vnl, secondary controllers with ki=0.01 are added. The waveforms of x1, 

x2 and x3 after adding the secondary controller is shown in the Fig. 26. It can be observed 

from the Fig. 26 that the secondary control action has restored the voltage of the 

vehicular dc microgrid bus to 36V and the two input currents remain nearly in the same 

value of x1=4.29A and x2=4.14A as in the primary control stage. Thus the current sharing 

ratio is maintained constant and based on (62).Transition from open loop to primary 

droop control is shown in Fig. 27. As soon as the controller is switched on, the 
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oscillations in x1, x2 and x3 are damped in 40ms, the voltage of the dc microgrid main bus 

is drooped, and the load currents settle down to their equilibrium values given by (43). 

Transition from the primary control mode to the secondary control mode is shown in Fig. 

28. As seen in Fig. 28, the voltage increases to Vnl while the currents settle down at the 

same values as in the primary droop stage in about 100ms. The secondary controllers in 

(63) provide line and load regulation. To verify line regulation, E2 is increased from 15V 

to 20 V. Figure. 29 shows the response when E2 is increased. It can be observed that 

while x3 is maintained constant at 36V, x1 decreases to 2.1A and x2 increases to 5.4A. The 

inductor currents settle down at their new equilibrium values in about 125ms. To test load 

regulation, the CPL was increased from 150W to 200W and the results are shown in Fig. 

30. From Fig. 30, it can be observed that x1 and x2 settle down at 5.74A and 5.58A 

respectively maintaining the same ratio as in the primary and secondary control stages. 

The vehicular microgrid voltage, x3 remains unchanged at 36V. 

 

 

Figure. 25.  Experimental results of x1, x2 and x3 after primary droop control 
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Figure. 26.  Experimental results of x1, x2 and x3 after secondary control 

 

Figure. 27.  Experimental results of x1, x2 and x3 showing the dynamic response from 

open loop to primary droop control 

 

 

Figure. 28.  Experimental results of x1, x2 and x3 showing the dynamic response from 

primary droop control to secondary control mode 
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Figure. 29.  Experimental waveforms of x1, x2 and x3 showing the dynamic response 

when E2 is increased from 15V to 20V 

 

 

Figure. 30.  Experimental waveforms of x1, x2 and x3 showing the dynamic response 

when P is increased from 150W to 200W 

SUMMARY 

The concept of autonomous control of a dc microgrid is extended to an automotive power 

system. A passivity based controller is proposed in order to design the autonomous 

control of an automotive power system consisting of parallel connected boost converters 

supplying a CPL. The approach involves the addition of virtual resistances as a part of the 

control law. The virtual resistances added enable the realization of a non-linear droop of 
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the vehicles’ main bus voltage with respect to the converters input currents. The virtual 

resistances added not only enable the current sharing among the converters but also damp 

out the oscillations at the main bus caused by CPLs. To compensate for the voltage 

deviations due to the droop controller, secondary control terms consisting of integral 

controllers are added. Although passivity based analysis suggests global asymptotic 

stability, the equilibrium points obtained are only locally asymptotically stable due to the 

duty cycle limitations. The conditions to ensure the local asymptotic stability of the 

equilibrium points are derived. The proposed controller is verified with simulation and 

experimental results. 
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Chapter 4:  A Semi-Autonomous Hierarchical Control Scheme for DC 

Microgrids with Constant Power Loads 

CONTROLLER DESIGN AND ANALYSIS 

A system of m parallel-connected converters supplying power to CPLs is shown 

in Fig. 31 [68]. The CPLs in Fig. 31 may be dc-dc converters whose output voltage is 

maintained constant by fast-regulating PI controllers [18] or they may be batteries in 

regulated charging mode [20]. They can also be inverter-fed drives, whose output 

characteristic consists of a single value of output torque corresponding to a single value 

of speed [19]. The source converters in Fig. 31 are assumed to be operating in continuous 

conduction mode (CCM). The average state equations for such a system can be given as 

follows. 
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 (75) 

where x is the vector of state variables in the system which are the inductor currents and 

capacitor voltages. If the source converters in Fig. 31 consist of converters of simple 

topology, then n=m+1. The instantaneous duty cycle and source voltage of i
th

 converter 

are given by di and Ei respectively.  
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 Fig. 31. A dc microgrid with m parallel source converters supplying CPLs[68] 

 
Fig. 32. A system of 2 parallel buckboost converters supplying a CPL. 

 
Fig. 33. Equivalent circuit of top buckboost converter in Fig. 32 supplying a CPL.[69] 

 

By lumping together all the CPLs in (75), the damping provided by transmission line 

resistances in the microgrid is removed and stability of equilibrium point can be obtained 
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purely in terms of droop resistances realized through controller action. For the stable and 

efficient operation of a dc microgrid, it is necessary to ensure that oscillations induced by 

CPLs is properly damped. In addition, the currents supplied by the various sources should 

be proportional to their respective power ratings. In order to ensure proper current sharing 

and stable operation of source converters, consider the vector of duty cycles, d in (75) to 

involve feedback of state variables. Let 

 d g x        (76) 

It is important that the chosen state feedback maintains the stability of the corresponding 

equilibrium point, Xeq. Since the system equations (75) are non-linear, stability of Xeq is 

estimated by linearizing the equations about the equilibrium point [67]. This is done as 

follows. The duty cycle expressions (76) are substituted in the system equations (75). 

Then the expression for the linearized system jacobian A which is given by 

 



eqx=X

f
A

x

      (77) 

is calculated. Observing the structure of the A matrix (77) helps in deriving the primary 

control law. In particular, the following criterion is applied to derive primary control law. 

trace(A)<0      (78) 

In addition, autonomy of primary controllers is also taken into account while deriving 

primary control laws. It will be shown that, for an m parallel converter case, primary 

control input of q
th

 parallel converter, dq,p is given by 

,

q q Lq dq

q p

q

k E x R
d

E


      (79) 
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where kq, Eq, Rdq are no-load duty ratio, source voltage and virtual droop resistance of the 

q
th

 converter respectively. The variable xLq corresponds to inductor current of the q
th

 

converter. The vector of primary control inputs is referred to as dp. Thus 

1 2, .......
T

p p mpd d d   pd
     (80) 

In order to obtain the primary equilibrium point, the control inputs (80) need to be 

substituted in the system equations (75). The variables x1….xn are replaced by X1eq… Xneq. 

The equilibrium point obtained is given by Xeq,pri. As an example, consider the case of 

two parallel buckboost converters supplying a CPL as shown in Fig. 32. The equivalent 

circuit of top buck boost converter in Fig. 32 is given in Fig. 33 [69]. Parallel buck and 

parallel boost configurations have been analyzed in [70] and [71] respectively. The 

simplest case of two parallel buckboost converters is considered without loss of 

generality. The average state space equation for the system is 
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f x,

x    (81) 

where d1, d2 refer to the instantaneous duty cycles of the top and bottom converters, 

respectively. Let  

1 1 1 3

2 2 2 3

( , )

( , )

d g x x

d g x x



        (82) 

so that the control laws are symmetric. Substituting (82) in (81) and calculating (77) as 

generalized expression 
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A

(83) 

It can be observed from (83) that in order for all the 3 eigenvalues to lie on the left half of 

the s plane, one of the necessary conditions is that trace of A must be negative. Hence, 
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 (84) 

The primary controller is fully autonomous and hence g1 and g2 can be assumed to 

involve only x1 and x2 respectively. This means that primary controller of a converter can 

involve only the feedback of its own inductor current. Hence, considering the symmetric 

nature of g1 and g2 in (82) 
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       (85) 

The simplest means to ensure that (85) is satisfied is by providing a proportional negative 

feedback of the inductor currents of the respective converters. But since 0<d1<1 and 

0<d2<1 the following control laws can be used for primary control. 
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     (86) 

 In (86), Vnl  refers to the no load voltage of the dc microgrid and Rd1, Rd2 are virtual 

droop resistances. The resistances are virtual in the sense that they are proportional 

constants of the respective inductor currents and are realized through controller action. 

The control inputs given by (86) are conveniently referred to as the primary control 

inputs d1p, d2p respectively. The equilibrium point given by [X1eq, X2eq, X3eq]
T

 is obtained 
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in terms of Rd1, Rd2, E1, E2, k1, k2 and P. Among the above mentioned terms, all the 

quantities except P are constants. In the case of parallel buckboost converters, the 

equation to obtain X3eq is given by 

  4 3 2

3 4 3 3 3 2 3 1 3 0: 0pri eq eq eq eq eqf X a X a X a X a X a    
 (87) 

where 
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(88) 

For practical values of E1, E2, Rd1, Rd2, the locus of real roots of quartic equation (87) for 

increasing values of P is indicated in Fig. 34. Of the four roots of the equation (87), two 

of them are always complex. The nature of the other two roots is as follows. When P=0, 

one of the two roots is X3eq=Vnl and the other is X3eq=0. As P is increased, both the real 

roots start moving towards each other. At P=Pmax, both the roots are equal to X3eq,min. 

