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Abstract

THESIS: CONTINUAL LEARNING FOR MULTI-LABEL DRIFTING DATA

STREAMS USING HOMOGENEOUS ENSEMBLE OF SELF-ADJUSTING

NEAREST NEIGHBORS

By Gavin Alberghini

A Thesis: submitted in partial fulfillment of the requirements for the degree of

Master of Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2021.

Director: Thesis: Alberto Cano,

Assistant Professor, Department of Computer Science

Multi-label data streams are sequences of multi-label instances arriving over

time to a multi-label classifier. The properties of the data stream may continu-

ously change due to concept drift. Therefore, algorithms must constantly adapt to

the new data distributions. In this thesis a novel ensemble method for multi-label

drifting streams named Homogeneous Ensemble of Self-Adjusting Nearest Neighbors

(HESAkNN) is proposed. It leverages a self-adjusting kNN as a base classifier with

the advantages of ensembles to adapt to concept drift in the multi-label environment.

To promote diverse knowledge within the ensemble, each base classifier is given a

unique subset of features and samples to train on. These samples are distributed to

classifiers in a probabilistic manner that follows a Poisson distribution as in online

bagging. Accompanying these mechanisms, a collection of ADWIN detectors monitor

each classifier for the occurrence of a concept drift. Upon detection, the algorithm

automatically trains additional classifiers in the background to attempt to capture

viii



new concepts. After a pre-determined number of instances, both active and back-

ground classifiers are compared and only the most accurate classifiers are selected to

populate the new active ensemble. The experimental study compares the proposed

approach with 30 other classifiers, including problem transformation, algorithm adap-

tation, kNNs, and ensembles on 30 diverse multi-label datasets and 11 performance

metrics. Results validated using non-parametric statistical analysis support the bet-

ter performance of the HESAkNN and highlight the contribution of its components

in improving the performance of the ensemble.
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CHAPTER 1

INTRODUCTION

1.1 Background

As industry attempts to leverage machine learning to solve more advanced prob-

lems, multi-label data is becoming more readily available and necessary for knowledge

discovery [1]. Some application domains include image labeling, road monitoring,

and social network mining [2, 3, 4]. Historically, multi-label algorithms have been

time and memory consuming, making them infeasible for real-time systems. How-

ever, as the need for real-time analysis of large and complex data increases, multi-

label has been identified as an effective method for processing big data. Multi-label

data streams merges two challenging tasks: multi-label classification and data stream

mining. Multi-label classification is a generalization of the multi-class classification

problem. In multi-label classification, each example’s class contains multiple, non-

exclusive labels instead of a singular class value. While multi-label classification has

experienced significant research contributions over the last few years, the context of

online learning remains an open issue. Data stream classification is a trending area

of research [5, 6]. Data contained in real-world applications are appearing more fre-

quently over infinite, continuous, time-evolving streams that present a unique set of

difficult challenges for machine learning tasks. There are two main obstacles that

contribute to the difficulty of data stream classification. These challenges include the

requirement to utilize as few resources as possible (time and memory) while main-

taining a high accuracy and robustness to concept drift. The former issue of time

and memory utilization is not unique to this problem space. Batch learning still hold
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these values in high regard, they are however, not necessary for all issues that are de-

scribed as batch learning problems. Online learning is based on the idea of real time

feedback and learning instance by instance. These concepts of how instances correlate

to training and prediction time introduce the other issue associated with data stream

mining called concept drift. Concept drift is the notion that overtime, data distribu-

tion for specific target attributes can change. Consequently, algorithms must adapt

and adjust to address concept drift in a continual learning environment. Ensembles

are popular approaches for concept drift since the algorithm may add/remove classi-

fiers to add/forget concepts appearing/fading in the stream. However, there are very

limited studies on the use of ensembles for multi-label data streams. Moreover, most

of the ensembles for data streams are based on Hoeffding Trees, but nearest neigh-

bor models have demonstrated superior performance as a base model for multi-label

classification.

This thesis introduces a novel ensemble algorithm for multi-label data streams

named Homogeneous Ensemble of Self-Adjusting Nearest Neighbors (HESAkNN).

It is based on the idea of ensembles of classifiers on feature and instance subspaces

proposed in KUE [7] and the self-adjusting algorithm MLSAkNN [8] as base classifier.

HESAkNN utilizes the advantages of the MLSAkNN as a multi-label base classifier,

along with additional custom mechanisms for ensembles that handle concept drift

and performance in the online learning environment.

1.2 Contributions

• HESAkNN: a robust homogeneous ensemble for self-adjusting to concept drift

using multi-label nearest neighbors.

• A methodology to increase the ensemble diversity by combining feature sub-

2



spaces and online bagging.

• A self-adjusting nearest neighbor classifier as base model for the ensemble.

• A background ensemble to adapt to concept drift upon detection of a warning

using ADWIN.

• A thorough experimental study comparing HESAkNN to other state of the art

models, including a more in depth analysis of the ensemble mechanisms and

how they contribute to improve the classification performance.
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CHAPTER 2

LITERATURE REVIEW

2.1 Multi-label stream classification

A multi-label stream is a potentially unbounded sequence < S1, S2, ..., Sn, ... >, in

which each element Sj is a collection of instances (batch scenario) or a single instance

(online scenario). Each instance is defined as (x, y) where x represents the instance

features and y represents the labelset, a set of labels simultaneously associated with

the instance. Multi-label classification can be viewed as a generalization of multi-

class classification. Just as these problem spaces are related, common methods in the

literature for multi-label learning involve either bringing a model from the multi-class

context into the multi-label context (Algorithm Adaptation - AA), or transforming

data into separate problems that can be solved via more traditional methods (Problem

Transformation). A brief description of these two methods along with other problems

in the multi-label streaming domain are listed below:

Problem transformation is centered on the idea of changing multi-label examples

into problems that can be solved using already established methods. This is commonly

used for creating base-line methods for multi-label data.

Label Combination: Label combination (LC), also known as label powerset (LP),

methods transform multi-dimensional label sets (y) into a single class value towards

converting the multi-label problem into a multi-class problem. Some known issues

with this method include over training and its worst case computational complexity.

Binary Relevance: Binary Relevance (BR) is a problem transformation method

that decomposes a d-dimensional label vector into d number of binary classification
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problems. This allows standard binary classifiers to be used and predict the possibility

of each label. There are some issues raised by this strategy [9] stemming from the

loss of any label correlation when the problem is decomposed. However, multiple

mechanisms exist to combat this issue [9].

Classifier Chains: Classifier Chains (CC) are a common means to rectify the

loss of label correlations associated with methods such as binary relevance. The idea

behind this method is to supply label predictions as features to classifiers further

down the chain. If a correlation between labels exists between the provided labels

and the label being actively predicted, this method will detect it. Unfortunately, this

means that label correlation discovery is based on the order of predicted labels in the

classifier chain. Commonly, several variations of the label order are trained at the

same time and the highest achieving CC is chosen.

Algorithm adaption methods take the opposite approach as problem transforma-

tion and focus on making changes to decision functions allowing a previously single

class model to now operate in the multi-label context, including methods for feature

selection [10]. Some examples include MLkNN [11] and MMP [12]. For this thesis,

several adaptations of the kNN algorithm are considered for the multi-label context.

