449 research outputs found

    Learning a Policy for Opportunistic Active Learning

    Full text link
    Active learning identifies data points to label that are expected to be the most useful in improving a supervised model. Opportunistic active learning incorporates active learning into interactive tasks that constrain possible queries during interactions. Prior work has shown that opportunistic active learning can be used to improve grounding of natural language descriptions in an interactive object retrieval task. In this work, we use reinforcement learning for such an object retrieval task, to learn a policy that effectively trades off task completion with model improvement that would benefit future tasks.Comment: EMNLP 2018 Camera Read

    Nuevos Modelos de Aprendizaje Híbrido para Clasificación y Ordenamiento Multi-Etiqueta

    Get PDF
    En la última década, el aprendizaje multi-etiqueta se ha convertido en una importante tarea de investigación, debido en gran parte al creciente número de problemas reales que contienen datos multi-etiqueta. En esta tesis se estudiaron dos problemas sobre datos multi-etiqueta, la mejora del rendimiento de los algoritmos en datos multi-etiqueta complejos y la mejora del rendimiento de los algoritmos a partir de datos no etiquetados. El primer problema fue tratado mediante métodos de estimación de atributos. Se evaluó la efectividad de los métodos de estimación de atributos propuestos en la mejora del rendimiento de los algoritmos de vecindad, mediante la parametrización de las funciones de distancias empleadas para recuperar los ejemplos más cercanos. Además, se demostró la efectividad de los métodos de estimación en la tarea de selección de atributos. Por otra parte, se desarrolló un algoritmo de vecindad inspirado en el enfoque de clasifcación basada en gravitación de datos. Este algoritmo garantiza un balance adecuado entre eficiencia y efectividad en su solución ante datos multi-etiqueta complejos. El segundo problema fue resuelto mediante técnicas de aprendizaje activo, lo cual permite reducir los costos del etiquetado de datos y del entrenamiento de un mejor modelo. Se propusieron dos estrategias de aprendizaje activo. La primer estrategia resuelve el problema de aprendizaje activo multi-etiqueta de una manera efectiva y eficiente, para ello se combinaron dos medidas que representan la utilidad de un ejemplo no etiquetado. La segunda estrategia propuesta se enfocó en la resolución del problema de aprendizaje activo multi-etiqueta en modo de lotes, para ello se formuló un problema multi-objetivo donde se optimizan tres medidas, y el problema de optimización planteado se resolvió mediante un algoritmo evolutivo. Como resultados complementarios derivados de esta tesis, se desarrolló una herramienta computacional que favorece la implementación de métodos de aprendizaje activo y la experimentación en esta tarea de estudio. Además, se propusieron dos aproximaciones que permiten evaluar el rendimiento de las técnicas de aprendizaje activo de una manera más adecuada y robusta que la empleada comunmente en la literatura. Todos los métodos propuestos en esta tesis han sido evaluados en un marco experimental adecuado, se utilizaron numerosos conjuntos de datos y se compararon los rendimientos de los algoritmos frente a otros métodos del estado del arte. Los resultados obtenidos, los cuales fueron verificados mediante la aplicación de test estadísticos no paramétricos, demuestran la efectividad de los métodos propuestos y de esta manera comprueban las hipótesis planteadas en esta tesis.In the last decade, multi-label learning has become an important area of research due to the large number of real-world problems that contain multi-label data. This doctoral thesis is focused on the multi-label learning paradigm. Two problems were studied, rstly, improving the performance of the algorithms on complex multi-label data, and secondly, improving the performance through unlabeled data. The rst problem was solved by means of feature estimation methods. The e ectiveness of the feature estimation methods proposed was evaluated by improving the performance of multi-label lazy algorithms. The parametrization of the distance functions with a weight vector allowed to recover examples with relevant label sets for classi cation. It was also demonstrated the e ectiveness of the feature estimation methods in the feature selection task. On the other hand, a lazy algorithm based on a data gravitation model was proposed. This lazy algorithm has a good trade-o between e ectiveness and e ciency in the resolution of the multi-label lazy learning. The second problem was solved by means of active learning techniques. The active learning methods allowed to reduce the costs of the data labeling process and training an accurate model. Two active learning strategies were proposed. The rst strategy e ectively solves the multi-label active learning problem. In this strategy, two measures that represent the utility of an unlabeled example were de ned and combined. On the other hand, the second active learning strategy proposed resolves the batch-mode active learning problem, where the aim is to select a batch of unlabeled examples that are informative and the information redundancy is minimal. The batch-mode active learning was formulated as a multi-objective problem, where three measures were optimized. The multi-objective problem was solved through an evolutionary algorithm. This thesis also derived in the creation of a computational framework to develop any active learning method and to favor the experimentation process in the active learning area. On the other hand, a methodology based on non-parametric tests that allows a more adequate evaluation of active learning performance was proposed. All methods proposed were evaluated by means of extensive and adequate experimental studies. Several multi-label datasets from di erent domains were used, and the methods were compared to the most signi cant state-of-the-art algorithms. The results were validated using non-parametric statistical tests. The evidence showed the e ectiveness of the methods proposed, proving the hypotheses formulated at the beginning of this thesis