Beyond Pmax, there are no real roots for the equation (87). Thus, the locus of real root 

which starts at X3eq=Vnl for P=0 and moves left till it reaches P=Pmax represents the locus 

of microgrid voltage. The primary control inputs (86) enable current sharing which is 

given by 

1

2

eq
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eq

X
I

X


               (89) 

The primary equilibrium point, Xeq,pri obtained in terms of X3eq is given by  
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    (90) 

In the case of parallel buckboost converters, in order to obtain X3eq,min and Pmax in Fig. 34, 

the following procedure can be followed. From (87), (88) we can write 
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       (91) 

where b4,b3,b2,b1 correspond to a4,a3,a2 and a1 respectively in (88) without terms 

containing P and c4,c3,c2,c1 and c0 correspond to negative of coefficients of PRd1Rd2 in 

(88). From (91), at P=Pmax 
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Table 1: Primary control results for 3 basic topologies 
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However, (92) is a sixth degree equation and hence the roots (X3eq,min) can be obtained 

only for specific values of system parameters [72]. Once X3eq,min is obtained, Pmax can be 

calculated using 
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  (93) 

Table. 1 gives results regarding primary control and equilibrium points for three basic 

configurations. Some observations about Table. 1 are as follows 

1. As P is increased from 0, the voltage at dc microgrid, X3eq starts reducing from 

Vnl. At P=Pmax, X3eq=X3eq,min. 

2. The characteristic obtained in Fig. 34 for parallel buckboost converters is similar 

to that obtained for parallel buck converters [20], however, there are some 

differences. In the case of parallel buck converters, X3eq,min is a constant and is 

given by 

3 ,min
2

nl
eq

V
X 

      (94) 

In case of parallel buckboost converters, 

3 ,min0
2

nl
eq

V
X 

     (95) 

However, for stability considerations, parallel buckboost operation can be restricted to lie 

in the region 
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Fig. 34. X3eq Vs P characteristics for parallel buckboost converters in Fig. 32 

3
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nl
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     (96) 

4. In case of parallel buck and parallel buckboost configurations, stable operation range is 

given by (96). The expression for Pmax for parallel boost converters is obtained as a result 

of duty cycle restrictions rather than as an explicit expression as in the case of other two 

simple topologies. 

5. A fixed current sharing ratio(independent of P) (89) is obtained in the case of parallel 

buck and parallel boost converters since the inductor is located at the output and input of 

the respective converters. However, this observation is true only in the case of simple 

converter topologies. 

Droop controllers enable current sharing at the cost of poor voltage regulation at the dc 

microgrid. This poor voltage regulation is a result of voltage drop in the droop resistances 

which can be remedied by adding secondary control inputs [38]. In general, for an m 

parallel converter case, overall (primary + secondary) control input of q
th

 parallel 

converter, dq,s is given by 

,
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q s

q

k E x R k V x dt
d
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    (97) 
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where kiq is the integral control gain q
th

 converter. The variable xµg is the state variable 

corresponding to the microgrid voltage. The equilibrium point obtained with the overall 

control inputs, Xeq,sec can be calculated as explained previously. For ideal microgrid 

operation, it is desired that current sharing (89) obtained in primary control stage is 

maintained after the addition of secondary controller. The integral control gains of 

secondary controllers are designed so as to attain this objective. If current sharing ratio in 

primary control stage is constant (independent of P), it can be ensured that after addition 

of secondary controllers, current sharing ratio is identical to that in primary control stage. 

If current sharing ratio in primary control stage is not constant, then some approximation 

needs to be made in the expression for current sharing ratio in the primary control stage 

(89) so that after the addition of secondary controllers, it is almost identical to that in the 

primary control stage.  

Taking the example of parallel buckboost converters, the overall control inputs are given 

by 
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   (98) 

where ki1 and ki2 are the integral control constants of the top and bottom converters 

respectively. In the case of parallel buckboost converters, the equilibrium point obtained 

using the control input (98) is given by 
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In the case of buckboost converters, the inductor current given by X1eq in (90) and (99) is 

neither equal to input current nor equal to the output current of the top converter in Fig. 

32. In order to calculate the input currents of the top and bottom converters, consider Fig. 

33 which contains the equivalent circuit of the top buckboost converter in Fig. 32. From 

(90), the vector of input currents of the top and bottom converters in primary control 

stage represented as Iin,pri is given by 
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   (100) 

Consider the ratio of the input currents of the converters similar to (89) 
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   (101) 

where Vdr is the droop voltage and X3eq=Vnl-Vdr. Substituting for Vnl from (86) and 

simplifying 
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Since k2<1 and k1<1 and considering  
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Considering (103), (96), Vdr can be neglected in (102) and the following approximation 

can be made. 
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Some reasons for considering the approximation (104) are as follows. A standard voltage 

of 400Vdc is used in data centers and 48Vdc is used in telecom sector [73]. Thus Vnl in 

(101) is fixed. However, controllers can be designed so as to keep Vdr at a minimum 

value and also maintain stability. As already explained (96), the maximum value of Vdr is 

restricted to (Vnl/2). Hence the approximation in (102) is valid. Considering the sharing of 

input currents (104), current sharing is maintained after the addition of secondary 

controller even at heavy loads. Following the same steps and calculating the converter 

input currents in the secondary stage Iin1,sec and Iin2,sec from (99) 
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Equating (100) and (105) and considering (104) to make current sharing (at the converter 

input) in primary and secondary stage to be equal 
3

1 2 2 1

3

2 1 1 2

(1 )

(1 )

i i

i i

k k k E k

k k k E k

 

        (106) 

In the case of paralleled buckboost converters Xeq,pri and Xeq,sec are given by (90) and 

(99) respectively. Table. 2 gives results regarding secondary control for the 3 basic 

converter configurations. 
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Table 2: Secondary control results for 3 basic topologies  
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STABILITY CONDITIONS 

The control inputs of the form (79) and (97) are applied to paralleled converters 

supplying CPL. The resulting equilibrium points, Xeq,pri and Xeq,sec are only locally 

asymptotically stable. To arrive at necessary and sufficient conditions for the local 

asymptotic stability of Xeq,pri and Xeq,sec, the respective control inputs are applied in the 

system equations (75). The jacobian of system equations, A (77) is evaluated at Xeq,pri 

and Xeq,sec separately. The system characteristic equation given by det(sI-A) is obtained at 

each of these equilibrium points. The necessary and sufficient conditions to ensure local 

asymptotic stability of each of the equilibrium points can be derived using Routh stability 

criterion [67]. Let us assume that the primary control inputs (79) are applied to the system 

equations (75). Let us assume that the system characteristic equation is given by 

  1

1 1 0det .........n n

ns s a s a s a

     I A
  (107) 

where an-1, ….a1, a0 are real and  they are coefficients of the system characteristic 

equation. Among the necessary conditions to ensure local asymptotic stability, the 

conditions which hold true for any value of m (number of converters connected in 

parallel) are 

1 0 trace( ) 0na A        (108) 

0

det( ) 0 if  is odd
0

det( ) 0 if  is even

A n
a

A n


  

     (109) 

The condition (108) involves relation between the converter elements like L, C apart from 

source voltages E, load power P and the vector of droop resistances Rd whereas (109) 

does not involve the converter elements L and C. In other words, (108) is related to 

dynamic stability of converters whereas (109) is related to steady-state stability. Apart 

from conditions listed above, the conditions  
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     (110) 

depend on number of .paralleled converters m. The conditions (110) also depend on the 

converter elements L, C apart from source voltages, droop resistances and load power. 

Apart from (108), (109) and (110), which are only necessary conditions for local 

asymptotic stability, there are necessary and sufficient conditions which can be examined 

from Routh array [67]. 

As explained earlier, since (108), (109) are independent of m, they are examined in detail 

using the equivalent circuits of the converters. First, consider condition (108). To explain 

the physical significance of (108), the virtual droop resistances are replaced by actual 

physical resistances. The circuit consisting of m parallel converters is broken down as 

follows. 

1. m series R-L circuits consisting of the respective source voltage, inductance and 

droop resistance as shown in Fig. 35(a) . 

2. One series R-C circuit consisting of CPL as represented by its equivalent circuit 

[20] and the output capacitor as shown in Fig. 35(b). 

Defining the quantities 

 

1

( 0) 11

0

1( ) 1

( )

L

t dL

t

L t

di

Rdi dt
pu

dt i L







 

     (111) 

( 0)

( 0) 2

( 0)

( )

C

tC
t

C t C

di

di Pdt
pu

dt i Cv







 

    (112) 

where 

1 ( )Ldi
pu

dt and 
( )Cdi
pu

dt  are user-defined quantities which represent per-unit values 

of the rate of change of the inductor and capacitor currents. They are not strictly per-unit 
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values in the sense that they are ratios of change in current to the actual current through 

the inductor and capacitor respectively.  