In the work by Roseberry et al. [13] they proposed MLSAMkNN, a multi-label kNN

for data stream mining that introduced the first iteration of concept drift mechanisms

for the MLkNN classifier using a self-adjusting memory for the sliding window. In

their following work [14], they propose MLSAMPkNN, an improvement by adding

a punitive system that can selectively remove instances to improve classifier perfor-

mance. Finally, in [8], the authors proposed MLSAkNN, a self-adjusting k value that

dynamically changes over time for each label, adapting automatically to the best

parameter settings in real-time.
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2.1.1 Concept drift

Concept drift is the term used to describe how the statistical properties of target

labelset y change over time. Formally concept drift is defined as Pt(x, y) 6= Pt+∆(x, y)

where P (x, y) represents the joint distribution between features and labels at time t.

When the underlying associations in the data change, models built on past data are

no longer effective. Some of the different types of concept drift are detailed below:

• Sudden concept drift: The scenario in which there is an instant change in the

underlying data distribution at a particular time t. Models built prior to the

drift are immediately unreliable and should be discarded.

• Incremental concept drift: The situation where there is steady progression

through multiple concepts over a time interval (t1, t2). Each subsequent shift

results in a different concept from the original data distribution and closer to

some target distribution. Models can incrementally adapt to the drift.

• Gradual concept drift: The context in which incoming data is alternating be-

tween two different concepts with a growing bias toward the new distribution

over time. Models can gradually adapt to the drift.

• Recurring concept drift: The idea that a previously seen concept can potentially

reappear once or multiple times in the future [15]. Models can be saved and

restored when the recurring drift reappears.

While all of the listed forms of concept drift focus on when and how the drift

appears, another important factor is to consider if drift is contained within one con-

cept. Real concept drift describes a change that invalidates prior decision boundary

knowledge of a class. This would invalidate any prior knowledge of the concept and
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require new knowledge to supplement the shift. Conversely, virtual concept drift is

a change that only affects the distribution of data within a known concept but not

the decision boundary between them. Being able to differentiate between these two

types of drift helps avoid unnecessary changes to the current knowledge.

2.1.2 Class imbalance in multi-label streams

Class imbalance is one of the most critical issues to understand for multi-class

and multi-label learning. Many supervised learning algorithms rely on the assump-

tion of equal class distributions. By skewing this proportion, one can expect to see

poor predictive performance for the minority class. There are several methods to

combat class imbalance, including random sampling methods such as over-sampling

and under-sampling [16, 17]. In the multi-label learning context, one can consider

the class imbalance of each label (following the BR approach) or the label set (fol-

lowing the LP approach). If even a single label experiences severe class imbalance,

it must be addressed, or the multi-label prediction will fail. There are several recent

papers in both the research and practical fields that deal with class imbalance for

multi-label data. Salazar et al. [18] performed experiments focusing on the use of

data augmentation for semi-supervised learning with credit card frauds data. They

discover relationships between semi-supervised algorithms and data augmentation ra-

tios, along with the discovery of key benchmarks for business making decisions. In

the work of Zhang et al. [19], the authors drive to design a learning strategy that

explores both label correlations and class imbalance simultaneously. As we move into

the data stream context the difficulties of class imbalance increase. Detailed in the

work of Zheng et al. [20], class imbalance is a significant problem for data streams.

They discuss how many existing methods for combating class imbalance rely on static

proportions of imbalance over time, which is unrealistic for practical applications. In
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addition, they recommend studying change in multiple minority class imbalance in

order to benefit future analysis. The important consideration is that throughout a

stream data proportions are constantly shifting. Accompanying the dynamic prob-

lems of concept drift, ideally classifiers should be able to incorporate mechanisms to

handle adaptive class imbalance. The continued work of Zhang et al. [21] depicts

a re-sampling ensemble framework to combat this issue. Roseberry et al. [8] also

employed the self-adjusting k value to better adapt to underrepresented minority la-

bels, adding a degree of freedom for label-independent k neighbors based on their

best self-adjusting parameters. This follows the idea of Zhang and Wu in creating

label-specific multi-label classifiers [22].

2.1.3 Ensemble learning for multi-label streaming scenarios

Ensemble learning is a popular methodology of classification in machine learn-

ing. Ensembles are collections of classifiers that represent different knowledge on the

problem space. These classifiers work together in order to create combined knowledge

scenarios where predictions are more accurate and robust. This learning method re-

quires that both the classifiers within the ensemble contain novel information about

the problem space and that they are powerful enough to contribute to predictions in

a positive way. In this thesis, the focus falls on two topic areas of ensemble learning:

(i) ensembles that work on real time drifting data streams, and (ii): ensembles for

multi-label data and their applicability for streaming settings.

2.1.3.1 Ensembles for data streams

Ensembles are among the most robust and accurate learners available for complex

machine learning tasks [23, 24]. Over recent years of research, ensemble learning has

been identified as an effective method for data stream mining. Some earlier methods
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in this context include Oza et al. [25] and their work with boosting and bagging

methods for improved ensemble performance. Adaptive Random Forests [5] is another

more traditional ensemble method with high popularity. This algorithm focuses on

adaptive example re-sampling along with additional flexible operators. In the work

of Sun et al. [26] ensembles were leveraged to allow for tracking of multiple concepts

present in the data. Each component classifier utilized a one-versus-all approach in

order to associate examples with a particular class. Throughout the data stream,

the ensemble identifies three possible concept states: the emergence of a class, the

disappearance of a class, and the emergence of a previously disappearance class.

The algorithm dynamically enables and disables component classifiers based on the

currently detected concepts, allowing the ensemble to adapt to the data. Museba

et al. [27] recently proposed an adaptive ensemble for non-stationary data streams.

Their algorithm maintains a collection of classifiers that are evaluated on accuracy and

diversity. As the ensemble is introduced to new concepts, new classifiers are created

in order to capture the knowledge. Passive methods to limit the ensemble size are

introduced, including hyper parameters that define the criteria to remove a classifier

from the collection. The drift detection method (DDM) is also utilized to detect data

drift. On detection, all of the learners in the collection are reset. These modules enable

the algorithm to adapt to the non-stationary data over time, improving performance

in this context. Another algorithm that leverages meta-analysis of kappa and classifier

voting abstinence as a means to combat concept drift is the algorithm proposed

in Cano et al. [7, 28]. The important aspect of these algorithms is the ability to

adapt to the evolving data stream. Ensemble methods allow for meta evaluations of

several classifiers to detect changes in performance and predict the arrival of concept

drift. Through the application of boosting methods new component classifiers capture

additional knowledge from new concepts through training on the drifted data. These
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reasons explain why ensemble methods are better performers in the data stream

mining context, because they are able to adjust to non-stationary data dynamically.

2.1.3.2 Ensembles for multi-label data

As touched on previously, there are two major types of methods for dealing with

multi-label data, problem transformation, and algorithm adaptation. Ensembles have

been widely used as a method for implementing binary relevance, label-powerset, or

classifier chains in various ways [29, 30, 31, 32]. When used for BR they commonly

are created as n length ensembles that contain one traditional binary classifier per

label. In the LP problem domain, ensembles are typically used to distribute the

large class space among multiple classifiers. Finally, when used for CC, ensembles

typically express different chain orders to improve the chance of discovering the true

label dependency. However, ensembles for algorithm adaption methods are popular as

well [33, 34] and can provide similar benefits as seen for traditional ensemble methods.

