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a b s t r a c t 

Prototype Generation (PG) methods are typically considered for improving the efficiency of the k -Nearest 

Neighbour ( k NN) classifier when tackling high-size corpora. Such approaches aim at generating a reduced 

version of the corpus without decreasing the classification performance when compared to the initial set. 

Despite their large application in multiclass scenarios, very few works have addressed the proposal of 

PG methods for the multilabel space. In this regard, this work presents the novel adaptation of four 

multiclass PG strategies to the multilabel case. These proposals are evaluated with three multilabel k NN- 

based classifiers, 12 corpora comprising a varied range of domains and corpus sizes, and different noise 

scenarios artificially induced in the data. The results obtained show that the proposed adaptations are 

capable of significantly improving—both in terms of efficiency and classification performance—the only 

reference multilabel PG work in the literature as well as the case in which no PG method is applied, also 

presenting statistically superior robustness in noisy scenarios. Moreover, these novel PG strategies allow 

prioritising either the efficiency or efficacy criteria through its configuration depending on the target 

scenario, hence covering a wide area in the solution space not previously filled by other works. 

© 2022 The Author(s). Published by Elsevier Ltd. 
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. Introduction 

The k -Nearest Neighbour ( k NN) classifier represents one of the 

ost well-known algorithms for non-parametric supervised classi- 

cation, mostly due to its conceptual simplicity and good statis- 

ical error properties [1] . For a given query, this method hypoth- 

sises about its category by querying the k nearest neighbours of 

 reference corpus, following a specified similarity measure [2] . In 

his regard, this classification strategy has been largely considered 

n a wide range of disparate fields as, for instance, diabetes detec- 

ion [3] , musical key estimation [4] or handwritten signature veri- 

cation [5] , among others. 

However, as a representative case of the lazy learning paradigm, 

 NN does not derive a model out of the reference corpus [6] .

n contrast, for every query, this method requires an exhaustive 

earch among the elements of the aforementioned corpus, thus en- 

ailing low-efficiency figures in both classification time and mem- 

ry usage [7] . Note that, while this inefficiency issue may be obvi- 

ted in scenarios with limited amounts of data, when considering 

arge data collections, k NN becomes intractable [8] . 
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Data Reduction (DR) stands as one of the most popular ap- 

roaches in the related literature for tackling this drawback [9] . 

his group of methods aims to reduce the size of the reference set 

or improving the efficiency of the model while keeping—or even 

ncreasing—the classification performance obtained with the origi- 

al data. Among them, the Prototype Generation (PG) family rep- 

esents one of the most competitive alternatives due to its remark- 

ble reduction capabilities compared to other DR strategies [10] . In 

 broad sense, PG derives an alternative reference set for the clas- 

ifier by performing different selection and merging operations on 

he elements of the initial corpus following certain heuristics [11] . 

Due to the relevance of PG for efficient k NN-based classifi- 

ation, a considerable amount of research effort has been in- 

ested in proposing novel strategies as well as improving the ex- 

sting ones [12] . However, such research works have typically ad- 

ressed multiclass scenarios—classification tasks in which every 

ingle query is assigned to one category out of a set of mutually 

xcluding labels—, hence neglecting the more general multilabel 

cenario—case in which an undetermined number of categories is 

ssigned to each query [13] . 

The work by Ougiaroglou et al. [14] represents one of the 

carce works of a PG strategy devised to address multilabel sce- 

arios. More precisely, this work proposes the adaptation of the 
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tate-of-the-art Reduction through Homogeneous Clustering (RHC) 

ethod [15] to the multilabel space, obtaining the so-called Multi- 

abel Reduction through Homogeneous Clustering (MRHC). The au- 

hors not only conclude that such adaptation remarkably improves 

he efficiency of the k NN classifier in multilabel scenarios but also 

tate the need for contriving multilabel PG strategies due to the 

hortage of existing alternatives. 

In this context, the present work further explores the proposal 

nd use of PG methods for improving the efficiency of k NN clas- 

ification in multilabel scenarios. More precisely, we introduce the 

ovel adaptation of four PG strategies from their original multi- 

lass formulation to the multilabel case. These proposals have been 

omprehensively evaluated considering several multilabel classifi- 

ation approaches based on k NN with a wide variety of corpora. 

dditionally, different percentages of label-level noise particularly 

evised for this multilabel framework—artificial alterations of the 

lasses or labels of the data—have been induced in the corpora 

o assess the robustness of the proposals and their capability of 

ealing with such adverse scenarios. The results obtained report a 

tatistically significant improvement in terms of both reduction ca- 

abilities and classification performance for all scenarios and noise 

evels contemplated compared to the exhaustive search carried out 

y the base k NN method and the reference MRHC reduction ap- 

roach. In this regard, these novel proposals not only fill a gap in 

he scarce multilabel PG literature but also reportedly outperform 

he only existing strategy in the field, the commented MRHC algo- 

ithm. 

The rest of the work is structured as follows: Section 2 pro- 

ides the theoretical background of the work; Section 3 presents 

he proposed PG methods; Section 4 introduces the experimen- 

al setup; Section 5 shows and discusses the results; and finally, 

ection 6 concludes the work and poses future research lines to 

ursue. 

. Background 

To adequately describe multilabel classification, we initially in- 

roduce the multiclass framework, as it conceptually represents a 

impler task. Formally, let X ∈ R 

f denote an f -dimensional fea- 

ure space and Y mc a set of discrete labels. Additionally, let T mc = 

 

( x i , y i ) : x i ∈ X , y i ∈ Y mc } |T mc | 
i =1 

represent an annotated collection of 

ata where each datum x i ∈ X is related to label y i ∈ Y mc by an

nderlying function h mc : X → Y mc . The goal of multiclass classifi- 

ation is retrieving the most accurate approximation 

ˆ h mc ( ·) to that 

nderlying function. 

Among the different alternatives for performing such an ap- 

roximation task, the well-known k NN stands as one of the most 

ommon choices given its relevance in the Pattern Recognition 

eld [16] . Formally, given a query q ∈ X , this method models ˆ h mc 

s: 

ˆ 
 mc ( q ) = mode 

(
Y 

k 
mc 

(
arg min k 

x i ∈T mc 

{ d ( q, x i ) } 
))

(1) 

here k stands for the number of neighbours considered, d : X ×
 → R 

+ 
0 

is a dissimilarity measure, mode : Y mc → Y mc denotes the 

ode operator, and Y 

k 
mc is the set of labels retrieved from the clos- 

st k elements to the query q . 

As previously introduced, the multilabel paradigm consti- 

utes a generalisation of the multiclass framework in which 

ach individual instance may be associated with more than 

 single label [17] . Formally, the set of multilabel data T ml = 

 

( x i , † i ) : x i ∈ X , † i ⊆ Y ml } |T ml | 
i =1 

relates datum x i ∈ X to a subset of 

lasses † i ⊆ Y ml , namely labelset, where Y ml = { λ1 , λ2 , . . . , λL } is an 

 -size collection of mutually non-exclusive labels [18] . As in the 

ulticlass case, the goal is retrieving the most accurate approxi- 

ation 

ˆ h ( ·) to the underlying function h : X → Y . 
ml ml ml 

2 
To leverage the advantages of multiclass classifiers in multil- 

bel scenarios, the literature considers two main approaches [19] : 

roblem transformation and algorithm adaptation . We now describe 

hese paradigms and report some commonly considered methods 

ithin them for k NN schemes as it represents the focus of the 

ork. 

The problem transformation paradigm disentangles the multi- 

abel task into several single-label problems for then applying 

 multiclass k NN-based strategy for performing the classification 

ask. Some of the most common alternatives are: the Binary Rel- 

vance k NN (BR k NN), which decomposes the task into L indepen- 

ent binary classification problems [20] ; the Label Powerset k NN 

LP- k NN), which derives an alternative single-label corpus where 

ach labelset is considered as a different class [21] ; and Random 

 -Labelsets (RA k EL), which divides the initial set of labels into a 

umber of small random subsets for then performing LP- k NN and 

reating an ensemble-based classifier [22] . 

In contrast, the algorithm adaptation approach focuses on modi- 

ying the base multiclass classifier to fit the multilabel scenario. In 

his regard, the Multilabel k NN (ML- k NN) proposed by Zhang and 

hou [23] expands the base k NN method resorting to a maximum- 

-posteriori principle to determine the labelset of the query based 

n its neighbouring instances. Some extensions to this approach 

re the Dependent ML- k NN [24] , which models the different depen- 

encies among the set of labels, the IBLR-ML method [25] , which 

xpands the base ML- k NN one by combining it with logistic re- 

ression, or the combination of ensembles and ML- k NN as in the 

ork by Zhu et al. [26] . 