The condition an-1>0 states that 
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    (113) 

However, for (113) to hold true, the quantities on both the sides of (113) should be 

referred to the same side of transformer in the equivalent circuit. It should be noted that 

in each of the basic converter topologies, inductors are located closer to the source than 

capacitor. The condition (113) simply means that the inductors and droop resistances of 

the converters must be designed such that the sum of initial rates of rise of currents in the 

input R-L circuits should be greater than the initial rate of rise of current through 

 

Fig.35.System of paralleled source converters in Fig. 31 broken down into (a)  m input 

modules consisting of source voltage, droop resistance and inductance (b) one output 

module consisting of capacitor and equivalent circuit of CPL from [20] 

 

the output R-C circuit. The increase in current through the output R-C circuit in (113) can 

be explained by the fact that RCPL in Fig. 35(b) is negative. Now, consider condition (109) 
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which involves only the droop resistances and load power P. It is the well-known 

Middlebrook criterion [72]. In literature, while performing stability analysis, this criterion 

is checked numerically for specific cases. In this paper, general expressions have been 

derived for Middlebrook criterion which can be applied to any microgrid containing non-

isolated converter topologies. The equivalent circuit of converter is used for this purpose. 

The Middlebrook criterion suggests that when viewed from the microgrid load coupling 

point, equivalent load resistance should be greater than the equivalent source resistance 

[72]. While calculating source and load resistances using the equivalent circuit approach, 

they have to be referred to the same side of transformer in the equivalent circuit. 

The stability criteria listed in (108) and (109) are examined in context of parallel 

buckboost converters. Consider the system (81) with only primary control inputs (86) 

applied. The characteristic polynomial for the A matrix is  

  3 2

2 1 0det s s a s a s a    I A
     (114) 

To derive the condition corresponding to a2>0, we proceed as follows. Breaking down 

the parallel buckboost converter circuit into 2 R-L series circuits and 1 R-C series circuit 

as explained previously, we can calculate 
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Referring voltage across inductor (115) to the output of the buckboost converter in Fig. 

33 and applying condition (113), we obtain 
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        (116) 

which is identical to the condition a2>0 obtained using (108) in the characteristic 

equation. To obtain the condition corresponding to a0>0 for the parallel buckboost 

configuration, consider the equivalent circuit of buckboost converter in Fig. 33. Referring 
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the droop resistance Rd to the output of the transformer in the right and simplifying, we 

obtain 
2 2

1 2
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             (117) 

For P<Pmax, this condition holds true for (Vnl/2) ≤ X3eq ≤ Vnl. In addition, this condition is 

also shown to hold true numerically for practical values of converter voltages and droop 

resistances in the voltage range X3eq,min ≤ X3eq ≤ (Vnl/2). Apart from the conditions (116), 

(117) the other necessary condition for the asymptotic stability of Xeq,pri (90) is  
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Next, we need to check for the stability of the Xeq,sec, obtained after the insertion of 

primary and secondary controller. Then, the system characteristic equation for the m 

parallel converter configuration is given by 

  1 1

1 1 0det .........n n n

n ns s b s b s b s b 

      I A
   (119) 

where bn, bn-1,…..,b0 are real. The condition bn>0 is satisfied once the condition (108) .i.e. 

an-1>0 is satisfied. The condition b0>0 is satisfied for all practical values of droop 

resistances and integral control gains. The most significant stability conditions for Xeq,sec 

correspond to those pertaining to the integral control gain ki. However, these conditions 

are dependent on converter configuration, microgrid size and can be numerically verified 

for separate cases. 

 



 65 

 Taking the example of paralleled buckboost converters, the characteristic polynomial 

with overall (primary + secondary) control inputs (98) inserted is given by 

  4 3 2

3 2 1 0det s s b s b s b s b     I A
    (120) 

Applying the Routh stability criterion, the conditions for local asymptotic stability of the 

equilibrium point (99) can be obtained. The necessary stability condition corresponding 

to b3>0 is given by 
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As can be seen, (121) is obtained by replacing X3eq in (116) with Vnl. Since Vnl≥X3eq (121) 

is always satisfied when (116) is satisfied. One of necessary conditions on ki with regard 

to parallel buckboost converters is 
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Table 3: Stability results for 3 basic topologies  
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Table.3 gives common stability results for three basic configurations. It should be 

reiterated that in order to arrive at the stability conditions listed in Table. 3, there is no 

computational effort involved in terms of calculation of system characteristic equations 

(107), (119). Specifically, actual evaluation of the condition a0>0 (109) using system 

characteristic equation provides a result which is different from that evaluated using 

equivalent circuit approach. For example, in the case of parallel buckboost converters, 

actual evaluation of condition (109) using system characteristic equation gives (93) (with 

an inequality relation), whereas the one evaluated using equivalent circuit approach is 

(117). This is due to the presence of transformers with nonlinear turns-ratio in the 

equivalent circuit in Fig. 33. Even though (117) is more conservative than (93), with 

regard to computational effort involved and its general ease of extension to any value of 

m, (117) seems to be a better solution. Even for a large system containing basic 

topologies, stability conditions (107), (108) can be derived using the equivalent circuit 

approach. It saves a lot of effort in terms of linearizing the system equations and 

calculation of  jacobian (77). 

SIMULATION AND EXPERIMENTAL RESULTS 

Simulation results 

Simulation and experiments are performed to show the validity of analysis. The circuit 

shown in Fig. 32 is used in simulation and experiments. The circuit parameters are the 

following. E1=36V, E2=28V, C1=C2=660μF, L1= L2=400μH, Vnl=32V, P=130W, 

Rd1=0.4Ω, Rd2=0.3Ω. Initially, the circuit is operated in open loop with DOL1=0.471 and 

DOL2=0.533 which are the open loop duty ratios of the two converters respectively. The 

simulation results for open loop operation are shown in Fig. 36. Limit cycle oscillations 

of a frequency of around 150Hz are observed in the voltage and current waveforms in 

Fig. 36. The primary controllers (86) are switched on at t=0.2s. The simulation results for 
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transition from open loop to primary control are given in Fig. 37. It can be observed from 

Fig. 37 that x1, x2 and x3 settle down at equilibrium values of 4.43A, 4.64A and 26.2V 

respectively. The input currents of the two converters are Iin1=1.87A and Iin2=2.25A 

(100). The input currents are shared in the ratio Iin2:Iin1=1.20. Since the voltage drop after 

primary controller is added may be unacceptable, secondary controller with ki=0.45 (98) 

is added to primary controller at t=0.5s. Fig. 38 shows the simulation results for the 

transition from primary control mode to secondary control mode. It can be observed from 

Fig. 38 that the microgrid voltage, x3 raises to 32V. The inductor currents, x1 and x2 

decrease and settle down at 4.02A and 4.16A respectively after some initial dynamics. 

The corresponding input current values are Iin1=1.89A and Iin2=2.22A (105) and the ratio 

of the input currents Iin2:Iin1=1.18. Thus, input current sharing ratios are identical in the 

primary and secondary control stages. 

 

Fig. 36. Simulation results of a parallel buckboost converters- open loop operation. 

 

Fig. 37. Simulation results for parallel buckboost converters transitioning from open loop 

to primary control 
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Fig. 38. Simulation results for parallel buckboost converters transitioning from primary 

control to secondary control 

 

Fig. 39. Experimental results of parallel buckboost converters-open loop 

 

 

Fig. 40. Experimental results for parallel buckboost converters transitioning from open 

loop to primary control 
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Fig. 41. Experimental results for parallel buckboost converters transitioning from primary 

control to secondary control 

Experimental results 

The circuit parameters used in the experimental dc microgrid are identical to the 

simulation parameters. Texas instruments based TM4C123 launchpads are used for 

digital control of the converters. The above mentioned launchpad is a low cost 

microcontroller implementing several useful features including a CAN communication 

interface [75]. A total of 3 launchpads are used. Two launchpads are used for the local 

control of paralleled converters. One launchpad is used to sense the microgrid voltage 

and communicate secondary control signals to the paralleled converters using a CAN 

communication network. The CPL is realized by loading the microgrid with a buck 

converter whose output voltage is maintained constant using a fast regulating PI 

controller. Such a converter is also called point of load (POL) converter [18]. The 

parameters of the POL buck converter are as follows. LL=300µH, CL=1680µF, VL=16.2V, 

RL=2Ω. Thus, CPL of 130W is realized. The open loop waveforms of the state variables 

are shown in Fig. 39. During open loop operation, x1 and x2 depend on internal 

impedance of the sources E1 and E2 which are dc power supplies in this case. The 

transition of microgrid from open loop to primary control is given in Fig. 40. As soon as 

the primary controller is switched on, limit cycle oscillations are damped in about 30ms. 
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The inductor currents x1, x2 settle down at their equilibrium values of 4.42A and 4.64A 

respectively. The microgrid voltage drops to X3eq=26.2V. Thus primary controller enables 

current sharing whose ratio is given by X2eq:X1eq=1.05. As mentioned earlier, CAN 

communication protocol is used to implement secondary controller. CAN transceiver 

chips MCP2551 are used as interface between microcontrollers and the CAN bus. The 

MCP2551 is a 5V, noise tolerant, high speed chip capable of protecting the 

microcontrollers from the current spikes in the CAN bus. Data transfer rate is fixed at a 

maximum of 1 Mbps and secondary control signal is transmitted as a 12 bit data. Since, 

there are only two receivers, only 2 bits of the 11 bit identifier are used for identification 

purposes. A part of the 12 bit data is encoded within the other nine bits of the identifier. 