Many of these different ensembles exist for multi-label classification. In the work of

Wu et al. [35], they propose a multi-label tree ensemble algorithm that is meant to

exploit the dependencies between labels by learning them as hierarchical trees that

reflect the intrinsic label dependency of the data. These trees are then combined into

an ensemble that forms compounded predictions based on how each tree structure is

modeled. The ideas proposed by Huang et al. [36] include methods for combating

common issues with problem transformation methods. They propose a method of

learning unique features based on each class label. Their work reached the same

conclusion as Zhang and Li [37] and demonstrated that individual labels have their

own representative features, this idea helps to guide meta-based ensemble methods

to better understand relevant data for individual labels in an example.

When dealing with multi-label data streams, we must understand the issues of
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both multi-label data and data streams. In recent literature, there is an emergence

of methods targeting this domain. Sun et al. [38] establish in their work that most

algorithms built for multi-label data streams are expansions of single-label classifi-

cation streams, meaning almost all of these algorithms entirely ignoring potential

label dependencies. In their work, they propose an ensemble algorithm supported by

Jensen-Shannon concept drift detection. Their algorithm leverages infrequent label

pruning as a method to improve classification performance by exploiting the label de-

pendencies. In another study, Sousa et al. [39] reveal an experimental analysis of two

rule-based algorithms that leverage label subset rules to form decision boundaries.

The novelty for this algorithm is in the fact rules are generated on subsets of labels

instead of a single or all labels, again exploiting potential label dependencies. The

work of Wu et al. [40] explores the traditional random forest algorithm, creating an

adaptive method for multi-label data streams based on adaptive random forest. This

method was then implemented over the Hadoop framework to be competitive against

other high speed algorithms in this context. The proposed algorithm HESAkNN is

designed to meet the challenges of this problem domain via adaptive, multi-label

component classifiers and intelligently designed ensemble methods.
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CHAPTER 3

METHODOLOGY

3.1 HESAkNN

This section of the methodology presents Homogeneous Ensemble of Self-Adjusting

Nearest Neighbors (HESAkNN) as a front running algorithm for multi-label data

stream mining. The pseudo-code is presented in Alg. 1. As shown in the previous

sections, there are many advantages to ensemble learning for both the data streaming

and multi-label problem domains. HESAkNN leverages Multi-Label Self-Adapting

kNN (MLSAkNN) [8] algorithms that are individually capable of adjusting for con-

cept drift and other changes in multi-label data. This allows for the ensemble to

avoid the traditional pitfalls of problem transformation methods. Moreover, since

each MLSAkNN base learner is trained on different subsets of features and instances,

each classifier contains potentially novel information on the problem. HESAkNN em-

ploys a number of methodologies to combat concept drift, including a collection of

ADWIN detectors that watch each base classifier. This mechanism serves to warn the

ensemble that a concept drift has been detected. On detection the ensemble immedi-

ately resets the learning on active classifiers, to potentially capture the new concept

with existing feature spaces. However, after drift detection, HESAkNN will initialize

a set of background classifiers on new subsets of features. The background ensemble

is not included in the prediction but will train in tandem with the active ensemble

over a duration of instances defined as the window size w. Once the background

ensemble has trained on w instances, HESAkNN analyzes the Hamming score and

subset accuracy of all classifiers from both ensembles. The best performing classifiers
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are then selected to occupy the new primary ensemble and the background classifier

is cleared. This way, the most relevant features and concepts are constantly being

evaluated and replaced to reflect the current data in the stream. Each module of

HESAkNN will be described in the following subsections.

3.1.1 MLSAkNN

MLSAkNN is a multi-label algorithm designed by Roseberry et al. [8]. It is an

adaption of traditional kNN for the multi-label streaming environment. In order to

adapt to concept drift, the algorithm includes a variable size window, whose size ex-

pands and contracts based on the current drift detection. This allows the algorithm

to dynamically choose which parts of the instance stream are important and remove

old instances in case of concept drift. MLSAkNN also utilizes a punitive system to

attempt removing instances that contribute heavily to errors. Due to the nature of

multi-label data, the punitive system can choose to penalize instances for each label

individually. This allows for data adaption that is tailored to each label stream and

beneficial for overall performance. Finally, MLSAkNN employs an adaptive k value

for selecting the quantity of nearest neighbors. The adaptive k exists for each label,

providing a more autonomous algorithm without the need for manual parameter tun-

ing. Our contribution is to add another level of abstraction by creating ensembles of

MLSAkNN classifiers where instances presented to the classifiers are subject to fea-

ture subspace projections and online bagging. This way, the diversity of the classifiers

both in the feature and instance space is increased, leading to better predictions than

individual classifiers.
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Algorithm 1: HESAkNN algorithm.
Input:
S: data stream
m: number of base classifiers (ensemble)
w: window size
Symbols:
E: ensemble of m γ classifiers
E′: background ensemble of m γ′ classifiers
α: ADWIN detector for each m classifier
τ : feature subspace for each m classifier
h: Hamming score for each m classifier
s: subset accuracy for each m classifier
ŷ: label set prediction of a base classifier

for Si ∈ {S1, ..., Sn} do
if S1 then

for j ∈ {1, ...,m} do
hj ←− Hamming score of γj at instance S1

sj ←− subset accuracy of γj at instance S1

ρj ←− random subspace size
τj ←− r-dimensional set of features
γj ←− new MLSAkNN on τj(S1)

end

end
ŷ ←− E prediction on Si

α←− ADWIN update on Si and ŷ
if α warning for any γ ∈ E then

for j ∈ {1, ...,m} do
γj ←− reset learning
γj ←− incremental train of γj on τj(Si)
αj ←− new ADWIN

end

end
for j ∈ {1, ...,m} do

k ←− Poisson(1) value for weighting
if k > 0 then

S′
i ←− k-instance weighting of Si

γj ←− incremental train of γj on τj(S′
i)

end

end
if α warning was detected then

if E′ = ∅ then
for j ∈ {1, ...,m} do

ρ′j ←− random subspace size

τ ′j ←− r-dimensional set of features

γ′j ←− new MLSAkNN on τ ′j(Si)

end

end
for j ∈ {1, ...,m} do

h′j ←− Hamming score of γ′j at instance Si

s′j ←− subset accuracy of γ′j at instance Si

k ←− Poisson(1) value for weighting
if k > 0 then

S′
i ←− k-instance weighting of Si

γ′j ←− incremental train of γ′j on τ ′j(S′
i)

end

end
if i - α warning timestamp = w then

E ←− Select(E ∪ E′, h · s, h′ · s′,m)
E′ ←− ∅

end

end

end
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3.1.2 Online bagging

Bagging is the process of training a set of weak learners in parallel to unique

collections of information. In this context, HESAkNN utilizes an online bagging

following a Poisson(λ) distribution with λ = 1 in order to distribute examples to dif-

ferent weak learners in the ensemble. Poisson(1) represents the converging binomial

distribution of examples as the number of instances grows very large. This method

of boosting applies additional weight to instances for specific learners to derive new

knowledge, allowing us to sample with replacement from our data stream. Online

bagging has been successfully used in Leveraging Bagging [41], Adaptive Random

Forest [5], and Kappa Updated Ensemble [7].