Nevertheless, while these transformations and adaptations al- 

ow the use of k NN in multilabel classification tasks, the inher- 

nt efficiency issue of these classifiers has been neglected in the 

iterature. Note that, while some multilabel schemes such as the 

L- k NN depict similar inefficiency figures to that of the multiclass 

 NN formulation since they explore the entire reference T ml set, 

he BR k NN case is of particular relevance as it requires iterating 

hrough the T ml set L different times. 

The Prototype Generation (PG) family of methods stands as 

ne of the most successful approaches for efficient k NN classifi- 

ation in multiclass cases [9] . As a representative case of DR strat- 

gy, PG aims to obtain an alternative set R mc by performing cer- 

ain combinations and transformations on the elements of T mc so 

hat |R mc | < |T mc | while keeping—or even improving—the classi- 

cation performance. However, as aforementioned, to the best of 

ur knowledge, there is a remarkable lack of methods for perform- 

ng PG in multilabel scenarios. The sole exception to this assertion 

s the work by Ougiaroglou et al. [14] where the state-of-the-art 

ulticlass PG method RHC was adapted to the multilabel space. 

n that work, the authors experimentally proved the usefulness of 

heir PG proposal to improve the efficiency of the multilabel clas- 

ification and stated the need for devising other alternatives to fill 

his existing gap in the literature. 

In this context, the present work proposes a novel adapta- 

ion to the multilabel space of four well-known multiclass PG 

lgorithms. More precisely, we consider the classic Chen reduc- 

ion algorithm [27] as well as the three different versions of the 

eference Reduction through Space Partitioning (RSP) strategy by 

ánchez [28] . For this first-time adaptation to the multilabel space 

f such PG algorithms, this work proposes several mechanisms 

or both partitioning and integrating the labels of the multilabel 

rototypes of the initial corpus for eventually generating the in- 

tances of the reduced multilabel set. These novel methods are 

horoughly compared, in terms of both performance and efficiency, 

o the state-of-the-art proposal by Ougiaroglou et al. [14] and to 

he case in which no reduction is performed considering different 

ultilabel k NN-based classifiers, corpora, and noise scenarios. Such 

 study shall provide insights on whether the proposed multilabel 
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Algorithm 1: Chen algorithm for multiclass PG [27] . 

Input : T mc ⊂ X × Y mc ← Multiclass corpus 

n d ← Number of resulting partitions 

d(·, ·) ← Dissimilarity measure 

Output : R mc ← Reduced set 

1 Let n c = i = 1 , C mc = ∅ , B = T mc � Space partitioning 

2 Let p 1 , p 2 be the farthest prototypes in B 

3 while n c < n d do 

4 Divide B into subsets: 

5 B 1 = { p ∈ B : d(p, p 1 ) ≤ d(p, p 2 ) } 
6 B 2 = { p ∈ B : d(p, p 1 ) > d(p, p 2 ) } 
7 Set n c = n c + 1 , C mc (i ) = B 1 , and C(n c ) = B 2 

8 Divide C mc into subsets: 

9 I 1 = { i : | { y ∈ C mc (i ) } | > 1 } 
10 I 2 = { j : j ≤ n c } − I 1 
11 Let I = I 1 if I 1 
 = ∅ else I 2 
12 Find farthest points q 1 (i ) , q 2 (i ) in C mc (i ) ∀ i ∈ I 
13 Let j = arg max j∈ [ 1 ,i ] d ( q 1 ( j ) , q 2 ( j ) ) 
14 Set B = C mc ( j) , p 1 = q 1 ( j) , and p 2 = q 2 ( j) 

15 end while 

16 Compute R mc = { ( x i , y i ) } n d i =1 
as: � Prototype merging 

17 x i = median ( { x ∈ C mc ( i ) } ) 
18 y i = mode ( { y ∈ C mc ( i ) } ) 

t

t

d

|

m

i

r

F

m

G methods cope with the commented efficiency issue without de- 

reasing the classification performance and on their robustness as 

ell as data cleansing capabilities in cases depicting the presence 

f noise in the data. 

. Prototype generation in the multilabel space 

This section presents the proposed PG methods for the multi- 

abel space. As commented, we focus on the first-time adaptation 

f four algorithms originally devised for multiclass cases: the Chen 

ethod [27] and the three versions of the Reduction through Space 

artitioning (RSP) strategy [28] . In this regard, the first part of the 

ection introduces the original multiclass formulations of these al- 

orithms and the second one presents their respective multilabel 

daptations proposed in this work. 

.1. Reference multiclass PG 

The considered multiclass PG strategies—the Chen method as 

ell as the different RSP versions—constitute representative exam- 

les of the so-called space splitting policy [29] , which typically fol- 

ows a two-step approach: a first stage, space partitioning , divides 

he feature space of the multiclass set T mc into different regions us- 

ng certain heuristics; after that, the prototype merging stage com- 

utes new prototypes from each region attending to different crite- 

ia, producing the reduced set R mc . The existing PG strategies un- 

er this framework, therefore, essentially differ in the particular 

plitting and prototype generation heuristics considered. 

In the specific case of the Chen and RSP PG families, the afore- 

entioned heuristics depict some similarities. In this regard, we 

rst present the particular approach followed by the Chen method 

n Algorithm 1 , aided by the graphical illustration in Fig. 1 , for then

ommenting on the different points on which the three RSP strate- 

ies differ from it. 

As it may be observed in the algorithm, the method iteratively 

ivides the feature space of T mc into n d —user parameter—disjoint 

ubsets which are denoted as C mc (i ) where 
⋃ n d 

i =1 
C mc (i ) = T mc . For

hat, the largest subset in each iteration is divided in two attend- 

ng to the distance between the two farthest prototypes in it. Even- 

ually, for each of the n d regions, a new prototype is obtained as 
ig. 1. Graphical illustration of the multiclass Chen PG method. The example depicts t

erging phase (case 1 d) when considering n d = 3 subsets. Symbols p 1 and p 2 denote th

3 
he median of the features of the elements in it and labelled af- 

er the most common class. Hence, the size of the resulting re- 

uced set equals the number of partitions selected by the user, i.e. , 

R mc | = n d . 

The RSP family, as commented, builds upon Chen’s proposal by 

odifying some of the space partitioning and/or prototype merg- 

ng stages. The first RSP version—RSP1—considers the Chen algo- 

ithm prone to discard underrepresented classes due to its pro- 
he results of the space partitioning process (cases 1 a to 1 c) and the prototype 

e two furthest prototypes in the cluster to be divided. 
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otype merging policy (lines 16–18 in Algorithm 1 ). Thus, instead 

f computing a single prototype for each of the n d regions and 

abelling them after the most represented class in each partition, 

SP1 only merges prototypes sharing the same label. Hence, each 

egion is now represented by as many prototypes as the number of 

lasses it contains. In this case, therefore, the size of the reduced 

et may not be known in advance but accomplishes |R mc | ≥ n d . 

The second version of RSP—RSP2—expands RSP1 by modify- 

ng the criterion for selecting the region to split (lines 12–13 

n Algorithm 1 ). RSP2 considers the overlapping degree criterion, 

hich is defined as the ratio of the average distance between in- 

tances belonging to different classes and the average distance be- 

ween instances that are from the same class. The region with the 

argest overlapping degree is the one to be divided. 

The third RSP reduction heuristic—RSP3—is based on the idea 

hat each resulting region should represent a cluster of instances 

elonging to only one class. Thus, this approach modifies the Chen 

ethod so that it iteratively performs the space partitioning stage 

line 3 in Algorithm 1 ) until all resulting sets are homogeneous 

n terms of class representation, remaining the prototype merging 

hase of the algorithm unaltered. Hence, unlike the RSP1 and RSP2 

trategies, the RSP3 approach does not require the n d parameter 

elated to the number of resulting regions since the method exclu- 

ively relies on this class homogeneity criterion to accomplish the 

pace partitioning stage. 

.2. Multilabel PG proposals 

Having introduced the four reference PG methods in their mul- 

iclass formulation, we now present their respective proposed mul- 

ilabel adaptations. 

The multilabel space splitting PG framework may be formu- 

ated in an analogous manner to that of the multiclass case. Ini- 

ially, the space partitioning phase divides the multilabel set T ml ⊂
 × Y ml into n d non-overlapping multilabel regions C ml such that 
 n d 
i =1 

C ml (i ) = T ml . After the convergence of this stage, the proto- 

ype merging step retrieves the multilabel set of data R ml generated 

ut of these C ml clusters by following a certain approach, where 

R ml | ≤ |T ml | . Within this framework, we introduce the different 

odifications proposed for accommodating the presented multi- 

lass PG methods to such a scenario. 

Our first proposal is the adaptation of the Chen algorithm, 

amely Multilabel Chen or MChen . Since the space partitioning 

tage (lines 1–15) computes the set of clusters C mc only relying 

n the set of features X , no adaptation is required for its multi-

abel formulation to obtain set C ml . Oppositely, given that the pro- 

otype merging stage (lines 16–18) usually requires combining ele- 

ents from different classes, the question arises about the proper 

pproach to do so in multilabel spaces since the simple selection 

f the most common label in the C ml cluster is not suitable for the

onsidered scenario. 