Thus faster communication is possible and secondary control data is transmitted at 

20kHz. The results showing the transition from primary control mode to secondary 

control mode is given in Fig. 41. As soon as the secondary controller is switched on, the 

microgrid voltage raises to 32V. The two inductor currents x1 and x2 slightly decrease and 

settle down to their new equilibrium values of X1eq=4.02A and X2eq=4.16A in about 50ms. 

The current sharing ratio is given by X2eq:X1eq=1.04 which is almost identical to the 

primary control stage. Secondary controllers enable line and load regulation. To test line 

regulation, the input voltage of converter 2, E2 is reduced to 23V and the results are given 

in Fig. 42. It can be observed from Fig. 42 that x2 decreases to 1.88A, x1 increases to 

6.19A and x3 is restored to 32V within 150ms. Thus CAN based secondary controller is 

effective in ensuring that microgrid voltage is restored to Vnl even if the source voltages 

vary. To test load regulation, the load power is increased from 130W to 180W. and 

results are given in Fig. 43. It can be observed from Fig. 43 that x1 and x2 increase to their 

new equilibrium values of X1eq=5.55A, X2eq=5.75A. The microgrid voltage X3eq is 

restored to 32V within 70ms. Another important observation is as follows. The current 
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sharing of inductor currents, X2eq:X1eq=1.04 and the input currents, Iin2:Iin1=1.17 are 

identical to those obtained in the primary and secondary control stages. 

 

 

Fig. 42. Experimental results for line regulation of parallel buckboost converters 

 

 

Fig. 43. Experimental results for load regulation of parallel buckboost converters 

SUMMARY 

A general framework for designing hierarchical control scheme for dc microgrids with 

CPLs is proposed in this paper. The control scheme consists of two levels and is 

developed as follows. Using small-signal linearized approach, the first or lower control 

level namely primary control is designed. This primary control scheme involves feedback 

of inductor currents of the individual paralleled converters and is autonomous. The 

significance of primary controller is that it enables current sharing among paralleled 
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converters and also damps limit cycle oscillations due to CPL. To compensate for the 

voltage deviations due to primary controller, the second level of control, namely 

secondary controller is added. This secondary control stage is an integral controller which 

communicates to local controllers using a high speed communication link. The secondary 

control gains are designed to ensure that current sharing obtained using primary 

controller is maintained. The stability conditions are explained using equivalent circuit of 

the converters. Using the equivalent circuit approach, stability conditions can be derived 

for a general dc microgrid with minimum effort. The control schemes and stability results 

are compared for microgrids containing the three basic converter topologies. The validity 

of proposed control schemes are shown through simulation and experimental results. 
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Chapter 5: A Linear Damping Scheme for Higher Order dc-dc 

Converters Supplying Constant-Power Loads in a dc Microgrid3 

CONTROLLER DESIGN AND ANALYSIS 

A system of non-isolated dc-dc converters of various topologies supplying a CPL 

is shown in Fig. 44 

 

Fig. 44 Higher-order dc-dc converters supplying a CPL. (a). SEPIC, (b) Cuk, (c) Zeta 

The state equations for the converters in Fig. 44 can be given in the form 

 

 

, 1, 2

,  =3, 4

nn n

nn n

L x f d,t n

C x f d,t n





 



x,

x,      (123) 

In (123), x is the vector of state variables which is given by 

 1 2 3 4, , ,
T

x x x xx =
      (124) 

The state variables x1, x2, x3 and x4 are the respective inductor currents and capacitor 

voltages as given in Fig. 44. The variable d refers to the duty cycle of the MOSFET. 

Similarly, the vector of state equations can be defined such that 

                                                 
3 Contents of this chapter are published in ”A Linear Damping Scheme for Higher Order DC-DC 

converters Supplying Constant Power Loads in a DC Microgrid”, proc. Energy Conversion Congress and 

Exposition (ECCE-Europe) 2017., where Mahesh Srinivasan is the first author 
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 1 2 3 4, , ,
T

f f f ff =
     (125) 

The state equations for the 3 converters in Fig. 44 are given in Table. 4. The variable d’ 

in Table. 4 is given by 

' 1d d               (126)  

Assuming d to involve feedback of state variables, a generalized expression can be used 

for d in the form of 

 d g x
              (127)  

Since the system in (123) is non-linear, the chosen state feedback (127) should ensure the 

stability of the corresponding equilibrium point Xeq. Stability of the equilibrium point Xeq 

can be estimated as follows. First, the duty cycle expression given by (127) is substituted 

in the system equations (123). Next, the expression for linearized system jacobian given 

by  

 





eqx=X

f
A

x
      (128) 

(128) is calculated. As an example, the A matrix obtained in the case of a SEPIC 

converter is given by (129).  
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  (129) 

It should be noted that, the terms in A matrix in the case of other two converters is also 

similar to (129). Among the necessary conditions to ensure that all the eigen values of A 

lie in the left half of s plane (LHS), one of the simple conditions is that 

trace(A)<0      (130) 
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To satisfy (130), one or more of the necessary conditions given by (131), (132) need to be 

satisfied.  
g
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i

i
x
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Table 4: Average state equations for system in Fig. 44 

To ensure condition (132), g has to involve positive feedback of the respective capacitor 

voltages. It should be noted that SEPIC and Cuk converters have their respective input 

modules identical to that of a boost converter and the input module of a Zeta converter is 

identical to that of a buckboost converter. Hence, to limit d from reaching higher values 

nearing 1, positive feedback of x3 or x4 may be avoided. This implies that g can involve 

feedback of either of inductor currents x1, x2 or both. This is equivalent to inserting a 

virtual resistance in series with the respective inductances. In a dc microgrid, there will a 

number of sources that interface through parallel connected LRCs at a common dc bus. 

To ensure that the control algorithm derived in this paper can be extended to such a 

parallel converter scenario, and to ensure the simplicity of control algorithm, let us 

assume that g involves feedback of either x1 or x2. Hence, there is a need to decide the 
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location to insert the virtual resistance. Among the two inductors, it is chosen to insert the 

virtual resistance in series with the input inductance, L1, for the following reasons. 

The current through L1, x1, is the input current for all the three converter configurations. 

When more converters are connected in parallel, this virtual resistance could as well 

serve as a droop resistance [38] enabling current sharing among converters. 

Since the purpose of the virtual resistance is to damp limit cycle oscillations, the 

equilibrium point obtained after inserting the resistance has to be stable. However, for a 

given value of the damping resistance, there exists a maximum value of load power 

beyond which no stable equilibrium point exists. This is true both in the case of inserting 

virtual resistance in series with L1or L2. Assuming that the virtual resistance is inserted in 

series with L2, the maximum load power, Pmax,L2 is given by 

 

    (133) 

where k is the open loop duty ratio and Rd is the virtual droop resistance. Assume that 

same Rd is inserted in series with L1. The maximum load that can be supplied at the 

microgrid while still ensuring that the corresponding equilibrium point is stable can be 

given by 

              (134) 

such that Pmax,L1> Pmax,L2. It should be noted that load powers greater than Pmax,L1 can be 

supplied by inserting the same Rd  in series with L1 but stability of the corresponding 

equilibrium point cannot be ensured. 

 Hence, the duty cycle d1 for the switch during the first stage, active damping stage is 

designed as follows 

 

    2

, 2

2 2 1
,0 1max L

d

E k k
P k

R

  
  

  2

max, 1

1 1

L

d

E k
P

R

 




 77 

     (135) 

The resistance Rd in (135) is virtual in the sense that there is no real power loss in the 

resistor and it is implemented through control action. The equilibrium point obtained 

using the control input d1 in (135) is given by Xeq,1. The individual components of Xeq,1 

are referred by  

 

1 ,1 2 ,1 3 ,1 4 ,1, , ,
T

eq eq eq eqX X X X  eq,1X =
       (136) 

The equilibrium point Xeq,1 obtained in the case of all the three configurations .i.e. 

SEPIC, Cuk and Zeta is given in Table 5. Observing Table 5, one can notice that during 

the active damping stage, the equilibrium values of all state variables except x3 are 

identical for all the three converter configurations. The equilibrium value of the state 

variable x3, which is represented by X3eq,1 is the voltage across the center capacitor 

namely C3. The equilibrium values of the state variables x1 and x2 which are represented 

by X1eq,1 and X2eq,1 respectively are the input and the output currents of the converters in 

all the 3 converter configurations. By substituting the control input (135) in the system 

equation (123) and calculating the linearized system jacobian matrix A corresponding to 

the system described by (123), we can observe that the control input d1 given by (135) is 

able to damp the limit cycle oscillations caused by the constant power loads of the dc 

microgrid buses. However the voltage at dc microgrid is reduced from the nominal 

voltage Vnl to X4eq,1 where Vnl is the no load voltage of the dc microgrid which is given by 

 

     (137) 

This deviation of microgrid voltage from Vnl to X4eq,1 may be unacceptable. Further, the 

controller needs to ensure that deviations in load power and source voltages do not affect 
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the microgrid voltage. In order to ensure that the controller compensates for voltage 

deviations at the dc microgrid buses, an integral term needs to be added to the control 

input d1 in (135) so that the total control input becomes 

 

    (138) 

where ki is the integral control gain and d is the overall control input obtained by 

combing the first and second stages. The equilibrium point obtained using the overall 

control inputs d in (138) is given by Xeq,2. The individual components of Xeq,2 are referred 

by  

1 ,2 2 ,2 3 ,2 4 ,2, , ,
T

eq eq eq eqX X X X  eq,2X =
     (139) 

The equilibrium point Xeq,2 is obtained in the case of all the three configurations .i.e. 