3.1.3 Feature subspaces

An important aspect of supervised learning is the ability to identify relevant

features that impact predictions. In the multi-label context, this is true for each indi-

vidual label, but not all of the attributes are relevant for all of the labels. HESAkNN

leverages the diversity of each classifier to solve this issue. Each weak classifier within

the ensemble is given a unique subset of features to consider. During evaluations of

the ensemble, classifiers with weak performance are discarded in favor of others with

better performance. Because new classifiers are constantly being created and evalu-

ated throughout the duration of the data stream, HESAkNN has the means to adapt

to changes in relevant features over time effectively. This adds to the overall diversity

of the ensemble and helps to boost overall performance. The subspace size is modeled

using a normal distribution with a mean 70% of the number of features.
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3.1.4 Concept drift detection using ADWIN

ADWIN is an adaptive windowing algorithm [42] that detects changes in data

distributions over a certain number of examples. Changes are determined by examin-

ing the statistical properties for two sub portions of a given window and determining

if there is a significant difference in mean measurements. Many algorithms and de-

tection methods in the literature follow this implementation strategy [5, 42, 41]. In

HESAkNN, ADWIN is used as the primary source of explicit drift detection on each

of the base classifiers that operate on different subsets of features and instances of

the stream. This way, ADWIN will reflect potential changes of the data distribution

that may not necessarily affect all of the stream but only to subsets of features and

labels.

3.1.5 Background ensemble to adapt to concept drift

Upon drift detection using ADWIN on any of the classifiers, a new ensemble is

initialized in the background. This new ensemble is trained in parallel with the cur-

rently active one. Due to the drift detection, both of these ensembles have reset the

learning of all base classifiers. However, the differences in feature space and instance

distribution will lead to different knowledge products after a predefined duration.

After this period, a comparison is performed between the active and background en-

semble where only the best classifiers are selected for the new active ensemble. The

criterion to select the best performing classifiers is a linear combination of the subset

accuracy and the Hamming score. These two metrics aim at different objectives in

the multi-label classification, starting by ensuring that new concepts are being de-

tected and added to the ensemble, maintaining still relevant knowledge, and removing

outdated base classifiers with old concepts.
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CHAPTER 4

RESULTS

4.1 Experimental study

This section presents the experimental study and comparison with works in the

state of the art. The experiments are designed to answer the following research

questions:

• RQ1: Can HESAkNN demonstrate competitive performance compared to state

of the art classification methods for multi-label data streams?

• RQ2: Is HESAkNN a competitive ensemble in this context when compared

strictly to other ensemble algorithms?

• RQ3: Is HESAkNN competitive against other cutting edge kNN adaptations

for multi-label data streams?

• RQ4: How does each of the HESAkNN contributions improve the classification

performance?

4.1.1 Experimental setup

4.1.1.1 Algorithms

Table 1 presents a taxonomy of the algorithms used in our experimental study.

All algorithms are publicly available in MOA [43]. The source code of HSAkNN is

publicly available at https://github.com/canoalberto/HESAkNN to facilitate the

reproducibility of the research. The table presents all of the models that were run
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during experimentation, along with the families they belong to. Within the exhaus-

tive list of 30 classifiers, particular importance is the ensemble and kNN families of

algorithms. Ensemble methods have several options for enhancing performance and

combating concept drift, and all are run using 10 base classifiers. On the other hand,

kNN methods also have various implementations, as shown in [8]. All algorithms were

compared across the same 11 metrics, which will be discussed in further detail in a

following section.

4.1.1.2 Datasets

Datasets in our experiments cover a wide range of properties. 30 datasets of

up to 269.648k instances, 31.8k features, and 374 labels are evaluated. The data

properties of each individual dataset are shown in Table 2. These measures include

the number of instances, features, and labels. Other measures include cardinality,

which measures the average amount of labels per instance, and density, calculated as

cardinality divided by the number of labels.
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Table 1.: Taxonomy of algorithms used in the experiments.

Family Ref Acronym Algorithm

BR + Single [44] NB Naive Bayes
BR + Single [45] HT Hoeffding Tree
BR + Single [46] AHT Adapting Hoeffding Option Tree
BR + Single [47] SCD Single Classifier Drift
BR + Ensemble [41] LB Leveraging Bag
BR + Ensemble [25] OB Oza Bag
BR + Ensemble [44] OBA Oza Bag Adwin
BR + Ensemble [25] OBO Oza Boost
BR + Ensemble [44] OBOA Oza Boost Adwin
BR + Ensemble [48] OCB Online Coordinated Boosting
BR + Ensemble [49] DWM Dynamic Weighted Majority
BR + Ensemble [50] AUE Accuracy Updated Ensemble
BR + Ensemble [5] ARF Adaptive Random Forest
BR + kNN [51] kNN kNN
BR + kNN [52] kNNP kNN PAW
BR + kNN [52] kNNPA kNN PAW ADWIN
BR + kNN [53] SAMkNN Self-Adjusting Memory kNN
AA + Incremental [54] BRU Binary Relevance Updateable
AA + Incremental [54] CCU Classifier Chains Updateable
AA + Incremental [54] PSU Pruned Sets Updateable
AA + Incremental [54] RTU Ranking Threshold Updateable
AA + Incremental [55] MLHT Multilabel Hoeffding Tree
AA + Incremental [56] AMR Adaptive Model Rules
AA + Ensemble [54] BML Bagging ML Updateable
AA + Ensemble [57] OBML Oza Bag ML
AA + Ensemble [57] OBAML Oza Bag Adwin ML
AA + kNN [11] MLkNN ML kNN
AA + kNN [13] MLSAMkNN ML Self-Adjusting Memory kNN
AA + kNN [14] MLSAMPkNN ML Self-Adjusting Memory Punitive kNN
AA + kNN [8] MLSAkNN ML Self-Adjusting kNN
AA + Ensemble + kNN – HESAkNN Homogeneous Self-Adjusting kNN

4.1.1.3 Metrics

Due to the nature of multi-label data streams, traditional evaluation methodolo-

gies such as cross-validation are unusable. This gives rise to the use of prequential

evaluations to measure model performance. When calculating subset accuracy and

Hamming score for HESAkNN, we must account for the total and partial correctness

of the multi-label prediction. In order to do so, the following definitions are utilized
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Table 2.: Datasets and their characteristics.

Dataset Instances Features Labels Cardinality Density

Birds 645 260 19 1.01 0.05
Virus 207 749 6 1.22 0.20
Flags 194 19 7 3.39 0.48
Scene 2,407 294 6 1.07 0.18
Enron 1,702 1,001 53 4.27 0.08
Genbase 662 1,186 27 1.25 0.05
Medical 978 1,449 45 1.25 0.03
Water-qual 1,060 16 14 5.07 0.36
Corel-5k 5,000 499 374 3.52 0.01
Eukaryote 7,766 440 22 1.15 0.05
Plant 978 440 12 1.08 0.09
Reuters 6,000 500 103 0.11 0.01
Mediamill 43,907 120 101 4.38 0.04
Ohsumed 13,929 1,002 23 0.81 0.04
CAL-500 502 68 174 26.04 0.15
Yelp 10,806 671 5 1.64 0.33
Slashdot 3,782 1,079 22 1.18 0.05
Human 3,106 440 14 1.19 0.08
Langlog 1,460 1,004 75 15.94 0.21
Gnegative 1,392 440 8 1.05 0.13
CHD 555 49 6 2.58 0.43
Stackex 1,675 585 227 2.41 0.01
Corel-16k 13,766 500 153 2.86 0.02
Imdb 120,919 1,001 28 1.00 0.04
Nuswide-C 269,648 129 81 1.87 0.02
Nuswide-B 269,648 501 81 1.87 0.02
Yahoo-soc 14,512 31,802 27 1.67 0.06
Eurlex 19,348 5,000 201 2.21 0.01
Hypersphere 100,000 100 10 2.31 0.23
Hypercube 100,000 100 10 1.00 0.10

over n instances and l labels where the true label set y = {y1, ..., yl} and predicted

label set ŷ = {ŷ1, ..., ŷl} :