    Multilabel Prototype Generation for data reduction in K-Nearest Neighbour classification

    Get PDF
    Prototype Generation (PG) methods are typically considered for improving the efficiency of the k-Nearest Neighbour (kNN) classifier when tackling high-size corpora. Such approaches aim at generating a reduced version of the corpus without decreasing the classification performance when compared to the initial set. Despite their large application in multiclass scenarios, very few works have addressed the proposal of PG methods for the multilabel space. In this regard, this work presents the novel adaptation of four multiclass PG strategies to the multilabel case. These proposals are evaluated with three multilabel kNN-based classifiers, 12 corpora comprising a varied range of domains and corpus sizes, and different noise scenarios artificially induced in the data. The results obtained show that the proposed adaptations are capable of significantly improving—both in terms of efficiency and classification performance—the only reference multilabel PG work in the literature as well as the case in which no PG method is applied, also presenting statistically superior robustness in noisy scenarios. Moreover, these novel PG strategies allow prioritising either the efficiency or efficacy criteria through its configuration depending on the target scenario, hence covering a wide area in the solution space not previously filled by other works.This research was partially funded by the Spanish Ministerio de Ciencia e Innovación through the MultiScore (PID2020-118447RA-I00) and DOREMI (TED2021-132103A-I00) projects. The first author is supported by grant APOSTD/2020/256 from “Programa I+D+i de la Generalitat Valenciana”

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure

    A Survey on Extreme Multi-label Learning

    Full text link
    Multi-label learning has attracted significant attention from both academic and industry field in recent decades. Although existing multi-label learning algorithms achieved good performance in various tasks, they implicitly assume the size of target label space is not huge, which can be restrictive for real-world scenarios. Moreover, it is infeasible to directly adapt them to extremely large label space because of the compute and memory overhead. Therefore, eXtreme Multi-label Learning (XML) is becoming an important task and many effective approaches are proposed. To fully understand XML, we conduct a survey study in this paper. We first clarify a formal definition for XML from the perspective of supervised learning. Then, based on different model architectures and challenges of the problem, we provide a thorough discussion of the advantages and disadvantages of each category of methods. For the benefit of conducting empirical studies, we collect abundant resources regarding XML, including code implementations, and useful tools. Lastly, we propose possible research directions in XML, such as new evaluation metrics, the tail label problem, and weakly supervised XML.Comment: A preliminary versio

    A hybrid algorithm for Bayesian network structure learning with application to multi-label learning