SEPIC, Cuk and Zeta and is given in Table. 6. Observing Table. 6, one can notice that 

during the voltage regulation stage, the microgrid voltage is restored to Vnl. The 

observations regarding the state variables x1, x2 and x3 as listed in the active damping 

stage hold true in the case of voltage regulation stage as well. 
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Table 5: Equilibrium point obtained after active damping stage for converters in Fig. 

44 
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Table 6: Equilibrium point obtained after voltage regulation stage for converters in 

fig. 44 

STABILITY RESULTS 

For the equiliubrium point Xeq,1 to be locally asymptotically stable, the real part of the 

eigenvalues of the linearized version of matrix A given by (128) evaluated at Xeq,1 need 

to be negative. Suppose now that the characteristic polynomial of the matrix A is of the 

form s
4
+a3s

3
+a2s

2
+a1s+a0. Then the relevant conditions for asymptotic stability based on 

the Routh-stability criterion [67] indicates that Xeq,1 is stable if the coefficients a3, a2, a1 

and a0 are greater than zero. The conditions given by a3>0 and a0>0 are identical for all 

the 3 converters. The conditions given by a2>0 and a1>0 are identical for Cuk and Zeta 

converters while they are slightly different for SEPIC converter. The conditions common 

for all the 3 converters are given in (140), (141). 
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The conditions a1>0and a2>0 for SEPIC converter are 
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The conditions given by a1>0 and a2>0 in the case of Cuk and Zeta converters are 
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The condition (140) is similar to the condition derived in [17] where it has been 

suggested that stability can be achieved in dc microgrids if resistive loads are higher than 
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the CPLs. The condition (131) can be satisfied qualitatively by choosing higher values for 

the capacitors and lower values for the inductors [17]. One of the main observations is 

that for stability of equilibrium point Xeq,1, the center capacitor C3 has to be designed 

smaller in the case of Cuk and Zeta converters than in the case of SEPIC converter.  

It should be noted that each of the converters given in Fig. 44 is a fourth order system. 

However, after the addition of integral controller in the voltage regulation stage given by 

(138), each of the converters becomes a fifth order system. Hence, it is difficult to derive 

general stability conditions. Further assuming that the system characteristic equation is 

now given by s
5
+b4s

4
+b3s

3
+b2s

2
+b1s+b0, the necessary conditions given by b4…b0>0 do 

not provide any condition on the integral control gain ki. So stability can be ascertained 

for individual cases as follows. The linearized system jacobian, now given by Anew which 

is a 5x5 matrix is calculated. The eigen values of Anew are evaluated at Xeq,2 to verify if all 

of them lie on the left half of the s plane  

SIMULATION AND EXPERIMENTAL RESULTS 

Simulation results 

The previous analysis was verified by simulation and experiments on all three converter 

configurations. The system and control parameters for each converter in Fig. 44 are given 

in Table. 7. Initially, the system is simulated in open loop with open loop duty ratios 

given by k. It can be observed from Figs. 45, 47 and 49 that initially x1 and x4 exhibit 

limit cycle oscillations about their respective equilibrium points given in Table. 6. Active 

damping virtual resistors given by Rd are switched (through control action) at t=0.35s in 

order to damp the limit cycle oscillations. The transition of SEPIC, Cuk and Zeta 

converters from open loop to active damping stage can be observed in Figs. 45, 47 and. 

49 respectively. Once the active damping controller is switched on, limit cycle 
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oscillations are damped in about 30ms for all 3 converter configurations. The state 

variables x1 and x4 settle down at the equilibrium values given by X1eq,1 and X4eq,1 

respectively which are shown in Table. 5. It should be noted from Figs. 45, 47 and 49, 

that the controller given by (135) damps the limit cycle oscillations but causes deviation 

in the microgrid voltage from Vnl. In order to restore the microgrid voltage to Vnl and to 

maintain the same in the event of source voltage or load changes, it is necessary to switch 

on the next control stage namely voltage regulation stage. This stage consists of adding 

integral controllers with appropriate gains to the active damping stage given by (135). 

The overall control algorithm is now given by (138). Simulation results for transition 

from active damping stage to voltage regulation stage for SEPIC, Cuk and Zeta 

converters are given in Figs 46, 48 and 50 respectively. It can be observed from Figs 46, 

48 and 50 that microgrid voltage is restored to Vnl in about 50ms. It should be noted that 

the current x1 represents the input current of the converter for all the 3 configurations. 

Hence, there is no change in the equilibrium value of x1 from the active damping stage to 

the voltage regulation stage indicating that the load being supplied is CPL. 

 

Fig. 45. Simulated results for transition of SEPIC converter from open loop to active 

damping stage  
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Fig. 46. Simulated results for transition of SEPIC converter from active damping stage to 

voltage regulation stage 

 

Fig. 47. Simulated results for transition of Cuk converter from open loop to active 

damping stage 

 

 

Fig. 48. Simulated results for transition of Cuk converter from active damping stage to 

voltage regulation stage 
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Fig. 49. Simulated results for transition of Zeta converter from open loop to active 

damping stage 

 

Fig. 50. Simulated results for transition of Zeta converter from active damping stage to 

voltage regulation stage 
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Parameter SEPIC Cuk Zeta 

E(V) 32 34 35 

L1(µH) 650 600 600 

L2(µH) 600 650 650 

C3(µF) 600 200 200 

C4(µF) 1200 1650 1650 

P(W) 100 120 130 

Rd(Ω) 1.02 1 1 

Vnl(V) 36 38 40 

k 0.529 0.528 0.533 

ki 0.97 0.97 0.9 

Equilibrium point during active damping stage 

X1eq,1(A) 3.13 3.53 3.71 

X4eq,1(V) 24.12 25.02 26.1 

Equilibrium point during voltage regulation stage 

X1eq,2(A) 3.13 3.53 3.71 

X4eq,2(V) 36 38 40 

Line and load regulation 

X1eq,line(A) 4.17 4.62 4.81 

X1eq,load(A) 4.38 4.71 4.86 

Table 7: Circuit parameters and equilibrium points for simulation and experiments 
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Experimental results 

For experiments, Texas instruments based TM4C123 launchpad is used for digital control 

of the converters. The above mentioned launchpad is a low cost microcontroller with a 

80MHz clock consisting of 16 PWM channels, 2 ADC modules, 12 general purpose timer 

modules (GPTM) and 78 different interrupts supported through a nested vector interrupt 

control (NVIC) module [76]. In addition to the same, it also implements several other 

useful features including a Controller area network (CAN) communication interface [75]. 

Such a communication scheme may prove useful for communication between parallel 

connected converters in a microgrid [33]. The CPL is realized by loading the microgrid 

with a buck converter whose output voltage is maintained constant using a fast regulating 

PI controller. Such a converter is also called point of load (POL) converter [18]. The 

parameters of the POL buck converter are as follows. LL=300µH, CL=1680µF, RL=2Ω. 

The voltage across the load resistor RL given by VL. The switching frequency of LRC 

converter is fixed at 10kHz and that of POL converter is 20kHz. The parameters of the 

experimental microgrid are identical to the simulation parameters. The results of the 

evaluation of the controller damping action due to the virtual resistance are shown in 

Figs. 51, 55 and 59 for SEPIC, Cuk and Zeta converters respectively. Experimental 

results for transition from active damping stage to voltage regulation stage are shown in 

Figs. 52, 56 and 60 for SEPIC, Cuk and Zeta converters respectively. In both the cases, 

experimental results obtained are identical to simulation results.The integral control term 

in (138) also enables line and load regulation. Line regulation results are shown in the 

Figs. 53, 57 and 61. The source voltage E is reduced by 8V for each of the converters. It 

can be observed from Figs. 53, 57 and 61 that x1 increases from X1eq,2 to X1eq,line whose 

values are given in Table. 7. The dc microgrid voltage is held constant at Vnl. The 

response time for the controller is around 150ms. Load regulation was tested by 
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increasing the load for each of the converters by 40W and the results are shown in the 

Figs. 54, 58 and 62. From Figs 54, 58 and 62, it can be observed that x1 increases from 

X1eq,2 to X1eq,load (values given in Table. 7). The microgrid voltage x4 is held constant at 

Vnl. 