Subset accuracy =
1

n

n∑
i=0

1 | yi = ŷi (4.1)

Hamming score =
1

n · l

n∑ l∑
i=0 j=0

1 | yij = ŷij (4.2)

Subset accuracy represents the exact match for all of the labels in the labelset, a very
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strict metric and preferred to best compare algorithms. Hamming score calculates the

successful predictions per instance and label, i.e., the symmetric difference. However,

it suffers from highly imbalanced data distributions as most of the labels are nega-

tive, while the challenge is to predict the minority positive instances. Other popular

metrics in multi-label classification are also utilized, including: example-based met-

rics, micro-averaged metrics, and macro-averaged metrics. For each, we can define

precision, recall, and F1 [34].

4.1.2 Overall comparison

The first experiment evaluates and compares the overall performance of the 30

algorithms on the 30 datasets for all of the 12 metrics to address RQ1. Table 3 collects

the results in a compact table, showing the average metric values for all the datasets,

along with the rank of the algorithm according to Friedman (the lower the rank,

the better). Based on this, one can observe that HESAkNN was the top perform-

ing model for 9 of the 12 metrics, with significant differences between HESAkNN’s

performance and the second best algorithm in many of the metrics. For example,

subset accuracy is 3 points better (10% improvement) for HESAkNN compared to

the second best MLSAkNN. This shows that the ensemble strategy and the original

contributions lead to a significant improvement compared to the single base classifier.

While HESAkNN’s recall values may not be the best, the F1 metric, which balances

precision and recall, clearly favors HESAkNN as a well rounded classifier. The follow-

ing best-performing classifiers are Online Coordinate boosting (OCB) and Adaptive

Random Forest (ARF).
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Table 3.: Performance metrics for all algorithms across all 30 datasets and ranks.

Algorithm Su. Acc H. Sco Ex. Acc Ex. Pre Ex. Rec Mi. Pre Mi. Rec Mi. F1 Ma. Pre Ma. Rec Ma. F1 Rank

NB 0.1389 0.8329 0.2298 0.3114 0.4209 0.3893 0.4187 0.3028 0.1980 0.3016 0.1981 20.82
HT 0.2091 0.9136 0.2919 0.5252 0.3301 0.5962 0.3194 0.3696 0.2297 0.1786 0.1788 19.05
AHT 0.2198 0.9157 0.3022 0.5376 0.3393 0.6066 0.3276 0.3790 0.2398 0.1815 0.1862 16.05
SCD 0.2116 0.8746 0.3036 0.4160 0.4418 0.4896 0.4349 0.3743 0.2779 0.2841 0.2473 14.45
LB 0.2717 0.8147 0.3768 0.5300 0.5516 0.4888 0.5404 0.4325 0.2616 0.3655 0.2475 9.82
OB 0.2015 0.8274 0.2894 0.4990 0.4147 0.4654 0.4077 0.3513 0.2187 0.2805 0.1942 19.09
OBA 0.2240 0.8322 0.3123 0.5198 0.4375 0.4798 0.4274 0.3731 0.2449 0.2906 0.2128 15.00
OBO 0.1197 0.7279 0.2503 0.3390 0.5533 0.3181 0.5469 0.3275 0.2514 0.4164 0.2686 16.09
OBOA 0.0258 0.6489 0.1756 0.2108 0.5961 0.2016 0.5879 0.2600 0.1970 0.4389 0.2401 20.00
OCB 0.3092 0.9294 0.4150 0.6126 0.4604 0.6341 0.4448 0.4943 0.3355 0.2650 0.2818 5.55
DWM 0.1956 0.8857 0.2914 0.4282 0.4426 0.4878 0.4341 0.3609 0.2314 0.2748 0.2152 16.59
AUE 0.0521 0.5427 0.1580 0.2704 0.5651 0.2250 0.5713 0.2092 0.1393 0.5097 0.1658 21.82
ARF 0.2978 0.8628 0.4073 0.5760 0.5440 0.5534 0.5286 0.4770 0.3258 0.3416 0.2828 7.45
kNN 0.2376 0.9119 0.3222 0.4955 0.3654 0.5445 0.3530 0.3910 0.2374 0.1815 0.1863 15.77
kNNP 0.2398 0.9142 0.3209 0.5048 0.3606 0.5576 0.3484 0.3901 0.2489 0.1784 0.1869 15.09
kNNPA 0.2590 0.9184 0.3475 0.5287 0.3918 0.5816 0.3767 0.4175 0.2678 0.1934 0.2029 11.61
SAMkNN 0.2627 0.9230 0.3425 0.5936 0.3764 0.6643 0.3594 0.4150 0.3129 0.1834 0.2065 10.36
BRU 0.2120 0.9126 0.3000 0.4934 0.3429 0.5146 0.3306 0.3734 0.1976 0.1843 0.1742 19.55
CCU 0.2266 0.9136 0.3081 0.5060 0.3460 0.5383 0.3323 0.3815 0.2043 0.1850 0.1768 17.05
PSU 0.1605 0.8791 0.2327 0.2995 0.2740 0.3095 0.2549 0.2696 0.1021 0.1344 0.1088 26.59
RTU 0.1645 0.8916 0.1555 0.2789 0.1571 0.4665 0.1507 0.1713 0.1558 0.0984 0.1000 27.45
MLHT 0.1603 0.8791 0.2322 0.2986 0.2734 0.3082 0.2542 0.2687 0.1023 0.1344 0.1088 27.14
AMR 0.1391 0.8329 0.2300 0.3117 0.4209 0.3908 0.4186 0.3029 0.1974 0.3014 0.1975 20.82
BML 0.2207 0.9152 0.3061 0.5371 0.3466 0.5650 0.3341 0.3793 0.2425 0.1801 0.1829 15.82
OBML 0.1599 0.8802 0.2309 0.3055 0.2708 0.3144 0.2514 0.2683 0.0951 0.1272 0.1020 27.55
OBAML 0.2229 0.8925 0.2858 0.3929 0.3243 0.4053 0.3043 0.3263 0.1484 0.1528 0.1364 23.27
MLkNN 0.2303 0.9144 0.3035 0.5466 0.3367 0.6053 0.3239 0.3746 0.2483 0.1670 0.1810 16.27
MLSAMkNN 0.3155 0.9245 0.4042 0.5867 0.4426 0.6198 0.4269 0.4752 0.3183 0.2251 0.2451 7.59
MLSAMPkNN 0.3378 0.9243 0.4354 0.5727 0.4796 0.5869 0.4612 0.5039 0.3163 0.2483 0.2673 6.64
MLSAkNN 0.3515 0.9367 0.4658 0.6223 0.5215 0.6283 0.5040 0.5407 0.3671 0.3126 0.3263 3.53
HESAkNN 0.3886 0.9399 0.5038 0.6831 0.5523 0.7021 0.5359 0.5826 0.4289 0.3230 0.3510 2.09

4.1.3 Ensembles comparison

The second experiment evaluates specifically the performance of ensemble clas-

sifiers to address RQ2. Table 4 presents subset accuracy measures for all ensemble

algorithms against all datasets. HESAkNN outperforms all of the ensemble methods

and obtains the best subset accuracy for 18 of the 30 datasets, providing the highest

average accuracy and the best rank. The second best ensemble is Online Coordinate

boosting (OCB), but there is an 8-points difference with our proposed method. On

the other hand, the worst performing ensemble is Oza Boost Adwin.

