Development of robust dynamical systems and networks such as autonomous
aircraft systems capable of accomplishing complex missions faces challenges due
to the dynamically evolving uncertainties coming from model uncertainties,
necessity to operate in a hostile cluttered urban environment, and the
distributed and dynamic nature of the communication and computation resources.
Model-based robust design is difficult because of the complexity of the hybrid
dynamic models including continuous vehicle dynamics, the discrete models of
computations and communications, and the size of the problem. We will overview
recent advances in methodology and tools to model, analyze, and design robust
autonomous aerospace systems operating in uncertain environment, with stress on
efficient uncertainty quantification and robust design using the case studies
of the mission including model-based target tracking and search, and trajectory
planning in uncertain urban environment. To show that the methodology is
generally applicable to uncertain dynamical systems, we will also show examples
of application of the new methods to efficient uncertainty quantification of
energy usage in buildings, and stability assessment of interconnected power
networks