 

 

Fig. 51 Experimental results of transition of SEPIC converter from open loop to active 

damping stage 

 

 

Fig. 52. Experimental results of transition of SEPIC converter from active damping stage 

to voltage regulation 
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Fig. 53. SEPIC converter experimental waveforms showing line regulation 

 

 

Fig. 54. SEPIC converter experimental waveforms showing load regulation 

 

 

Fig.55. Experimental results of transition of Cuk converter from open loop to active 

damping stage  
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Fig. 56. Experimental results of transition of Cuk converter from active damping stage to 

voltage regulation stage 

 

 

Fig. 57. Cuk converter experimental waveforms showing line regulation 

 

 

Fig. 58 Cuk converter experimental waveforms showing load regulation 
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Fig. 59. Experimental results of transition of Zeta converter from open loop to active 

damping stage  

 

 

Fig. 60. Experimental results of transition of Zeta converter from active damping stage to 

voltage regulation stage  

 

 

Fig. 61. Zeta converter experimental waveforms showing line regulation 
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Fig. 62. Zeta converter experimental waveforms showing load regulation 

 

SUMMARY 

An active linear damping scheme is developed for a dc microgrid with higher 

order dc-dc converters like SEPIC, Cuk and Zeta supplying constant power loads. The 

controller implementation is carried out in two stages. The first stage involves a 

proportional negative feedback of the input inductor current of the converter. This stage, 

referred to as active damping stage enables damping the limit cycle oscillations due to 

CPL. The second stage involves the addition of an integral controller to the active 

damping stage. The second stage, referred to as voltage regulation stage enables in 

restoring and maintaining the microgrid voltage within acceptable limits. Stability 

conditions for the equilibrium points are derived. The proposed control scheme is verified 

by simulation and experimental results. 
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Chapter 6:  Calculation of Loadability in a Droop Controlled DC 

Microgrid with Constant Power Loads4 

PROBLEM DESCRIPTION 

 

Figure. 63. A 4 bus DC microgrid [77] 

 

Consider a general ‘n’ bus dc microgrid where the sources are droop controlled. The 

loads in the microgrid are instantaneous constant power loads (CPLs). The variables 

representing each bus ‘i’ of the system are the power injected by the bus, Pdc,i  and the 

voltage at the bus, Vdc,i. Depending on the variables specified at a bus, two kinds of buses 

can be defined for such a system [77].  

1. Voltage drooped bus - In this bus, both Vdc,i and Pdc,i are unknown. A voltage 

drooped bus is analogous to the generator (PV) bus in a conventional power system. 

However, since this bus is connected to the voltage source through an actual or a virtual 

droop resistance [38], voltage at this bus is unknown. 

                                                 
4 Contents of this chapter are published in ”Calculation of Loadability in a Droop Controlled DC Microgrid 

with Constant Power Loads”, Proc. Power Electronics for Distributed Generation Systems (PEDG) 2015, 

pp. 1-7, where Mahesh Srinivasan is the first author 



 93 

2. Constant power bus - In this bus, Vdc,i is unknown whereas Pdc,i is assumed to be 

known. A constant power bus is analogous to the load (PQ) bus in a conventional power 

system. 

Thus, the equations [77] that can be defined at a bus i of the system are given by 

,

, ,

,

( : 0
dc i

i dc i nl i di

dc i

P
g V V R

V
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    (146) 
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i mat i j dc j
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    (147)  

In (146), Vnl,i refers to the no load voltage at the i
th

 bus. The droop resistance of the 

generator at the same bus is denoted by Rdi. In (147), Ymat(i,j) denotes the element in the i
th

 

row and j
th

 column of the Y bus matrix. The equation (146) denoted by gi is the voltage 

droop equation and is defined only at the voltage drooped bus. The equation (147) 

denoted by fi is the KCL equation at the i
th

 bus and is defined at all the buses in the 

system [77]. Let the vector of voltage droop equations at all the voltage drooped buses be 

represented as g and the vector of KCL equations at all the buses be denoted f. The vector 

of unknowns in the system is denoted by u which consists of voltages at all the buses and 

the power injected at the voltage drooped buses. If there are local CPLs present at the 

voltage drooped buses, (146) gets modified as 

, ,

, ,

,

( : 0
dc i ld i

i dc i nl i di

dc i

P P
g V V R

V

 
    

 

u)

   (148) 

where Pld,i is the known value of CPL present at bus i. However, the aim of this paper is 

to adopt the algorithm in [78] to find the loadability at a constant power bus. So, it can be 

assumed that there are no local CPLs present at the voltage drooped buses without loss of 

generality. For a system containing n1 voltage drooped buses and n2 constant power 

buses, there exist 2n1+n2 equations and 2n1+n2 unknowns. To obtain the power flow 

solution, these 2n1+n2 nonlinear equations are solved iteratively [77]. 
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The generalized circle diagram approach proposed in [78] is not generally 

considered as a method for finding the loadability. It is shown in this paper that the 

algorithm proposed in [78] can be adopted to determine the maximum real power load 

that can be supplied at a constant power bus. A brief version of the algorithm in [78] is 

presented here for facilitating easy discussion. The notations and terminology used in the 

next paragraph and subsections correspond to those used in [78].  

Power flow equations can be described by a vector of equations of the form  

 

1 1,n m  

F(u,k) = 0

u k      (149) 

where F is a vector of n nonlinear equations, u is the vector of unknown parameters and k 

is the vector of known parameters. To study the response of the vector of unknowns u to 

the changes in the vector of knowns k, a target function of the form T(u,k) is introduced. 

The algorithm proposed in [78] determines the response of the target function T when 

only two of the elements of k are varied, the others being held constant. When the 

function T is maintained at a constant value t, the set of equations can be defined as  

 

( , , , ) 0x y '
F u k

    (150) 

( , , , )T x y t'
u k      (151) 

where x and y are the variable parameters in k and k’ is the result of removing x and y 

from k. For each value of t, (150) and (151) constitute a contour because they contain 

n+2 unknowns (u, x and y) and n+1 constraints (F and T). This contour can be 

represented in two dimensions in the plane of the two varying parameters namely x and y. 

Tracing any contour involves the following steps [78]. 
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1. Obtaining the first point on the contour. 

2. Tracing the subsequent points on the contour. 

The two steps are illustrated in Fig.64 

 

 Getting the First Point on the Contour 

Let 

( , , )x y u
     (152) 

)TG = (F,      (153) 

(0,0,0,......, )tg =     (154) 

 

 

Figure. 64. Illustration of the steps in generalized circle diagram approach 

 

The equations (152), (153) and (154) together are written as  

G(ω) = g       (155) 

In (155), k’ has been omitted because it is a constant. Defining  

i
ij

j

G
H







      (156) 
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where i=1, 2, 3…n+1 and j=1, 2, 3…n+2. At the start of the iteration, an arbitrary point 

ω0 can be obtained using a power flow program. The first point on the contour is 

obtained by successively updating ω0
 
till convergence such that  

 
1 ( ) ( )m m m mH g G                    (157) 

where H*(ω
m
) is the pseudo-inverse of H(ω

m
). 

Getting the subsequent points on the contour 

Suppose the first point on the contour is ω1, the subsequent points on the contour 

are obtained as follows [78]. The H matrix (156) is calculated at ω1 and its singular value 

decomposition (SVD) is performed [79]. Thus 

TH USV        (158) 

 where S is a diagonal matrix of the same dimension of H and with non-negative diagonal 

elements in the decreasing order which are the singular values of the matrix H. U and V 

are unitary square matrices having the dimensions (n+1)x(n+1) and (n+2)x(n+2) 

respectively. The last column of the V matrix is the tangent at ω1 in the direction of the 

contour namely α1. The equation of the plane at a distance s from ω1 along α1 and 

perpendicular to α1 is given by 

1 1 1 s      
     (159) 

It can be observed that (155) and (159) together constitute n+2 equations with n+2 

unknowns. A step length of s is used as the distance moved along α1. The initial point is 

taken as ω1+sα1.The equations (155) together with (159) are solved by the NR method. 

The solution constitutes the next point on the contour namely ω2. An illustration of this 

step is given in the Fig. 65. Step 2, described in this section can be repeated to obtain the 

successive points on the contour. 
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Fig. 65. Illustration of step 2 of generalized circle diagram approach [78] 

ADOPTING PRICE METHOD TO FIND LOADABILITY 

The system equations (146), (147) have to be modified in order to apply the generalized 

circle diagram approach to find the loadability. Thus 
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            (161) 

Let the constant power bus where the loadability has to be obtained be bus q. Instead of 

choosing both the parameters x and y from the vector of known parameters k, one of the 

parameters is chosen from u (a dependent variable) and the other is chosen from k as the 

power injected at the bus q. This step is different from the algorithm presented in the 

previous section. Thus x and y are given by (162) and (163) respectively. 

,dc qx P k
       (162) 

,dc qy V u
       (163) 

The vector F (149) consists of the voltage droop equations g at all the voltage droop 

buses and the KCL equations f at all the buses except at a constant power bus r (which 

should be different from bus q). The choice of this constant power bus r is arbitrary. The 

KCL equation at bus r is the target equation T (151). The vector of unknowns u consists 

of the voltages at all the buses except bus q and the real power injected at all the voltage 

drooped buses. Let the variable x in (162) be denoted λ. The vector k’ consists of the 
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known parameters such as the real power injected at all the constant power buses except 

bus q, line conductances which can be obtained from the Ybus  matrix, virtual droop 

resistances and the no-load voltages at the voltage drooped buses. The vector of unknown 

bus voltages taken together from u and y is denoted as Vdc while the vector of real power 

injected taken from u alone is denoted Pdc. The equations (152)-(155) get modified as 

follows. 