Next, a detailed statistical analysis comparing the ensemble methods is presented.

Figs. 1 and 2 show the Bonferroni-Dunn test for ensemble algorithms on the subset
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Table 4.: Subset accuracy for all ensemble classifiers on each dataset.

Dataset LB OB OBA OBO OBOA OCB DWM AUE ARF BML OBML OBAML HESAkNN

Birds 0.4177 0.4404 0.4404 0.1920 0.1848 0.4207 0.3642 0.0706 0.4580 0.4250 0.4510 0.4510 0.4544
Virus 0.3041 0.1456 0.1456 0.2543 0.1279 0.3947 0.2168 0.0000 0.3146 0.3498 0.2592 0.2592 0.6706
Flags 0.1030 0.1148 0.1148 0.0797 0.0797 0.1137 0.1042 0.0092 0.1179 0.1054 0.1294 0.1294 0.1228
Scene 0.6621 0.3488 0.5149 0.5170 0.0450 0.8368 0.4968 0.0615 0.7948 0.3574 0.3426 0.4931 0.8745
Enron 0.0318 0.0355 0.0305 0.0028 0.0011 0.0666 0.0338 0.0007 0.0547 0.0825 0.0884 0.1089 0.0949
Genbase 0.7435 0.3652 0.3652 0.0156 0.0156 0.7651 0.2337 0.1207 0.4515 0.3698 0.2621 0.2382 0.9178
Medical 0.4754 0.2760 0.2760 0.0000 0.0000 0.2619 0.0014 0.1973 0.5028 0.2851 0.1479 0.1479 0.3534
Water-qual 0.0172 0.0047 0.0056 0.0021 0.0019 0.0099 0.0021 0.0005 0.0194 0.0040 0.0072 0.0120 0.0265
Corel-5k 0.0208 0.0069 0.0075 0.0000 0.0000 0.0315 0.0000 0.0002 0.0400 0.0092 0.0089 0.0230 0.0545
Eukaryote 0.6257 0.4059 0.5052 0.3447 0.0000 0.7031 0.4314 0.1954 0.6860 0.4060 0.1616 0.7522 0.8134
Plant 0.3168 0.2285 0.2477 0.1192 0.0000 0.7255 0.2377 0.0278 0.4295 0.2358 0.3135 0.5386 0.7619
Reuters 0.0795 0.0650 0.0650 0.0000 0.0000 0.0518 0.0121 0.0360 0.1466 0.0812 0.2109 0.1909 0.2400
Mediamill 0.1174 0.0689 0.0629 0.0293 0.0000 0.0952 0.0029 0.0545 0.1458 0.0709 0.0532 0.0826 0.1895
Ohsumed 0.1383 0.1523 0.1524 0.1230 0.0164 0.1315 0.1266 0.0423 0.1787 0.1239 0.1617 0.1574 0.6798
CAL-500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Yelp 0.5328 0.3401 0.4594 0.4610 0.0218 0.4463 0.4020 0.1663 0.6313 0.3467 0.2375 0.4132 0.6651
Slashdot 0.0262 0.1019 0.1019 0.0000 0.0000 0.0612 0.0290 0.0580 0.0962 0.0107 0.1298 0.1372 0.1434
Human 0.5099 0.1970 0.2998 0.3761 0.0378 0.6363 0.3635 0.0536 0.5356 0.1981 0.2068 0.6480 0.7513
Langlog 0.0253 0.0273 0.0273 0.0000 0.0000 0.1462 0.1538 0.0070 0.1464 0.1388 0.1381 0.1388 0.1779
Gnegative 0.6298 0.5808 0.5965 0.2424 0.0000 0.8869 0.6054 0.1797 0.7354 0.6016 0.4159 0.4159 0.8956
CHD 0.1838 0.1562 0.1562 0.1288 0.1243 0.1452 0.1055 0.0058 0.1714 0.1554 0.1430 0.1430 0.2293
Stackex 0.0069 0.0156 0.0156 0.0000 0.0000 0.0196 0.0124 0.0062 0.0037 0.0024 0.0276 0.0111 0.0144
Corel-16k 0.0577 0.0130 0.0144 0.0341 0.0000 0.0869 0.0008 0.0005 0.1011 0.0220 0.0206 0.0748 0.1215
Imdb 0.0121 0.0031 0.0067 0.0129 0.0032 0.0302 0.0122 0.0002 0.0291 0.0213 0.1081 0.1101 0.0934
Nuswide-C 0.2632 0.2397 0.2503 0.1978 0.1003 0.2129 0.1764 0.2211 0.2687 0.2399 0.1330 0.2487 0.2401
Nuswide-B 0.2263 0.2256 0.2251 0.1972 0.0130 0.2109 0.2265 0.0036 0.2536 0.2196 0.1184 0.2483 0.2394
Yahoo-soc 0.0036 0.0204 0.0061 0.0000 0.0000 0.1016 0.0271 0.0021 0.0022 0.1441 0.2818 0.2818 0.1855
Eurlex-sm 0.0000 0.0000 0.0000 0.0000 0.0000 0.0726 0.0006 0.0000 0.0000 0.1576 0.1411 0.1352 0.1181
Hypersphe 0.6218 0.4724 0.6281 0.1818 0.0000 0.6109 0.4934 0.0135 0.6215 0.4636 0.0287 0.0287 0.5289
Hypercube 0.9973 0.9937 0.9976 0.0795 0.0000 0.9991 0.9954 0.0298 0.9979 0.9929 0.0675 0.0675 0.9993

Average 0.2717 0.2015 0.2240 0.1197 0.0258 0.3092 0.1956 0.0521 0.2978 0.2207 0.1599 0.2229 0.3886

Rank 5.6774 7.6774 6.5484 9.9839 12.2258 4.7742 8.2742 11.1935 3.8387 6.8871 6.8548 5.0000 2.0645

accuracy and Hamming score respectively (multiple-algorithm comparison test). The

figures illustrate the rank of the algorithms and the critical distance for α = 0.01.

Algorithms outside the interval of the critical distance are said to perform statistically

worse than the control method. According to the multiple-comparison test, it cannot

be said that there are statistically significant differences when comparing HESAkNN

with Adaptive Random Forest (ARF) and Online Coordinated Boosting (OCB) for

both metrics. However, statistically significant differences exist for the rest of the

ensembles.
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Fig. 1.: Bonferroni-Dunn for subset accuracy on ensembles.
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Fig. 2.: Bonferroni-Dunn for Hamming score on ensembles.

Table 5 shows the p-values reported for the Wilcoxon signed-rank test on the main

performance metrics: subset accuracy, Hamming score, micro-F1, and macro-F1,

where p-values < 0.01 indicate statistically significant differences between HESAkNN

and the compared method (pairwise comparison test). The smaller the p-value, the

higher confidence. There are statistically significant differences concerning all the en-

sembles for all the metrics, except for the macro-F1 and the Adaptive Random Forest

model. Finally, Fig. 3 illustrates the Bayesian sign test. This test returns probabili-

ties that one model will outperform the other based on measured performance. The

top region indicates practical equivalence, while the lower right portion denotes bet-
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Table 5.: Wilcoxon signed test: HESAkNN vs ensembles (p-values).

