108,010 research outputs found

    A massively parallel multi-level approach to a domain decomposition method for the optical flow estimation with varying illumination

    Get PDF
    We consider a variational method to solve the optical flow problem with varying illumination. We apply an adaptive control of the regularization parameter which allows us to preserve the edges and fine features of the computed flow. To reduce the complexity of the estimation for high resolution images and the time of computations, we implement a multi-level parallel approach based on the domain decomposition with the Schwarz overlapping method. The second level of parallelism uses the massively parallel solver MUMPS. We perform some numerical simulations to show the efficiency of our approach and to validate it on classical and real-world image sequences

    Segregated Runge–Kutta time integration of convection-stabilized mixed finite element schemes for wall-unresolved LES of incompressible flows

    Get PDF
    In this work, we develop a high-performance numerical framework for the large eddy simulation (LES) of incompressible flows. The spatial discretization of the nonlinear system is carried out using mixed finite element (FE) schemes supplemented with symmetric projection stabilization of the convective term and a penalty term for the divergence constraint. These additional terms introduced at the discrete level have been proved to act as implicit LES models. In order to perform meaningful wall-unresolved simulations, we consider a weak imposition of the boundary conditions using a Nitsche’s-type scheme, where the tangential component penalty term is designed to act as a wall law. Next, segregated Runge–Kutta (SRK) schemes (recently proposed by the authors for laminar flow problems) are applied to the LES simulation of turbulent flows. By the introduction of a penalty term on the trace of the acceleration, these methods exhibit excellent stability properties for both implicit and explicit treatment of the convective terms. SRK schemes are excellent for large-scale simulations, since they reduce the computational cost of the linear system solves by splitting velocity and pressure computations at the time integration level, leading to two uncoupled systems. The pressure system is a Darcy-type problem that can easily be preconditioned using a traditional block-preconditioning scheme that only requires a Poisson solver. At the end, only coercive systems have to be solved, which can be effectively preconditioned by multilevel domain decomposition schemes, which are both optimal and scalable. The framework is applied to the Taylor–Green and turbulent channel flow benchmarks in order to prove the accuracy of the convection-stabilized mixed FEs as LES models and SRK time integrators. The scalability of the preconditioning techniques (in space only) has also been proven for one step of the SRK scheme for the Taylor–Green flow using uniform meshes. Moreover, a turbulent flow around a NACA profile is solved to show the applicability of the proposed algorithms for a realistic problem.Peer ReviewedPostprint (author's final draft

    Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems

    Full text link
    Development of robust dynamical systems and networks such as autonomous aircraft systems capable of accomplishing complex missions faces challenges due to the dynamically evolving uncertainties coming from model uncertainties, necessity to operate in a hostile cluttered urban environment, and the distributed and dynamic nature of the communication and computation resources. Model-based robust design is difficult because of the complexity of the hybrid dynamic models including continuous vehicle dynamics, the discrete models of computations and communications, and the size of the problem. We will overview recent advances in methodology and tools to model, analyze, and design robust autonomous aerospace systems operating in uncertain environment, with stress on efficient uncertainty quantification and robust design using the case studies of the mission including model-based target tracking and search, and trajectory planning in uncertain urban environment. To show that the methodology is generally applicable to uncertain dynamical systems, we will also show examples of application of the new methods to efficient uncertainty quantification of energy usage in buildings, and stability assessment of interconnected power networks

    The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows

    Full text link
    The Gauss--Newton with approximated tensors (GNAT) method is a nonlinear model reduction method that operates on fully discretized computational models. It achieves dimension reduction by a Petrov--Galerkin projection associated with residual minimization; it delivers computational efficency by a hyper-reduction procedure based on the `gappy POD' technique. Originally presented in Ref. [1], where it was applied to implicit nonlinear structural-dynamics models, this method is further developed here and applied to the solution of a benchmark turbulent viscous flow problem. To begin, this paper develops global state-space error bounds that justify the method's design and highlight its advantages in terms of minimizing components of these error bounds. Next, the paper introduces a `sample mesh' concept that enables a distributed, computationally efficient implementation of the GNAT method in finite-volume-based computational-fluid-dynamics (CFD) codes. The suitability of GNAT for parameterized problems is highlighted with the solution of an academic problem featuring moving discontinuities. Finally, the capability of this method to reduce by orders of magnitude the core-hours required for large-scale CFD computations, while preserving accuracy, is demonstrated with the simulation of turbulent flow over the Ahmed body. For an instance of this benchmark problem with over 17 million degrees of freedom, GNAT outperforms several other nonlinear model-reduction methods, reduces the required computational resources by more than two orders of magnitude, and delivers a solution that differs by less than 1% from its high-dimensional counterpart

    ParMooN - a modernized program package based on mapped finite elements

    Get PDF
    {\sc ParMooN} is a program package for the numerical solution of elliptic and parabolic partial differential equations. It inherits the distinct features of its predecessor {\sc MooNMD} \cite{JM04}: strict decoupling of geometry and finite element spaces, implementation of mapped finite elements as their definition can be found in textbooks, and a geometric multigrid preconditioner with the option to use different finite element spaces on different levels of the multigrid hierarchy. After having presented some thoughts about in-house research codes, this paper focuses on aspects of the parallelization for a distributed memory environment, which is the main novelty of {\sc ParMooN}. Numerical studies, performed on compute servers, assess the efficiency of the parallelized geometric multigrid preconditioner in comparison with some parallel solvers that are available in the library {\sc PETSc}. The results of these studies give a first indication whether the cumbersome implementation of the parallelized geometric multigrid method was worthwhile or not.Comment: partly supported by European Union (EU), Horizon 2020, Marie Sk{\l}odowska-Curie Innovative Training Networks (ITN-EID), MIMESIS, grant number 67571
    corecore