( , , )
dc dc

ω = P V      (164)  

( )TG = F,       (165) 

(0,0,0,......,0)g =      (166) 

( , , ) 
dc dc

G P V g      (167) 

Using (156) and (164), the H matrix now becomes 

, ,H


   
  

   dc dc

G G G

P V
      (168) 

It should be noted that the matrix H (168) is rectangular having one column more than the 

number of rows. The matrix H (168) is the power flow jacobian augmented by one 

column which has zeros for all the rows except a 1 for the row corresponding to the KCL 

equation for bus q whose maximum value has to be calculated. The matrix H (168) is 

sparse whose terms can be calculated from (156) as follows. 
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1 if 

0 otherwise

i
i qf




 

        (174) 

In the case of conventional power flow in ac systems, symmetry properties of the 

jacobian terms could be exploited by normalizing the bus voltages to reduce the 

computational effort [80]. However, the effort involved in calculating H (168) in the case 

of a droop controlled DC microgrid cannot be reduced further. 

 

To obtain the first point on the contour, a detailed procedure (briefly described in the 

previous section) is proposed in [78]. However, since it is desired to obtain the maximum 

real power that can be supplied at a constant power bus q, the first point on the contour 

can be obtained by the power flow program [77] directly by fixing Pld,q at a small value. 

This provides considerable simplicity to the method. After the first point on the contour, 

ω1 is obtained, the subsequent points have to be traced. Using the H matrix, the tangent at 

ω1 namely α1 is obtained which is of the form 

d

 
 


 
  

dc1

1 dc1
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The equation of the plane at a distance s from ω1 along α1 is given by (159). The equation 

(159) can be rewritten as  

1d d

s

   

       
       

   
       
              

dc1 dc dc1 dc1

dc1 dc dc1 dc1
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dV V dV V
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In (176), the step length is to be specified. Equation (167) has one unknown more than 

the number of equations. The equation (167) can be combined with (176) and solved 

iteratively taking ω1+sα1 as the initial guess to get the subsequent point ω2 as given in 

(177). 
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α •ω α •ω
     (177) 
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SIMULATION RESULTS 

The methods discussed earlier are illustrated and are used to obtain Pld,2 Vs Vdc,2 

contour for the 4 bus system in Fig. 63 [77]. In this system, buses 1 and 3 are voltage 

drooped buses and buses 2 and 4 are constant power buses. All the line resistances are 

0.05Ω and the rest of the parameters are listed in Table. 8. The low line resistance values 

provide some important observations about the proposed method which will be explained 

at the end of this section. The value of Pld,4 is maintained constant at 697.5W and is 

considered as the target equation in the algorithm in [78] and the corresponding equations 

are 
2

1 ,1 ,1 ,1 ,1 1( , ) : 0dc nl dc dc dF x y V V V P R  u, ,k'
   (178) 

2

2 ,3 ,3 ,3 ,3 3( , ) : 0dc nl dc dc dF x y V V V P R  u, ,k'
   (179) 

4

3 ,1 ,1 (1, ) ,

1

( , ) : 0dc dc mat j dc j

j

F x y P V Y V


 u, ,k'

   (180) 
4

4 ,2 (2, ) ,

1

( , ) : 0dc mat j dc j

j

F x y V Y V


 u, ,k'

   (181) 
4

5 ,3 ,3 (3, ) ,

1

( , ) : 0dc dc mat j dc j

j

F x y P V Y V


 u, ,k'

   (182) 
4

,4 (4, ) ,

1

( , ) : 697.5 0dc mat j dc j

j

T x y V Y V


  u, ,k'

  (183) 

where u, x, y and k’ are identical to those explained in the previous section. Thus 
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   (184) 

The aim of this study is to trace the contour of operating points for increasing 

values of load at bus 2 namely Pld,2=-(Pdc,2). The first step of the algorithm is to obtain 

the first point on the contour, namely ω1, from an arbitrary point ω0. An arbitrary point 

ω0, given in Table 9, is chosen. Using (157), the first point on the contour namely ω1 is 

calculated which is also given in Table 9. The point ω1 is verified to lie on the contour 

using the power flow program [77]. In this paper, it is intended to obtain the maximum 
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value of Pld2. As explained in the previous section, a small load of 108.702W can be 

inserted in bus 2 and the initial point on the contour ω1 can be obtained directly using the 

power flow program [77].  

To obtain the subsequent point on the contour, the tangent at ω1 namely α1 has to 

be obtained. To obtain the tangent, the H matrix (156) has to be calculated at ω1. The 

symbol λ in (181) and (184) is Pdc,2 The structure of the H matrix is as follows. 

1 1 1 1 1 1 1

,1 ,3 ,1 ,3 ,4 ,2 ,2

2 2 2 2 2 2 2

,1 ,3 ,1 ,3 ,4 ,2 ,2

3 3 3 3 3 3 3

,1 ,3 ,1 ,3 ,4 ,2 ,2

4

,1

dc dc dc dc dc dc dc

dc dc dc dc dc dc dc

dc dc dc dc dc dc dc

dc

F F F F F F F

P P V V V P V

F F F F F F F

P P V V V P V

F F F F F F F

P P V V V P V
H

F

P

      

      

      

      

      

      






4 4 4 4 4 4

,3 ,1 ,3 ,4 ,2 ,2

5 5 5 5 5 5 5

,1 ,3 ,1 ,3 ,4 ,2 ,2

,1 ,3 ,1 ,3 ,4 ,2 ,2

dc dc dc dc dc dc

dc dc dc dc dc dc dc

dc dc dc dc dc dc dc

F F F F F F

P V V V P V

F F F F F F F

P P V V V P V

T T T T T T T

P P V V V P V

 
 
 
 
 
 
 


      


     

      

      

      

       












   (185) 

The H matrix is same as the power-flow jacobian matrix and it is augmented by 

one column corresponding to the partial derivative with respect to Pdc,2. This column has 

all zeros and a +1 corresponding to the partial derivative of F4 (181). Performing SVD of 

the H matrix (185) as explained in section II B (158) the tangent at ω1 namely α1 is 

obtained and is given in Table 9. It should be noted that the tangent calculated using the 

method in [78] is normalized. Thus 

2
1

1
α

     (186) 

Since the tangent (186) is normalized, (159) corresponds to the equation of a plane. Once 

the tangent at ω1 is obtained, the subsequent point, ω2 has to be traced. Equations (178)-

(183) constitute a set of 6 equations with 7 unknowns. An additional equation, which is 

the equation of the plane, is given by (159) which can be rewritten as 
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1 1 3 3 1 1 3 3 4 4 2 2 2 2 1 1dc dc dc dc dc dc dc dc dc dc dc dc dc dcP P P P V V V V V V P P V V s            

(187) 

 

 

Parameter Value Units 

Vnl,1 48 V 

Vnl,3 48 V 

Rd1 0.2 Ω 

Rd3 0.5 Ω 

Pld4=-(Pdc,4) 697.5 W 

Table 8: Parameters of the 4 Bus Test System [77] 

 

Quantity ω0 ω1 α1 

Pdc,1 0 569.763 0.5599 

Pdc,3 0 243.224 0.2380 

Vdc,1 48 45.495 -0.0026 

Vdc,3 48 45.316 -0.0028 

Vdc,4 48 45.019 -0.0027 

Pdc,2 -630 -108.702 -0.7937 

Vdc,2 48 45.346 -0.0031 

Table 9: First Point on the Contour  
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 s=10 s=100 s=500 

Quantity ω1 ω2 ω2 ω2 

Pdc,1 569.763 575.3622 625.7971 850.9309 

Pdc,3 243.224 245.6035 267.0269 362.4098 

Vdc,1 45.495 45.4692 45.2330 44.1448 

Vdc,3 45.316 45.2885 45.0354 43.8695 

Vdc,4 45.019 44.9913 44.7445 43.6073 

Pdc,2 -108.702 -116.6379 -188.0318 -504.5976 

Vdc,2 45.346 45.3145 45.0298 43.7186 

Table 10: Subsequent Points for Different Step Lengths 

Quantity ωld2max αld2max 

Pdc,1 2822.671 -0.97 

Pdc,3 1144.675 -0.235 

Vdc,1 27.386 0.0286 

Vdc,3 25.914 0.0307 

Vdc,4 25.979 0.0305 

Pdc,2 -2846.102 -0.0001 

Vdc,2 23.640 0.034 

Table 11: Loadability Point at Bus 2 

where the terms with the prefix Δ are the components of the tangent α1. Now the 

equations (178)-(183) and (187) are solved iteratively taking the point ω1+ sα1 as the 

initial guess. The subsequent points for 3 different step lengths are given in Table 10. The 

points in Table 10 are verified to lie on the contour by using the power flow program 
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[77]. The Pld,2 vs. Vdc,2 contour has been obtained using the proposed method and is 

shown in Fig. 66. The loadability at bus 2 is observed to be 2846.102W. The value of 

Vdc,2 at this point is 23.64V. The other unknown components at the point namely ωld2max 

is given in Table. 11. It should be noted that the component corresponding Vdc,2 in the 

tangent attains its maximum value at ωld2max. 