Algorithm Su. Acc H. Sco Mi. F1 Ma. F1

LB 3.92E-05 4.46E-05 8.20E-06 2.64E-04
OB 1.24E-06 7.47E-06 1.06E-06 1.42E-05
OBA 7.82E-06 2.04E-05 1.44E-06 3.16E-05
OBO 9.13E-07 8.67E-07 8.67E-07 6.91E-04
OBOA 9.13E-07 8.67E-07 8.67E-07 5.57E-04
OCB 7.13E-06 1.11E-04 3.85E-06 2.45E-04
DWM 9.13E-07 9.60E-07 1.30E-06 9.86E-06
AUE 9.13E-07 8.67E-07 8.67E-07 4.09E-05
ARF 2.36E-04 3.32E-04 4.46E-05 1.22E-02
BML 2.74E-06 3.30E-05 1.06E-06 1.94E-06
OBML 3.60E-05 2.61E-06 1.94E-06 8.67E-07
OBAML 2.96E-04 4.23E-06 1.76E-06 8.67E-07
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20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

rope

L R

(b) OCB vs HESAkNN.

Fig. 3.: Bayesian sign test: subset accuracy on top ensembles.

ter performance for HESAkNN and the remaining side for the opposing algorithm.

Based on the results shown in the figure, HESAkNN outperforms Adaptive Random

Forest at almost every evaluation and Online Coordinated Boosting every time.

Fig. 4 helps to visualize why HESAkNN is rating well across these various tests

and metrics. It is shown in this figure how subset accuracy varies with instance

arrival over time, adapting to concept drift and changing properties of the stream.
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Notice how HESAkNN is the first to adapt and maintains the highest subset accuracy

for the most prolonged duration. This can contribute to an explanation as to why

there are performance gains with HESAkNN. First, adaption happens early. As soon

as drifts are detected, changes are made, and metrics for meta evaluations begin to

be gathered. Second, the ensemble is diverse and contains competent classifiers for

longer amounts of time due to frequent evaluations and updates. In short, HESAkNN

is more adaptable to changes in concept and varying difficulties in the data.

4.1.4 Nearest neighbors comparison

The third experimental study aims at providing an in-depth evaluation and com-

parison of classifiers based on the nearest neighbor to address RQ3. As shown in

Table 6, HESAkNN outperforms the kNN family of algorithms on 17 out of the 30

provided datasets. It is also shown to have the most competitive average accuracy

and the best rank. Showing that at a minimum HESAkNN is a top running contender

not only for ensemble algorithms but also adapted kNN algorithms. HESAkNN shows

significantly better performance than MLSAkNN, demonstrating the advantages of

the ensemble approach and its methodologies for adaptation to concept drift.

Fig. 5 shows that the Bonferroni-Dunn test cannot find significant statistical

differences exist between HESAkNN, MLSAkNN, MLSAMPkNN, and MLSAMkNN

based on subset accuracy. Fig. 6 shows the Bonferroni-Dunn test utilizing ham-

ming distance, it reveals no statistical differences between HESAkNN, MLSAkNN,

SAMkNN, MLkNN, and MLSAMkNN. After considering both tests, it can be seen

that our combined metrics show no overall statistical difference between HESAkNN,

MLSAkNN, and MLSAMkNN, which means that a significant statistical difference

exists for the remaining kNN methods.

Table 7 reveals something more interesting in the kNN family compared to the
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Fig. 4.: Comparison of top performing ensembles: subset accuracy on four datasets.

ensemble test. While most values in the table confirm with confidence that there are

statistically significant differences, we see that MLSAkNN maintains relatively low p-

values except for the macro-averaged F1. As the component classifier of HESAkNN,

it is understandable that these values would be the most similar. It serves as an
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Table 6.: Subset accuracy for all nearest neighbor classifiers on each dataset.

Dataset kNN kNNP kNNPA SAMkNN MLkNN MLSAMkNN MLSAMPkNN MLSAkNN HESAkNN

Birds 0.4792 0.4814 0.4814 0.4676 0.4729 0.4747 0.4683 0.4542 0.4544
Virus 0.4827 0.4684 0.4684 0.4767 0.5334 0.5530 0.5659 0.6324 0.6706
Flags 0.1165 0.1088 0.1088 0.0409 0.0869 0.0753 0.0681 0.1299 0.1228
Scene 0.5443 0.6492 0.6484 0.6792 0.5287 0.8279 0.8461 0.8458 0.8745
Enron 0.0891 0.0953 0.0861 0.0870 0.0724 0.0976 0.1005 0.0952 0.0949
Genbase 0.7617 0.7498 0.7498 0.2091 0.7543 0.8832 0.8785 0.9118 0.9178
Medical 0.3284 0.3151 0.3151 0.2429 0.3701 0.3811 0.4180 0.3663 0.3534
Water-qual 0.0126 0.0177 0.0171 0.0199 0.0125 0.0159 0.0207 0.0572 0.0265
Corel-5k 0.0035 0.0005 0.0049 0.0043 0.0048 0.0216 0.0346 0.0465 0.0545
Eukaryote 0.3429 0.2836 0.4480 0.6255 0.2988 0.6982 0.7170 0.7386 0.8134
Plant 0.1469 0.1545 0.1606 0.3321 0.1915 0.4170 0.5657 0.6164 0.7619
Reuters 0.1803 0.1889 0.1889 0.1365 0.1661 0.1907 0.2495 0.2392 0.2400
Mediamill 0.1019 0.1073 0.1055 0.1458 0.0873 0.1452 0.1603 0.1517 0.1895
Ohsumed 0.0066 0.0051 0.0051 0.0113 0.0139 0.0265 0.0315 0.0326 0.6798
CAL-500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Yelp 0.1988 0.2262 0.4069 0.5174 0.1528 0.5028 0.5674 0.6249 0.6651
Slashdot 0.1400 0.1393 0.1390 0.0661 0.0694 0.1887 0.2047 0.1891 0.1434
Human 0.1973 0.1968 0.3281 0.4981 0.1186 0.5785 0.6447 0.6683 0.7513
Langlog 0.1791 0.1787 0.1787 0.1476 0.1472 0.1590 0.1877 0.1756 0.1779
Gnegative 0.5212 0.5343 0.5918 0.7255 0.5790 0.7538 0.8226 0.8419 0.8956
CHD 0.1478 0.1657 0.1657 0.1202 0.1123 0.1534 0.1398 0.2307 0.2293
Stackex 0.0109 0.0068 0.0068 0.0134 0.0075 0.0100 0.0139 0.0128 0.0144
Corel-16k 0.0108 0.0064 0.0195 0.0241 0.0092 0.0699 0.0867 0.1167 0.1215
Imdb 0.0339 0.0311 0.0309 0.0171 0.0032 0.0447 0.0661 0.0717 0.0934
Nuswide-C 0.2291 0.2360 0.2378 0.2662 0.2317 0.2555 0.2466 0.2509 0.2401
Nuswide-B 0.1573 0.1618 0.1565 0.2594 0.2221 0.2600 0.2424 0.2486 0.2394
Yahoo-soc 0.1214 0.1262 0.1124 0.1547 0.0951 0.1177 0.1476 0.1430 0.1855
Eurlex-sm 0.0699 0.0874 0.0834 0.0722 0.0569 0.0428 0.1300 0.1335 0.1181
Hypersphe 0.5184 0.4799 0.5272 0.5239 0.5129 0.5216 0.5105 0.5231 0.5289
Hypercube 0.9950 0.9919 0.9963 0.9979 0.9982 0.9985 0.9969 0.9960 0.9993

Average 0.2376 0.2398 0.2590 0.2627 0.2303 0.3155 0.3378 0.3515 0.3886

Rank 6.4667 6.5000 6.1333 5.7000 7.1667 4.3667 3.3333 3.0000 2.3333
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CD

HESAkNN
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Fig. 5.: Bonferroni-Dunn for subset accuracy on nearest neighbors.
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Fig. 6.: Bonferroni-Dunn for Hamming score on nearest neighbors.