    Get PDF
    We present a novel hybrid algorithm for Bayesian network structure learning, called H2PC. It first reconstructs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy hill-climbing search to orient the edges. The algorithm is based on divide-and-conquer constraint-based subroutines to learn the local structure around a target variable. We conduct two series of experimental comparisons of H2PC against Max-Min Hill-Climbing (MMHC), which is currently the most powerful state-of-the-art algorithm for Bayesian network structure learning. First, we use eight well-known Bayesian network benchmarks with various data sizes to assess the quality of the learned structure returned by the algorithms. Our extensive experiments show that H2PC outperforms MMHC in terms of goodness of fit to new data and quality of the network structure with respect to the true dependence structure of the data. Second, we investigate H2PC's ability to solve the multi-label learning problem. We provide theoretical results to characterize and identify graphically the so-called minimal label powersets that appear as irreducible factors in the joint distribution under the faithfulness condition. The multi-label learning problem is then decomposed into a series of multi-class classification problems, where each multi-class variable encodes a label powerset. H2PC is shown to compare favorably to MMHC in terms of global classification accuracy over ten multi-label data sets covering different application domains. Overall, our experiments support the conclusions that local structural learning with H2PC in the form of local neighborhood induction is a theoretically well-motivated and empirically effective learning framework that is well suited to multi-label learning. The source code (in R) of H2PC as well as all data sets used for the empirical tests are publicly available.Comment: arXiv admin note: text overlap with arXiv:1101.5184 by other author

    CONTINUAL LEARNING FOR MULTI-LABEL DRIFTING DATA STREAMS USING HOMOGENEOUS ENSEMBLE OF SELF-ADJUSTING NEAREST NEIGHBORS

    Get PDF
    Multi-label data streams are sequences of multi-label instances arriving over time to a multi-label classifier. The properties of the data stream may continuously change due to concept drift. Therefore, algorithms must adapt constantly to the new data distributions. In this paper we propose a novel ensemble method for multi-label drifting streams named Homogeneous Ensemble of Self-Adjusting Nearest Neighbors (HESAkNN). It leverages a self-adjusting kNN as a base classifier with the advantages of ensembles to adapt to concept drift in the multi-label environment. To promote diverse knowledge within the ensemble, each base classifier is given a unique subset of features and samples to train on. These samples are distributed to classifiers in a probabilistic manner that follows a Poisson distribution as in online bagging. Accompanying these mechanisms, a collection of ADWIN detectors monitor each classifier for the occurrence of a concept drift. Upon detection, the algorithm automatically trains additional classifiers in the background to attempt to capture new concepts. After a pre-determined number of instances, both active and background classifiers are compared and only the most accurate classifiers are selected to populate the new active ensemble. The experimental study compares the proposed approach with 30 other classifiers including problem transformation, algorithm adaptation, kNNs, and ensembles on 30 diverse multi-label datasets and 11 performance metrics. Results validated using non-parametric statistical analysis support the better performance of the heterogeneous ensemble and highlights the contribution of the feature and instance diversity in improving the performance of the ensemble

    A Survey on Text Classification Algorithms: From Text to Predictions

    Get PDF
    In recent years, the exponential growth of digital documents has been met by rapid progress in text classification techniques. Newly proposed machine learning algorithms leverage the latest advancements in deep learning methods, allowing for the automatic extraction of expressive features. The swift development of these methods has led to a plethora of strategies to encode natural language into machine-interpretable data. The latest language modelling algorithms are used in conjunction with ad hoc preprocessing procedures, of which the description is often omitted in favour of a more detailed explanation of the classification step. This paper offers a concise review of recent text classification models, with emphasis on the flow of data, from raw text to output labels. We highlight the differences between earlier methods and more recent, deep learning-based methods in both their functioning and in how they transform input data. To give a better perspective on the text classification landscape, we provide an overview of datasets for the English language, as well as supplying instructions for the synthesis of two new multilabel datasets, which we found to be particularly scarce in this setting. Finally, we provide an outline of new experimental results and discuss the open research challenges posed by deep learning-based language models
    corecore