In this regard, we resort to the policy devised by Ougiaroglou 

t al. [14] for the MRHC method in which the resulting prototype 

eeps the labels present in at least half of the instances of the clus- 

er. Mathematically, the labelset assigned to the resulting element 

n cluster C ml (i ) is given by: 

 i = 

{
λ : |C ml (i ) | λ ≥ |C ml (i ) | 

2 

∀ λ ∈ C ml (i ) 

}
(2) 

here |C ml (i ) | λ denotes the cardinality of label λ in subset C ml (i ) .

his expression replaces that in line 18 of Algorithm 1 whereas 

he policy followed for obtaining the set of features (line 17) is not 

odified. Fig. 2 c provides a graphical example of this merging pro- 

edure considering the space partitioning result shown in Fig. 2 b. 

The second proposal is the Multilabel RSP1 or MRSP1 . As afore- 

entioned, the RSP1 states that, during the prototype merging 
4 
tage and for each cluster C mc (i ) , one prototype must be retrieved

or each class present in it. The MRSP1 adapts such stage by resort- 

ng to a labelset approach (lines 16–18), i.e. each labelset is consid- 

red a different class and the instances with the same labelset are 

erged and assigned to it. Mathematically, set R ml is obtained as: 

 ml = 

{(
median 

({
x j : ( x j , † j ) ∈ C ml (i ) , † j = † k 

})
, † k 

)}n d 

i =1 
(3) 

here k = | { † ∈ C ml (i ) } | is the number of labelsets in the i -th clus- 

er C ml (i ) and j ∈ [ 1 , |C ml (i ) | ] . Fig. 2 d provides a graphical example

f this procedure based on the space partitioning result depicted in 

ig. 2 b. 

The Multilabel RSP2 or MRSP2 proposal generalises the space 

artitioning approach based on the overlapping degree from the 

SP2 method to the multilabel space (lines 12–13). For that, as 

n the MRSP1 proposal, we resort to a labelset approach: each la- 

elset is considered a different class and the overlapping degree �i 

f the i -th C ml (i ) region is computed as the ratio of the average dis-

ance between instances belonging to different labelsets—D 


 = —and 

he average distance between instances of the same labelset—D 

= . 
In formal terms, for the i -th region, these pairwise distance val- 

es D 


 = and D 

= are respectively computed as: 

 


 = = 

{
d( x j , x k ) : ( x j , y j ) ∧ ( x k , y k ) ∈ C ml (i ) , j 
 = k, y j 
 = y k 

}
(4) 

 

= = 

{
d( x j , x k ) : ( x j , y j ) ∧ ( x k , y k ) ∈ C ml (i ) , j 
 = k, y j = y k 

}
(5) 

ith 1 ≤ j, k ≤ n d . Based on this, the overlapping degree �i for the

ame i -th region is eventually obtained as: 

i = 

∑ | D 
 = | 
j=1 

D 


 = ( j) ∑ | D = | 
k =1 

D 

= (k ) 
· | D 

= | 
| D 


 = | (6) 

Note that, after the convergence of the space partitioning stage, 

he prototype merging policy in Eq. 3 introduced for MRSP1 is ap- 

lied. 

The last proposal is the Multilabel RSP3 or MRSP3 . In this 

ase, we must generalise the cluster homogeneity concept of the 

SP3 method to automatically estimate the n d number of clus- 

ers. For that, we resort to the criterion posed by Ougiaroglou 

t al. [14] which states that a set of multilabel data is considered 

o be homogeneous if there is, at least, one common label among 

ll the prototypes in the set, i.e. ∃ λ ∈ C ml (i ) s.t. |C ml (i ) | λ = |C ml (i ) | .
his substitutes the condition in line 3 in Algorithm 1 so that the 

rocess finishes when this homogeneity criterion is accomplished 

y all regions. After this space partitioning stage, the set of clusters 

 ml is further processed following the prototype merging approach 

f the MChen proposal in Eq. 2 . 

Finally, Figs. 2 e and 2 f respectively show the result of the 

pace partitioning and prototype merging phases of the introduced 

RSP3 proposal. 

. Experimental set-up 

This section presents the experimental scheme designed for 

omparatively assessing the proposed multilabel PG methods. For 

n easier description, this procedure is graphically illustrated in 

ig. 3 . 

During the training phase of the procedure, the set of train data 

 ml ⊂ X × Y ml is altered to induce certain noise level in the in- 

tances controlled by the user parameter θ ∈ [ 0 , 1 ] , retrieving set 

 

′ 
ml 

. Then, this latter data collection T ′ 
ml 

is processed by a multi- 

abel PG method to obtain a reduced version of the set—namely 

 ml —that is used as the reference set for the multilabel k NN-based 

lassifier. It must be noted that the noise induction process repre- 

ents an optional stage in the posed pipeline. Hence, as it will be 

hown, the first experimental part does not induce any noise by 



J.J. Valero-Mas, A.J. Gallego, P. Alonso-Jiménez et al. Pattern Recognition 135 (2023) 109190 

Fig. 2. Graphical illustration of the multilabel PG proposals introduced in the work. Fig. 2 (a) represents a multilabel set of train data T ml to be reduced. Fig. 2 (b) shows the 

space partitioning results on which the different reduction proposals are based, except for the MRSP3 one, whose case is illustrated in Fig. 2 (e). Prototype merging graphs 

2 (c) and 2 (f) depict the number of prototypes—denoted as #prot —and the cardinality of labels—# �, # ◦, and # �—for each of the original clusters. 

Fig. 3. Experimental scheme for the comparative assessment of the PG methods. 
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etting θ = 0 while the second one will analyse the robustness and 

ata cleansing capabilities of the reduction methods to the data 

orruption process by considering θ > 0 . 

During the inference stage, a test set of multilabel data S ml ⊂
 × Y ml drawn from the same distribution as the train data T ml 

ut disjoint from it is considered for evaluating the method. Using 

 

ˆ h ml ( ·) prediction function from the particular multilabel k NN- 

ased classification strategy at hand, each sample x i ∈ S ml is given 

 labelset that is eventually compared to that in the ground-truth 

ased on certain evaluation criteria. 
i

5 
The remainder of the section presents the corpora used for as- 

essing the multilabel PG proposals, the noise induction procedure 

sed, the considered k NN-based classification strategies, and the 

ontemplated evaluation protocol. 

.1. Corpora 

We have considered 12 multilabel corpora from the Mulan 

epository [30] comprising a varied range of domains, corpus sizes, 

nitial space dimensionalities, and target label spaces. The precise 
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Table 1 

Summary of the corpora considered for the experimentation. Each corpus is described in terms of its data do- 

main, partition sizes, dimensionality of input data (features) and output space (labels), cardinality, and density. 

Name Domain Corpus size Dimensionality Cardinality Density MeanIR 

Train Test Features ( f ) Labels ( L ) 

Bibtex Text 4,880 2,515 1,836 159 2.40 0.015 12.78 

Birds Audio 322 323 260 19 1.01 0.053 6.10 

Corel5k Image 4,500 500 499 374 3.52 0.009 183.29 

Emotions Music 391 202 72 6 1.87 0.311 1.49 

Genbase Biology 463 199 1,186 27 1.25 0.046 31.60 

Medical Text 333 645 1,449 45 1.25 0.028 48.59 

rcvsubset1 Text 3,000 3,000 47,236 101 2.88 0.029 191.42 

rcvsubset2 Text 3,000 3,000 47,236 101 2.63 0.026 177.89 

rcvsubset3 Text 3,000 3,000 47,236 101 2.61 0.026 192.48 

rcvsubset4 Text 3,000 3,000 47,229 101 2.49 0.025 170.84 

Scene Image 1,211 1,196 294 6 1.07 0.179 1.33 

Yeast Biology 1,500 917 103 14 4.24 0.303 7.27 
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Algorithm 2: Noise induction procedure. 

