2,297 research outputs found

    A computing task ergonomic risk assessment tool for assessing risk factors of work related musculoskeletal disorders

    Get PDF
    Observation method remains to be the most widely applied method in assessing exposure to risk factors for work-related musculoskeletal disorders (WMSDs) related to office works because it is inexpensive and applicable to wide range of office jobs. However, the existing research that applied this method was mainly focused to a limited range of office components and computer accessories such as seat pan, keyboards, mouse, monitor and telephone. In addition, further testing of reliability and validity of the observational method was less reported. This study was conducted to propose the new office ergonomic risk assessment (OFFERA) method to assess a wide range of office risk factors related to WMSDs, which include office components and office environment where this method covers both right and left side of the body part. The initial development of OFFERA method was divided into two stages, the development of OFFERA system components and psychometric properties of OFFERA method. In reliability testing, the results of inter and intra observer reliability recorded good (K=0.62-0.78) and very good (K=0.81-0.96) agreement among the observers. Meanwhile, in validity testing, the relationship of the final score of OFFERA to the musculoskeletal symptoms statistically shows a significant value for wrists/hands (χ²=7.942; p=0.047), lower back (χ²=13.478; p=0.000), knees (χ²=7.001; p=0.008), and ankle/leg (χ²=5.098; p=0.024). The usability testing shows that the OFFERA method was easy and quick to be used (mean 4.48 Β± 0.821) and applicable for wide range of office working activities (mean 4.02 Β± 0.952). Based on the results obtained, it can be concluded that the OFFERA method was found to be practically reliable and applicable for wide range of office work-related activities

    Modeling The Intensity Function Of Point Process Via Recurrent Neural Networks

    Full text link
    Event sequence, asynchronously generated with random timestamp, is ubiquitous among applications. The precise and arbitrary timestamp can carry important clues about the underlying dynamics, and has lent the event data fundamentally different from the time-series whereby series is indexed with fixed and equal time interval. One expressive mathematical tool for modeling event is point process. The intensity functions of many point processes involve two components: the background and the effect by the history. Due to its inherent spontaneousness, the background can be treated as a time series while the other need to handle the history events. In this paper, we model the background by a Recurrent Neural Network (RNN) with its units aligned with time series indexes while the history effect is modeled by another RNN whose units are aligned with asynchronous events to capture the long-range dynamics. The whole model with event type and timestamp prediction output layers can be trained end-to-end. Our approach takes an RNN perspective to point process, and models its background and history effect. For utility, our method allows a black-box treatment for modeling the intensity which is often a pre-defined parametric form in point processes. Meanwhile end-to-end training opens the venue for reusing existing rich techniques in deep network for point process modeling. We apply our model to the predictive maintenance problem using a log dataset by more than 1000 ATMs from a global bank headquartered in North America.Comment: Accepted at Thirty-First AAAI Conference on Artificial Intelligence (AAAI17

    Modeling Financial Time Series with Artificial Neural Networks

    Full text link
    Financial time series convey the decisions and actions of a population of human actors over time. Econometric and regressive models have been developed in the past decades for analyzing these time series. More recently, biologically inspired artificial neural network models have been shown to overcome some of the main challenges of traditional techniques by better exploiting the non-linear, non-stationary, and oscillatory nature of noisy, chaotic human interactions. This review paper explores the options, benefits, and weaknesses of the various forms of artificial neural networks as compared with regression techniques in the field of financial time series analysis.CELEST, a National Science Foundation Science of Learning Center (SBE-0354378); SyNAPSE program of the Defense Advanced Research Project Agency (HR001109-03-0001

    Behavioural pattern identification and prediction in intelligent environments

    Get PDF
    In this paper, the application of soft computing techniques in prediction of an occupant's behaviour in an inhabited intelligent environment is addressed. In this research, daily activities of elderly people who live in their own homes suffering from dementia are studied. Occupancy sensors are used to extract the movement patterns of the occupant. The occupancy data is then converted into temporal sequences of activities which are eventually used to predict the occupant behaviour. To build the prediction model, different dynamic recurrent neural networks are investigated. Recurrent neural networks have shown a great ability in finding the temporal relationships of input patterns. The experimental results show that non-linear autoregressive network with exogenous inputs model correctly extracts the long term prediction patterns of the occupant and outperformed the Elman network. The results presented here are validated using data generated from a simulator and real environments

    PSO based Neural Networks vs. Traditional Statistical Models for Seasonal Time Series Forecasting

    Full text link
    Seasonality is a distinctive characteristic which is often observed in many practical time series. Artificial Neural Networks (ANNs) are a class of promising models for efficiently recognizing and forecasting seasonal patterns. In this paper, the Particle Swarm Optimization (PSO) approach is used to enhance the forecasting strengths of feedforward ANN (FANN) as well as Elman ANN (EANN) models for seasonal data. Three widely popular versions of the basic PSO algorithm, viz. Trelea-I, Trelea-II and Clerc-Type1 are considered here. The empirical analysis is conducted on three real-world seasonal time series. Results clearly show that each version of the PSO algorithm achieves notably better forecasting accuracies than the standard Backpropagation (BP) training method for both FANN and EANN models. The neural network forecasting results are also compared with those from the three traditional statistical models, viz. Seasonal Autoregressive Integrated Moving Average (SARIMA), Holt-Winters (HW) and Support Vector Machine (SVM). The comparison demonstrates that both PSO and BP based neural networks outperform SARIMA, HW and SVM models for all three time series datasets. The forecasting performances of ANNs are further improved through combining the outputs from the three PSO based models.Comment: 4 figures, 4 tables, 31 references, conference proceeding

    Modeling user navigation

    Get PDF
    This paper proposes the use of neural networks as a tool for studying navigation within virtual worlds. Results indicate that the network learned to predict the next step for a given trajectory. The analysis of hidden layer shows that the network was able to differentiate between two groups of users identified on the basis of their performance for a spatial task. Time series analysis of hidden node activation values and input vectors suggested that certain hidden units become specialised for place and heading, respectively. The benefits of this approach and the possibility of extending the methodology to the study of navigation in Human Computer Interaction applications are discussed
    • …
    corecore