To show the validity of the proposed method, the system shown in Fig. 63 is dynamically 

simulated. The droop controlled sources at buses 1 and 3 are replaced with droop 

controlled buck converters. In [70], a linear droop of the dc microgrid voltage with 

respect to the inductor currents of the parallel connected buck converters supplying a 

CPL has been implemented. It has been shown in [70] that such a linear droop enables 

current sharing among the paralleled converters and also damps the limit cycle 

oscillations due to CPL. The control scheme for buck converter at bus 1 is given by 

,1 1 1

1

1

nl d

p

V x R
d

E




    (188) 

where x1 is the inductor current of the buck converter at bus 1. The parameters of 

the buck converters are as follows. E1=64V, E3=72V, C1=C3=1000µF, L1=L3=640µH, 

Rd1=0.2Ω and Rd3=0.5Ω where the subscripts 1 and 3 refer to the buck converter and 

control parameters at the respective voltage drooped buses. In [17], [70] a stability 

criterion has been derived which places a limit on the maximum value of CPL that can be 

supplied at a microgrid. However, there also exist several other stability criteria to be 

satisfied which relate to the parallel connected buck converters circuit parameters [70]. 

To make sure that instability only occurs due to the maximum load being exceeded and 

not due to the buck converters inductors and capacitors, additional capacitors of 8000µF 

need to be added at all the buses. The circuit thus obtained is simulated for 2 load powers 

namely Pld2=2846W and Pld2=2847W. The results obtained for two load powers 
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mentioned above are given in the Fig. 67. It can be observed from Fig. 67 that limit cycle 

oscillations are observed in the Vdc,2 waveform. However, when the primary controller is 

inserted at t=0.3s, the limit cycle oscillations are damped and Vdc,2 reaches the 

equilibrium value of 23.64V for Pld2=2846W whereas for Pld2=2847W, Vdc,2 becomes 

zero leading to voltage collapse. An interesting result can be observed regarding the 

voltage at bus 2 when the maximum power is supplied at the same bus. In [70], the 

equilibrium value of the microgrid voltage for parallel connected droop-controlled buck 

converters is given by 

 2

124

2

nl nl d

g

V V PR
V

 


     (189) 

where Vµg is the equilibrium value of the microgrid voltage and Rd12=Rd1||Rd2. It can be 

observed from (189) that maximum P will be supplied when the microgrid voltage 

Vµg=(Vnl/2) provided the stability criteria related to the buck converters circuit parameters 

are satisfied and the line resistances are ignored. In the simulation performed, Vdc,2 

reaches the equilibrium value of nearly (Vnl/2) when maximum power is supplied at bus 

2. This confirms that loadability calculated using the proposed approach is the absolute 

maximum real power that can be supplied at the microgrid bus.  

 

 

Fig.66. Pld2 Vs Vdc,2 for 4 bus dc microgrid  
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Fig. 67. Simulation results for Pld2=2846W and Pld2=2847W 

 

SUMMARY 

A method to trace the operating points of a droop controlled DC microgrid with CPLs is 

proposed. As a result, the maximum load that can be supplied at a microgrid bus is 

obtained. The various buses in a droop controlled DC microgrid are described and the 

system equations are presented. The generalized circle diagram algorithm is modified and 

applied to obtain the operating points. Simulations performed on an example microgrid 

validate the proposed method. 
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Chapter 7:  Conclusions 

CONTRIBUTIONS 

In this dissertation, a general methodology to develop hierarchical control 

schemes for dc microgrids loaded by CPLs is proposed. The objective of this research 

work is that of stable operation of a dc microgrid with acceptable operating conditions in 

the presence of CPLs. In addition, another important goal of this research work is to 

ensure proper current sharing among parallel connected sources in a dc microgrid. To 

attain the above mentioned objectives, certain modifications are made to the hierarchical 

control architecture available in the literature. Firstly, the lower control level in the 

hierarchy, namely primary droop controller has to account for the presence of CPLs in 

the microgrid in addition to its assigned task of current sharing between the parallel 

connected converters. Hence the primary controller should ensure that the equilibrium 

point obtained after inserting it is stable. Secondly, the higher control level namely 

secondary controller is realized as follows. Two different architectures for secondary 

controllers are proposed namely autonomous and semi-autonomous. In the case of 

autonomous secondary controller, secondary control algorithm is incorporated in each of 

the parallel connected converter modules. In the case of a semi-autonomous secondary 

controller, a remote secondary controller with a high speed communication link to the 

parallel converter modules is realized. The proposed control algorithms are tested on a 

variety of dc microgrids with different converter topologies. Simulation and experimental 

results obtained on these dc microgrids verify the proposed control algorithms. Finally an 

algorithm to obtain the stability limit of a general dc microgrid loaded by CPLs is 

proposed and is verified by simulations. Details of the various goals attained in this 

research work are as follows. 
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An autonomous controller is proposed to achieve current sharing of parallel 

connected buck converters in a dc micro-grid with constant power loads. A two stage 

controller is proposed, where current sharing is achieved with a primary/droop control 

that requires no communication between the converter modules. The output voltage in the 

main bus is drooped linearly with respect to the load current supplied by each of the 

converters. To compensate for the voltage deviations without affecting current sharing, 

the droop control is augmented by a secondary/voltage regulating control. Asymptotic 

stability of the equilibrium point with the proposed control input is examined using 

Lyapunov and conditions to ensure local asymptotic stability of the equilibrium points are 

derived. Simulations and experimental results are included to verify the analysis. 

An autonomous control law is derived for a microgrid which consists of system of 

parallel connected boost converters supplying a constant power load. The control law 

derived using the passivity based approach consists of two stages. The first, primary stage 

involves a non-linear droop of the microgrid voltage with respect to the current supplied 

by each of the converters thereby enabling current sharing. The primary controller also 

damps the oscillations in the dc microgrid caused by the presence of the constant power 

load. The secondary controller adjusts for the voltage deviations due to the primary 

controller without affecting the current sharing. The conditions to ensure the asymptotic 

stability of the equilibrium points are derived. Experimental results are presented to 

verify the proposed control law. 

A semi-autonomous control scheme is derived for a microgrid which consists of 

system of parallel connected buckboost converters supplying a constant power load using 

small-signal linearized approach. The control algorithm consists of two levels. The lower 

level consists of droop-based primary controllers. The primary controller enables current-

sharing among paralleled sources and also damps limit cycle oscillations due to constant 
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power loads. The higher level consists of a secondary controller which compensates for 

voltage deviations due to primary controller. This higher level is implemented by a 

remote secondary controller which uses a high speed communication link to 

communicate to local controllers. The conditions to ensure local asymptotic stability of 

equilibrium points are explained using the equivalent circuit of converters. At each stage 

of controller design and stability analysis, the results obtained for three basic 

configurations are compared and analyzed. The control schemes and stability results are 

explained by considering a microgrid consisting of paralleled buckboost converters. 

Simulations and experimental results are used to verify the validity of the proposed 

control schemes. 

A linear controller is proposed for dc microgrids with SEPIC, Cuk and Zeta 

power electronic converters supplying constant power loads. The controller is 

implemented in two stages. During the first stage, also known as active damping stage, 

limit cycle oscillations are damped by inserting a virtual resistance in series with the 

input inductor of each of the converters. During the second stage, an integral controller is 

added the first stage to compensate for the voltage deviations due to virtual resistance. 

The second stage, also known as voltage regulation stage maintains microgrid voltage 

within acceptable limits in the event of source and load variation. Linearization and small 

signal analysis are used to derive stability conditions for the equilibrium points. 

Simulation and experiments performed on a prototype microgrid are used to verify the 

proposed control laws. 

The maximum real power load in a dc microgrid bus is traced geometrically. The 

dc microgrid is droop-controlled with the loads being constant power loads. The 

generalized circle diagram approach used in a conventional power system is modified to 

be used in a droop-controlled dc microgrid for this purpose. The different types of buses 
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present in a dc microgrid are described and the locus of operating points is then obtained 

by applying the generalized circle diagram approach. The proposed method is verified by 

simulations on a 4 bus dc microgrid. 

FUTURE WORK 

Hierarchical control schemes for microgrids with parallel connected converters of 

basic topologies are developed in chapters 2, 3 and 4. In chapter 5, control laws are 

proposed to stabilize higher order dc-dc converters supplying CPLs. The hierarchical 

control scheme can be extended to a dc microgrid consisting of parallel connected 

configurations of such higher order dc-dc converters. Further, a number of feasible 

multiple input dc-dc converter topologies have been developed in [74]. A possible area 

worth investigating could be to develop hierarchical control schemes for such multiple 

input converter configurations loaded with CPLs. 
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