Input : T ml ⊂ X × Y ml ← Multilabel train corpus 

θ ← Noise level parameter 

Output : T ′ 
ml 

⊂ X × Y ml ← Noisy multilabel train corpus 

1 Let � = { ( x i , y i ) } θ ·|T ml | 
i =1 

∈ R T ml � Random sampling of set T ml 

2 Let T ′ 
ml 

= T ml − �

3 for i ∈ [ 0 , . . . , | �| / 2 ] do 

4 Save labelset of the i -th element in set �: y ′ = y ∈ �i 

5 Put labelset in | �| − i in the i -th sample: 

y ∈ �i = y ∈ �| �|−i 

6 Set y ′ as the labelset of the | �| − i -th element: 

y ∈ �| �|−i = y ′ 

7 end for 

8 Let T ′ 
ml 

= T ′ 
ml 

∪ �
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etails in terms of size, features, and label dimensionality of these 

ets are provided in Table 1 . Note that the cardinality —average 

umber of labels associated with each instance—and density —ratio 

f cardinality and label dimensionality of the corpus—measures are 

rovided for each corpus as they represent common descriptors in 

he multilabel classification field. In addition, we also provide the 

ean imbalance ratio ( MeanIR ) index that estimates the imbalance 

evel of multilabel corpora and is obtained as: 

eanIR = 

1 

| Y ml | 
∑ 

λ∈ | Y ml | 

max 
∀ λ′ ∈Y ml 

(∑ | T ml | 
i =1 

� λ′ ∈ † i � 

)
∑ | T ml | 

i =1 
� λ ∈ † i � 

(7) 

here the descriptor MeanIR ∈ [ 1 , ∞ ) reports sharper imbalance 

ates as the value increases, and � ·� → { 0 , 1 } represents the Iver- 

on bracket, which outputs the unit value when the condition in 

he argument is met and zero otherwise. 

Note that, for the sake of reproducible research, we have used 

he partitions defined by Szyma ́nski and Kajdanowicz in these par- 

icular corpora [31] . 

.2. Noise induction procedure 

To examine the actual robustness of both the existing and the 

roposed multilabel PG methods, we artificially introduce noise in 

he data. Note that, to our best knowledge, no previous work has 

ssessed the robustness of multilabel PG methods by performing 

 noise induction process. Hence, we resort to the procedure by 

atarajan et al. [32] that is commonly considered in the multiclass 

G literature: noise is introduced in the data by swapping the la- 

els of pairs of prototypes randomly chosen from the train parti- 

ion. Algorithm 2 provides a formal description of the adaptation of 

his procedure to the multilabel space, in which the user parame- 

er θ ∈ [ 0 , 1 ] represents the induced noise rate, i.e. , the percentage 

f prototypes that change their label. 

As aforementioned, the particular case of θ = 0 represents that 

n which no noise is induced in the corpus, hence being T ′ 
ml 

= T ml .

n the subsequent experimentation, we will assess the propos- 

ls presented in this work considering both a noise-free scenario 

 θ = 0 ) as well as under different levels of induced noise typically 

onsidered in the related literature. 

Note that, while this particular noise induction policy may be 

eemed simplistic, it constitutes a first approximation to assess 

he robustness of multilabel PG methods in the context of label- 

evel distortions. Nevertheless, other procedures that contemplate 

he multilabel nature of these data may also provide some addi- 

ional insights about the performance of these methods, such as 

wapping only part of the labels between pairs of instances, ran- 

omly including or eliminating classes for each prototype, or sim- 
6

ly duplicating labelsets among elements in the corpus, and will 

e explored in future research. 

.3. Classification strategies 

We have selected three reference multilabel techniques based 

n k NN as classification methods: BR k NN and LP- k NN from the

ransformation paradigm as well as ML- k NN based on the algo- 

ithm adaptation premise. In all cases, the Euclidean distance has 

een used as the dissimilarity measure. 

Regarding the k parameter representing the number of neigh- 

ours, we have considered the values k ∈ { 1 , 3 , 5 , 7 } . Note that this 

arameter is not optimised by any means during the experimenta- 

ion since the aim is to examine its influence on the overall classi- 

cation performance in relation to the PG mechanisms. 

.4. Evaluation metrics 

To assess the goodness of the proposals, we consider two crite- 

ia: classification performance and efficiency figures. 

With respect to the former criterion, we resort to the Hamming 

oss (HL) as it constitutes a commonly considered approach for 

easuring the goodness of multilabel classifiers [33] . This metric, 

hich is defined as the fraction of the wrong predicted labels with 

espect to the total number of labels, can be mathematically posed 

s: 

L = 

1 

| S ml | 
| S ml | ∑ 

i =1 

1 

L 
·
∣∣∣† i � ˆ h ml ( x i ) 

∣∣∣ (8) 



J.J. Valero-Mas, A.J. Gallego, P. Alonso-Jiménez et al. Pattern Recognition 135 (2023) 109190 

Table 2 

Results in terms of HL and resulting size for both the reference methods (exhaustive search, denoted as ALL, and MRHC) and our propos- 

als (MChen, MRSP1, MRSP2, and MRSP3) when considering the different k NN-based classifiers. Non-dominated solutions per classifier are 

highlighted in bold type. Underlined values denote the best performance rates per PG scheme and classifier. 

Size BR k NN LP- k NN ML- k NN 

1 3 5 7 1 3 5 7 1 3 5 7 

Reference 

ALL 100 9.09 7.94 7.69 7.56 9.09 8.71 8.54 8.45 9.09 7.92 7.72 7.66 

MRHC 59.62 8.76 7.70 7.49 7.51 8.76 8.47 8.57 8.68 8.76 7.87 7.91 7.85 

Proposals 

MChen 10 9.98 7.92 7.74 7.78 7.83 7.92 7.90 7.98 7.97 7.92 7.87 7.75 7.86 

MChen 30 29.94 8.00 7.58 7.51 7.55 8.00 7.91 7.86 7.87 8.00 7.70 7.77 7.81 

MChen 50 49.96 8.29 7.71 7.53 7.38 8.29 8.30 8.06 8.10 8.29 7.85 7.63 7.57 

MChen 70 69.97 8.51 7.72 7.62 7.46 8.51 8.35 8.40 8.49 8.51 7.90 7.82 7.45 

MChen 90 89.02 8.73 7.62 7.29 7.17 8.73 8.35 8.16 8.33 8.73 7.61 7.53 7.55 

MRSP1 10 61.88 8.95 7.96 7.60 7.40 8.95 8.88 9.03 8.97 8.95 8.21 7.95 7.68 

MRSP1 30 74.51 8.77 7.76 7.36 7.17 8.77 8.55 8.34 8.50 8.77 7.84 7.44 7.56 

MRSP1 50 80.11 8.80 7.78 7.44 7.27 8.80 8.41 8.34 8.50 8.80 7.84 7.50 7.54 

MRSP1 70 84.37 8.86 7.77 7.45 7.30 8.86 8.43 8.32 8.46 8.86 7.79 7.54 7.52 

MRSP1 90 90.78 8.84 7.71 7.33 7.17 8.84 8.46 8.27 8.46 8.84 7.68 7.51 7.57 

MRSP2 10 61.09 8.85 7.90 7.61 7.36 8.85 8.92 8.93 8.87 8.85 8.04 7.86 7.79 

MRSP2 30 78.07 8.79 7.87 7.53 7.34 8.79 8.52 8.26 8.39 8.79 7.88 7.68 7.47 

MRSP2 50 83.59 8.74 7.76 7.45 7.27 8.74 8.59 8.36 8.34 8.74 7.79 7.58 7.43 

MRSP2 70 87.21 8.80 7.65 7.38 7.12 8.80 8.44 8.36 8.30 8.80 7.69 7.66 7.52 

MRSP2 90 89.28 8.76 7.68 7.49 7.34 8.76 8.47 8.51 8.34 8.76 7.80 7.51 7.50 

MRSP3 66.88 8.53 7.62 7.50 7.34 8.53 8.29 8.12 8.23 8.53 7.94 7.78 7.71 
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here S ml ⊂ X × Y ml denotes the multilabel set of test data, � is 

he symmetric difference of ground-truth † i and predicted 

ˆ h ml ( x i ) 
ets, and L is the number of labels. 

As commonly done in the DR field, efficiency is assessed by 

omparing the size of the reduced set R ml normalised by that of 

he training set T ml [34] . Computation time, which is typically dis- 

arded as an evaluation metric due to its variability depending on 

he load of the computing system, is additionally reported as a 

upplementary figure of merit for the analysis of the particular im- 

lementations provided in this work. 

It must be noted that PG methods for k NN seek to simultane- 

usly optimise two contradictory goals, set size reduction and clas- 

ification performance, being not possible to achieve a global opti- 

um. Hence, as in reference works from the literature [35,36] , we 

ddress it as a Multi-objective Optimisation Problem in which the 

wo aforementioned objectives are meant to be optimised. The dif- 

erent solutions under this framework—there may exist more than 

ne—are retrieved by resorting to the concept of non-dominance: 

ne solution is said to dominate another if it is better or equal 

n each goal function and, at least, strictly better in one of them. 

hose elements, typically known as non-dominated, constitute the 

areto frontier in which all elements are deemed as optimal solu- 

ions without any order among them. 