Table 7.: Wilcoxon signed test: HESAkNN vs nearest neighbors (p-values).

Algorithm Su. Acc H. Sco Mi. F1 Ma. F1

kNN 3.33E-06 1.03E-04 1.59E-06 8.67E-07
kNNP 4.03E-06 1.16E-04 1.18E-06 8.67E-07
kNNPA 3.33E-06 1.31E-04 1.30E-06 8.67E-07
SAMkNN 9.42E-06 4.99E-04 1.44E-06 2.14E-06
MLkNN 4.44E-06 1.31E-04 1.18E-06 9.60E-07
MLSAMkNN 1.36E-04 9.45E-05 4.66E-06 4.66E-06
MLSAMPkNN 2.75E-03 1.76E-06 1.86E-05 4.27E-05
MLSAkNN 1.54E-02 2.06E-03 9.52E-03 4.55E-01

important reflection to note that the p-values for MLSAkNN should help establish

the statistical difference of HESAkNN based on only the ensemble mechanisms.

Fig. 7 shows the Bayesian analysis and compares probabilities of outperformance

between HESAkNN and MLSAkNN as well as HESAkNN and MLSAMPkNN. The

big takeaway from this test is to reveal that HESAkNN is either outperforming or

equivalent to the opposing algorithms. However, it is notable that by simply exist-

ing in the same family of algorithms it is easier to achieve statistical indifference.

This is even more noticeable for the MLSAkNN, also acting as the base classifier

for HESAkNN. These figures also reveal more support for the opposing algorithms

than the ARF and OCB models, however, the volume of supporting points for this is
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Fig. 7.: Bayesian sign test: subset accuracy on top nearest neighbors.

minimal.

The visualizations in Fig. 8 follow similar trends as we have seen with the en-

semble algorithms. While in this batch of graphs HESAkNN is not always initially

the clear best predictor, it still maintains the best performance over the most pro-

longed interval of instances. These graphs demonstrate that HESAkNN might im-

prove through learning mechanisms focused on stream initialization when the least

amount of information is known. However, general performance throughout the data

stream still verifies the ability of HESAkNN to better adapt to drifting, complex data.

4.1.5 Contributions of HESAkNN

The fourth and last experiment aims at evaluating how each of the main four

contributions of HESAkNN help to improve the classification and by what margin.

Fig. 9 shows the prequential subset accuracy over time for four example datasets. It

illustrates the performance of HESAkNN and four variants of the algorithm without

each of these contributions: no background ensemble, no feature subspaces, no on-

line bagging, and a single classifier. The performance for the Eukaryote and Human
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(d) Yelp.

Fig. 8.: Comparison of nearest neighbor approaches: subset accuracy on four datasets.

datasets are very similar for all the variants. Still, HESAkNN shows the best overall

subset accuracy, whereas the no online bagging and the single classifier variants ex-

hibit a slightly worse performance. On the other hand, differences are significantly

more remarkable for the Ohsumed and Scence datasets. There is a significant differ-
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Fig. 9.: Comparison of HESAkNN four main contributions on four datasets.

ence between the single classifier and the no online bagging model, especially for the

Oshumed dataset. These results clearly show the advantages of the combination of

the proposed strategies that altogether make HESAkNN a robust ensemble.
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Fig. 10 show the results of the Bayesian sign test of HESAkNN vs each of the

four variants without a key component. The test is very meaningful in reporting

significant differences in the contribution of the online bagging and the ensemble vs

the single classifier. On the other hand, the differences are smaller (the points in the

figures are located closer to the rope - top of the triangle), yet in favor of HESAkNN

(located on the right hand side of the triangle) for the background ensemble and the

feature subspaces. This means that there is room for improvement in the selection

of the feature subspaces and the training of the background ensemble to build even

more competitive ensembles.

4.2 Conclusions and future work

This thesis introduced HESAkNN, a homogeneous ensemble of self-adjusting

kNNs for multi-label data stream classification. HESAkNN combines learners who

are naturally adaptive to concept drift. Includes modules for both instance and

feature subspaces learning to improve the ensemble diversity. It also contains a col-

lection of ADWIN detectors for explicit drift detection and a background ensemble

mechanism to help combat and adapt to concept drift. These combined mechanisms

allow HESAkNN to be highly adaptive to concept drift for each individual label and

overcome other various data difficulties. A thorough experimental study has shown

how competitive HESAkNN is against 30 different models across 30 datasets and 12

multi-label metrics. Achieving top performance for 9 out of 12 metrics. A closer look

at how HESAkNN compares to other ensemble algorithms confirmed through various

statistical analyses and empirical metrics that HESAkNN is a front runner for this

context. Finally another confirmation that the ensemble performance of MLSAkNNs

outperforms other various modified kNN algorithms, demonstrating the predictive

power of ensemble techniques.
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Fig. 10.: Bayesian sign test: subset accuracy on HESAkNN four main contributions.

As future work, there are still more adaptive mechanisms that could potentially

benefit HESAkNN. This could include adaptive windowing and additional hyperpa-

rameter adjustment, or dynamic ensemble sizing to increase the amount of knowledge

gained during meta evaluations.
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Appendix A

ABBREVIATIONS

VCU Virginia Commonwealth University
RVA Richmond Virginia
NB Naive Bayes
HT Hoeffding Tree
AHT Adapting Hoeffding Option Tree
SCD Single Classifier Drift
LB Leveraging Bag
OB Oza Bag
OBA Oza Bag Adwin
OBO Oza Boost
OBOA Oza Boost Adwin
OCB Online Coordinated Boosting
DWM Dynamic Weighted Majority
AUE Accuracy Updated Ensemble
ARF Adaptive Random Forest
kNN kNN
kNNP kNN PAW
kNNPA kNN PAW ADWIN
SAMkNN Self-Adjusting Memory kNN
BRU Binary Relevance Updateable
CCU Classifier Chains Updateable
PSU Pruned Sets Updateable
RTU Ranking Threshold Updateable
MLHT Multilabel Hoeffding Tree
AMR Adaptive Model Rules
BML Bagging ML Updateable
OBML Oza Bag ML
OBAML Oza Bag Adwin ML
MLkNN ML kNN
MLSAMkNN ML Self-Adjusting Memory kNN
MLSAMPkNN ML Self-Adjusting Memory Punitive kNN
MLSAkNN ML Self-Adjusting kNN
HESAkNN Homogeneous Self-Adjusting kNN
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