. Results 

This section introduces and discusses the results obtained by 

he proposed multilabel PG methods with the evaluation method- 

logy considered. For comparison purposes, the reference MRHC 

ethod and the case in which no reduction process is applied—

enoted as ALL—are included. Also, let subscript m represent the 

nput parameter of the PG methods when required, i.e. MChen m 

, 

RSP1 m 

, and MRSP2 m 

, which relates to the number of partitions 

s n d = m · |T ml | / 100 . For assessing its influence in the scheme,

e considered different values of this input parameter as m ∈ 

 

10 , 30 , 50 , 70 , 90 } . 
The remainder of the section presents four particular experi- 

ents: (i) a first part in which the PG methods are comparatively 

valuated obviating the noise induction process; (ii) a second one 

hose focus is the noise robustness and data cleansing capabili- 

ies of these PG schemes; (iii) a third passage that assesses the PG 
7 
ethods from the perspective of class-imbalance data; and (iv) a 

ast part that benchmarks these strategies in terms of their execu- 

ion time. 

The implementation of the proposed PG methods and the ex- 

erimental procedure considered is publicly available in: https:// 

ithub.com/jose-jvmas/multilabel _ PG . In addition, all obtained re- 

ults for each individual corpus, configuration, and scenario con- 

emplated are available at Mendeley Data ( https://doi.org/10.17632/ 

bcnc6jcf3 ) for every single experiment performed in the work. 

.1. Comparative assessment of multilabel PG strategies 

In this first experiment, we thoroughly compare the differ- 

nt reduction strategies using the aforementioned multilabel k NN- 

ased classifiers as individual scenarios. In this regard, Table 2 and 

ig. 4 show the results obtained in which the performance and re- 

uction figures constitute the average of the individual values ob- 

ained for the corpora considered. 

A first remark that may be observed is that the proposed meth- 

ds fill a region in the space of possible solutions not previously 

ccupied by existing multilabel PG methods. This is because some 

f the proposals (MChen, MRSP1, and MRSP2) allow selecting the 

ize of the reduced set through a parameter. Note that, while this 

ay be considered a drawback, such a feature allows prioritising 

ither the reduction rate or classification performance depending 

n the particular application considered. 

It can be also checked that, for all cases, MChen achieves the 

ighest reduction rates, even when other parameter-based multi- 

abel PG proposals consider the same m value. The main reason 

or such an effect is that, for a given m reduction setting, the 

Chen performs a rather aggressive reduction—especially with low 

 values—as it only retrieves a single prototype per region. On the 

ontrary, the merging procedure for both MRSP1 and MRSP2 soft- 

ns the single-prototype policy by the MChen proposal to compute 

n instance per existing labelset in the partitions, hence increas- 

ng the size of the R ml resulting set. Regarding the MRSP3 method, 

he fact that the resulting set size may be deemed as medium-to- 

igh (a 66 . 88% of the size of the ALL case) is due to the region-

ased homogeneity requirement of the space partitioning phase; 

n this sense, a more relaxed criterion ( e.g. , allowing only partial 

abel matches) should result in sharper reduction rates. 

https://github.com/jose-jvmas/multilabel_PG
https://doi.org/10.17632/rbcnc6jcf3
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Fig. 4. Results in terms of HL and resulting size obtained with the k NN-based classifiers when considering the PG methods and the exhaustive search case (ALL) for 

the different k values tested. Circled methods and dashed lines represent the non-dominated elements and the Pareto frontiers in each scenario, respectively. For easier 

comparison, shaded areas depict the regions in the solution space occupied by the baseline cases (MRHC and ALL). 
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In all cases, since the PG process is applied before the classi- 

cation stage, the resulting set sizes are the same for all scenar- 

os, being the differences in performance only due to the partic- 

lar capabilities of the classification scheme. It can be observed 

hat LP- k NN may be deemed as the least competitive alternative 

ince, for the same reduction scheme, HL figures tend to be higher 

han the other alternatives. Oppositely, BR k NN and ML- k NN show 

imilar performance results since the HL figures do not remark- 

bly differ among them. Such performance disparities among the 

lassifiers are most likely due to the restrictiveness of the LP- k NN 

lassifier that, in contrast to the BR k NN and ML- k NN methods, is

ot able to infer labelsets not seen during the training stage. 
8 
From the point of view of the PG strategies, the rather sharp 

eduction figures depicted by the MChen method—mainly due to 

he single-prototype policy of the merging stage—generally entails 

he least competitive classification rates among the PG techniques, 

eing the sole exception found when contemplating the LP- k NN 

lassifier. This fact is most probably due to that the resulting pro- 

otypes in that scenario only comprise the most relevant labels in 

he corpora, being hence guaranteed the inference of a representa- 

ive part of the classes at the expense of missing sporadic labels. 

he rest of the cases—MRHC and the entire MRSP family—generally 

chieve better classification rates than the MChen alternative—and 

specially the MRSP1 and MRSP2 methods—for the different k NN- 
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Table 3 

Wilcoxon signed-rank test results with p < 0 . 05 for the 

classifiers considered. Symbols 
√ 

, ✗ , and = respectively 

denote that, for each classification scenario, the non- 

dominated solution in the row significantly improves, 

worsens or does not differ from the reference one in the 

column for the performance (HL) or reduction (Size) cri- 

terion. 

ALL MRHC 

HL Size HL Size 

BR k NN 

MChen 10 = 

√ = 

√ 

MChen 30 = 

√ = 

√ 

MRSP1 30 

√ √ √ = 

MRSP2 70 

√ √ √ 

✗ 

LP- k NN 

MChen 10 = 

√ = 

√ 

MChen 30 

√ √ √ √ 

ML- k NN 

MChen 10 = 

√ = 

√ 

MChen 70 = 

√ √ = 

MRSP1 30 = 

√ = = 

MRSP2 50 = 

√ √ 
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ased classifiers. Again, an exception is found when considering 

he LP- k NN one, which is most likely due to the high label vari-

bility in the search space that visibly hinders the performance of 

his classifier. 

In terms of non-dominance, it may be noted that the obtained 

areto frontiers in the different classification scenarios consid- 

red only comprise examples of the novel multilabel PG strate- 

ies proposed in the work: BR k NN contains MChen 10 , MChen 30 , 

RSP1 30 , and MRSP2 70 ; LP- k NN depicts the MChen 10 and MChen 30 

ases; and ML- k NN points out four of them, which are MChen 10 ,

Chen 70 , MRSP1 30 , and MRSP2 90 . Hence, the ALL and MRHC cases 

ay not be considered optimal solutions to the task as they are 

onsistently dominated by the novel proposals presented in this 

ork. 

Finally, it may be also checked that the classification rates do 

enerally improve as the number of neighbours considered—k pa- 

ameter of the classifiers—increases. This fact suggests the presence 

f some noise in the corpora that is somehow palliated by ade- 

uately tuning this parameter. Note that, among the different mul- 

ilabel classifiers studied, LP- k NN is the one that shows the least 

mprovement when increasing this k value. 

.1.1. Statistical significance analysis 

A significance analysis has been performed to statistically 

valuate the results obtained. For that, we have considered the 

ilcoxon signed-rank test [37] to assess whether the classification 

erformance and reduction rate of the proposed PG methods sig- 

ificantly improve those of the baseline strategies. More precisely, 

or each classification scenario, we compare the results obtained 

y the elements of the particular Pareto frontier against the best 

gures obtained by the baseline MRHC and ALL methods. For that, 

e consider the individual results obtained—either performance or 

eduction—for each contemplated corpus in the experimentation. 

able 3 shows the results of such analysis when considering a sig- 

ificance threshold of p < . 05 . 

Focusing on the classification performance criterion (HL), it 

ay be observed that the non-dominated elements in the Pareto 

rontier—exclusively defined by the proposals introduced in the 

ork—statistically equal or improve the results of the baselines 

onsidered. However, since the particular conclusions are quite re- 

ated to the actual classification scheme at hand, we shall now 

nalyse them in a separate manner. 
9 
When considering the BR k NN classifier, the proposals depicting 

he highest reduction rates—MChen 10 and MChen 30 —show similar 

erformance to both ALL and MRHC baseline cases; on the con- 

rary, those schemes with larger resulting set sizes—MRSP1 30 and 

RSP2 70 —do improve the reference strategies. 

In the case of the LP- k NN classifier, a similar trend to that of

he BR k NN is found: when performing a sharp reduction—MChen 10 

trategy—, the reported classification rate does not statistically dif- 

er to those of the baselines; however, when allowing a larger set 

ize—the MChen 30 method—, this performance indicator does im- 

rove those of the reference cases. 

The results obtained with the ML- k NN classifier, however, do 

ot show a similar tendency to the ones presented. As it may be 

bserved, none of the non-dominated cases is able to statistically 

utperform the ALL case, while they do obtain similar performance 

cores with remarkably fewer prototypes. Regarding the MRHC 

ase case, two of the proposals—MChen 70 and MRSP2 50 —do signif- 

cantly improve this base case while the other two non-dominated 

lements—MChen 10 and MRSP1 30 —report statistically similar clas- 

ification rates. 

In relation to the analysis of the reduction capabilities, as ex- 

ected, the results show that all non-dominated cases statistically 

mprove the ALL case. Oppositely, when compared to the MRHC, 

here is a larger variability in the results: MChen generally out- 

erforms the reference method except for the case of MChen 70 in 

he ML- k NN scenario, which shows no statistical difference; the 

RSP1 30 —found in BR k NN and ML- k NN—also shows alike reduc- 

ion capabilities to MRHC as the analysis points out no difference; 

nally, MRSP2 70 and MRSP2 50 , respectively found in the BR k NN 

nd ML- k NN scenarios, stand for the cases in which the reduction 

esults are statistically worse than MRHC, given that these meth- 

ds do not remarkably reduce the set size of the reference corpus. 

.2. Noise robustness and data cleansing study 

In this second experiment, we assess the performance of both 

he proposed multilabel PG strategies as well as the reference ones 

n scenarios with noisy data. For that, we consider the labelset 

wapping procedure introduced in Section 4.2 with θ ∈ { 20% , 40% } 
s they stand as representative noise rates commonly considered 

n the related literature [32] . For comparative purposes, the case of 

= 0 is also included to assess the base case in which no noise 

s induced. Note that, the different corpora in each experiment are 

ffected by the same level of induced noise—i.e., the same θ value 

or all corpora—, being the case of different noise levels per corpus 

osed as future work. 

The results obtained in the different noise scenarios posed are 

epicted in Table 4 and Fig. 5 . Note that, for simplicity, these fig- 

res constitute the average performance—both in terms of recog- 

ition rate and reduction capabilities—of the individual results per 

G method and k classification parameter for the three k NN-based 

lgorithms considered. 

The induction of noise in the corpora clearly affects the overall 

erformance since, in general, all studied cases depict lower clas- 

ification rates as the noise level increases. While the use of high 

 classification values (e.g., k = 5 or k = 7 ) somehow palliates this

ffect, the best performance achieved in these noisy scenarios is 

ndeed lower than that of the non-induced noise case. 

Besides, all PG methods generally show worse reduction rates 

s the noise increases, being the MRHC and MRSP3 strategies par- 

icularly affected. Most likely, the induced noise results in a higher 

abelset diversity—i.e. , less label-level homogeneity—in the proto- 

ype groups obtained during the space partitioning stage of the 

ethods, hence forcing the merging stage to generate a larger 

umber of elements to satisfy the condition of retrieving as many 

rototypes as labelsets in the cluster. The sole exception to this as- 
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Table 4 

Results in terms of HL and resulting size for both the reference methods (exhaustive search, denoted as ALL, and MRHC) and our proposals (MChen, MRSP1, 

MRSP2, and MRSP3) when considering the different noise scenarios posed. Each value constitutes the average performance obtained for the three classification 

methods considered. Non-dominated solutions per noise scenario are highlighted in bold type. Underlined values denote the best performance rates per PG 

scheme and noise scenario. 

Noise 0% Noise 20% Noise 40% 

Size k Size k Size k 

1 3 5 7 1 3 5 7 1 3 5 7 

Reference 

ALL 100 9.09 8.19 7.98 7.89 100 9.80 8.50 8.22 8.03 100 10.65 9.17 8.71 8.53 

MRHC 59.62 8.76 8.01 7.99 8.02 72.95 9.19 8.40 8.13 8.02 80.67 10.01 8.94 8.59 8.48 

Proposals 

MChen 10 9.98 7.92 7.84 7.84 7.89 9.98 7.94 7.84 7.84 7.93 9.98 8.19 7.95 7.94 8.01 

MChen 30 29.94 8.00 7.73 7.71 7.74 29.94 8.27 7.90 7.74 7.78 29.94 8.53 8.13 7.89 7.98 

MChen 50 49.96 8.29 7.95 7.74 7.68 49.96 8.55 8.18 7.86 7.82 49.96 8.77 8.51 8.10 8.03 

MChen 70 69.97 8.51 7.99 7.94 7.80 69.97 8.89 8.31 8.05 7.96 69.97 9.24 8.89 8.51 8.25 

MChen 90 89.02 8.73 7.86 7.66 7.68 89.02 9.38 8.20 7.87 7.77 89.02 10.07 9.03 8.60 8.40 

MRSP1 10 61.88 8.95 8.35 8.19 8.02 65.72 9.85 8.83 8.50 8.35 68.56 10.54 9.14 8.71 8.58 

MRSP1 30 74.51 8.77 8.05 7.71 7.74 78.89 9.52 8.39 8.04 7.73 81.73 10.38 9.07 8.46 8.15 

MRSP1 50 80.11 8.80 8.01 7.76 7.77 84.29 9.50 8.34 8.00 7.84 87.23 10.40 9.08 8.51 8.33 

MRSP1 70 84.37 8.86 8.00 7.77 7.76 88.28 9.49 8.25 7.92 7.82 91.38 10.33 9.08 8.57 8.37 

MRSP1 90 90.78 8.84 7.95 7.70 7.73 92.35 9.56 8.26 7.90 7.81 93.82 10.31 9.10 8.64 8.42 

MRSP2 10 61.09 8.85 8.29 8.13 8.01 65.13 9.70 8.78 8.41 8.30 66.44 10.48 9.06 8.70 8.48 

MRSP2 30 78.07 8.79 8.09 7.82 7.73 81.23 9.53 8.38 8.06 7.78 83.41 10.21 8.78 8.40 8.16 

MRSP2 50 83.59 8.74 8.04 7.80 7.68 87.92 9.38 8.32 8.07 7.76 89.37 10.34 8.93 8.41 8.26 

MRSP2 70 87.21 8.80 7.93 7.80 7.65 90.53 9.35 8.28 7.98 7.74 92.67 10.35 8.93 8.55 8.26 

MRSP2 90 89.28 8.76 7.98 7.84 7.73 92.16 9.46 8.16 7.87 7.73 93.69 10.35 9.04 8.58 8.42 

MRSP3 66.88 8.53 7.95 7.80 7.76 75.54 9.15 8.28 7.92 7.81 81.33 9.84 8.85 8.31 8.17 
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Table 5 

Wilcoxon signed-rank test results with p < 0 . 05 for the 

noise scenarios posed. Symbols 
√ 

, ✗ , and = respectively 

denote that, for each classification scenario, the non- 

dominated solution in the row significantly improves, 

worsens or does not differ from the reference one in the 

column for the performance (HL) or reduction (Size) cri- 

terion. 

ALL MRHC 

HL Size HL Size 

Noise 0% 

MChen 10 = 

√ = 

√ 

MChen 30 = 

√ √ √ 

MChen 50 = 

√ √ √ 

MRSP2 70 = 

√ √ √ 

Noise 20% 

MChen 10 = 

√ √ √ 

MChen 30 = 

√ √ √ 

MRSP1 30 

√ √ √ √ 

Noise 40% 

MChen 10 

√ √ √ √ 

MChen 30 

√ √ √ √ 

m

A

n

P

5

s

e

b

T

s

i

l

g

n

ertion is the MChen method whose reduction capabilities remain 

table independently of the noise induced in the data since the 

rototype merging policy of this strategy always retrieves a single 

nstance per partition. 

Overall, it can be noted that MChen can be considered the best 

oise cleansing strategy since the classification schemes trained 

fter that stage achieve the best overall HL performance figures. 

ost reasonably, since the merging policy of this strategy only 

eeps the most common labels in each cluster retrieved from the 

pace partitioning stage, the method inherently removes the spo- 

adic presence of uncommon labels in each of these groups, thus 

howing the aforementioned noise robustness. MRSP proposals, 

hough, prove not to be that competitive against this type of noise 

ince the performance of the classification schemes trained with 

he set obtained with those methods degrades as the presence of 

oise increases. Note that, since these merging policies produce as 

any prototypes as label combinations exist in each data partition, 

he higher labelset variability due to the noise induction process 

ot only results in the generation of a larger amount of prototypes, 

ut also that they may be incorrectly labelled. Regarding the ref- 

rence MRHC method, it may be observed a similar performance 

rend to that of the MRSP family as they are based on similar re-

uction principles. 

In terms of non-dominance, it may be observed that the dif- 

erent Pareto frontiers are entirely defined by the novel PG pro- 

osals introduced in this work: MChen 10 , MChen 30 , MChen 50 , and 

RSP2 70 in the non-induced noise scenario; MChen 10 , MChen 30 , 

nd MRSP1 30 when θ = 20% ; and MChen 10 and MChen 30 when 

onsidering the noisiest scenario of the ones studied in the work. 

n this regard, it may be concluded that the MChen algorithm 

roves itself as a considerably robust method—both in terms of 

fficiency and classification performance—against noisy situations, 

specially when set to high reduction rates (e.g., m = 10% or m =
0% ). 

It must be noted that DR methods based on editing strategies 

re typically contemplated in multiclass scenarios as a means of 

emoving noisy elements from the data to enhance the perfor- 

ance of a subsequent DR or classification technique [9] . In this 

ontext, and according to their reported noise removal capabilities, 
10 
ultilabel editing strategies such as the ones by Kanj et al. [38] or 

rnaiz-González et al. [39] may be used for performing such a 

oise cleansing process before applying any particular multilabel 

G method. 

.2.1. Statistical significance analysis 

As in the first experiment, we have considered the Wilcoxon 

igned-rank test to statistically compare the results obtained by the 

lements of the Pareto frontier against the best results obtained 

y the baseline MRHC and ALL methods for each noise scenario. 

able 5 shows the outcome of such analysis when considering a 

ignificance threshold of p < 0 . 05 . 

As it may be observed, the multilabel PG strategies proposed 

n the work significantly improve the reduction rate of the base- 

ines considered for all noise scenarios posed. Such a point sug- 

ests a remarkable robustness of our methods to the presence of 

oise in the data: while the reduction capabilities of the refer- 
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Fig. 5. Results in terms of HL and resulting size for the different noise scenarios when considering the PG methods and the exhaustive search case (ALL) for the k values 

tested. Note that each sample constitutes the average performance obtained for the three classification methods studied. Circled methods and dashed lines represent the 

non-dominated elements and the Pareto frontiers in each scenario, respectively. For easier comparison, shaded areas depict the regions in the solution space occupied by 

the baseline cases (MRHC and ALL). 
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nce MRHC strategy severely degrade as the noise in the data in- 

reases, the MChen is not affected by such an alteration whereas 

he MRSP1 and MRSP2 strategies do not degrade as much as the 

RHC. 

In relation to the classification rate, it may be noted that all 

on-dominated proposals either equal or improve the exhaustive 

earch case with a significantly lower amount of prototypes. More 

recisely, our proposals improve the ALL case when inducing an el- 

vated level of noise in the data while, when addressing scenarios 

ith low levels of induced noise, the proposed multilabel methods 

n the Pareto frontier do not significantly differ from the exhaustive 

earch cases. 

Regarding the classification performance of the MRHC baseline 

ethod, it may be observed that this strategy is remarkably af- 
11 
ected by the noise, being significantly outperformed by all the 

ultilabel PG proposals in the non-dominated frontier. The sole 

xception to this assertion is the MChen 10 in the Noise 0% scenario 

hat does not significantly differ from the MRHC case. 

Overall, this analysis proves the superior robustness and noise 

leansing capabilities of the proposed multilabel PG alternatives 

ince, in the worst-case scenario, the classification rate achieved 

s similar to that of the exhaustive search but with a signifi- 

antly lower amount of samples. Besides, it is also proved that the 

nly existing multilabel PG method in the literature—the MRHC 

lgorithm—is severely affected by these noisy scenarios—both in 

erms of efficiency and classification rate—, being hence outper- 

ormed by the novel multilabel PG proposals introduced in this 

ork. 
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Table 6 

Results in terms of the F S 1 (%) and AUC S (%) figures of merit for the two class imbalance ranges considered—

denoted as Moderate and High —as well as for all the entire data collection—designated as All corpora —for 

the non-dominated solutions in Section 5.1 per classification scenario. Figures reported for the reference ALL 

and MRHC strategies constitute those obtained with the best performing k classification parameter for each 

particular case. The best performance figures per classifier, imbalance level, and metric are highlighted in 

bold. The resulting set size is provided for comparative purposes. 

Moderate High All corpora 

F S 1 AUC S Size F S 1 AUC S Size F S 1 AUC S Size 

BR k NN 

ALL 23.09 60.88 100 3.50 50.95 100 21.55 58.95 100 

MRHC 22.87 60.60 60.80 3.02 50.83 55.55 20.33 58.43 59.62 

MChen 10 14.35 56.44 9.95 1.25 50.16 10.00 14.01 55.60 9.98 

MChen 30 11.77 55.20 29.85 1.44 50.21 30.00 15.03 56.00 29.94 

MRSP1 30 20.66 59.77 75.44 2.81 50.82 80.86 20.70 58.72 74.51 

MRSP2 70 24.10 61.47 88.35 2.49 50.75 87.63 21.71 59.21 87.21 

LP- k NN 

ALL 35.29 66.44 100 5.84 52.05 100 26.34 60.87 100 

MRHC 40.67 69.34 60.80 4.67 51.43 55.55 26.70 61.21 59.62 

MChen 10 11.71 55.30 9.95 1.00 50.07 10.00 12.78 55.07 9.98 

MChen 30 13.18 55.91 29.85 1.42 50.19 30.00 16.29 56.45 29.94 

ML- k NN 

ALL 29.04 64.04 100 4.61 51.39 100 23.71 59.99 100 

MRHC 24.58 61.77 60.80 4.24 51.16 55.55 19.75 58.17 59.62 

MChen 10 15.33 56.92 9.95 1.44 50.25 10.00 13.94 55.62 9.98 

MChen 70 22.59 60.82 69.98 3.61 51.13 70.00 20.92 58.90 69.97 

MRSP1 30 27.26 63.52 75.44 4.40 51.53 80.86 23.23 60.15 74.51 

MRSP2 50 30.13 64.76 83.72 3.84 51.14 85.40 23.52 60.08 83.59 
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.3. Class imbalance analysis 

In order to provide some additional insights regarding the ca- 

abilities of the multilabel PG methods, this third experiment as- 

esses their performance by attending to the label-based imbal- 

nce ratio of the different corpora used in the work. More pre- 

isely, to observe possible relations between the imbalance de- 

ree and the overall performance, we have gathered the differ- 

nt corpora based on their respective MeanIR score (see Table 1 ): 

 first moderate class imbalance group ( 10 ≤ MeanIR < 100 ) com- 

rising the bibtex, genbase , and medical sets; and a second highly- 

mbalanced collection with ( MeanIR ≥ 100 ) containing Corel5k and 

ll the rcv1subset corpora. 

Regarding the evaluation procedures, two representative 

xample-based figures of merit for imbalance data have been con- 

idered [40] : the F-measure (F S 
1 
) and the Area Under the Receiver 

perating Characteristic Curve (AUC 

S ). Based on the notation 

ntroduced in this work, these metrics are defined as: 

 

S 
1 = 

1 

| S ml | ·
| S ml | ∑ 

i =1 

2 · |† i ∩ ̂

 h ml ( § i ) | 
|† i | + | ̂ h ml ( § i ) | 

(9) 

7 pt] AUC 

S = 

1 

| S ml | ·
| S ml | ∑ 

i =1 

| ̂ h ml ( § i ) | 
|† i | · ( | Y ml | − 1 ) 

(10) 

here S ml ⊂ X × Y ml denotes the multilabel set of test data, ele- 

ents † i and 

ˆ h ml ( x i ) respectively stand for the ground-truth and 

redicted labelsets, and Y ml denotes the target label space. 

Considering all the above, Table 6 presents the results obtained 

or the aforementioned imbalance-based corpora assortments—

amely, Moderate and High —together with the case of examin- 

ng all data collections—denoted as All corpora —for the two con- 

emplated metrics as well as their average resulting size. Note 

hat, for the sake of conciseness and comparison with the anal- 

ses performed in the previous sections, this study assesses the 

on-dominated solutions per classification scheme obtained in 

ection 5.1 as well as the best-performing configurations for the 

aseline cases. 
12 
In light of the results obtained, a first remark that may be 

bserved is that the label imbalance in the data severely affects 

he overall performance of the schemes. More precisely, while 

he F S 
1 

score in the Moderate scenario gets to achieve values of 

p to 40% (MRHC with LP- k NN), the same metric rarely sur- 

asses a 5% in the High scenario (ALL case with LP- k NN). Sim-

larly, the AUC 

S metric evaluation barely surpasses the random 

uess ( i.e. , AUC 

S = 50% ) when addressing highly-imbalanced data 

hereas the moderately-imbalance corpora generally achieve AUC 

S 

alues over 60% . The All corpora case shows an alike behaviour 

o that of the Moderate scenario as the almost-balanced corpora 

hat this assortment incorporates remarkably reduce the overall 

mbalance ratio. The subsequent analyses thoroughly develop the 

resented general observations for each of the imbalance-level 

cenarios. 

Focusing on the Moderate assortment, it may be checked that 

he different approaches follow similar trends to those observed 

n the previous sections: MChen generally depicts the least com- 

etitive classification rates due to its sharp reduction whereas 

he rest of the methods improve these figures as they perform 

ore conservative reduction processes. Moreover, while the ALL 

ase typically represents the best-performing option in terms of 

lassification rate, some of the PG methods do prove to outper- 

orm its results—e.g. , the MRHC with the LP- k NN classifier or the 

RSP2 30 with the ML- k NN one. Such an effect is mostly due to 

he inherent noise cleansing capabilities of the different PG al- 

ernatives, which prove to work in these relatively imbalanced 

cenarios. 

In addition, and as previously discussed, these experiments also 

tate a dependency between the reduction technique and the clas- 

ification strategy. More precisely, MRHC does report the best per- 

ormance when paired with the LP- k NN method whereas the MRSP 

amily is particularly relevant in the BR k NN and ML- k NN scenarios.

uch an insight should be further analysed in future work with 

he aim of devising a PG strategy that adequately exploits the in- 

ividual advantages of each k NN-based multilabel classification al- 

orithm. 

Regarding the High imbalance scenario, it can be observed that 

he classification performance generally degrades after the reduc- 
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Fig. 6. Results, in seconds, of the execution time for each multilabel PG method and m reduction parameter (when applicable). Each sample of the boxplot graph stands for 

the reduction time obtained in each particular corpus and fold. Note that the cases of m = 30 and m = 70 have been omitted for conciseness as they represent intermediate 

cases of the reported figures. 
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ion process. While some of the techniques still report competitive 

gures—e.g. , the case of the ML- k NN classifier where the MRSP1 30 

eports a decrease of just 0 . 21% in the F S 
1 

metric with respect to

he ALL case or the BR k NN scenario in which the MRHC decreases

ust 0 . 48% in the F S 
1 

score compared to the exhaustive search—it is

oticeable that none of the reduced cases outperform the ALL case. 

he sole exception to this is the case of the MRSP1 30 strategy that 

lightly improves the exhaustive search with the ML- k NN classifier 

n the AUC 

S figure of merit. 

Such a performance decrease in these particular imbalance sce- 

arios relates to the fact that no considerations for such cases 

ere contemplated when devising the methods. In this regard, a 

everely under-represented label may be assumed as noise, being 

ost likely removed from the resulting set. This can be observed in 

he different MChen cases, in which the performance remarkably 

egrades, especially when set to perform sharp reductions ( i.e , low 

 parameter). Such a limitation is expected to be thoroughly stud- 

ed with the aim of devising specific multilabel PG policies capable 

f dealing with class imbalance. 

The case of the All corpora assortment shows an alike behaviour 

o that of the Moderate imbalance in that the reduction methods 

enerally show slightly lower classification rates than the exhaus- 

ive search. An exception to this is the MRSP2 70 strategy with the 

R k NN classifier or the MRSP1 30 and MRSP2 50 alternatives with 

he ML- k NN model that surpass their respective ALL baseline cases 

n, at least, one of figures of merit, reinforcing the noise reduc- 

ion capabilities of the methods. On a final note, it may be ob- 

erved that, when set to high m values, the MRSP family gener- 

lly achieves similar classification scores to the exhaustive search, 

hile still performing certain size reduction. In this regard, in the 

vent of addressing a given data collection with an unknown im- 

alance degree, it may be advisable to consider these PG alterna- 

ives in contrast to other possibilities such as the MChen or the 
eference MRHC methods. m

13 
.4. Execution time benchmark 

This last experiment assesses the proposed multilabel PG meth- 

ds in terms of their execution time and compares them with that 

f the reference MRHC method. For that, we have performed five 

ifferent executions of all the reduction processes for each partic- 

lar algorithm configuration and corpus when addressing the case 

n which no label noise is induced in the data. The results ob- 

ained are summarised in Fig. 6 , where the samples of the box- 

lot graphs correspond to the individual execution times obtained 

n each of the aforementioned reduction scenarios. Note that, this 

valuation does not relate to the computational complexity of the 

tudied methods but to the efficiency figures of the precise imple- 

entations facilitated in the code repository. 

As it can be checked, based on the time execution benchmark, 

he MRHC implementation stands as the most competitive pro- 

osal of all the reduction strategies studied. Such a result is to- 

ally reasonable since the space partitioning stage of the MRHC 

lgorithm, which is based on the k -means clustering method [1] , 

as been directly drawn from the optimised and efficient-oriented 

cikit-learn library [41] . The rest of the implementations, however, 

o not consider any optimised toolkit that may boost the different 

rocedures within, hence depicting higher execution times. 

In a more detailed analysis, it is observed that the execution 

ime for all configurable methods generally grows as the m reduc- 

ion parameter increases. The sole exception to this assertion is the 

ase of the MRSP2 method, in which the figures obtained remain 

elatively stable for all m configurations. Taking into account the 

ow computational burden of the MRSP2 prototype merging pol- 

cy, this stability insight suggests certain independence between 

he time consumption of the particular space partitioning policy 

evised for this MRSP2 method and the m reduction parameter. 

Moreover, the presence of outliers in some of the methods—

ore precisely, MChen 20 , MRSP1 20 , and all MRSP2 versions—points 
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[

ut some difficulties when addressing particular cases. Most likely, 

his is due to a rather time-consuming space partitioning phase—

ypically, a large amount of pair-wise dissimilarity computations 

nvolving high-dimensional instances—as opposed to the prototype 

erging one, due again to the fact that the merging policies intro- 

uced in the work do not entail such elevated computation bur- 

ens. 

In light of the results obtained, certain mechanisms may be 

ntroduced to palliate the inefficiency figures observed, such as 

he pre-calculation of all dissimilarities or the use of optimised li- 

raries ( e.g. , scikit-learn) to boost some of the intermediate pro- 

esses. Nevertheless, and as aforementioned, the observed ineffi- 

iency issues as well as the conclusions drawn out of them only 

elate to the particular implementations facilitated as part of this 

ork. 

Finally, it must be highlighted that the figures provided in this 

nalysis exclusively reflect the time invested in reducing the set of 

raining data, which may be deemed as the equivalent to the train 

hase in an eager learning model. Hence, once this set of data is 

educed, the inference time only relates to the inherent efficiency 

f the k NN-based classifier as well as the size of the resulting set 

btained by the PG method, but not to the execution time of the 

atter. 

. Conclusions and future work 

Prototype Generation (PG) represents one of the most com- 

etitive approaches for improving the efficiency of the k -Nearest 

eighbour ( k NN) classifier, which is typically related to low- 

fficiency figures when tackling scenarios with large amounts of 

ata. Nevertheless, while PG methods are commonly considered in 

ulticlass scenarios, very scarce works have addressed such a task 

n multilabel frameworks. 

This work presents the first-time adaptation of four multi- 

lass PG methods to the multilabel case: the reference Chen 

ethod [27] and the three versions of the well-known Reduction 

hrough Space Partitioning [28] . For that, we generalise to the mul- 

ilabel space the different criteria considered by each method for 

athering sets of prototypes (space partitioning stage) which are 

hen combined according to certain policies (prototype merging). 

hese novel proposals have been evaluated with 3 multilabel k NN- 

ased classifiers, 12 multilabel corpora comprising a varied range 

f domains and corpus sizes, and different noise scenarios obtained 

y exchanging the labels of the instances in the train partition. 

The results obtained show that the proposed adaptations are 

apable of significantly improving, both in terms of efficiency and 

fficacy, the only reference work in the literature—Multilabel Re- 

uction through Homogeneous Clustering method by Ougiaroglou 

t al. [14] —as well as the case in which no PG method is applied—

he exhaustive search. It is also proved that some of these adapta- 

ions show high robustness and data cleansing capabilities in the 

resence of noise. More precisely, when set to high reduction rates, 

he proposed Multilabel Chen strategy allows training classification 

chemes that statistically outperform those trained with the ex- 

sting baseline approaches. Moreover, the user parameter of these 

ethods allows prioritising either the efficiency or performance 

eatures of the scheme, depending on the particular application. 

Future work considers the further analysis of the proposed 

ethods contemplating the particularities of multilabel scenarios 

uch as their performance in relation to the data label cardinality 

r the possible correlations among labels. The second point of in- 

erest is the exploration of alternative criteria for the partitioning 

nd prototype merging stages, including the proposal of novel ho- 

ogeneity policies, which may result in more efficient and/or ro- 

ust classifiers as well as tackling the limitations observed in these 

ethods when dealing with imbalanced data. Moreover, we con- 
14 
ider that additional insights may be obtained by performing other 

oise induction policies such as swapping only part of the labels 

etween instances, randomly including or eliminating classes for 

ach prototype, or simply duplicating labelsets among elements in 

he corpus. 

In a more practical sense, the presented methods would re- 

arkably benefit from an efficient implementation so that their 

xecution time could be reduced, which represents one of the 

ain limitations observed. From a more general perspective, given 

he commented scarcity of multilabel PG strategies, future research 

ontemplates the adaptation of other multiclass PG schemes to this 

articular scenario. Finally, in light of the noise robustness capa- 

ilities of the proposals, they may be considered as preprocessing 

echniques for other classification schemes such as Support Vec- 

or Machine or neural models in task-oriented cases such as music 

agging or image classification , among others. 
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